1
|
Wehrli L, Galdadas I, Voirol L, Smieško M, Cambet Y, Jaquet V, Guerrier S, Gervasio FL, Nef S, Rahban R. The action of physiological and synthetic steroids on the calcium channel CatSper in human sperm. Front Cell Dev Biol 2023; 11:1221578. [PMID: 37547474 PMCID: PMC10397409 DOI: 10.3389/fcell.2023.1221578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.
Collapse
Affiliation(s)
- Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Ioannis Galdadas
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Voirol
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yves Cambet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Guerrier
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
- Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
2
|
Taiwo BG, Frettsome-Hook RL, Taylor AE, Correia JN, Lefievre L, Publicover SJ, Conner SJ, Kirkman-Brown JC. Complex combined steroid mix of the female tract modulates human sperm. Reprod Biol 2021; 21:100561. [PMID: 34619633 DOI: 10.1016/j.repbio.2021.100561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Human spermatozoa interact with a complex biochemical environment in the female reproductive tract en route to the site of fertilisation. Ovarian follicular fluid contributes to this complex milieu and is known to contain steroids such as progesterone, whose effects on sperm physiology have been widely characterised. We have previously reported that progesterone stimulates intracellular calcium concentration ([Ca2+]i) signalling and acrosome reaction in human spermatozoa. To characterise the effects of the unified complete follicular fluid steroid hormone complement on human spermatozoa, a comprehensive, data-based, 'physiological standard' steroid hormone balance of follicular fluid (shFF) was created from individual constituents. shFF induced a rapid biphasic [Ca2+]i elevation in human spermatozoa. Using population fluorimetry, we compared [Ca2+]i signal amplitude in cells exposed to serial applications of shFF (6 steps from 10-5X up to 1X shFF) with responses to the equivalent progesterone component alone (6 steps from 135 pM - 13.5μM). Threshold for the response to shFF was right-shifted (≈10-fold) compared to progesterone alone, but the maximum response to shFF was greatly enhanced. An acrosome reaction assay was used to assess functional effects of shFF-induced sperm calcium signalling. shFF as well as progesterone-treated spermatozoa showed a significant increase in % acrosome reaction (P < 0.01). All of this evidence suggests the modulation of progesterone-mediated responses by other follicular fluid steroids.
Collapse
Affiliation(s)
- Benjamin Gbenro Taiwo
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Rebecca Louise Frettsome-Hook
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Angela Elizabeth Taylor
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom
| | - João Natalino Correia
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom
| | - Linda Lefievre
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom
| | | | - Sarah Jayne Conner
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Jackson Carl Kirkman-Brown
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
3
|
Rehfeld A. Revisiting the action of steroids and triterpenoids on the human sperm Ca2+ channel CatSper. Mol Hum Reprod 2021; 26:816-824. [PMID: 32926144 DOI: 10.1093/molehr/gaaa062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
The sperm-specific Ca2+ channel CatSper (cation channel of sperm) is vital for male fertility. Contradictory findings have been published on the regulation of human CatSper by the endogenous steroids estradiol, testosterone and hydrocortisone, as well as the plant triterpenoids, lupeol and pristimerin. The aim of this study was to elucidate this controversy by investigating the action of these steroids and plant triterpenoids on human CatSper using population-based Ca2+-fluorimetric measurements, the specific CatSper-inhibitor RU1968 and a functional test assessing the CatSper-dependent penetration of human sperm cells into methylcellulose. Estradiol, testosterone and hydrocortisone were found to induce Ca2+-signals in human sperm cells with EC50 values in the lower μM range. By employing the specific CatSper-inhibitor RU1968, all three steroids were shown to induce Ca2+-signals through an action on CatSper, similar to progesterone. The steroids were found to dose-dependently inhibit subsequent progesterone-induced Ca2+-signals with IC50 values in the lower μM range. Additionally, the three steroids were found to significantly increase the penetration of human sperm cells into methylcellulose, similar to the effect of progesterone. The two plant triterpenoids, lupeol and pristimerin, were unable to inhibit progesterone-induced Ca2+-signals, whereas the CatSper-inhibitor RU1968 strongly inhibited progesterone-induced Ca2+-signals. In conclusion, this study supports the claim that the steroids estradiol, testosterone and hydrocortisone act agonistically on CatSper in human sperm cells, thereby mimicking the effect of progesterone, and that lupeol and pristimerin do not act as inhibitors of human CatSper.
Collapse
Affiliation(s)
- Anders Rehfeld
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Jeschke JK, Biagioni C, Schierling T, Wagner IV, Börgel F, Schepmann D, Schüring A, Kulle AE, Holterhus PM, von Wolff M, Wünsch B, Nordhoff V, Strünker T, Brenker C. The Action of Reproductive Fluids and Contained Steroids, Prostaglandins, and Zn 2+ on CatSper Ca 2+ Channels in Human Sperm. Front Cell Dev Biol 2021; 9:699554. [PMID: 34381781 PMCID: PMC8350739 DOI: 10.3389/fcell.2021.699554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
The sperm-specific Ca2+ channel CatSper registers chemical cues that assist human sperm to fertilize the egg. Prime examples are progesterone and prostaglandin E1 that activate CatSper without involving classical nuclear and G protein-coupled receptors, respectively. Here, we study the action of seminal and follicular fluid as well of the contained individual prostaglandins and steroids on the intracellular Ca2+ concentration of sperm from donors and CATSPER2-deficient patients that lack functional CatSper channels. We show that any of the reproductive steroids and prostaglandins evokes a rapid Ca2+ increase that invariably rests on Ca2+ influx via CatSper. The hormones compete for the same steroid- and prostaglandin-binding site to activate the channel, respectively. Analysis of the hormones’ structure–activity relationship highlights their unique pharmacology in sperm and the chemical features determining their effective properties. Finally, we show that Zn2+ suppresses the action of steroids and prostaglandins on CatSper, which might prevent premature prostaglandin activation of CatSper in the ejaculate, aiding sperm to escape from the ejaculate into the female genital tract. Altogether, our findings reinforce that human CatSper serves as a promiscuous chemosensor that enables sperm to probe the varying hormonal microenvironment prevailing at different stages during their journey across the female genital tract.
Collapse
Affiliation(s)
- Janice K Jeschke
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Cristina Biagioni
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tobias Schierling
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Isabel Viola Wagner
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Department of Pediatrics, University Hospital Lübeck, University of Lübeck, Lübeck, Germany
| | - Frederik Börgel
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Andreas Schüring
- UKM Kinderwunschzentrum, University Hospital Münster, Münster, Germany
| | - Alexandra E Kulle
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Paul Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Michael von Wolff
- Division of Gynecological Endocrinology and Reproductive Medicine, University Women's Hospital, Bern, Switzerland
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Zanatta AP, Gonçalves R, Ourique da Silva F, Pedrosa RC, Zanatta L, Bouraïma-Lelong H, Delalande C, Mena Barreto Silva FR. Estradiol and 1α,25(OH) 2 vitamin D 3 share plasma membrane downstream signal transduction through calcium influx and genomic activation in immature rat testis. Theriogenology 2021; 172:36-46. [PMID: 34091204 DOI: 10.1016/j.theriogenology.2021.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/06/2023]
Abstract
The aim of this study was to investigate the rapid response pathway and gene and protein expression profiles of the rat testis in response to estradiol (E2) and 1α,25(OH)2 vitamin D3 (1,25-D3), to understand how they mediate their effects on the first spermatogenic wave. To do this, we compared the effects of 1,25-D3 and E2 on 45calcium(Ca2+) uptake and the involvement of estrogen receptors (ESR) in their rapid responses. Additionally, we studied the downstream signal transduction effects of 1,25-D3 and E2 on cyclin A1/B1 and cellular cycle protein expression. As previously observed for 1,25-D3, E2 also increased 45Ca2+ uptake in immature rat testes via voltage-dependent Ca2+ channels, Ca2+-dependent chloride channels and via the activation of protein kinase C, protein kinase A and mitogen-activated protein kinase kinase (MEK). Elevated aromatase expression by testes was observed in the presence of 1,25-D3 and both hormones decreased ESR mRNA expression. Furthermore, 1,25-D3 and E2 diminished cyclin A1 mRNA expression, but E2 did not affect cyclin B1 mRNA levels. Consistent with these findings, the immunocontent of cyclin A1 and B1 in the testes was also increased by 1,25-D3 and E2. 1,25-D3 increased expressions of the p16 and p53 proteins, supporting the anti-proliferative and pro-apoptotic properties of 1,25-D3, while E2 also augmented p16. Data indicate that both hormones trigger rapid responses at the plasma membrane that may control the expression of gene and proteins related to cell cycle regulation, and thereby modulate spermatogenesis.
Collapse
Affiliation(s)
- Ana Paula Zanatta
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Normandie Univ, UNICAEN, INRA, OeReCa, 14000, Caen, France
| | - Renata Gonçalves
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fabiana Ourique da Silva
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rozangela Curi Pedrosa
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Leila Zanatta
- Departamento de Enfermagem, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina - UDESC, Chapecó, SC, Brazil
| | | | | | - Fátima Regina Mena Barreto Silva
- Laboratório de Hormônios & Transdução de Sinais, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Gimeno-Martos S, Santorromán-Nuez M, Cebrián-Pérez JA, Muiño-Blanco T, Pérez-Pé R, Casao A. Involvement of progesterone and estrogen receptors in the ram sperm acrosome reaction. Domest Anim Endocrinol 2021; 74:106527. [PMID: 32799038 DOI: 10.1016/j.domaniend.2020.106527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The steroid hormones 17-β estradiol (E2) and progesterone (P4) can regulate capacitation, hyperactive motility, and the acrosome reaction (AR) during the sperm transit through the female tract. Moreover, exogenous P4 and E2 can induce the AR in ovine spermatozoa, and progesterone receptor (PR) and estrogen receptors (ERα and ERβ) are present in these cells. Thus, to investigate whether the effects both steroid hormones in ram sperm capacitation and AR are receptor-mediated, we incubated them with receptor agonists (tanaproget 1 μM and 5 μM for PR or resveratrol 5 μM and 10 μM for ER) or antagonists (mifepristone 4 μM and 40 μM for PR or tamoxifen 5 μM and 10 μM for ER) in capacitating conditions. The addition of receptor modulators did not affect sperm viability or total motility, although changes in progressive motility were detected. The incubation with both receptor agonists increased the percentage of acrosome-reacted spermatozoa, evaluated by chlortetracycline staining, when compared with the capacitated nontreated sample (Cap-C, P < 0.001). Moreover, the ER agonist resveratrol 10 μM provoked a greater AR than E2 (P < 0.01). Furthermore, the incubation with the receptor antagonists prevented the induction of the AR by P4 or E2, as the antagonists-treated spermatozoa presented a similar CTC pattern to that of Cap-C. In conclusion, these results confirm that P4 and E2 can induce the AR in ram spermatozoa and that this effect is receptor-mediated.
Collapse
Affiliation(s)
- S Gimeno-Martos
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - M Santorromán-Nuez
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - J A Cebrián-Pérez
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - T Muiño-Blanco
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - R Pérez-Pé
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - A Casao
- Grupo BIOFITER, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
7
|
Tamburrino L, Marchiani S, Muratori M, Luconi M, Baldi E. Progesterone, spermatozoa and reproduction: An updated review. Mol Cell Endocrinol 2020; 516:110952. [PMID: 32712385 DOI: 10.1016/j.mce.2020.110952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The rapid effects of steroids on spermatozoa have been demonstrated for the first time more than three decades ago. Progesterone (P), which is present throughout the female genital tract with peaks of levels in the cumulus matrix surrounding the oocyte, has been shown to stimulate several sperm functions in vitro, including capacitation, hyperactivation, chemotaxis and acrosome reaction (AR). Besides an increase of intracellular calcium, P has been shown to activate other sperm signalling pathways including tyrosine phosphorylation of several sperm proteins. All these effects are mediated by extra-nuclear pathways likely involving interaction with molecules present on the sperm surface. In particular, the increase in intracellular calcium ([Ca2+]i) in spermatozoa from human and several other mammalian species is mediated by the sperm specific calcium channel CatSper, whose expression and function are required for sperm hyperactive motility. P-mediated CatSper activation is indeed involved in promoting sperm hyperactivation, but the involvement of this channel in other P-stimulated sperm functions, such as AR and chemotaxis, is less clear and further studies are required to disclose all the involved pathways. In human spermatozoa, responsiveness to P in terms of [Ca2+]i increase and AR is highly related to sperm fertilizing ability in vitro, suggesting that the steroid is a physiological inducer of AR during in vitro fertilization. In view of their physiological relevance, P-stimulated sperm functions are currently investigated to develop new tools to select highly performant spermatozoa for assisted reproduction.
Collapse
Affiliation(s)
- Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
8
|
Application of Brunauer-Emmett-Teller (BET) theory and the Guggenheim-Anderson-de Boer (GAB) equation for concentration-dependent, non-saturable cell-cell interaction dose-responses. J Pharmacokinet Pharmacodyn 2020; 47:561-572. [PMID: 32772303 DOI: 10.1007/s10928-020-09708-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
To systematically assess the characteristics and potential utility of the Guggenheim-Anderson-de Boer (GAB) formulation of the Brunauer-Emmett-Teller (BET) equation from physical chemistry for modeling dose-responses in pharmaceutical applications. The GAB-BET equation was derived using pharmacodynamic first principles to underscore the assumptions involved and the functional characteristics of the equation were investigated. The properties of the GAB-BET equation were compared to the familiar Michaelis-Menten and Hill equations and its utility for pharmacokinetic-pharmacodynamic modeling was assessed by fitting the model equations to four diverse data sets from the literature. The results enabled the salient characteristics of the unconstrained GAB-BET equation and the corresponding GAB-BET equation with finite layers for modeling pharmacodynamic effects to be critically assessed. The GAB-BET approach allows for the accumulation of heterogeneous stacks containing multiple cells or molecules at the target site. The unconstrained GAB-BET equation is capable of describing concentration-dependent dose-response curves that do not exhibit saturation. The GAB-BET equation for finite layers exhibits saturation but increases more slowly than the comparable Michaelis-Menten and Hill equations. The fitting results of the model equations to literature data sets provided support for key aspects of the GAB-BET model. The GAB-BET equation may be a useful method for mechanistic modeling of diverse immune processes and drugs that recruit immune cell activity at the site of action.
Collapse
|
9
|
Antalikova J, Secova P, Horovska L, Krejcirova R, Simonik O, Jankovicova J, Bartokova M, Tumova L, Manaskova-Postlerova P. Missing Information from the Estrogen Receptor Puzzle: Where Are They Localized in Bull Reproductive Tissues and Spermatozoa? Cells 2020; 9:cells9010183. [PMID: 31936899 PMCID: PMC7016540 DOI: 10.3390/cells9010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues. In this study, we analyzed the presence of all types of ERs (ESR1, ESR2, and GPER1) in bull testicular and epididymal tissues and epididymal and ejaculated spermatozoa, and we characterize them here for the first time. We observed different localizations of each type of ER in the sperm head by immunofluorescent microscopy. Additionally, using a selected polyclonal antibody, we found that each type of ER in bull sperm extracts had two isoforms with different molecular masses. The detailed detection of ERs is a prerequisite not only for understanding the effect of estrogen on all reproductive events but also for further studying the negative effect of environmental estrogens (endocrine disruptors) on processes that lead to fertilization.
Collapse
Affiliation(s)
- Jana Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Petra Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lubica Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Romana Krejcirova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Jana Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Michaela Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Pavla Manaskova-Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-22438-2934
| |
Collapse
|
10
|
Gadkar S, Nair S, Patil S, Kalamani S, Bandivdekar A, Patel V, Chaudhari U, Sachdeva G. Membrane-initiated estrogen signaling in prostate cancer: A route to epithelial-to-mesenchymal transition. Mol Carcinog 2019; 58:2077-2090. [PMID: 31411358 DOI: 10.1002/mc.23099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
The plasma membrane (PM) is considered as a major druggable site. More than 50% of the existing drugs target PM proteins. In the wake of emerging data indicating a key role of estrogens in prostate cancer (PCa) pathogenesis, the study was undertaken to explore whether the estrogen binding sites exist on the PM and if such sites are functionally relevant in PCa. Estradiol (E2) binding to the PM was detected in androgen-dependent (LNCaP), androgen-independent (PC3, DU145) PCa cell lines, nontumorigenic (RWPE1) prostate epithelial cell line, and rat prostate cells. Conventional estrogen receptors (nuclear estrogen receptors), known for their nuclear localization, were detected in the PM enriched extracts. This was indirectly confirmed by reduced localization of ERs on the PM of cells, silenced for the expression of their cognate genes. Further, unlike cell-permeable E2, stimulation with cell-impermeable estradiol (E2-BSA) did not induce proliferation in LNCaP cells. However, stimulation with E2-BSA led to alterations in the phosphorylation status of several kinases including GSK3 and AKT, along with the hyperphosphorylation of cytoskeletal proteins such as β-actin and cytokeratin 8 in LNCaP. This was accompanied by epithelial-to-mesenchymal (EMT) features such as increased migration and invasion; higher vimentin expression, and a concomitant decrease in the E-cadherin expression. These effects were not observed in RWPE1 cells. Interestingly, cell-permeable E2 failed to induce EMT in PCa cells. This in vitro study is the first to suggest that the PM-initiated estrogen signaling contributes to higher invasiveness in PCa cells. Plasma membrane ERs may act as novel targets for PCa therapeutics.
Collapse
Affiliation(s)
- Sushama Gadkar
- Primate Biology Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Shardool Nair
- Primate Biology Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Smita Patil
- Primate Biology Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Shilpa Kalamani
- Primate Biology Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Atmaram Bandivdekar
- Biochemistry Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Vainav Patel
- Biochemistry Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Uddhav Chaudhari
- Primate Biology Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
11
|
Bosakova T, Tockstein A, Sebkova N, Simonik O, Adamusova H, Albrechtova J, Albrecht T, Bosakova Z, Dvorakova-Hortova K. New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling. Int J Mol Sci 2018; 19:ijms19124011. [PMID: 30545117 PMCID: PMC6321110 DOI: 10.3390/ijms19124011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022] Open
Abstract
17β-estradiol (estradiol) is a natural estrogen regulating reproduction including sperm and egg development, sperm maturation—called capacitation—and sperm–egg communication. High doses can increase germ cell apoptosis and decrease sperm count. Our aim was to answer the biological relevance of estradiol in sperm capacitation and its effect on motility and acrosome reaction to quantify its interaction with estrogen receptors and propose a model of estradiol action during capacitation using kinetic analysis. Estradiol increased protein tyrosine phosphorylation, elevated rate of spontaneous acrosome reaction, and altered motility parameters measured Hamilton-Thorne Computer Assisted Semen Analyzer (CASA) in capacitating sperm. To monitor time and concentration dependent binding dynamics of extracellular estradiol, high-performance liquid chromatography with tandem mass spectrometry was used to measure sperm response and data was subjected to kinetic analysis. The kinetic model of estradiol action during sperm maturation shows that estradiol adsorption onto a plasma membrane surface is controlled by Langmuir isotherm. After, when estradiol passes into the cytoplasm, it forms an unstable adduct with cytoplasmic receptors, which display a signalling autocatalytic pattern. This autocatalytic reaction suggests crosstalk between receptor and non-receptor pathways utilized by sperm prior to fertilization.
Collapse
Affiliation(s)
- Tereza Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Antonin Tockstein
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Natasa Sebkova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic.
| | - Hana Adamusova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Jana Albrechtova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Tomas Albrecht
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
- Institute of Vertebrate Biology, v.v.i., Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic.
| | - Zuzana Bosakova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 2030, 128 43 Prague, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic.
| |
Collapse
|
12
|
Brown SG, Costello S, Kelly MC, Ramalingam M, Drew E, Publicover SJ, Barratt CL, Da Silva SM. Complex CatSper-dependent and independent [Ca2+]i signalling in human spermatozoa induced by follicular fluid. Hum Reprod 2017; 32:1995-2006. [PMID: 28938737 PMCID: PMC5850303 DOI: 10.1093/humrep/dex269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/15/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does progesterone in human follicular fluid (hFF) activate CatSper and do other components of hFF modulate this effect and/or contribute separately to hFF-induced Ca2+ signaling? SUMMARY ANSWER hFF potently stimulates CatSper and increases [Ca2+]i, primarily due to high concentrations of progesterone, however, other components of hFF also contribute to [Ca2+]i signaling, including modulation of CatSper channel activity and inhibition of [Ca2+]i oscillations. WHAT IS KNOWN ALREADY CatSper, the principal Ca2+ channel in spermatozoa, is progesterone-sensitive and essential for fertility. Both hFF and progesterone, which is present in hFF, influence sperm function and increase their [Ca2+]i. STUDY DESIGN, SIZE, DURATION This basic medical research study used semen samples from >40 donors and hFF from >50 patients who were undergoing surgical oocyte retrieval for IVF/ICSI. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors and patients were recruited in accordance with local ethics approval (13/ES/0091) from the East of Scotland Research Ethics Service REC1. Activities of CatSper and KSper were assessed by patch clamp electrophysiology. Sperm [Ca2+]i responses were examined in sperm populations and single cells. Computer-assisted sperm analysis (CASA) parameters and penetration into viscous media were used to assess functional effects. MAIN RESULTS AND THE ROLE OF CHANCE hFF and progesterone significantly potentiated CatSper currents. Under quasi-physiological conditions, hFF (up to 50%) failed to alter membrane K+ conductance or current reversal potential. hFF and progesterone (at an equivalent concentration) stimulated similar biphasic [Ca2+]i signals both in sperm populations and single cells. At a high hFF concentration (10%), the sustained (plateau) component of the [Ca2+]i signal was consistently greater than that induced by progesterone alone. In single cell recordings, 1% hFF-induced [Ca2+]i oscillations similarly to progesterone but with 10% hFF generation of [Ca2+]i oscillations was suppressed. After treatment to 'strip' lipid-derived mediators, hFF failed to significantly stimulate CatSper currents but induced small [Ca2+]i responses that were greater than those induced by the equivalent concentration of progesterone after stripping. Similar [Ca2+]i responses were observed when sperm pretreated with 3 μM progesterone (to desensitize progesterone responses) were stimulated with hFF or stripped hFF. hFF stimulated viscous media penetration and was more effective than the equivalent does of progesterone. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. Caution must be taken when extrapolating these results in vivo. WIDER IMPLICATIONS OF THE FINDINGS This study directly demonstrates that hFF activates CatSper and establishes that the biologically important effects of hFF reflect, at least in part, action on this channel, primarily via progesterone. However, these experiments also demonstrate that other components of hFF both contribute to the [Ca2+]i signal and modulate the activation of CatSper. Simple in vitro experiments performed out of the context of the complex in vivo environment need to be interpreted with caution. STUDY FUNDING/COMPETING INTEREST(S) Funding was provided by MRC (MR/K013343/1, MR/012492/1) (S.G.B., S.J.P., C.L.R.B.) and University of Abertay (sabbatical for S.G.B.). Additional funding was provided by TENOVUS SCOTLAND (S.M.D.S.), Chief Scientist Office/NHS Research Scotland (S.M.D.S). C.L.R.B. is EIC of MHR and Chair of the WHO ESG on Diagnosis of Male infertility. The remaining authors have no conlicts of interest.
Collapse
Affiliation(s)
- Sean G. Brown
- School of Science, Engineering and Technology, Abertay University, Dundee DD11HG, UK
| | - Sarah Costello
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Mark C. Kelly
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Mythili Ramalingam
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Ellen Drew
- Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | | | - Christopher L.R. Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| |
Collapse
|
13
|
Dostalova P, Zatecka E, Dvorakova-Hortova K. Of Oestrogens and Sperm: A Review of the Roles of Oestrogens and Oestrogen Receptors in Male Reproduction. Int J Mol Sci 2017; 18:ijms18050904. [PMID: 28441342 PMCID: PMC5454817 DOI: 10.3390/ijms18050904] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
The crucial role that oestrogens play in male reproduction has been generally accepted; however, the exact mechanism of their action is not entirely clear and there is still much more to be clarified. The oestrogen response is mediated through oestrogen receptors, as well as classical oestrogen receptors’ variants, and their specific co-expression plays a critical role. The importance of oestrogen signalling in male fertility is indicated by the adverse effects of selected oestrogen-like compounds, and their interaction with oestrogen receptors was proven to cause pathologies. The aims of this review are to summarise the current knowledge on oestrogen signalling during spermatogenesis and sperm maturation and discuss the available information on oestrogen receptors and their splice variants. An overview is given of species-specific differences including in humans, along with a detailed summary of the methodology outcome, including all the genetically manipulated models available to date. This review provides coherent information on the recently discovered mechanisms of oestrogens’ and oestrogen receptors’ effects and action in both testicular somatic and germ cells, as well as in mature sperm, available for mammals, including humans.
Collapse
Affiliation(s)
- Pavla Dostalova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Eva Zatecka
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
| | - Katerina Dvorakova-Hortova
- Group of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic.
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic.
| |
Collapse
|
14
|
López-Torres AS, Chirinos M. Modulation of Human Sperm Capacitation by Progesterone, Estradiol, and Luteinizing Hormone. Reprod Sci 2016; 24:193-201. [PMID: 27071965 DOI: 10.1177/1933719116641766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sperm residency in female reproductive tract is essential to undergo functional changes that allow the cell to encounter the oocyte and fertilize it. Those changes, known as capacitation, are modulated by molecules located in the uterotubal surface and fluids. During the fertile window, there is a notable increase in some reproductive hormones such as progesterone, estradiol, and luteinizing hormone in the female reproductive tract, so spermatozoa are exposed to these hormones in an environment that must favor gamete encountering and fusion. This spatiotemporal coincidence suggests that they are suitable candidates to modulate sperm function in order to synchronize the events that ultimately allow the success of fertilization. The presence of receptors for these hormones in the human sperm has been described, but their physiological relevance and mechanisms of action have been either subject of controversy or not properly investigated. This review intends to summarize the evidence that support the participation of these hormones in the regulation of sperm capacitation.
Collapse
Affiliation(s)
- Aideé Saray López-Torres
- 1 Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico.,2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, México, DF, Mexico
| | - Mayel Chirinos
- 1 Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México DF, Mexico
| |
Collapse
|
15
|
Fujinoki M, Takei GL, Kon H. Non-genomic regulation and disruption of spermatozoal in vitro hyperactivation by oviductal hormones. J Physiol Sci 2016; 66:207-12. [PMID: 26541156 PMCID: PMC10717772 DOI: 10.1007/s12576-015-0419-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/14/2015] [Indexed: 01/12/2023]
Abstract
During capacitation, motility of mammalian spermatozoon is changed from a state of "activation" to "hyperactivation." Recently, it has been suggested that some hormones present in the oviduct are involved in the regulation of this hyperactivation in vitro. Progesterone, melatonin, and serotonin enhance hyperactivation through specific membrane receptors, and 17β-estradiol suppresses this enhancement by progesterone and melatonin via a membrane estrogen receptor. Moreover, γ-aminobutyric acid suppresses progesterone-enhanced hyperactivation through the γ-aminobutyric acid receptor. These hormones dose-dependently affect hyperactivation. Although the complete signaling pathway is not clear, progesterone activates phospholipase C and protein kinases and enhances tyrosine phosphorylation. Moreover, tyrosine phosphorylation is suppressed by 17β-estradiol. This regulation of spermatozoal hyperactivation by steroids is also disrupted by diethylstilbestrol. The in vitro experiments reviewed here suggest that mammalian spermatozoa are able to respond to effects of oviductal hormones. We therefore assume that the enhancement of spermatozoal hyperactivation is also regulated by oviductal hormones in vivo.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan.
| | - Gen L Takei
- Department of Physiology, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Hiroe Kon
- Laboratory Animal Research Center, School of Medicine, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
16
|
Fujinoki M, Takei GL. Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa. J Reprod Dev 2015; 61:287-95. [PMID: 25959801 PMCID: PMC4547986 DOI: 10.1262/jrd.2014-116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | | |
Collapse
|
17
|
Ryu DY, Kim YJ, Lee JS, Rahman MS, Kwon WS, Yoon SJ, Pang MG. Capacitation and acrosome reaction differences of bovine, mouse and porcine spermatozoa in responsiveness to estrogenic compounds. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:26. [PMID: 26290715 PMCID: PMC4540243 DOI: 10.1186/2055-0391-56-26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/17/2014] [Indexed: 12/13/2022]
Abstract
Background Endocrine disruptors are exogenous substance, interfere with the endocrine system, and disrupt hormonal functions. However, the effect of endocrine disruptors in different species has not yet been elucidated. Therefore, we investigated the possible effects of 17ß-estradiol (E2), progesterone (P4), genistein (GEN) and 4-tert-octylphenol (OP), on capacitation and the acrosome reaction in bovine, mouse, and porcine spermatozoa. In this in vitro trial, spermatozoa were incubated with 0.001-100 μM of each chemical either 15 or 30 min and then assessed capacitation status using chlortetracycline staining. Results E2 significantly increased capacitation and the acrosome reaction after 30 min, while the acrosome reaction after 15 min incubation in mouse spermatozoa. Simultaneously, capacitation and the acrosome reaction were induced after 15 and 30 min incubation in porcine spermatozoa, respectively. Capacitation was increased in porcine spermatozoa after 15 min incubation at the lowest concentration, while the acrosome reaction was increased in mouse spermatozoa after 30 min (P <0.05). E2 significantly increased the acrosome reaction in porcine spermatozoa, but only at the highest concentration examined (P <0.05). P4 significantly increased the acrosome reaction in bovine and mouse spermatozoa treated for 15 min (P <0.05). The same treatment significantly increased capacitation in porcine spermatozoa (P <0.05). P4 significantly increased capacitation in mouse spermatozoa treated for 30 min (P <0.05). GEN significantly increased the acrosome reaction in porcine spermatozoa treated for 15 and 30 min and in mouse spermatozoa treated for 30 min (P <0.05). OP significantly increased the acrosome reaction in mouse spermatozoa after 15 min (P <0.05). Besides, when spermatozoa were incubated for 30 min, capacitation and the acrosome reaction were higher than 15 min incubation in E2 or GEN. Furthermore, the responsiveness of bovine, mouse and porcine spermatozoa to each chemical differed. Conclusions In conclusion, all chemicals studied effectively increased capacitation and the acrosome reaction in bovine, mouse, and porcine spermatozoa. Also we found that both E2 and P4 were more potent than environmental estrogens in altering sperm function. Porcine and mouse spermatozoa were more responsive than bovine spermatozoa.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| | - Ye-Ji Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| | - June-Sub Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| | - Sung-Jae Yoon
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Anseong, 456-756 Gyeonggi-Do Republic of Korea
| |
Collapse
|
18
|
Takemura S, Ichikawa H, Naito Y, Takagi T, Yoshikawa T, Minamiyama Y. S-allyl cysteine ameliorates the quality of sperm and provides protection from age-related sperm dysfunction and oxidative stress in rats. J Clin Biochem Nutr 2014; 55:155-61. [PMID: 25411519 PMCID: PMC4227827 DOI: 10.3164/jcbn.14-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/13/2014] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species play a central role in the pathophysiology of the age-related decrease in male fertility. It has been reported that the total protein of DJ-1 was decreased in a proteomic analysis of seminal plasma from asthenozoospermia patients and a DJ-1 protein acts as a sensor of cellular redox homeostasis. Therefore, we evaluated the age-related changes in the ratio of the oxidized/reduced forms of the DJ-1 protein in the epididymis. In addition, the protective effects of S-allyl cysteine (SAC), a potent antioxidant, were evaluated against sperm dysfunction. Male rats aged 15–75 weeks were used to assess age-associated sperm function and oxidative stress. Sperm count increased until 25 weeks, but then decreased at 50 and 75 weeks. The rate of sperm movement at 75 weeks was decreased to approximately 60% of the rate observed at 25 weeks. Expression of DJ-1 decreased, but oxidized-DJ-1 increased with age. In addition, 4-hydroxy-2-nonenal modified proteins in the epididymis increased until 50 weeks of age. The total number and DNA synthetic potential of the sperm increased until 25 weeks, and then decreased. In rats 75 weeks of age, SAC (0.45% diet) attenuated the decrease in the number, motility, and DNA synthesis of sperm and inhibited the oxidized proteins. These results suggest that SAC ameliorates the quality of sperm subjected to age-associated oxidative stress.
Collapse
Affiliation(s)
- Shigekazu Takemura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto 610-0321, Japan
| | - Yuji Naito
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshikazu Yoshikawa
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yukiko Minamiyama
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan ; Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
19
|
Samavat J, Natali I, Degl'Innocenti S, Filimberti E, Cantini G, Di Franco A, Danza G, Seghieri G, Lucchese M, Baldi E, Forti G, Luconi M. Acrosome reaction is impaired in spermatozoa of obese men: a preliminary study. Fertil Steril 2014; 102:1274-1281.e2. [PMID: 25226854 DOI: 10.1016/j.fertnstert.2014.07.1248] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare spontaneous (Sp-AR) and P-induced acrosome reaction (AR) in spermatozoa of obese and lean subjects. SETTING Bariatric unit at a university hospital. DESIGN Prospective, observational study. PATIENT(S) Twenty-three obese (mean±SD body mass index [BMI], 44.3±5.9 kg/m2) and 25 age-matched lean (BMI, 24.2±3.0 kg/m2) subjects. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Spontaneous and P-induced AR in spermatozoa of obese and lean subjects. RESULT(S) A statistically significant difference was found between obese and lean cohorts in total T and calculated free T, E2, glycated hemoglobin, and high-density lipoproteins, whereas among the routine semen parameters analyzed, only immotile sperm percentage and ejaculate volume differed significantly. Spermatozoa of obese (n=13) vs. lean men (n=19) showed a higher Sp-AR (17.9%±7.2% vs. 8.3%±4.2%), which resulted in a reduced ability to respond to P evaluated as the AR-after-P-challenge parameter (3.5%±3.2% vs. 17.6%±9.2%). Multivariate analysis adjusted for age revealed a significant correlation between BMI, waist, E2, and glycated hemoglobin with both Sp-AR (age-adjusted r=0.654, r=0.711, r=0.369, and r=0.644, respectively) and AR-after-P-challenge (age-adjusted r=-0.570, r=-0.635, r=-0.507, and r=-0.563, respectively). A significant difference in sperm cholesterol content was reported between obese and lean men (29.8±19.5 vs. 19.1±14.6 ng/μg of proteins). CONCLUSION(S) Sperm AR is impaired in obese men, showing reduced response to P and elevated Sp-AR, associated with altered circulating levels of E2 and sperm cholesterol content.
Collapse
Affiliation(s)
- Jinous Samavat
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Ilaria Natali
- Seminology Laboratory, Azienda USL3 Pistoia, Pistoia, Italy
| | - Selene Degl'Innocenti
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Erminio Filimberti
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanna Danza
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppe Seghieri
- Agenzia Regionale Sanità Toscana, Florence, Italy; Accademia Medica Filippo Pacini, Pistoia, Italy
| | - Marcello Lucchese
- Bariatric and Metabolic Surgery, Careggi Hospital, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Elisabetta Baldi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianni Forti
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
20
|
Aquila S, De Amicis F. Steroid receptors and their ligands: effects on male gamete functions. Exp Cell Res 2014; 328:303-13. [PMID: 25062984 DOI: 10.1016/j.yexcr.2014.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/29/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential.
Collapse
Affiliation(s)
- Saveria Aquila
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via P Bucci cubo 34 B, Rende 87036, CS, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via P Bucci cubo 34 B, Rende 87036, CS, Italy.
| |
Collapse
|
21
|
Kotarska K, Galas J, Przybyło M, Bilińska B, Styrna J. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency. Reprod Sci 2014; 22:242-9. [PMID: 24899473 DOI: 10.1177/1933719114537717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency.
Collapse
Affiliation(s)
- Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jerzy Galas
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology and Tissue Culture, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Józefa Styrna
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
22
|
Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod Med Biol 2014; 13:143-152. [PMID: 29699158 DOI: 10.1007/s12522-013-0175-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022] Open
Abstract
Purpose Hyperactivation of hamster sperm is dose-dependently enhanced by progesterone (P) and 17β-estradiol (E). In the first part of the present study, enhancement of hyperactivation in response to the concentrations of P and E was examined in detail and in the second part, it was examined whether enhancement of hyperactivation by P and E was disrupted by diethylstilbestrol (DES). Methods Hamster spermatozoa were hyperactivated by incubation in modified Tyrode's albumin lactate pyruvate medium with P, E and/or DES. After spermatozoa were recorded using a video-microscope, observations were quantified by manually counting the numbers of total, motile and hyperactivated spermatozoa. Results Hyperactivation was enhanced in response to the concentrations of P and E. When spermatozoa were exposed to DES with E, moreover, DES significantly and strongly suppressed P-enhanced hyperactivation by accelerating the effect of E, but DES itself only weakly suppressed P-enhanced hyperactivation. Conclusions Enhancement of hyperactivation was regulated by the concentrations of P and E, suggesting that in vivo hamster spermatozoa are hyperactivated through "monitoring" these concentrations in the oviduct. DES in combination with E suppressed P-enhanced hyperactivation, suggesting that DES significantly disrupts hyperactivation by acting as an accelerator of the effect of E.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, School of Medicine Dokkyo Medical University 321-0293 Mibu Tochigi Japan
| |
Collapse
|
23
|
Srivastava DP, Evans PD. G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. J Neuroendocrinol 2013; 25:1219-30. [PMID: 23822769 DOI: 10.1111/jne.12071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/20/2013] [Accepted: 06/29/2013] [Indexed: 11/29/2022]
Abstract
Oestrogens are now recognised to be able to initiate rapid, fast responses, in addition to their classical, longer-term actions. There is a growing appreciation of the potential implications of this mode of action for oestrogenic signalling in both neuronal and non-neuronal systems. As such, much effort has been made to determine the mechanisms that are critical for transducing these rapid effects into cellular responses. Recently, an orphan G-protein-coupled receptor (GPCR), termed GPR30, was identified as an oestrogen-sensitive receptor in cancer cells. This receptor, now term G-protein oestrogen receptor 1 (GPER1) has been the subject of many investigations, and a role for this receptor in the nervous system is now emerging. In this review, we highlight some of the more recent advances in our understanding of the distribution and subcellular localisation of this receptor in the brain, as well as some of the evidence for the potential role that this receptor may play in the brain. We then discuss some of the controversies surrounding the pharmacology of this receptor, and attempt to reconcile these by suggesting that the 'agonist-specific coupling' model of GPCR function may provide a potential explanation for some of the divergent reports of GPER1 pharmacology.
Collapse
Affiliation(s)
- D P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London, UK
| | | |
Collapse
|
24
|
Muratori M, Porazzi I, Luconi M, Marchiani S, Forti G, Baldi E. Annexin V Binding and Merocyanine Staining Fail to Detect Human Sperm Capacitation. ACTA ACUST UNITED AC 2013; 25:797-810. [PMID: 15292113 DOI: 10.1002/j.1939-4640.2004.tb02858.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The signaling pathways that characterize the process of capacitation of human spermatozoa are still largely unknown. Modifications in the lipid architecture of the sperm plasma membrane have been described in spermatozoa from different species, including translocation of phosphatidylserine (PS) from the inner to the outer leaflet and increased phospholipid disorder in the membrane. In human spermatozoa, however, results of PS exposure are controversial. In the present study, we used flow cytometry to investigate both membrane PS exposure by Annexin V (Ann V) binding and lipid disorder by merocyanine 540 (M540) staining, in swimup-selected live spermatozoa after incubation in conditions leading to capacitation. Our results indicate that neither probe is able to detect capacitation-related membrane modifications. Investigation of the nature of PS exposure and M540-positive live cells was then carried out. We found that M540 stains elements devoid of nuclei are present in seminal plasma. Live PS-exposing cells were mainly represented by damaged spermatozoa as revealed by the occurrence of a negative correlation between PS exposure and normal morphology and motility in unselected samples. The same cells were also positive for M540. These results demonstrate that Ann V and M540 binding in human sperm samples mainly detects cells with early membrane degeneration as well as dead cells, which is in agreement with findings obtained for somatic cells in which the two probes recognize cells with a damaged membrane due to the apoptotic process.
Collapse
Affiliation(s)
- Monica Muratori
- Department of Clinical Physiopathology, Andrology Unit, University of Florence, Viale Pieraccini, 6 50139 Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Filannino A, Stout TAE, Gadella BM, Sostaric E, Pizzi F, Colenbrander B, Dell'Aquila ME, Minervini F. Dose-response effects of estrogenic mycotoxins (zearalenone, alpha- and beta-zearalenol) on motility, hyperactivation and the acrosome reaction of stallion sperm. Reprod Biol Endocrinol 2011; 9:134. [PMID: 21970729 PMCID: PMC3213023 DOI: 10.1186/1477-7827-9-134] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 10/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effects of the Fusarium fungus-derived mycotoxin, zearalenone and its derivatives alpha-zearalenol and beta-zearalenol on motility parameters and the acrosome reaction of stallion sperm. Since the toxic effects of zearalenone and its derivatives are thought to result from their structural similarity to 17beta-estradiol, 17beta-estradiol was used as a positive control for 'estrogen-like' effects. METHODS Stallion spermatozoa were exposed in vitro to zearalenone, alpha-zearalenol, beta-zearalenol or 17beta-estradiol at concentrations ranging from 1 pM - 0.1 mM. After 2 hours exposure, motility parameters were evaluated by computer-assisted analysis, and acrosome integrity was examined by flow cytometry after staining with fluoroscein-conjugated peanut agglutinin. RESULTS Mycotoxins affected sperm parameters only at the highest concentration tested (0.1 mM) after 2 hours exposure. In this respect, all of the compounds reduced the average path velocity, but only alpha-zearalenol reduced percentages of motile and progressively motile sperm. Induction of motility patterns consistent with hyperactivation was stimulated according to the following rank of potency: alpha-zearalenol > 17beta-estradiol > zearalenone = beta-zearalenol. The hyperactivity-associated changes observed included reductions in straight-line velocity and linearity of movement, and an increase in the amplitude of lateral head displacement, while curvilinear velocity was unchanged. In addition, whereas alpha- and beta- zearalenol increased the percentages of live acrosome-reacted sperm, zearalenone and 17beta-estradiol had no apparent effect on acrosome status. In short, alpha-zearalenol inhibited normal sperm motility, but stimulated hyperactive motility in the remaining motile cells and simultaneously induced the acrosome reaction. Beta-zearalenol induced the acrosome reaction without altering motility. Conversely, zearalenone and 17beta-estradiol did not induce the acrosome reaction but induced hyperactive motility albeit to a different extent. CONCLUSIONS Apparently, the mycotoxin zearalenone has 17beta-estradiol-like estrogenic activity that enables it to induce hyperactivated motility of equine sperm cells, whereas the zearalenol derivatives induce premature completion of the acrosome reaction and thereby adversely affect stallion sperm physiology. The alpha form of zearalenol still possessed the estrogenic ability to induce hyperactivated motility, whereas its beta stereo-isomere had lost this property.
Collapse
Affiliation(s)
- Angela Filannino
- Department of Animal Production, University Aldo Moro of Bari, Italy
| | - Tom AE Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Edita Sostaric
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology (IBBA) National Research Council (CNR) Milano, Italy
| | - Ben Colenbrander
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | | | - Fiorenza Minervini
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR) Bari, Italy
| |
Collapse
|
26
|
Maiti K, Paul JW, Read M, Chan EC, Riley SC, Nahar P, Smith R. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium. Endocrinology 2011; 152:2448-55. [PMID: 21427217 DOI: 10.1210/en.2010-0979] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), mediated some of this effect. Using human myometrium obtained at term cesarean section before or after the onset of labor, we demonstrated the presence of GPR30 mRNA and protein using quantitative RT-PCR and Western blotting. GPR30 receptor was localized to the cell membrane and often colocalized with calveolin-1. Using the specific estrogen membrane receptor agonist G-1 and myometrial explants, we showed that membrane receptor activation led to phosphorylation of MAPK and the actin-modifying small heat shock protein 27. Using myometrial strips incubated with G-1 or vehicle we demonstrated that estrogen membrane receptor activation increased the myometrial contractile response to oxytocin. These data suggest that activation of the plasma membrane estrogen receptor GPR30 likely participates in the physiology of the human myometrium during pregnancy and identifies it as a potential target to modify uterine activity.
Collapse
Affiliation(s)
- K Maiti
- Mothers & Babies Research Centre/Endocrine Unit, Faculty of Health/School of Medicine & Public Health, The University of Newcastle & John Hunter Hospital, New Soth Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lazaros L, Xita N, Kaponis A, Hatzi E, Plachouras N, Sofikitis N, Zikopoulos K, Georgiou I. The association of aromatase (CYP19) gene variants with sperm concentration and motility. Asian J Androl 2011; 13:292-7. [PMID: 21217768 DOI: 10.1038/aja.2010.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The irreversible transformation of androgens into oestrogens is catalysed by cytochrome P450 aromatase. In the present study, we explored the contribution of the (TTTA)(n) polymorphism in the aromatase gene (CYP19) to sperm concentration and motility. Ninety normozoospermic and 60 oligospermic men were examined during infertility examinations. DNA was extracted from spermatozoa, and the CYP19 (TTTA)(n) polymorphism was genotyped by PCR. Genotype analysis revealed six CYP19 (TTTA)(n) alleles with 7-12 repeats. The allelic distribution of the CYP19 (TTTA)(n) polymorphism differed between normozoospermic and oligospermic men (P<0.01). Oligospermic men less frequently had long CYP19 alleles than did normozoospermic men (25 and 37.8%, respectively; P<0.02). The higher frequency of short CYP19 alleles in oligospermic men compared to normozoospermic men (43.3 and 28.3%, respectively; P<0.01) was primarily due to the distribution of the CYP19 (TTTA)(7) allele. The CYP19 (TTTA)(7) allele was associated with lower sperm concentration in normozoospermic men (P<0.01) and in the total study population (P<0.01); it was also associated with lower sperm motility in normozoospermic men (P<0.05) and in the total study population (P<0.01). In conclusion, the CYP19 (TTTA)(7) allele probably impairs aromatase activity, which in turn alters aromatase and oestrogen levels in the testis, leading to decreased sperm concentration and motility. These findings support the significance of cytochrome P450 aromatase in human spermatogenesis and consequently in semen quality.
Collapse
Affiliation(s)
- Leandros Lazaros
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Medical School, University of Ioannina, Ioannina 45110, Greece
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shoeb M, Laloraya M, Kumar PG. Progesterone-induced reorganisation of NOX-2 components in membrane rafts is critical for sperm functioning in Capra hircus. Andrologia 2010; 42:356-65. [DOI: 10.1111/j.1439-0272.2009.01024.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009; 308:39-46. [PMID: 19549590 DOI: 10.1016/j.mce.2009.02.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/30/2009] [Accepted: 02/17/2009] [Indexed: 12/26/2022]
Abstract
The rapid effects of steroids on spermatozoa have been demonstrated for the first time two decades ago. Progesterone (P), which is present throughout the female genital tract with peaks of levels in the cumulus matrix surrounding the oocyte, stimulates several sperm functions, including hyperactivation and acrosome reaction. These effects are mediated by an extranuclear pathway, as P stimulates an influx of calcium, the tyrosine phosphorylation of sperm proteins and other signalling cascades in a rapid manner. Whether these effects are receptor mediated and which receptors mediate these effects are still a matter of discussion despite all the efforts of the scientific community aimed at identifying them during the last 20 years. Although responsiveness to P is related to sperm fertilizing ability, the physiological role of P during the process of fertilization is discussed, and recent evidence points for a role of the steroid as a chemotactic agent for sperm. A similar situation applies for estrogens (E), which have been shown to induce direct effects on sperm by an extranuclear pathway. In particular, E appear to decrease acrosome reaction in response to P, exerting a role in ensuring an appropriate timing for sperm exocytosis during the process of fertilization.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Dept. of Clinical Physiopathology, Andrology Unit, Center of Excellence for Research, Transfer and High Education DeNothe, University of Florence, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Li X, Zhao L, Zhang L, Zhang G, Wang J, Wei L. Nongenomic effect of estrogen on the MAPK signaling pathway and calcium influx in endometrial carcinoma cells. J Cell Biochem 2009; 106:553-62. [PMID: 19160418 DOI: 10.1002/jcb.22017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
17beta-Estradiol (E2) is well known to interact with intracellular receptors that act as nuclear transcription factors. However, abundant evidence now indicates that E2 can also rapidly induce several nongenomic effects through signaling pathways related to cell growth, preservation, and differentiation. We studied the nongenomic effects of E2 in two human endometrial carcinoma cell lines, Ishikawa (estrogen receptor (ER) positive) and Hec-1A (ER negative or low) by cultivating them with either E2 or its membrane-impermeable conjugate, E2-BSA. We found that phosphorylation of Erk1/2 could be induced by either E2 or E2-BSA in Ishikawa cells. In Hec-1A cells, only E2 was able to induce Erk1/2 phosphorylation. Although the existence of a nongenomic component to the response was indicated by the finding that it could not be completely inhibited by the ER antagonist ICI182780,and it can also be inhibited by calcium inhibitor Nifedipine partly. Phosphorylation of Akt could not be induced, either by E2 or E2-BSA, in either cell line. Both E2 and E2-BSA elicited calcium influx in Ishikawa cells. In contrast to these nongenomic effects, only E2 was able to stimulate expression of the anti-apoptotic-protein Bcl-2. Taken together, these data indicate that nongenomic effects such as Erk1/2 phosphorylation and calcium influx can be initiated from the membrane in Ishikawa cell, and calcium can activate Erk1/2 phosphorylation. Except for ER, there must be other binding location of estrogen in endometrial cancer cells, and the nongenomic effects of estrogen initiated from plasma membrane by E2-BSA cannot lead to transcriptional effect of Bcl-2 expression.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Gynecology, Peking University People's Hospital, Xi Cheng District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Non-genomic regulation of mammalian sperm hyperactivation. Reprod Med Biol 2009; 8:47-52. [PMID: 29699307 DOI: 10.1007/s12522-009-0012-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 03/19/2009] [Indexed: 12/15/2022] Open
Abstract
Although it has been suggested that the acrosome reaction is induced through non-genomic regulation in a ligand-dependent manner, it is not known whether hyperactivation is similarly regulated. Progesterone and melatonin have been identified as ligands that regulate hyperactivation, the former through non-genomic regulation with phospholipase C and the latter most likely through a reactive oxygen species-mitogen activated protein kinase cascade. Both may be involved in spontaneous regulation of hyperactivation via tyrosine phosphorylation. The concentration of many hormones changes according to environmental conditions and biological rhythms, which will modulate ligand-dependent regulation of hyperactivation.
Collapse
|
32
|
Abstract
Estrogen controls multiple biological functions through binding to estrogen receptors (ERs). Traditionally, ERs have been regarded as transcription factors regulating the expression of target genes. However, growing evidence of rapid estrogen's actions in a number of tissues has been accumulating and alternative mechanisms of signal transduction have been proposed. These so called "extra-nuclear actions" do not require gene expression or protein synthesis and are independent of the nuclear localization of ERs. Indeed, some of these actions are elicited by ERs residing at or near the plasma membrane. Membrane-associated molecules such as ion channels, G proteins, the tyrosine kinase c-Src as well as growth factor receptors are modulated by liganded ERs within the membrane, leading to the activation of downstream cascades such as mitogen-activated protein kinase, phosphatidylinositol 3-OH kinase, protein kinase A, and protein kinase C. These cascades mediate some important rapid actions of estrogen, such as the activation of nitric oxide synthesis or the remodeling of actin cytoskeleton. In addition, these pathways are critical for the regulation of the expression of a number of target proteins implicated in cell proliferation, apoptosis, differentiation, movement, and homeostasis. In this manner, the extra-nuclear pathways are tightly integrated with the genomic pathways to orchestrate the full spectrum of estrogen's biological functions. The recent advancements in the characterization of the molecular basis of the extra-nuclear signaling of estrogen helps to understand the role of estrogen on human cells, and may in future turn out to be of relevance for clinical purposes.
Collapse
Affiliation(s)
- Xiao-Dong Fu
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | | |
Collapse
|
33
|
Milanesi L, de Boland AR, Boland R. Expression and localization of estrogen receptor α in the C2C12 murine skeletal muscle cell line. J Cell Biochem 2008; 104:1254-73. [DOI: 10.1002/jcb.21706] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Araújo GW, Beyer C, Arnold S. Oestrogen influences on mitochondrial gene expression and respiratory chain activity in cortical and mesencephalic astrocytes. J Neuroendocrinol 2008; 20:930-41. [PMID: 18445124 DOI: 10.1111/j.1365-2826.2008.01747.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulation of mitochondrial energy metabolism plays an essential role in the central nervous system (CNS). Abnormalities of the mitochondrial respiratory chain often accompany neurodegenerative diseases. This makes mitochondria a perfect target for strategies of cellular protection against toxic compounds and pathological conditions. Steroid hormones, such as oestrogen, are well-known to fulfil a protective role in the brain during ischaemic and degenerative processes. Because astrocytes function as the major energy supplier in the CNS, we have analysed oestrogen effects on the mitochondrial respiratory chain of this cell type. In our studies, we applied semi- and quantitative polymerase chain reaction analysis of gene expression and polarographic measurements of the respiratory chain activity of mitochondria. We observed that structural and functional properties were regulated dependent on the oestrogen exposure time and the brain region, but independent of the nuclear oestrogen receptors. We could demonstrate that long-term oestrogen exposure increases the subunit gene expression of respiratory chain complexes and the mitochondrial DNA content, thereby indicating an up-regulation of the amount of mitochondria per cell together with an increase of mitochondrial energy production. This could represent an important indirect mechanism by which long-term oestrogen exposure protects neurones from cell death under neurotoxic conditions. On the other hand, we observed short-term effects of oestrogen on the activity of mitochondrial, proton-pumping respiratory chain complexes. In astrocytes from the cortex, respiratory chain activity was decreased, whereas it was increased in astrocytes from the mesencephalon. An increased production of reactive oxygen species would be the consequence of an increased respiratory chain activity in mesencephalic astrocytes. This could explain the different efficiencies of oestrogen-mediated short-term protection in distinct brain regions, but also indicates the limitations for a therapeutic short-term application of oestrogen.
Collapse
Affiliation(s)
- G W Araújo
- Institute for Neuroanatomy, Faculty of Medicine, RWTH, Aachen, Germany
| | | | | |
Collapse
|
35
|
Hayashi T, Yamada T. Association of bioavailable estradiol levels and testosterone levels with serum albumin levels in elderly men. Aging Male 2008; 11:63-70. [PMID: 18570057 DOI: 10.1080/13685530701779234] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Estrogens are reported to be the essential sex steroid acting on some male physiological functions, and bioavailable estrogens comprise the free and albumin-bound fractions. Moreover, most of the bioavailable sex steroid is made up of albumin-bound fraction. We examined the age-related change in serum free, albumin-bound and bioavailable estradiol levels in comparison with each fraction of testosterone and its relationship with serum albumin level in elderly men. Albumin-bound as well as bioavailable estradiol levels declined with age, and their decreases were associated much more with the decrease of albumin level than the increase of sex-hormone binding globulin (SHBG) level in sixties and seventies, and similar results were recognized in the level of each fraction of testosterone, suggesting albumin levels have an important role for maintaining bioavailable sex steroid levels in males aged over sixty. Moreover, our study showed that SHBG levels associated inversely with bioavailable sex steroid levels particularly when serum albumin level was low. It seems likely that the decrease of bioavailable estradiol as well as testosterone is induced by the decrease of albumin-bound fractions in combination with the increase of SHBG-bound fractions in males aged over sixty, and that their physical characteristics of aging could be induced by the decrease of albumin-bound fractions caused by the decrease of serum albumin regardless of total sex steroid levels.
Collapse
Affiliation(s)
- Tetsuo Hayashi
- Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan.
| | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Modern consumer needs have stimulated a vast expansion in the dietary supplement market, in an attempt to improve general well being and prevent, rather than cure, disease. Isoflavones form a large part of this market. Their oestrogenic properties are still largely unknown and must be thoroughly researched to ensure they cause no adverse effects, particularly on hormone-dependent reproductive physiology. RECENT FINDINGS As a result of the increasing availability of phytoestrogens, research into their actions now covers a very wide field, many of which impact on reproductive potential. Time of exposure is crucial, as is interaction with other dietary components. Their putative role as chemoprotective agents has been expanded in recent years which may have an indirect impact on fertility by decreasing mortality rates in both men and women. SUMMARY Phytoestrogens are still a current research topic in reproduction and fertility. Genistein is a putative therapeutic tool in cancer treatment although this must be considered along with evidence that it may cause DNA damage in sperm, depending on the concentration. The effects of phytoestrogen in the body are not limited to oestrogenic action. Much more epidemiological data are required to interpret current molecular studies, and those of previous years.
Collapse
|
37
|
Chaki SP, Misro MM, Gautam DK, Kaushik M, Ghosh D, Chainy GB. Estradiol treatment induces testicular oxidative stress and germ cell apoptosis in rats. Apoptosis 2006; 11:1427-37. [PMID: 16830234 DOI: 10.1007/s10495-006-8761-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to understand the pathogenesis of estradiol induced effects in the seminiferous epithelium, studies were undertaken in adult rats with estradiol-3-benzoate administered for different durations. After 30 d of treatment, a significant rise in lipid peroxidation with concomitant fall in the activities of superoxide dismutase and catalase was observed. Both, serum and intra-testicular testosterone levels were found severely depleted. Seminiferous epithelium was devoid of elongated spermatids and spermatozoa by 30 d of treatment. Number of spermatocytes and round spermatids were significantly (p < 0.001) reduced. Flowcytometric analysis confirmed a drastic reduction of the haploid cell population (1c peak). Beginning from day 10 of treatment, there was a consistent rise in the number of pyknotic/apoptotic germ cells in the seminiferous epithelium. A gradual increase in Bax protein expression was observed with the duration of treatment. The shift in Bax immunostaining from the cytoplasm and nucleus of germ cells (at 10 d of treatment) to only nuclei of cells by 30 d of treatment was also noticed. By this time testicular tissue showed three-fold increase in caspase-8 enzyme activity. Viable testicular cells isolated in vitro decreased drastically subsequent to different periods of estradiol treatment. The above findings substantiate the fact that the testicular pathogenesis of estradiol benzoate treatment may be primarily because of altered reproductive hormone levels and high oxidative stress leading to germ cell apoptosis and subsequent germ cell loss in the seminiferous epithelium.
Collapse
Affiliation(s)
- S P Chaki
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, New Mehrauli Road, Munirka, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
38
|
Fraser LR, Beyret E, Milligan SR, Adeoya-Osiguwa SA. Effects of estrogenic xenobiotics on human and mouse spermatozoa. Hum Reprod 2006; 21:1184-93. [PMID: 16459350 DOI: 10.1093/humrep/dei486] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate human sperm responsiveness to the estrogenic xenobiotic genistein and seek further information regarding the mechanism of action of estrogenic xenobiotics using mouse spermatozoa. METHODS Uncapacitated human spermatozoa were incubated with genistein and assessed using chlortetracycline (CTC) fluorescence. CTC was also used to evaluate mouse sperm responses to daidzein and combinations of genistein, 8-prenylnaringenin and nonylphenol. Several steroids were tested to determine structure-function relationships, and possible involvement of cAMP and G proteins in responses was also investigated. RESULTS Genistein significantly accelerated capacitation and acrosome loss in human spermatozoa, with 1, 10 and 100 nmol/l being equally effective. In mouse spermatozoa, daidzein produced significant responses, and combinations of xenobiotics at low concentrations were more effective than used singly. The compounds appear to act at the cell surface, and responses to three different steroids were nonidentical. A protein kinase-A inhibitor blocked responses to xenobiotics, while genistein and nonylphenol significantly stimulated cAMP production. Pertussis toxin and dideoxyadenosine blocked responses, suggesting involvement of inhibitory G proteins and membrane-associated adenylyl cyclases. CONCLUSION Human and mouse sperm responses to genistein are very similar, but human gametes appear to be even more sensitive. The mechanism of action may involve unregulated stimulation of cAMP production, leading to significant acrosome loss, undesirable because already acrosome-reacted cells are nonfertilizing. Xenobiotics were even more effective in combination. Since simultaneous exposure to low concentrations of multiple xenobiotics is likely to occur in animals and humans, further investigation is needed to determine whether this could impair fertility.
Collapse
Affiliation(s)
- Lynn R Fraser
- Reproduction and Rhythms Group, School of Biomedical and Health Sciences, King's College London, London, UK.
| | | | | | | |
Collapse
|
39
|
Guarducci E, Nuti F, Becherini L, Rotondi M, Balercia G, Forti G, Krausz C. Estrogen receptor α promoter polymorphism: stronger estrogen action is coupled with lower sperm count. Hum Reprod 2006; 21:994-1001. [PMID: 16396937 DOI: 10.1093/humrep/dei439] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although the importance of estrogens in male reproduction is indisputable, little attention has been paid to the role of estrogen receptor (ER) gene mutations in male infertility. Significant correlation between (TA)n repeat allelic variants and lumbar bone mineral density was previously observed in the promoter region of the ERalpha gene, indicating that allelic combinations with higher number of (TA)n repeats are functionally more active genetic variants. METHODS We studied the (TA)n repeat polymorphism situated in the promoter region of the ERalpha gene in a large group of infertile and normospermic men (n = 347). RESULTS Although the (TA)n polymorphism failed to show a significant association with male infertility, we found a significant effect of this polymorphism on sperm count. In the group of infertile men, the mean TA repeat number and sperm concentration (P = 0.022) and total sperm number (P = 0.043) were inversely correlated, showing an association between higher TA repeat number (genotype A) and lower sperm production. In line with this observation, normospermic subjects with genotype A had a significantly lower mean sperm concentration with respect to men bearing genotype B with shorter TA alleles (P < 0.05) and a lower total sperm count (P < 0.01). CONCLUSIONS Our data indicate that specific allelic combinations of the ERalpha, which confer a stronger estrogen effect, may negatively influence human spermatogenesis.
Collapse
Affiliation(s)
- Elena Guarducci
- Department of Clinical Physiopathology, Andrology Unit, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Rossato M, Ferigo M, Galeazzi C, Foresta C. Estradiol inhibits the effects of extracellular ATP in human sperm by a non genomic mechanism of action. Purinergic Signal 2005; 1:369-75. [PMID: 18404521 PMCID: PMC2096547 DOI: 10.1007/s11302-005-1172-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/07/2005] [Accepted: 07/20/2005] [Indexed: 11/24/2022] Open
Abstract
Steroid hormones, beside their classical genomic mechanism of action, exert rapid, non genomic effects in different cell types. These effects are mediated by still poorly characterized plasma membrane receptors that appear to be distinct from the classic intracellular receptors. In the present study we evaluated the non genomic effects of estradiol (17βE2) in human sperm and its effects on sperm stimulation by extracellular ATP, a potent activator of sperm acrosome reaction. In human sperm 17βE2 induced a rapid increase of intracellular calcium (Ca2+) concentrations dependent on an influx of Ca2+ from the extracellular medium. The monitoring of the plasma membrane potential variations induced by 17βE2 showed that this steroid induces a rapid plasma membrane hyperpolarization that was dependent on the presence of Ca2+ in the extracellular medium since it was absent in Ca2+ free-medium. When sperm were pre-incubated in the presence of the K+ channel inhibitor tetra-ethylammonium, the 17βE2 induced plasma membrane hyperpolarization was blunted suggesting the involvement of K+ channels in the hyperpolarizing effects of 17βE2. Extracellular ATP induced a rapid plasma membrane depolarization followed by acrosome reaction. Sperm pre-incubation with 17βE2 inhibited the effects of extracellular ATP on sperm plasma membrane potential variations and acrosome reaction. The effects of 17βE2 were specific since its inactive steroisomer 17αE2 was inactive. Furthermore the effects of 17βE2 were not inhibited by tamoxifen, an antagonist of the classic 17βE2 intracellular receptor.
Collapse
Affiliation(s)
- Marco Rossato
- Department of Medical and Surgical Sciences, Clinica Medica 3, University of Padova, Italy,
| | | | | | | |
Collapse
|
41
|
Selva DM, Bassas L, Munell F, Mata A, Tekpetey F, Lewis JG, Hammond GL. Human sperm sex hormone-binding globulin isoform: characterization and measurement by time-resolved fluorescence immunoassay. J Clin Endocrinol Metab 2005; 90:6275-82. [PMID: 16131577 DOI: 10.1210/jc.2005-1192] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT SHBG gene expression in human testis results in an SHBG isoform that accumulates in the sperm head. OBJECTIVE The objective of this study was to further characterize the SHBG isoform in human sperm and to assess its biological relevance. DESIGN, SETTING, AND PATIENTS A time-resolved immunofluorometric assay was established to measure SHBG isoform concentrations in sperm samples from patients and sperm donors attending in vitro fertilization clinics. RESULTS AND CONCLUSIONS Molecular characterization of SHBG transcripts in human testis and sperm and biochemical analyses of the sperm SHBG isoform indicate that its smaller size compared with plasma SHBG is due to a lack of amino-terminal residues. The SHBG isoform is lost from sperm by one freeze and thaw cycle and during capacitation, which suggests it is located in or between the outer acrosomal and sperm plasma membranes. Sperm SHBG levels were proportional to the number of sperm analyzed and within assay variability in samples taken on different occasions from seven of nine individuals. Intra- and interassay variability (coefficient of variation) was 5.8 and 8.5%, respectively. Sperm SHBG levels ranged from 6-49 pm/10(6) sperm in 13 donor samples and did not correlate with serum SHBG levels. Sperm SHBG levels were lowest in fertile men and highest in patients with untreated varicocele, but these differences were not significant. Patients studied for couple infertility and those with surgically treated varicocele showed intermediate values. Sperm SHBG isoform levels correlate significantly with age and sperm motility and may influence sperm function in relation to male fertility.
Collapse
Affiliation(s)
- David M Selva
- Department of Obstetrics, Child and Family Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | |
Collapse
|
42
|
Mitwally MFM, Casper RF, Diamond MP. The role of aromatase inhibitors in ameliorating deleterious effects of ovarian stimulation on outcome of infertility treatment. Reprod Biol Endocrinol 2005; 3:54. [PMID: 16202169 PMCID: PMC1266397 DOI: 10.1186/1477-7827-3-54] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 10/04/2005] [Indexed: 12/24/2022] Open
Abstract
Clinical utilization of ovulation stimulation to facilitate the ability of a couple to conceive has not only provided a valuable therapeutic approach, but has also yielded extensive information on the physiology of ovarian follicular recruitment, endometrial receptivity and early embryo competency. One of the consequences of the use of fertility enhancing agents for ovarian stimulation has been the creation of a hyperestrogenic state, which may influence each of these parameters. Use of aromatase inhibitors reduces hyperestrogenism inevitably attained during ovarian stimulation. In addition, the adjunct use of aromatase inhibitors during ovarian stimulation reduces amount of gonadotropins required for optimum stimulation. The unique approach of reducing hyperestrogenism, as well as lowering amount of gonadotropins without affecting the number of mature ovarian follicles is an exciting strategy that could result in improvement in the treatment outcome by ameliorating the deleterious effects of the ovarian stimulation on follicular development, endometrial receptivity, as well as oocyte and embryo quality.
Collapse
Affiliation(s)
- Mohamed FM Mitwally
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Robert F Casper
- Reproductive Sciences Division, Department of Obstetrics & Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Michael P Diamond
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
43
|
Solakidi S, Psarra AMG, Nikolaropoulos S, Sekeris CE. Estrogen receptors alpha and beta (ERalpha and ERbeta) and androgen receptor (AR) in human sperm: localization of ERbeta and AR in mitochondria of the midpiece. Hum Reprod 2005; 20:3481-7. [PMID: 16123086 DOI: 10.1093/humrep/dei267] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The central role of estrogens and androgens in the male reproductive system has focused attention on the presence and distribution of their cognate receptors [estrogen receptor (ER) alpha, ERbeta and androgen receptor (AR)] in male reproductive tissues and cells. Since the presence of steroid hormone receptors in mitochondria of mammalian cells has been well documented, we investigated the possibility of mitochondrial localization of sex steroid hormone receptors in sperm. METHODS AND RESULTS Applying immunofluorescence labelling and confocal laser scanning microscopy we show that the estrogen receptor beta and the AR of human sperm are specifically enriched in the midpiece, at the site of the mitochondria, which were visualized by labelling with the vital dye CMX. Nuclear and mitochondrial localization of AR was also detected in LnCap human prostate cancer cells. Differentially, most of the ERalpha immunostaining is in the form of a compact zone at a region corresponding to the equatorial segment of the upper post-acrosomal region of the sperm head. Immunoblotting experiments using sperm extracts revealed the presence of a 66 and a 45 kDa protein reacting with the ERalpha antibody, one 64 kDa protein reacting with the ERbeta antibody and a 110 and a 90 kDa protein reacting with the antibody against AR. CONCLUSIONS Our findings suggest that the differential localization of AR and ER isoforms in human sperm reveals distinct roles of these receptors in the physiology of sperm cells and, perhaps, also in the process of fertilization.
Collapse
Affiliation(s)
- S Solakidi
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Laboratory of Molecular Endocrinology, 48 Vas Constantinou Ave, 11635 Athens, Greece
| | | | | | | |
Collapse
|
44
|
Lukoseviciute K, Zilinskas H, Januskauskas A. The effect of oestradiol, progesterone and heparin on bovine spermatozoa function after thawing. Reprod Domest Anim 2005; 40:100-7. [PMID: 15819956 DOI: 10.1111/j.1439-0531.2004.00559.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present experiment was designed to determine the effects of various biologically active substances, such as oestradiol (OE), progesterone (P4) and heparin (Hep) alone or in combination on sperm plasma membrane scrambling, capacitation and acrosome reaction (AR) of post-thaw bovine spermatozoa. Spermatozoa were incubated for 180 min in capacitation medium supplemented with (i) 1 mug/ml OE; (ii) 1 mug/ml P4; (iii) 1 mug/ml OE and 1 mug/ml P4; (iv) 1 mug/ml OE and 5 mug/ml Hep; (v) 1 mug/ml P4 and 5 mug/ml Hep; (vi) 1 mug/ml OE, 1 mug/ml P4 and 5 mug/ml Hep. At predetermined time intervals aliquots were taken to assess sperm plasma membrane scrambling, or capacitation (AR induced by lysophosphatidylcholine) in spermatozoa. The second experiment was aimed to study the effects of OE, P4 and OE/P4 as potential inducers of AR in Hep-capacitated spermatozoa. Plasma membrane scrambling was assessed by a flow cytometer, using Merocyanine staining. Acrosomal status and viability of spermatozoa were evaluated under epifluorescence microscope with Ethidium homodimer-1/peanut agglutinin fluorescein isothiocyanate staining method (EthD-1/PNA-FITC). The results show that OE, P4 and a combination of OE/P4 at concentrations used did not affect sperm viability. Heparin significantly (p < 0.001) increased sperm plasma membrane scrambling of OE and P4-treated spermatozoa. P4 significantly affected the rate of sperm capacitation (p < 0.001) and AR (p < 0.05), but OE expressed membrane-stabilizing properties (p < 0.05). It can be concluded that in frozen-thawed bovine spermatozoa OE presents plasma membrane stabilizing properties that can be abolished by Hep, but not by P4. Progesterone possesses capacitating and AR-inducing properties in frozen-thawed bovine spermatozoa that can be alleviated by OE.
Collapse
Affiliation(s)
- K Lukoseviciute
- Animal Reproduction Laboratory, Department of Obstetrics and Gynecology, Lithuanian Veterinary Academy, Kaunas, Lithuania
| | | | | |
Collapse
|
45
|
Rochira V, Granata ARM, Madeo B, Zirilli L, Rossi G, Carani C. Estrogens in males: what have we learned in the last 10 years? Asian J Androl 2005; 7:3-20. [PMID: 15685347 DOI: 10.1111/j.1745-7262.2005.00018.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the role of estrogen in men, mainly in male reproduction. The continuing increase in data obtained, and recent discoveries in this area will enable a better understanding of male physiology; these, in turn, will have important clinical implications.
Collapse
Affiliation(s)
- Vincenzo Rochira
- Integrated Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena 41100, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Arreguin-Arevalo JA, Nett TM. A Nongenomic Action of 17β-Estradiol as the Mechanism Underlying the Acute Suppression of Secretion of Luteinizing Hormone1. Biol Reprod 2005; 73:115-22. [PMID: 15772257 DOI: 10.1095/biolreprod.105.040329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The objective of the present study was to determine the ability of 17beta-estradiol (E(2)) and conjugated forms of E(2) (E(2) conjugated to BSA [E(2)-BSA] and a novel conjugate, E(2) conjugated to a small peptide [E(2)-PEP]) to prevent the GnRH-induced secretion of LH and to determine the role of estradiol receptors (ERs) and ER subtypes (ERalpha, also known as ESR1, and ERbeta, also known as ESR2) in the mediation of the acute action of E(2) in primary cultures of ovine pituitary cells. Preincubation of cells for 15 min with E(2), E(2)-BSA, or E(2)-PEP prevented the GnRH-induced secretion of LH (P < 0.01). Treatment of cells with nonestrogenic steroid hormones did not affect secretion of LH when given alone, nor did these steroids impair the E(2)-induced inhibition of LH secretion (P > 0.1). Likewise, treatment of cells with the ER-antagonists tamoxifen, hydroxytamoxifen, or ICI 182 780 did not affect (P > 0.1) secretion of LH when given alone but did prevent (P < 0.01) the inhibition by E(2) and the E(2)-conjugates on GnRH-induced secretion of LH. When cells were treated with subtype-selective ER agonists, the ERalpha agonist (propylpyrazole-triol), but not the ERbeta agonist (diarylpropionitrile), decreased (P < 0.01) the GnRH-induced secretion of LH. In conclusion, the rapidity by which E(2) prevented GnRH-induced release of LH in ovine pituitary cells suggests that this inhibition is mediated via a nongenomic action of E(2). The inhibition of GnRH-induced secretion of LH proved to be steroid specific and mediated by ERs. It may occur specifically through ERalpha. The fact that E(2)-BSA or E(2)-PEP mimicked the action of E(2) suggests that this effect was mediated by an ER associated with the plasma membrane.
Collapse
|
47
|
Younglai EV, Wu YJ, Kwan TK, Kwan CY. Non-genomic action of estradiol and progesterone on cytosolic calcium concentrations in primary cultures of human granulosa-lutein cells. Hum Reprod 2005; 20:2383-90. [PMID: 15932916 DOI: 10.1093/humrep/dei078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The present study examined whether the sex steroids, estradiol and progesterone, could alter cytoplasmic calcium concentrations ([Ca(2+)](cyt)) in human granulosa-lutein cells. METHODS Human granulosa cells were obtained at the time of oocyte retrieval for IVF and cultured for 3-7 days. Cells were loaded with Fura-2 AM and changes in [Ca(2+)](cyt) of single cells were studied using a dynamic digital Ca(2+) imaging system. RESULTS Both estradiol and progesterone stimulated elevations of [Ca(2+)](cyt) in Ca(2+)-containing medium within seconds of exposure of the granulosa-lutein cells to the steroid, but only estradiol caused an increase in [Ca(2+)](cyt) in Ca(2+)-free medium. Both ICI-182780 and RU 486 stimulated [Ca(2+)](cyt) increases and inhibited the effects of estradiol and progesterone, respectively. Tamoxifen also induced transient increases in [Ca(2+)](cyt) concentrations but inhibited the effects of both estradiol and progesterone. The inhibitory effects of tamoxifen, ICI-182780 and RU 4486 on [Ca(2+)](cyt) responses to estradiol and progesterone could be reversed with higher concentrations of estradiol and progesterone, respectively. The [Ca(2+)](cyt) effects induced with tamoxifen could not be eliminated by prior treatment with RU 486 or ICI-182780. CONCLUSION These results provide strong evidence that both estradiol and progesterone as well as the steroid antagonists, tamoxifen, RU 486 and ICI-182780, can act on human granulosa-lutein cells through a non-genomic mechanism.
Collapse
Affiliation(s)
- E V Younglai
- Department of Obstetrics and Gynecology, Reproductive Biology Division, McMaster University, Health Sciences Centre, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
48
|
Wu JT, Tsai PS, Lee SL, Cheng FP. Characterisation of the progesterone receptor on canine spermatozoa. Reprod Fertil Dev 2005; 17:733-41. [PMID: 16364228 DOI: 10.1071/rd05074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/16/2005] [Indexed: 12/12/2022] Open
Abstract
The present study was conducted to characterise and localise the progesterone receptor (PR) on canine spermatozoa. Using a progesterone–bovine serum albumin–fluorescein isothiocyanate conjugate (PBF) and different monoclonal antibodies (C262 and NCL-PGR against the steroid binding domain and N-terminus of intracellular PR, respectively, and h151 against the hinge domain of the intracellular oestrogen receptor), the PR was identified on the plasma membrane over the acrosomal region. Two proteins (54 kDa and 65 kDa) were detected by recognition of the three monoclonal antibodies using Western blotting. PBF labelling was observed in the majority of cauda epididymal spermatozoa (63 ± 4%), but this labelling was markedly reduced (33 ± 17%) after the addition of canine seminal plasma. Over a 7-h capacitation, the proportion of ejaculated spermatozoa exhibiting PBF labelling (indicating the presence of the PR) increased from 18 ± 10% (onset) to 59 ± 7% by 5 h, where it plateaued. Progesterone (P4) induced the acrosome reaction (AR) in a dose-dependent manner (0, 0.1, 1 and 10 µg/mL P4 corresponding to 10 ± 5%, 16 ± 9%, 23 ± 7% and 30 ± 7%). Pre-treatment of capacitated spermatozoa with canine seminal plasma reduced the incidence of the P4-induced AR (12 ± 5%). In addition, treatment with the monoclonal antibodies significantly reduced the incidence of the P4-induced AR (10 µg/mL) in capacitated ejaculated spermatozoa from 19 ± 6% to 11 ± 4% (h151, 1 : 10) and 12 ± 6% (C262, 1 : 10), respectively. A typical Scatchard plot revealed one binding with high affinity and low capacity, and another binding with low affinity and high capacity, suggesting at least two different characteristic PR. Taken together, these results demonstrate that P4 induced the AR in a dose-dependent manner via functional transmembranal receptors in the acrosomal region of the canine sperm plasma membrane. The characteristics of this membrane receptor seem similar to those of other mammalian spermatozoa, and it shows structural homology to the intracellular PR.
Collapse
Affiliation(s)
- Jui-Te Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | | | | | | |
Collapse
|
49
|
Thomas P, Doughty K. Disruption of rapid, nongenomic steroid actions by environmental chemicals: interference with progestin stimulation of sperm motility in Atlantic croaker. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:6328-6332. [PMID: 15597889 DOI: 10.1021/es0403662] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several nongenomic steroid actions, like genomic ones, can be disrupted by estrogenic xenobiotics (xenoestrogens), but the extent and sensitivity of this alternative mechanism of steroid action to chemical interference remain unclear. The effects of environmentally realistic concentrations of a broad range of organic contaminants on the nongenomic action of a progestin (17,20beta,21-trihydroxy-4-pregnen-3-one or 20beta-S) to upregulate Atlantic croaker sperm motility were examined in an in vitro bioassay. Pretreatment of sperm for 10 min in vitro with estrogenic compounds (estradiol-17beta, o,p'-DDT derivatives, zearalenone, bisphenol A, 2',3',4',5'-PCB-4-OH, kepone, chlordane, methoxyclor) and nonestrogenic organic compounds (p,p'-DDT derivatives, atrazine, Aroclor 1254, naphthalene, benzene) at concentrations ranging from 0.01 to 10 microM did not decrease the percent of motile sperm, but all of them partially or completely blocked the response to 20beta-S. Most of the compounds impaired this endocrine mechanism at a concentration of 0.1 microM (approximately 30-40ppb), whereas o,p'-DDT and atrazine were effective at lower concentrations. The antagonistic actions of o,p'-DDT were partially reversed with 10-fold higher concentrations of 20beta-S, which is consistent with a hormone receptor-mediated mechanism of DDT action. The finding that low concentrations of a wide range of organic environmental contaminants can interfere with a rapid, nongenomic steroid action suggests that this mechanism of endocrine disturbance is of toxicological importance.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin Marine Science Institute, Port Aransas, Texas 78373, USA.
| | | |
Collapse
|
50
|
Teodori E, Baldi E, Dei S, Gualtieri F, Romanelli MN, Scapecchi S, Bellucci C, Ghelardini C, Matucci R. Design, Synthesis, and Preliminary Pharmacological Evaluation of 4-Aminopiperidine Derivatives as N-Type Calcium Channel Blockers Active on Pain and Neuropathic Pain. J Med Chem 2004; 47:6070-81. [PMID: 15537361 DOI: 10.1021/jm049923l] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several compounds with a 4-aminopiperidine scaffold decorated on both nitrogen atoms by alkyl or acyl moieties containing the structural motifs of verapamil and of flunarizine, as well as those that are more frequent in known N-type calcium channel antagonists, have been synthesized. Antinociceptive activity on the mouse hot-plate test was used to select molecules to be submitted to further studies. Active compounds were tested in vitro on a PC12 rat pheochromocytoma clonal cell line, to evaluate their action on N-type calcium channels, and on a rat model of neuropathic pain. Two compounds that show N-type calcium channel antagonism and are endowed with potent action on pain and neuropathic pain (3 and 18) have been selected for further studies.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (FI), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|