1
|
Wiltshire A, Tozour J, Hamer D, Akerman M, McCulloh DH, Grifo JA, Blakemore J. Serum Gonadotropin Levels Predict Post-Trigger Luteinizing Hormone Response in Antagonist Controlled Ovarian Hyperstimulation Cycles. Reprod Sci 2023; 30:1335-1342. [PMID: 36289171 DOI: 10.1007/s43032-022-01105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
Abstract
The objective of this study was to investigate the utility of using serum gonadotropin levels to predict optimal luteinizing hormone (LH) response to gonadotropin releasing hormone agonist (GnRHa) trigger. A retrospective cohort study was performed of all GnRH-antagonist controlled ovarian hyperstimulation (COH) cycles at an academic fertility center from 2017-2020. Cycles that utilized GnRHa alone or in combination with human chorionic gonadotropin (hCG) for trigger were included. Patient and cycle characteristics were collected from the electronic medical record. Optimal LH response was defined as a serum LH ≥ 40 mIU/mL on the morning after trigger. Total sample size was 3865 antagonist COH cycles, of which 91% had an optimal response to GnRHa trigger. Baseline FSH (B-FSH) and earliest in-cycle LH (EIC-LH) were significantly higher in those with optimal response. Multivariable logistic regression affirmed association of optimal response with EIC-LH, total gonadotropin dosage, age, BMI and Asian race. There was no difference in the number of oocytes retrieved (p = 0.14), maturity rate (p = 0.40) or fertilization rates (p = 0.49) based on LH response. There was no difference in LH response based on use of combination vs. GnRHa alone trigger (p = 0.21) or GnRHa trigger dose (p = 0.46). The EIC-LH was more predictive of LH trigger response than B-FSH (p < 0.005).The optimal B-FSH and EIC-LH values to yield an optimal LH response was ≥ 5.5 mIU/mL and ≥ 1.62 mIU/mL, respectively. In an era of personalized medicine, utilizing cycle and patient characteristics, such as early gonadotropin levels, may improve cycle outcomes and provide further individualized care.
Collapse
Affiliation(s)
- Ashley Wiltshire
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Ave, New York City, NY, 10016, USA.
| | - Jessica Tozour
- Department of Obstetrics and Gynecology, New York University Langone Hospital - Long Island, 259 1st St, Mineola, NY, 11501, USA
| | - Dina Hamer
- New York University Grossman School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Meredith Akerman
- Biostatistics Core, Division of Health Services Research, New York University Langone Hospital - Long Island, 101 Mineola Blvd, Suite 3-041, Mineola, NY, 11501, USA
| | - David H McCulloh
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Ave, New York City, NY, 10016, USA
| | - James A Grifo
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Ave, New York City, NY, 10016, USA
| | - Jennifer Blakemore
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Ave, New York City, NY, 10016, USA
| |
Collapse
|
2
|
Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet 2022; 39:2439-2473. [PMID: 36190593 PMCID: PMC9723082 DOI: 10.1007/s10815-022-02625-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 10/10/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a prevailing endocrine and metabolic disorder occurring in about 6-20% of females in reproductive age. Most symptoms of PCOS arise early during puberty. Since PCOS involves a combination of signs and symptoms, thus it is considered as a heterogeneous disorderliness. The most accepted diagnostic criteria is Rotterdam criteria which involves two of the latter three features: (a) hyperandrogenism, (b) oligo- or an-ovulation, and (c) polycystic ovaries. The persistent hormonal imbalance leads to multiple small antral follicles formation and irregular menstrual cycle, ultimately causing infertility among females. Insulin resistance, cardiovascular diseases, abdominal obesity, psychological disorders, infertility, and cancer are also related to PCOS. These pathophysiologies associated with PCOS are interrelated with each other. Hyperandrogenism causes insulin resistance and hyperglycemia, leading to ROS formation, oxidative stress, and abdominal adiposity. In consequence, inflammation, ROS production, insulin resistance, and hyperandrogenemia also increase. Elevation of AGEs in the body either produced endogenously or consumed from diet exaggerates PCOS symptoms and is also related to ovarian dysfunction. This review summarizes how AGE formation, inflammation, and oxidative stress are significantly essential in PCOS progression. Alterations during prenatal development like exposure to excess AMH, androgens, or toxins (bisphenol-A, endocrine disruptors, etc.) may also be the etiologic mechanism behind PCOS. Although the etiology of this disorder is unclear, environmental and genetic factors are primarily involved. Physical inactivity, as well as unhealthy eating habits, has a vital role in the progression of PCOS. This review outlines a collection of specific genes phenotypically linked with PCOS. Furthermore, beneficial effect of metformin in maintaining endocrine abnormalities and ovarian function is also mentioned. Kisspeptin is a protein which helps in onset of puberty and increases GnRH pulsatile release during ovulation as well as role of KNDy neurons in GnRH pulsatile signal required for reproduction are also elaborated. This review also focuses on the immunology related to PCOS involving chronic low-grade inflammation, and how the alterations within the follicular microenvironment are intricated in the development of infertility in PCOS patients. How PCOS develops following antiepileptic and psychiatric medication is also expanded in this review. Initiation of antiandrogen treatment in early age (≤ 25 years) might be helpful in spontaneous conception in PCOS women. The role of BMP (bone morphogenetic proteins) in folliculogenesis and their expression in oocytes and granulosa cells are also explained. GDF8 and SERPINE1 expression in PCOS is given in detail.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India.
| |
Collapse
|
3
|
Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022; 10:biomedicines10030540. [PMID: 35327342 PMCID: PMC8945152 DOI: 10.3390/biomedicines10030540] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consensus (2003), which supports the positive diagnosis of PCOS when patients present two out of the following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovulation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes, and disturbed lifestyle lead to the development of pathophysiological disturbances, which include hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular level, different proteins and molecular and signaling pathways are involved in disease progression, which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic variances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types. Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin disease. Different genetic loci and specific genes have been identified so far as being associated with this disease. Genome-wide association studies (GWAS) and related genetic studies have changed the scenario for the diagnosis and treatment of this reproductive and metabolic condition known as PCOS. This review article briefly discusses different genes associated directly or indirectly with disease development and progression.
Collapse
Affiliation(s)
- Himani Nautiyal
- Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun 248001, India;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Emine Güven
- Biomedical Engineering Department, Faculty of Engineering, Düzce University, Düzce 81620, Turkey;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| |
Collapse
|
4
|
Khan MJ, Ullah A, Basit S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl Clin Genet 2019; 12:249-260. [PMID: 31920361 PMCID: PMC6935309 DOI: 10.2147/tacg.s200341] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common infertility disorder affecting a significant proportion of the global population. It is the main cause of anovulatory infertility in women and is the most common endocrinopathy affecting reproductive-aged women, with a prevalence of 8-13% depending on the criteria used and population studied. The disease is multifactorial and complex and, therefore, often difficult to diagnose due to overlapping symptoms. Multiple etiological factors have been implicated in PCOS. Due to the complex pathophysiology involving multiple pathways and proteins, single genetic diagnostic tests cannot be determined. Progress has been achieved in the management and diagnosis of PCOS; however, not much is known about the molecular players and signaling pathways underlying it. Conclusively PCOS is a polygenic and multifactorial syndromic disorder. Many genes have been associated with PCOS, which affect fertility either directly or indirectly. However, studies conducted on PCOS patients from multiple families failed to find a fully penetrant variant(s). The present study was designed to review the current genetic understanding of the disease. In the present review, we have discussed the clinical spectrum, the genetics, and the variants identified as being associated with PCOS. The mechanisms by which variants in the genes confer risk to PCOS and the nature of the physical and genetic interaction between the genetic elements underlying PCOS remain to be determined. Elucidation of genetic players and cellular pathways underlying PCOS will certainly increase our understanding of the pathophysiology of this syndrome. The study also discusses the current status of the treatment modalities for PCOS, which is important to find new ways of treatment.
Collapse
Affiliation(s)
- Muhammad Jaseem Khan
- Institute of Paramedical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Anwar Ullah
- Institute of Paramedical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University Almadinah Almunawwarrah, Peshawar, Saudi Arabia
| |
Collapse
|
5
|
Branavan U, Muneeswaran K, Wijesundera S, Jayakody S, Chandrasekharan V, Wijeyaratne C. Identification of selected genetic polymorphisms in polycystic ovary syndrome in Sri Lankan women using low cost genotyping techniques. PLoS One 2018; 13:e0209830. [PMID: 30596735 PMCID: PMC6312267 DOI: 10.1371/journal.pone.0209830] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS), the commonest endocrine disorder affecting young women, appears to be a multigenic trait with contributing genes being unclear. Hence, analysis of polymorphisms in multiple candidate genes is required. Currently available genotyping methods are expensive, time-consuming with limited analytical sensitivity. Aim (i) Develop and validate high resolution melting (HRM) assay and allele-specific real-time quantitative PCR (AS-qPCR) for genotyping selected SNPs associated with PCOS. (ii) Identify selected SNPs and their association with a Sri Lankan cohort of well-characterized PCOS. Methods DNA was extracted from women with well-characterized PCOS from adolescence (n = 55) and ethnically matched controls (n = 110). FTO (Fat mass and obesity associated gene; rs9939609), FSHB (Follicle stimulating hormone beta subunit; rs6169), FSHR (Follicle stimulating hormone receptor; rs6165/rs6166), and INSR (Insulin receptor; rs1799817) genes were genotyped using HRM assay. GnRH1 (Gonadotropin releasing hormone; rs6185), LHB (Luteinizing hormone beta subunit; rs1800447/rs34349826) and LHCGR (Luteinizing hormone/choriogonadotropin receptor; rs2293275) genes were genotyped using AS-qPCR method. Genotyping results were validated using Sanger sequencing. Results A significant association was observed within FTO gene polymorphism (rs9939609) and PCOS. Genotype frequency of FTO gene (rs9939609)—cases versus controls were TT-36.4% vs.65.4% (p<0.05), AT-23.6% vs.20.9%, AA-40% vs.13.6% (p<0.05). Genotype frequencies of the SNPs GnRH1 (rs6185), FSHB (rs6169), FSHR (rs6165 & rs6166), LHB (rs1800447 & rs34349826), LHCGR (rs2293275) and INSR (rs1799817) were not significantly different between cases and controls (p>0.05). Only the mutant alleles were observed for LHB rs1800447 and rs34349826 SNPs in both groups. The HRM and AS-qPCR assay results had 100% concordance with sequencing results. Conclusions FTO gene rs9939609 polymorphism is significantly more prevalent among Sri Lankan PCOS subjects while the other selected SNPs of HPG axis genes and INSR gene showed no association. HRM and AS-qPCR assays provide a reliable, fast and user-friendly genotyping method facilitating wider implication in clinical practice.
Collapse
Affiliation(s)
- Umayal Branavan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Kajan Muneeswaran
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sulochana Wijesundera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Surangi Jayakody
- Department of Community Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | | | - Chandrika Wijeyaratne
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- * E-mail: ,
| |
Collapse
|
6
|
Punab AM, Grigorova M, Punab M, Adler M, Kuura T, Poolamets O, Vihljajev V, Žilaitienė B, Erenpreiss J, Matulevičius V, Laan M. 'Carriers of variant luteinizing hormone (V-LH) among 1593 Baltic men have significantly higher serum LH'. Andrology 2015; 3:512-9. [PMID: 25820123 PMCID: PMC4832392 DOI: 10.1111/andr.12022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/15/2014] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Luteinizing hormone (LH) is a pituitary heterodimeric glycoprotein essential in male and female reproduction. Its functional polymorphic variant (V‐LH) is determined by two missense mutations (rs1800447, A/G, Trp8Arg; rs34349826, A/G, Ile15Thr) in the LH β‐subunit encoding gene (LHB; 19q13.3; 1111 bp; 3 exons). Among women, V‐LH has been associated with higher circulating LH and reduced fertility, but the knowledge of its effect on male reproductive parameters has been inconclusive. The objective of this study was to assess the effect of V‐LH on hormonal, seminal and testicular parameters in the Baltic young men cohort (n = 986; age: 20.1 ± 2.1 years) and Estonian idiopathic infertility patients (n = 607; 35.1 ± 5.9 years). V‐LH was detected by genotyping of the underlying DNA polymorphisms using PCR‐RFLP combined with resequencing of a random subset of subjects. Genetic associations were tested using linear regression under additive model and results were combined in meta‐analysis. No significant difference was detected between young men and infertility patients for the V‐LH allele frequency (11.0 vs. 9.3%, respectively). V‐LH was associated with higher serum LH in both, the young men cohort (p = 0.022, allelic effect = 0.26 IU/L) and the idiopathic infertility group (p = 0.008, effect = 0.59 IU/L). In meta‐analysis, the statistical significance was enhanced (p = 0.0007, resistant to Bonferroni correction for multiple testing; effect = 0.33 IU/L). The detected significant association of V‐LH with increased serum LH remained unchanged after additional adjustment for the SNPs previously demonstrated to affect LH levels (FSHB ‐211G/T, FSHR Asn680Ser, FSHR ‐29A/G). Additionally, a suggestive trend for association with reduced testicular volume was observed among young men, and with lower serum FSH among infertility patients. The V‐LH carrier status did not affect sperm parameters and other circulating reproductive hormones. For the first time, we show a conclusive contribution of V‐LH to the natural variance in male serum LH levels. Its downstream clinical consequences are still to be learned.
Collapse
Affiliation(s)
- A M Punab
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - M Grigorova
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - M Punab
- Andrology Unit, Tartu University Clinics, Tartu, Estonia
| | - M Adler
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - T Kuura
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - O Poolamets
- Andrology Unit, Tartu University Clinics, Tartu, Estonia
| | - V Vihljajev
- Andrology Unit, Tartu University Clinics, Tartu, Estonia
| | - B Žilaitienė
- Lithuanian University of Health Sciences, Medical Academy, Institute of Endocrinology, Kaunas, Lithuania
| | - J Erenpreiss
- Andrology Laboratory, Riga Stradins University, Riga, Latvia
| | - V Matulevičius
- Lithuanian University of Health Sciences, Medical Academy, Institute of Endocrinology, Kaunas, Lithuania
| | - M Laan
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Hanevik HI, Hilmarsen HT, Skjelbred CF, Tanbo T, Kahn JA. Variant-beta luteinizing hormone is not associated with poor ovarian response to controlled ovarian hyperstimulation. Reprod Biol Endocrinol 2014; 12:20. [PMID: 24625195 PMCID: PMC3995627 DOI: 10.1186/1477-7827-12-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most common genetic variant of luteinizing hormone (LH), variant-betaLH, has a different bioactivity than the wildtype. Carrying the variant allele was associated with an increased consumption of exogenous gonadotropin to achieve optimal ovarian response for in vitro fertilization procedures (IVF). The aim of this study was to examine if variant-betaLH was also more common in patients with a poor ovarian response to exogenous gonadotropin which negatively influenced treatment outcome. FINDINGS 36 patients with poor ovarian response to ovarian stimulation for IVF and 98 controls with a normal response were genotyped for variant-betaLH using DNA sequencing. The carrier frequency in the control group was 17%. No association was found between poor ovarian response and variant-betaLH. CONCLUSIONS Testing patients for variant-betaLH prior to IVF is unlikely to predict poor ovarian response.
Collapse
Affiliation(s)
- Hans I Hanevik
- Fertilitetsklinikken Sør, Telemark Hospital, Porsgrunn, Norway
| | - Hilde T Hilmarsen
- Department of Laboratory Medicine, Section of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Camilla F Skjelbred
- Department of Laboratory Medicine, Section of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Tom Tanbo
- Department of Gynecology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jarl A Kahn
- Fertilitetsklinikken Sør, Telemark Hospital, Porsgrunn, Norway
| |
Collapse
|
8
|
Choi D. The consequences of mutations in the reproductive endocrine system. Dev Reprod 2012; 16:235-51. [PMID: 25949097 PMCID: PMC4282240 DOI: 10.12717/dr.2012.16.4.235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/01/2012] [Accepted: 12/10/2012] [Indexed: 01/03/2023]
Abstract
The reproductive activity in male mammals is well known to be regulated by the hypothalamus-pituitary- gonad axis. The hypothalamic neurons secreting gonadotropin releasing hormone (GnRH) govern the reproductive neuroendocrine system by integrating all the exogenous information impinging on themselves. The GnRH synthesized and released from the hypothalamus arrives at the anterior pituitary through the portal vessels, provoking the production of the gonadotropins(follicle-stimulating hormone (FSH) and luteinizing hormone (LH)) at the same time. The gonadotropins affect the gonads to promote spermatogenesis and to secret testosterone. Testosterone acts on the GnRH neurons by a feedback loop through the circulatory system, resulting in the balance of all the hormones by regulating reproductive activities. These hormones exert their effects by acting on their own receptors, which are included in the signal transduction pathways as well. Unexpected aberrants are arised during this course of action of each hormone. This review summarizes these abnormal phenomena, including various mutations of molecules and their actions related to the reproductive function.
Collapse
Affiliation(s)
- Donchan Choi
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 449-714, Korea
| |
Collapse
|
9
|
Abstract
Adequate functioning at all levels of the hypothalamic-pituitary-gonadal axis is necessary for normal gonadal development and subsequent sex steroid production. Deficiencies at any level of the axis can lead to a hypogonadal state. The causes of hypogonadism are heterogeneous and may involve any level of the reproductive system. This review discusses various causes of hypogonadism, describes the evaluation of hypogonadal states, and outlines treatment options for the induction of puberty in affected adolescents. Whereas some conditions are clearly delineated, the exact etiology and underlying pathogenesis of many disorders is unknown.
Collapse
Affiliation(s)
- Vidhya Viswanathan
- Section of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Room 5960, 702 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
10
|
Benaderet AD, Burton AM, Clifton-Bligh R, Ashraf AP. Primary hyperparathyroidism with low intact PTH levels in a 14-year-old girl. J Clin Endocrinol Metab 2011; 96:2325-9. [PMID: 21593105 PMCID: PMC3206518 DOI: 10.1210/jc.2011-0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary hyperparathyroidism (PHPT) is usually associated with hypercalcemia and inappropriately elevated serum PTH. OBJECTIVE Our objective was to identify the reason(s) for a low serum intact PTH in a child with PHPT. SUBJECT AND METHODS A 14-yr-old Caucasian girl presented with pancreatitis, nephrolithiasis, hypercalcemia ranging from 13.2 to 17.5 mg/dl, and a low serum intact PTH. She had an ultrasound and technetium-99m-sestamibi scintigraphy confirming the presence of a parathyroid adenoma. RESULTS The preoperative serum intact PTH assays performed at Quest Diagnostics, Nichols Institute, were low even after serial dilutions, whereas the intraoperative turbo PTH assay was elevated at 3618 pg/ml. C-terminal and cyclase-activating PTH assays for PTH were also elevated. PTH gene sequence analysis performed from DNA extracted both from the parathyroid adenoma and the patient's peripheral blood leukocytes was negative for a mutation in the PTH gene sequence. CONCLUSIONS The contrasting values on the intact PTH assay and the turbo PTH assay suggest that the adenoma was producing an aberrant PTH molecule that was not detected by the routine intact PTH assay. Because there was no change in PTH gene sequence, this could be indicative of a posttranslational change in the PTH molecule that would not be recognized solely by DNA sequencing. Therefore, a low or normal PTH measurement against the backdrop of clinical and biochemical hyperparathyroidism needs measurement with a variety of assays.
Collapse
Affiliation(s)
- Amanda D Benaderet
- Department of Pediatrics/Division of Pediatric Endocrinology and Metabolism, Children's Hospital, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | | | | | |
Collapse
|
11
|
Unluturk U, Harmanci A, Kocaefe C, Yildiz BO. The Genetic Basis of the Polycystic Ovary Syndrome: A Literature Review Including Discussion of PPAR-gamma. PPAR Res 2011; 2007:49109. [PMID: 17389770 PMCID: PMC1820621 DOI: 10.1155/2007/49109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/24/2006] [Accepted: 12/03/2006] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of the women of reproductive age. Familial clustering of PCOS has been consistently reported suggesting that genetic factors play a role in the development of the syndrome although PCOS cases do not exhibit a clear pattern of Mendelian inheritance. It is now well established that PCOS represents a complex trait similar to type-2 diabetes and obesity, and that both inherited and environmental factors contribute to the PCOS pathogenesis. A large number of functional candidate genes have been tested for association or linkage with PCOS phenotypes with more negative than positive findings. Lack of universally accepted diagnostic criteria, difficulties in the assignment of male phenotype, obscurity in the mode of inheritance, and particularly small sample size of the study populations appear to be major limitations for the genetic studies of PCOS. In the near future, utilizing the genome-wide scan approach and the HapMap project will provide a stronger potential for the genetic analysis of the syndrome.
Collapse
Affiliation(s)
- Ugur Unluturk
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
| | - Ayla Harmanci
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
- Endocrinology and Metabolism Unit, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
| | - Cetin Kocaefe
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
| | - Bulent O. Yildiz
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
- Endocrinology and Metabolism Unit, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
- *Bulent O. Yildiz:
| |
Collapse
|
12
|
Nagirnaja L, Rull K, Uusküla L, Hallast P, Grigorova M, Laan M. Genomics and genetics of gonadotropin beta-subunit genes: Unique FSHB and duplicated LHB/CGB loci. Mol Cell Endocrinol 2010; 329:4-16. [PMID: 20488225 PMCID: PMC2954307 DOI: 10.1016/j.mce.2010.04.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/13/2010] [Accepted: 04/26/2010] [Indexed: 01/28/2023]
Abstract
The follicle stimulating hormone (FSH), luteinizing hormone (LH) and chorionic gonadotropin (HCG) play a critical role in human reproduction. Despite the common evolutionary ancestry and functional relatedness of the gonadotropin hormone beta (GtHB) genes, the single-copy FSHB (at 11p13) and the multi-copy LHB/CGB genes (at 19q13.32) exhibit locus-specific differences regarding their genomic context, evolution, genetic variation and expressional profile. FSHB represents a conservative vertebrate gene with a unique function and it is located in a structurally stable gene-poor region. In contrast, the primate-specific LHB/CGB gene cluster is located in a gene-rich genomic context and demonstrates an example of evolutionary young and unstable genomic region. The gene cluster is shaped by a constant balance between selection that acts on specific functions of the loci and frequent gene conversion events among duplicons. As the transcription of the GtHB genes is rate-limiting in the assembly of respective hormones, the genomic and genetic context of the FSHB and the LHB/CGB genes largely affects the profile of the hormone production.
Collapse
Affiliation(s)
- Liina Nagirnaja
- Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Kristiina Rull
- Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Puusepa 8 G2, 51014 Tartu, Estonia
- Estonian Biocentre, Riia St. 23b, 51010 Tartu, Estonia
| | - Liis Uusküla
- Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Pille Hallast
- Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Marina Grigorova
- Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
- Estonian Biocentre, Riia St. 23b, 51010 Tartu, Estonia
| | - Maris Laan
- Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| |
Collapse
|
13
|
Wide L, Eriksson K, Sluss PM, Hall JE. The common genetic variant of luteinizing hormone has a longer serum half-life than the wild type in heterozygous women. J Clin Endocrinol Metab 2010; 95:383-9. [PMID: 19890021 PMCID: PMC2805495 DOI: 10.1210/jc.2009-1679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The common genetic variant of human LH has two mutations and an extra N-linked oligosaccharide chain, a modification expected to affect the half-life in the circulation. OBJECTIVES Our objectives were to determine the half-lives of variant and wild-type forms of LH during GnRH receptor blockade in heterozygous women and to determine the time-related changes in isoform composition. DESIGN AND PARTICIPANTS Serum samples were obtained from three healthy women heterozygous for variant LH before and up to 20 h after administration of the NAL-GLU GnRH antagonist. MAIN OUTCOME MEASURES The half-lives were estimated by monoexponential decay. The number of sialic acid and sulfonated N-acetylgalactosamine residues per wild-type and variant LH molecule and the distribution of molecules with zero, one, two, or three sulfonated residues were measured. RESULTS The variant LH had a half-life that was approximately 40% longer than the corresponding forms of wild-type LH (148 vs. 108 min; P < 0.001). Variant LH had more sialic acid residues per molecule than wild type (3.6 vs. 2.4; P < 0.05), whereas the number of sulfonated residues was similar (1.0 vs. 0.98). The decline in the variant LH during GnRH receptor blockade was associated with a decrease in sulfonated and an increase in sialic acid residues similar to that for in wild-type LH. Isoforms of either variant or wild-type LH with two to three sulfonate groups per molecule had the shortest half-life. CONCLUSION Variant LH remains longer in circulation than wild type during GnRH receptor blockade in heterozygous women, in accord with its higher content of sialic acid.
Collapse
Affiliation(s)
- Leif Wide
- Department of Clinical Chemistry, University Hospital, SE 751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
14
|
Abstract
Adequate functioning at all levels of the hypothalamic-pituitary-gonadal axis is necessary for normal gonadal development and subsequent sex steroid production. Deficiencies at any level of the axis can lead to a hypogonadal state. The causes of hypogonadism are heterogeneous and may involve any level of the reproductive system. This review discusses various causes of hypogonadism, describes the evaluation of hypogonadal states, and outlines treatment options for the induction of puberty in affected adolescents. Whereas some conditions are clearly delineated, the exact etiology and underlying pathogenesis of many disorders is unknown.
Collapse
Affiliation(s)
- Vidhya Viswanathan
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | |
Collapse
|
15
|
Haasl RJ, Ahmadi MR, Meethal SV, Gleason CE, Johnson SC, Asthana S, Bowen RL, Atwood CS. A luteinizing hormone receptor intronic variant is significantly associated with decreased risk of Alzheimer's disease in males carrying an apolipoprotein E epsilon4 allele. BMC MEDICAL GENETICS 2008; 9:37. [PMID: 18439297 PMCID: PMC2396156 DOI: 10.1186/1471-2350-9-37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 04/25/2008] [Indexed: 01/04/2023]
Abstract
Genetic and biochemical studies support the apolipoprotein E (APOE) ε4 allele as a major risk factor for late-onset Alzheimer's disease (AD), though ~50% of AD patients do not carry the allele. APOE transports cholesterol for luteinizing hormone (LH)-regulated steroidogenesis, and both LH and neurosteroids have been implicated in the etiology of AD. Since polymorphisms of LH beta-subunit (LHB) and its receptor (LHCGR) have not been tested for their association with AD, we scored AD and age-matched control samples for APOE genotype and 14 polymorphisms of LHB and LHCGR. Thirteen gene-gene interactions between the loci of LHB, LHCGR, and APOE were associated with AD. The most strongly supported of these interactions was between an LHCGR intronic polymorphism (rs4073366; lhcgr2) and APOE in males, which was detected using all three interaction analyses: linkage disequilibrium, multi-dimensionality reduction, and logistic regression. While the APOE ε4 allele carried significant risk of AD in males [p = 0.007, odds ratio (OR) = 3.08(95%confidence interval: 1.37, 6.91)], ε4-positive males carrying 1 or 2 C-alleles at lhcgr2 exhibited significantly decreased risk of AD [OR = 0.06(0.01, 0.38); p = 0.003]. This suggests that the lhcgr2 C-allele or a closely linked locus greatly reduces the risk of AD in males carrying an APOE ε4 allele. The reversal of risk embodied in this interaction powerfully supports the importance of considering the role gene-gene interactions play in the etiology of complex biological diseases and demonstrates the importance of using multiple analytic methods to detect well-supported gene-gene interactions.
Collapse
Affiliation(s)
- Ryan J Haasl
- Section of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | | | | | | | | | | | | | | |
Collapse
|