1
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
2
|
Borai IH, Shaker Y, Kamal MM, Ezzat WM, Ashour E, Afify M, Gouda W, Elbrashy MM. Evaluation of Biomarkers in Egyptian Patients with Different Grades of Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2017; 5:109-118. [PMID: 28660148 PMCID: PMC5472931 DOI: 10.14218/jcth.2017.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a silent disease; its spectrum includes simple steatosis, nonalcoholic steatohepatitis and fibrosis. Pro- and anti-inflammatory cytokines play roles in the pathogenesis of NAFLD and insulin resistance (IR). Moreover, plasma cell antigen-1 (PC-1) is related to IR and associated with NAFLD progression. Therefore, we aimed to detect biomarkers, ultrasonographic and anthropometric findings capable of differentiating NAFLD grades, since most previous investigators were concerned more with NAFLD patients without classifying them into grades. Methods: A total of 87 NAFLD patients (31 with grade 1 (mild NAFLD), 26 with grade 2 (moderate NAFLD) and 30 with grade 3 (severe NAFLD) were included in the study, in addition to 47 controls (grade 0). All subjects underwent ultrasonographic examination for NAFLD diagnosis. Serum interleukin-10 (IL-10), plasma interleukin-18 (IL-18) and plasma PC-1 levels were determined using enzyme-linked immunosorbent assay. Results: Homoeostasis model assessment (HOMA)-IR was higher in different NAFLD grades than in controls. Ultrasonographic and anthropometric findings and lipid profile indices (except for high-density lipoprotein cholesterol, which was decreased) were increased with NAFLD progression. Grade 3 patients showed significant increase in levels of IL-18 and significant decrease in IL-10 and PC-1 levels when compared to grade 1 patients. Conclusion: Anthropometric and ultrasonographic findings were valuable in differentiating NAFLD grades. IR is very important in NAFLD pathogenesis. IL-18, HOMA-index and PC-1 levels could be used to differentiate between NAFLD grades, together with other measurements.
Collapse
Affiliation(s)
- Ibrahim H. Borai
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yehia Shaker
- Biochemistry Department, National Research Centre, Giza, Egypt
| | - Maha Moustafa Kamal
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wafaa M. Ezzat
- Department of Internal Medicine, National Research Center, Giza, Egypt
| | - Esmat Ashour
- Biochemistry Department, National Research Centre, Giza, Egypt
| | - Mie Afify
- Biochemistry Department, National Research Centre, Giza, Egypt
| | - Weaam Gouda
- Biochemistry Department, National Research Centre, Giza, Egypt
| | | |
Collapse
|
3
|
Lee SY, Müller CE. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MEDCHEMCOMM 2017; 8:823-840. [PMID: 30108800 PMCID: PMC6072468 DOI: 10.1039/c7md00015d] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, EC 3.1.4.1) is a metalloenzyme that belongs to the NPP family, which comprises seven subtypes (NPP1-7). NPP1 hydrolyzes a wide range of phosphodiester bonds, e.g. in nucleoside triphosphates, (cyclic) dinucleotides, and nucleotide sugars yielding nucleoside 5'-monophosphates as products. Its main substrate is ATP which is cleaved to AMP and diphosphate. The enzyme is involved in various biological processes including bone mineralization, soft-tissue calcification, insulin receptor signalling, cancer cell proliferation and immune modulation. Therefore, NPP1 inhibitors have potential as novel drugs, e.g. for (immuno)oncology. In the last two decades several inhibitors of NPP1 derived from nucleotide- or non-nucleotide scaffolds have been developed. The most potent and selective NPP1-inhibitory substrate analog is adenosine 5'-α,β-methylene-γ-thiotriphosphate (Ki = 20 nM vs. p-Nph-5'-TMP, human membrane-bound NPP1). Non-nucleotide-derived NPP1 inhibitors comprise polysulfonates, polysaccharides, polyoxometalates and small heterocyclic compounds. The polyoxometalate [TiW11CoO40]8- (PSB-POM141) is the most potent and selective NPP1 inhibitor described to date (Ki = 1.46 nM vs. ATP, human soluble NPP1); it displays an allosteric mechanism of inhibition and represents a useful pharmacological tool for evaluating the potential of NPP1 as a novel drug target.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| | - Christa E Müller
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| |
Collapse
|
4
|
Simão AMS, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millán JL. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 2010; 285:7598-609. [PMID: 20048161 PMCID: PMC2844207 DOI: 10.1074/jbc.m109.079830] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/15/2009] [Indexed: 01/01/2023] Open
Abstract
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5'-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5'-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5'-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PP(i) were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PP(i) by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Collapse
Affiliation(s)
- Ana Maria S. Simão
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Manisha C. Yadav
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Sonoko Narisawa
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Mayte Bolean
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
| | - Joao Martins Pizauro
- the Department of Technology, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista, Jaboticabal SP 14884-900, Brazil, and
| | - Marc F. Hoylaerts
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
- the Center for Molecular and Vascular Biology, University of Leuven, B-3000, Leuven, Belgium
| | - Pietro Ciancaglini
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - José Luis Millán
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| |
Collapse
|
5
|
Laketa D, Bjelobaba I, Savic J, Lavrnja I, Stojiljkovic M, Rakic L, Nedeljkovic N. Biochemical characterization of soluble nucleotide pyrophosphatase/phosphodiesterase activity in rat serum. Mol Cell Biochem 2010; 339:99-106. [PMID: 20049627 DOI: 10.1007/s11010-009-0373-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/21/2009] [Indexed: 12/29/2022]
Abstract
Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5'-thymidine monophosphate (p-Nph-5'-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K (m) for p-Nph-5'-TMP hydrolysis of 61.8 +/- 5.2 microM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5'-TMP hydrolysis with K (i) values ranging 13-43 microM. Nucleotide analogs, alpha,beta-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas alpha,beta-metADP induced mixed inhibition, with K (i) ranging from 2 to 20 microM. Chromatographic analysis revealed that alpha,beta-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and alpha,beta-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.
Collapse
Affiliation(s)
- Danijela Laketa
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski Trg 3, 11001, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
6
|
Kubaszek A, Pihlajamäki J, Karhapää P, Vauhkonen I, Laakso M. The K121Q polymorphism of the PC-1 gene is associated with insulin resistance but not with dyslipidemia. Diabetes Care 2003; 26:464-7. [PMID: 12547881 DOI: 10.2337/diacare.26.2.464] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the relationship of the K121Q polymorphism of the plasma cell glycoprotein 1 (PC-1) gene with insulin resistance, insulin secretion, and lipids and lipoproteins. RESEARCH DESIGN AND METHODS Altogether, 110 normoglycemic subjects (group I) underwent a hyperinsulinemic-euglycemic clamp for evaluation of insulin sensitivity. The first-phase insulin secretion was determined by the intravenous glucose tolerance test (IVGTT) in a separate sample of 295 normoglycemic subjects (group II). RESULTS The 121Q allele (genotypes K121Q and Q121Q) compared with the K121K genotype was related to higher fasting insulin levels (group I: 69.6 +/- 45.6 vs. 51.9 +/- 28.4 pmol/l [mean +/- SD], P = 0.050; group II: 66.6 +/- 38.8 vs. 53.8 +/- 26.6 pmol/l, P = 0.009). In group I, subjects carrying the 121Q allele compared with subjects with the K121K genotype had lower rates of whole-body glucose uptake (51.17 +/- 12.07 vs. 60.12 +/- 14.86 micro mol x kg(-1) x min(-1), P = 0.012) and nonoxidative glucose disposal (33.71 +/- 10.51 vs. 41.51 +/- 13.36 micro mol x kg(-1) x min(-1), P = 0.015) during the clamp. In group II, there was no significant difference between the 121Q allele carriers and subjects with the K121K genotype in total first-phase insulin secretion during the first 10 min of the IVGTT (2,973 +/- 2,224 vs. 2,520 +/- 1,492 pmol. l(-1). min(-1), P = 0.415). No association of the K121Q polymorphism with serum lipids and lipoproteins was found. CONCLUSIONS In healthy normoglycemic Finnish subjects, the K121Q polymorphism of the PC-1 gene is associated with insulin resistance but not with impaired insulin secretion or dyslipidemia.
Collapse
|
7
|
Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, Kalhoff H, Sano K, Boisvert WA, Superti-Furga A, Terkeltaub R. PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:543-54. [PMID: 11159191 PMCID: PMC1850320 DOI: 10.1016/s0002-9440(10)63996-x] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Inogranic pyrophosphate (PPi) inhibits hydroxyapatite deposition, and mice deficient in the PPi-generating nucleoside triphosphate pyrophosphohydrolase (NTPPPH) Plasma cell membrane glycoprotein-1 (PC-1) develop peri-articular and arterial calcification in early life. In idiopathic infantile arterial calcification (IIAC), hydroxyapatite deposition and smooth muscle cell (SMC) proliferation occur, sometimes associated with peri-articular calcification. Thus, we assessed PC-1 expression and PPi metabolism in a 25-month-old boy with IIAC and peri-articular calcifications. Plasma PC-1 was <1 ng/ml by enzyme-linked immunosorbent assay in the proband, but 10 to 30 ng/ml in unaffected family members and controls. PC-1 functioned to raise extracellular PPi in cultured aortic SMCs. However, PC-1 was sparse in temporal artery lesion SMCs in the proband, unlike the case for SMCs in atherosclerotic carotid artery lesions of unrelated adults. Proband plasma and explant-cultured dermal fibroblast NTPPPH and PPi were markedly decreased. The proband was heterozygous at the PC-1 locus, and sizes of PC-1 mRNA and polypeptide, and the PC-1 mRNA-coding region sequence were normal in proband fibroblasts. However, immunoreactive PC-1 protein was relatively sparse in proband fibroblasts. In conclusion, deficient extracellular PPi and a deficiency of PC-1 NTPPPH activity can be associated with human infantile arterial and peri-articular calcification, and may help explain the sharing of certain phenotypic features between some IIAC patients and PC-1-deficient mice.
Collapse
MESH Headings
- Arteriosclerosis/enzymology
- Arteriosclerosis/pathology
- Blotting, Northern
- Calcinosis/enzymology
- Calcinosis/pathology
- Cells, Cultured
- Child
- Child, Preschool
- DNA/chemistry
- DNA/genetics
- Diphosphates/metabolism
- Extracellular Space/chemistry
- Extracellular Space/metabolism
- Family Health
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation, Enzymologic
- Humans
- Immunohistochemistry
- Infant
- Male
- Membrane Glycoproteins/blood
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Microscopy, Confocal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Pedigree
- Phosphoric Diester Hydrolases
- Pyrophosphatases/metabolism
- RNA/genetics
- RNA/metabolism
- Sequence Analysis, DNA
- Skin/cytology
- Skin/metabolism
Collapse
Affiliation(s)
- F Rutsch
- Department of Pediatrics, Municipal Children's Hospital, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|