1
|
Lampousi AM, Carlsson S, Löfvenborg JE, Cabrera-Castro N, Chirlaque MD, Fagherazzi G, Franks PW, Hampe CS, Jakszyn P, Koulman A, Kyrø C, Moreno-Iribas C, Nilsson PM, Panico S, Papier K, van der Schouw YT, Schulze MB, Weiderpass E, Zamora-Ros R, Forouhi NG, Sharp SJ, Rolandsson O, Wareham NJ. Interaction between plasma phospholipid odd-chain fatty acids and GAD65 autoantibodies on the incidence of adult-onset diabetes: the EPIC-InterAct case-cohort study. Diabetologia 2023; 66:1460-1471. [PMID: 37301794 PMCID: PMC10317878 DOI: 10.1007/s00125-023-05948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Islet autoimmunity may progress to adult-onset diabetes. We investigated whether circulating odd-chain fatty acids (OCFA) 15:0 and 17:0, which are inversely associated with type 2 diabetes, interact with autoantibodies against GAD65 (GAD65Ab) on the incidence of adult-onset diabetes. METHODS We used the European EPIC-InterAct case-cohort study including 11,124 incident adult-onset diabetes cases and a subcohort of 14,866 randomly selected individuals. Adjusted Prentice-weighted Cox regression estimated HRs and 95% CIs of diabetes in relation to 1 SD lower plasma phospholipid 15:0 and/or 17:0 concentrations or their main contributor, dairy intake, among GAD65Ab-negative and -positive individuals. Interactions between tertiles of OCFA and GAD65Ab status were estimated by proportion attributable to interaction (AP). RESULTS Low concentrations of OCFA, particularly 17:0, were associated with a higher incidence of adult-onset diabetes in both GAD65Ab-negative (HR 1.55 [95% CI 1.48, 1.64]) and GAD65Ab-positive (HR 1.69 [95% CI 1.34, 2.13]) individuals. The combination of low 17:0 and high GAD65Ab positivity vs high 17:0 and GAD65Ab negativity conferred an HR of 7.51 (95% CI 4.83, 11.69), with evidence of additive interaction (AP 0.25 [95% CI 0.05, 0.45]). Low dairy intake was not associated with diabetes incidence in either GAD65Ab-negative (HR 0.98 [95% CI 0.94, 1.02]) or GAD65Ab-positive individuals (HR 0.97 [95% CI 0.79, 1.18]). CONCLUSIONS/INTERPRETATION Low plasma phospholipid 17:0 concentrations may promote the progression from GAD65Ab positivity to adult-onset diabetes.
Collapse
Affiliation(s)
- Anna-Maria Lampousi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefin E Löfvenborg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Risk and Benefit Assessment, Swedish Food Agency, Uppsala, Sweden
| | | | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Health and Social Sciences, Murcia University, Murcia, Spain
| | - Guy Fagherazzi
- Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul W Franks
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Christiane S Hampe
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Albert Koulman
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Biomedical Research Centre Core Nutritional Biomarker Laboratory, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Conchi Moreno-Iribas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen J Sharp
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
2
|
Törn C, Vaziri-Sani F, Ramelius A, Elding Larsson H, Ivarsson SA, Amoroso M, Furmaniak J, Powell M, Smith BR. Evaluation of the RSR 3 screen ICA™ and 2 screen ICA™ as screening assays for type 1 diabetes in Sweden. Acta Diabetol 2022; 59:773-781. [PMID: 35220476 PMCID: PMC9085662 DOI: 10.1007/s00592-022-01856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
AIM The study aim was to evaluate the RSR 3 Screen ICA™ and 2 Screen ICA™ for detection of islet cell autoimmunity in healthy Swedish subjects and patients with newly diagnosed type 1 diabetes (T1D). METHODS 3 Screen is designed for combined detection of autoantibodies to glutamic acid decarboxylase (GADA), to the islet antigen IA-2 (IA-2A) and to zinc transporter 8 (ZnT8A), while 2 Screen detects GADA and IA-2A. Serum samples from 100 T1D patients at onset and 200 healthy controls were studied. RESULTS 3 Screen achieved 93% assay sensitivity and 97.5% specificity, while 2 Screen achieved 91% assay sensitivity and 98.5% specificity. Samples were also tested in assays for individual autoantibodies. There was only one 3 Screen positive healthy control sample (0.5%) that was positive for multiple autoantibodies (IA-2A and ZnT8A). In contrast, most of the 93 3 Screen positive patients were positive for multiple autoantibodies with 72% (67/93) positive for both GADA and IA-2A and 57% (53/93) positive for three autoantibodies (GADA, IA-2A and ZnT8A). Insulin autoantibodies (IAA, measured by radioimmunoassay) were positive in 13 patients and two healthy controls. CONCLUSION 3 Screen achieved high sensitivity and specificity, suitable for islet cell autoimmunity screening in a healthy population. In the case of 3 Screen positivity, further assays for GADA, IA-2A and ZnT8A are required to check for multiple autoantibody positivity, a hallmark for progression to T1D. In addition, testing for IAA in children below two years of age is warranted.
Collapse
Affiliation(s)
- Carina Törn
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
- Unit for Diabetes and Celiac Disease, Wallenberg Laboratory/CRC, Inga Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| | | | - Anita Ramelius
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
3
|
Stefanoni G, Formenti A, Tremolizzo L, Stabile A, Appollonio I, Ferrarese C. Atypical parkinsonism and intrathecal anti-glutamic acid decarboxylase antibodies - an unusual association: a case report. J Med Case Rep 2020; 14:84. [PMID: 32600450 PMCID: PMC7325116 DOI: 10.1186/s13256-020-02412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Immunological causes of parkinsonism are very rare and usually characterized by early presentation, poor response to levodopa, and additional clinical features. Case presentation We describe a 58-year-old white man who presented with a 1-year history of gait disturbance with disequilibrium leading to falls. We report an association between parkinsonism and presence of anti-glutamic acid decarboxylase antibodies in his cerebrospinal fluid, discussing clinical presentation and follow-up. Conclusions Besides the possibility of a casual association, this case allows us to hypothesize an alternative pathophysiological mechanism of parkinsonism implying interference with glutamic acid decarboxylase and gamma-aminobutyric acid functions, eventually resulting in basal ganglia circuit dysregulation.
Collapse
Affiliation(s)
- Giovanni Stefanoni
- Neurology Unit, "San Gerardo" Hospital and School of Medicine and Surgery, University of Milano - Bicocca, Milan-Center for Neuroscience (NeuroMI), Monza, Italy.
| | - Anna Formenti
- Neurology Unit, "San Gerardo" Hospital and School of Medicine and Surgery, University of Milano - Bicocca, Milan-Center for Neuroscience (NeuroMI), Monza, Italy
| | - Lucio Tremolizzo
- Neurology Unit, "San Gerardo" Hospital and School of Medicine and Surgery, University of Milano - Bicocca, Milan-Center for Neuroscience (NeuroMI), Monza, Italy
| | - Andrea Stabile
- Neurology Unit, "San Gerardo" Hospital and School of Medicine and Surgery, University of Milano - Bicocca, Milan-Center for Neuroscience (NeuroMI), Monza, Italy
| | - Ildebrando Appollonio
- Neurology Unit, "San Gerardo" Hospital and School of Medicine and Surgery, University of Milano - Bicocca, Milan-Center for Neuroscience (NeuroMI), Monza, Italy
| | - Carlo Ferrarese
- Neurology Unit, "San Gerardo" Hospital and School of Medicine and Surgery, University of Milano - Bicocca, Milan-Center for Neuroscience (NeuroMI), Monza, Italy
| |
Collapse
|
4
|
Hampe CS, Sahabandu D, Kaiser V, Telieps T, Smeeth L, Agyemang C, Spranger J, Schulze MB, Mockenhaupt FP, Danquah I, Rolandsson O. Geographic location determines beta-cell autoimmunity among adult Ghanaians: Findings from the RODAM study. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:299-309. [PMID: 32378803 PMCID: PMC7416037 DOI: 10.1002/iid3.306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 01/29/2023]
Abstract
Introduction Beta‐cell autoantibodies are established markers of autoimmunity, which we compared between Ghanaian adults with or without diabetes, living in rural and urban Ghana and in three European cities. Methods In the multicenter cross‐sectional Research on Obesity and Diabetes among African Migrants (RODAM) study (N = 5898), we quantified autoantibodies against glutamic acid decarboxylase (GAD65Ab) by radioligand binding assay (RBA) and established cut‐offs for positivity by displacement analysis. In a subsample, we performed RBA for zinc transporter‐8 autoantibodies (ZnT8Ab). Associations of environmental, sociodemographic, and clinical factors with GAD65Ab were calculated. Results In this study population (age: 46.1 ± 11.9 years; female: 62%; Ghana‐rural: 1111; Ghana‐urban: 1455; Europe: 3332), 9.2% had diabetes with adult‐onset. GAD65Ab concentrations were the highest in Ghana‐rural (32.4; 10.8‐71.3 U/mL), followed by Ghana‐urban (26.0; 12.3‐49.1 U/mL) and Europe (11.9; 3.0‐22.8 U/mL) with no differences between European cities. These distributions were similar for ZnT8Ab. Current fever, history of fever, and higher concentrations of liver enzymes marginally explained site‐specific GAD65Ab concentrations. GAD65Ab positivity was as frequent in diabetes as in nondiabetes (5.4% vs 6.1%; P = .25). This was also true for ZnT8Ab positivity. Conclusion Geographic location determines the occurrence of GAD65Ab and ZnT8Ab more than the diabetes status. Beta‐cell autoimmunity may not be feasible to differentiate diabetes subgroups in this population.
Collapse
Affiliation(s)
| | - Diomira Sahabandu
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vivien Kaiser
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Tanja Telieps
- Helmholtz Center Munich, Institute for Diabetes and Obesity Research, Garching, Germany
| | - Liam Smeeth
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Charles Agyemang
- Department of Public Health, Academic Medical Center, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin; Center for Cardiovascular Research (CCR), Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Danquah
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Heidelberg Institute of Global Health, Universitaetsklinikum Heidelberg, Heidelberg, Germany
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Section of Family Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Rolandsson O, Hampe CS, Sharp SJ, Ardanaz E, Boeing H, Fagherazzi G, Mancini FR, Nilsson PM, Overvad K, Chirlaque MD, Dorronsoro M, Gunter MJ, Kaaks R, Key TJ, Khaw KT, Krogh V, Kühn T, Palli D, Panico S, Sacerdote C, Sánchez MJ, Severi G, Spijkerman AMW, Tumino R, van der Schouw YT, Riboli E, Forouhi NG, Langenberg C, Wareham NJ. Autoimmunity plays a role in the onset of diabetes after 40 years of age. Diabetologia 2020; 63:266-277. [PMID: 31713011 PMCID: PMC6946728 DOI: 10.1007/s00125-019-05016-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Type 1 and type 2 diabetes differ with respect to pathophysiological factors such as beta cell function, insulin resistance and phenotypic appearance, but there may be overlap between the two forms of diabetes. However, there are relatively few prospective studies that have characterised the relationship between autoimmunity and incident diabetes. We investigated associations of antibodies against the 65 kDa isoform of GAD (GAD65) with type 1 diabetes and type 2 diabetes genetic risk scores and incident diabetes in adults in European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct, a case-cohort study nested in the EPIC cohort. METHODS GAD65 antibodies were analysed in EPIC participants (over 40 years of age and free of known diabetes at baseline) by radioligand binding assay in a random subcohort (n = 15,802) and in incident diabetes cases (n = 11,981). Type 1 diabetes and type 2 diabetes genetic risk scores were calculated. Associations between GAD65 antibodies and incident diabetes were estimated using Prentice-weighted Cox regression. RESULTS GAD65 antibody positivity at baseline was associated with development of diabetes during a median follow-up time of 10.9 years (HR for GAD65 antibody positive vs negative 1.78; 95% CI 1.43, 2.20) after adjustment for sex, centre, physical activity, smoking status and education. The genetic risk score for type 1 diabetes but not type 2 diabetes was associated with GAD65 antibody positivity in both the subcohort (OR per SD genetic risk 1.24; 95% CI 1.03, 1.50) and incident cases (OR 1.97; 95% CI 1.72, 2.26) after adjusting for age and sex. The risk of incident diabetes in those in the top tertile of the type 1 diabetes genetic risk score who were also GAD65 antibody positive was 3.23 (95% CI 2.10, 4.97) compared with all other individuals, suggesting that 1.8% of incident diabetes in adults was attributable to this combination of risk factors. CONCLUSIONS/INTERPRETATION Our study indicates that incident diabetes in adults has an element of autoimmune aetiology. Thus, there might be a reason to re-evaluate the present subclassification of diabetes in adulthood.
Collapse
Affiliation(s)
- Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, 901 87, Umeå, Sweden.
| | - Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eva Ardanaz
- Navarre Public Health Institute, Pamplona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Guy Fagherazzi
- CESP, Faculty of Medicine - University Paris-South, Faculty of Medicine Inserm U1018, University Paris-Saclay, Villejuif, France
| | - Francesca Romana Mancini
- CESP, Faculty of Medicine - University Paris-South, Faculty of Medicine Inserm U1018, University Paris-Saclay, Villejuif, France
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Maria-Dolores Chirlaque
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Miren Dorronsoro
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
- Instituto BIO-Donostia, Basque Government, San Sebastian, Spain
| | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Azienda Ospedaliera Universitaria (AOU) Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Torino, Italy
| | - Maria-José Sánchez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Gianluca Severi
- Inserm, Center for Research in Epidemiology and Population Health (CESP), Université Paris-Sud, Université Paris-Saclay, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Gustave Roussy, Villejuif, France
- Facultés de Medicine, Université Paris-Sud, Université Paris-Saclay, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Gustave Roussy, Villejuif, France
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, 'Civic - M.P. Arezzo' Hospital, Ragusa, Italy
- Associazone Iblea per la Ricerca Epidemiologica - Organizazione Non Lucrativa di Utilità Sociale, Ragusa, Italy
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
6
|
Hampe CS, Radtke JR, Wester A, Carlsson A, Cedervall E, Jönsson B, Ivarsson SA, Elding Larsson H, Larsson K, Lindberg B, Neiderud J, Rolandsson O, Lernmark Å. Reduced display of conformational epitopes in the N-terminal truncated GAD65 isoform: relevance for people with stiff person syndrome or DQ8/8-positive Type 1 diabetes mellitus. Diabet Med 2019; 36:1375-1383. [PMID: 30264481 PMCID: PMC6437014 DOI: 10.1111/dme.13827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
AIMS To investigate whether the N-terminal truncated glutamic acid decarboxylase 65 (GAD65) isoform is as well recognized by people with stiff person syndrome as it is by people with Type 1 diabetes, and whether conformational GAD65 antibody epitopes are displayed properly by the isoform. METHODS GAD65 antibody-positive healthy individuals (n=13), people with stiff-person syndrome (n=15) and children with new-onset Type 1 diabetes (n=654) were analysed to determine binding to full-length GAD65 and the N-terminal truncated GAD65 isoform in each of these settings. GAD65 autoantibody epitope specificity was correlated with binding ratios of full-length GAD65/N-terminal truncated GAD65. RESULTS The N-terminal truncated GAD65 isoform was significantly less recognized in GAD65Ab-positive people with stiff-person syndrome (P=0.002) and in healthy individuals (P=0.0001) than in people with Type 1 diabetes. Moreover, at least two specific conformational GAD65Ab epitopes were not, or were only partially, presented by the N-terminal truncated GAD65 isoform compared to full-length GAD65. Finally, an N-terminal conformational GAD65Ab epitope was significantly less recognized in DQ8/8 positive individuals with Type 1 diabetes (P=0.02). CONCLUSIONS In people with stiff person syndrome preferred binding to the full-length GAD65 isoform over the N-terminal truncated molecule was observed. This binding characteristic is probably attributable to reduced presentation of two conformational epitopes by the N-terminal truncated molecule. These findings support the notion of disease-specific GAD65Ab epitope specificities and emphasize the need to evaluate the applicability of novel assays for different medical conditions.
Collapse
Affiliation(s)
- C S Hampe
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - J R Radtke
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - A Wester
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - A Carlsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - E Cedervall
- Department of Paediatrics, Ängelholm Hospital, Ängelholm, Malmo, Sweden
| | - B Jönsson
- Department of Paediatrics, Ystad Hospital, Ystad, Sweden
| | - S A Ivarsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - H Elding Larsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - K Larsson
- Department of Paediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - B Lindberg
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| | - J Neiderud
- Department of Paediatrics, Helsingborg Hospital, Helsingborg, Sweden
| | - O Rolandsson
- Department of Public Health and Clinical Medicine, Section of Family Medicine, Umeå University, Umeå, Sweden
| | - Å Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmo, Sweden
| |
Collapse
|
7
|
Hampe CS, Maitland ME, Gilliam LK, Phan THT, Sweet IR, Radtke JR, Bota V, Ransom BR, Hirsch IB. High titers of autoantibodies to glutamate decarboxylase in type 1 diabetes patients: epitope analysis and inhibition of enzyme activity. Endocr Pract 2014; 19:663-8. [PMID: 23512385 DOI: 10.4158/ep12318.or] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Autoantibodies to glutamate decarboxylase (GAD65Ab) are found in patients with autoimmune neurological disorders or type 1 diabetes. The correct diagnosis of GAD65Ab-associated neurological disorders is often delayed by the variability of symptoms and a lack of diagnostic markers. We hypothesized that the frequency of neurological disorders with high GAD65Ab titers is significantly higher than currently recognized. METHODS We analyzed GAD65Ab titer, GAD65 enzyme activity inhibition, and GAD65Ab epitope pattern in a cohort of type 1 diabetes patients (n = 100) and correlated our findings with neurological symptoms and diseases. RESULTS Overall, 43% (43/100) of patients had detectable GAD65Ab titers (median = 400 U/mL, range: 142-250,000 U/mL). The GAD65Ab titers in 10 type 1 diabetes patients exceeded the 90th percentile of the cohort (2,000-250,000 U/mL). Sera of these 10 patients were analyzed for their GAD65Ab epitope specificity and their ability to inhibit GAD65 enzyme activity in vitro. GAD65Ab of 5 patients inhibited the enzyme activity significantly (by 34-55%). Three patients complained of muscle stiffness and pain, which was documented in 2 of these patients. CONCLUSIONS Based on our findings, we suggest that neurological disorders with high GAD65Ab titers are more frequent in type 1 diabetes patients than currently recognized.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136419. [PMID: 24745008 PMCID: PMC3972949 DOI: 10.1155/2014/136419] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022]
Abstract
In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms.
Collapse
|
9
|
Liu B, Yu C, Li Q, Li L. Ketosis-onset diabetes and ketosis-prone diabetes: same or not? Int J Endocrinol 2013; 2013:821403. [PMID: 23710177 PMCID: PMC3655588 DOI: 10.1155/2013/821403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/17/2022] Open
Abstract
Objective. To compare clinical characteristics, immunological markers, and β -cell functions of 4 subgroups ("A β " classification system) of ketosis-onset diabetes and ketosis prone diabetes patients without known diabetes, presenting with ketosis or diabetic ketoacidosis (DKA) and admitted to our department from March 2011 to December 2011 in China, with 50 healthy persons as control group. Results. β -cell functional reserve was preserved in 63.52% of patients. In almost each subgroup (except A- β - subgroup of ketosis prone group), male patients were more than female ones. The age of the majority of patients in ketosis prone group was older than that of ketosis-onset group, except A- β - subgroup of ketosis prone group. The durations from the patient first time ketosis or DKA onset to admitting to the hospital have significant difference, which were much longer for the ketosis prone group except the A+ β + subgroup. BMI has no significant difference among subgroups. FPG of ketosis prone group was lower than that of A- β + subgroup and A+ β + subgroup in ketosis-onset group. A- β - subgroup and A+ β + subgroup of ketosis prone group have lower HbA1c than ketosis-onset group. Conclusions. Ketosis-onset diabetes and ketosis prone diabetes do not absolutely have the same clinical characteristics. Each subgroup shows different specialty.
Collapse
Affiliation(s)
- Beiyan Liu
- Endocrinology and Metabolism Department of the Second Hospital Affiliated to Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Changhua Yu
- Endocrinology and Metabolism Department of the Second Hospital Affiliated to Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| | - Qiang Li
- Endocrinology and Metabolism Department of the Second Hospital Affiliated to Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province 150086, China
- *Qiang Li:
| | - Lin Li
- Endocrinology and Metabolism Department of the Second Hospital Affiliated to Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province 150086, China
| |
Collapse
|
10
|
Skoglund C, Chéramy M, Casas R, Ludvigsson J, Hampe CS. GAD autoantibody epitope pattern after GAD-alum treatment in children and adolescents with type 1 diabetes. Pediatr Diabetes 2012; 13:244-50. [PMID: 21848927 PMCID: PMC3903414 DOI: 10.1111/j.1399-5448.2011.00802.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS We have previously shown that two injections of glutamic acid decarboxylase formulated in alum (GAD-alum) preserved residual insulin secretion in children and adolescents with recent onset type 1 diabetes (T1D), and was accompanied by increased GAD autoantibody (GADA) titers. The aim of this study was to investigate whether GAD-alum treatment affected the GADA epitope pattern. METHODS Serum samples from patients treated with GAD-alum (n = 33) or placebo (n = 27), at baseline, 1, 3, 9, and 15 months after the initial injection, were tested for their binding capacity to specific GADA epitopes in an epitope-specific radioligand binding assay with six recombinant Fab (rFab) (b96.11, DPA, DPD, MICA3, b78, and N-GAD(65) mAb). RESULTS No significant differences in variability of binding to any of the tested rFab were observed from baseline to 15 months. There was a sustained low binding of GADA to the b78- and N-GAD(65) mAb-defined epitopes, often recognized by GADA in patients with stiff person syndrome (SPS) and seldom in T1D patients. However, binding of GADA to the T1D-associated b96.11-defined epitope increased between baseline and 3 months in GAD-alum (-8.1%, min -72.4%, max 39.6%) compared to placebo patients (1.5%, min -28.3%, max 28.6%) (p = 0.02). Subsequently, the b96.11-defined epitope recognition returned to levels similar to that observed at baseline. CONCLUSIONS GAD-alum injections did not affect binding of GADA to SPS-related epitopes, further supporting the safety of the treatment. There were no changes in GADA epitope specificity to the T1D-related epitopes, except for a temporarily increased binding to one of the tested epitopes.
Collapse
Affiliation(s)
- Camilla Skoglund
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Mikael Chéramy
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
11
|
Anti-idiotypic antibody specific to GAD65 autoantibody prevents type 1 diabetes in the NOD mouse. PLoS One 2012; 7:e32515. [PMID: 22384267 PMCID: PMC3286479 DOI: 10.1371/journal.pone.0032515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/27/2012] [Indexed: 12/31/2022] Open
Abstract
Overt autoantibodies to the smaller isoform of glutamate decarboxylase (GAD65Ab) are a characteristic in patients with Type 1 diabetes (T1D). Anti-idiotypic antibodies (anti-Id) directed to GAD65Ab effectively prevent the binding of GAD65 to GAD65Ab in healthy individuals. Levels of GAD65Ab-specific anti-Id are significantly lower in patients with T1D, leading to overt GAD65Ab in these patients. To determine the possible protective role of GAD65Ab-specific anti-Id in T1D pathogenesis, we developed the monoclonal anti-Id MAb 8E6G4 specifically targeting human monoclonal GAD65Ab b96.11. MAb 8E6G4 was demonstrated as a specific anti-Id directed to the antigen binding site of b96.11. MAb 8E6G4 recognized human antibodies in sera from healthy individuals, T2D patients, and T1D patients as established by ELISA. We confirmed these MAb 8E6G4-bound human antibodies to contain GAD65Ab by testing the eluted antibodies for binding to GAD65 in radioligand binding assays. These findings confirm that GAD65Ab are present in sera of individuals, who test GAD65Ab-negative in conventional detection assays. To test our hypothesis that GAD65Ab-specific anti-Id have an immune modulatory role in T1D, we injected young Non Obese Diabetic (NOD) mice with MAb 8E6G4. The animals were carefully monitored for development of T1D for 40 weeks. Infiltration of pancreatic islets by mononuclear cells (insulitis) was determined to establish the extent of an autoimmune attack on the pancreatic islets. Administration of MAb 8E6G4 significantly reduced the cumulative incidence rate of T1D and delayed the time of onset. Insulitis was significantly less severe in animals that received MAb 8E6G4 as compared to control animals. These results support our hypothesis that anti-Id specific to GAD65Ab have a protective role in T1D.
Collapse
|
12
|
Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications. BMC Immunol 2011; 12:19. [PMID: 21385406 PMCID: PMC3063234 DOI: 10.1186/1471-2172-12-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 03/08/2011] [Indexed: 02/02/2023] Open
Abstract
Background Autoantibodies against glutamate decarboxylase-65 (GAD65Abs) are thought to be a major immunological tool involved in pathogenic autoimmunity development in various diseases. GAD65Abs are a sensitive and specific marker for type 1 diabetes (T1D). These autoantibodies can also be found in 6-10% of patients classified with type 2 diabetes (T2D), as well as in 1-2% of the healthy population. The latter individuals are at low risk of developing T1D because the prevalence rate of GAD65Abs is only about 0.3%. It has, therefore, been suggested that the antibody binding to GAD65 in these three different GAD65Ab-positive phenotypes differ with respect to epitope specificity. The specificity of reactive oxygen species modified GAD65 (ROS-GAD65) is already well established in the T1D. However, its association in secondary complications of T1D has not yet been ascertained. Hence this study focuses on identification of autoantibodies against ROS-GAD65 (ROS-GAD65Abs) and quantitative assays in T1D associated complications. Results From the cohort of samples, serum autoantibodies from T1D retinopathic and nephropathic patients showed high recognition of ROS-GAD65 as compared to native GAD65 (N-GAD65). Uncomplicated T1D subjects also exhibited reactivity towards ROS-GAD65. However, this was found to be less as compared to the binding recorded from complicated subjects. These results were further proven by competitive ELISA estimations. The apparent association constants (AAC) indicate greater affinity of IgG from retinopathic T1D patients (1.90 × 10-6 M) followed by nephropathic (1.81 × 10-6 M) and uncomplicated (3.11 × 10-7 M) T1D patients for ROS-GAD65 compared to N-GAD65. Conclusion Increased oxidative stress and blood glucose levels with extended duration of disease in complicated T1D could be responsible for the gradual formation and/or exposing cryptic epitopes on GAD65 that induce increased production of ROS-GAD65Abs. Hence regulation of ROS-GAD65Abs could offer novel tools for analysing and possibly treating T1D complications.
Collapse
|
13
|
Pugliese A, Reijonen HK, Nepom J, Burke GW. Recurrence of autoimmunity in pancreas transplant patients: research update. ACTA ACUST UNITED AC 2011; 1:229-238. [PMID: 21927622 DOI: 10.2217/dmt.10.21] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is an autoimmune disorder leading to loss of pancreatic β-cells and insulin secretion, followed by insulin dependence. Islet and whole pancreas transplantation restore insulin secretion. Pancreas transplantation is often performed together with a kidney transplant in patients with end-stage renal disease. With improved immunosuppression, immunological failures of whole pancreas grafts have become less frequent and are usually categorized as chronic rejection. However, growing evidence indicates that chronic islet autoimmunity may eventually lead to recurrent diabetes, despite immunosuppression to prevent rejection. Thus, islet autoimmunity should be included in the diagnostic work-up of graft failure and ideally should be routinely assessed pretransplant and on follow-up in Type 1 diabetes recipients of pancreas and islet cell transplants. There is a need to develop new treatment regimens that can control autoimmunity, as this may not be effectively suppressed by conventional immunosuppression.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
14
|
Hänninen A, Soilu-Hänninen M, Hampe CS, Deptula A, Geubtner K, Ilonen J, Knip M, Reijonen H. Characterization of CD4+ T cells specific for glutamic acid decarboxylase (GAD65) and proinsulin in a patient with stiff-person syndrome but without type 1 diabetes. Diabetes Metab Res Rev 2010; 26:271-9. [PMID: 20503259 PMCID: PMC2878280 DOI: 10.1002/dmrr.1083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamic acid decarboxylase (GAD) is a rate-limiting enzyme in the synthesis of gamma-amino butyric acid (GABA) and an important autoantigen both in patients with type 1 diabetes (T1D) and stiff-person syndrome (SPS). Autoantibodies (GADA) to the 65-kDa isoform of GAD are a characteristic feature in both diseases. Approximately 30% of patients with SPS develop diabetes, yet, it is unclear to which extent co-existing autoimmunity to GAD65 and other islet autoantigens determines the risk of developing T1D. METHODS In this study, we monitored CD4+ T-cell responses to GAD65 and proinsulin in a patient with SPS who remained normoglycaemic during the 46-month follow-up. RESULTS Fluctuating but persistent T-cell reactivity to GAD65 was identified, as well as T-cell reactivity to proinsulin at one time point. The majority of the T-cell clones isolated from the patient with SPS produced high levels of Th2 cytokines (IL-13, IL-5 and IL-4). We also examined levels of GADA, insulin and IA-2 autoantibodies, and epitope specificity of GADA. In both serum and cerebrospinal fluid (CSF), GADA levels were high, and GADA persisted throughout the follow-up. Despite T-cell reactivity to both GAD65 and proinsulin, autoantibodies to other islet autoantigens did not develop. CONCLUSIONS Further follow-up will determine whether the beta-cell autoimmunity observed in this patient will eventually lead to T1D.
Collapse
Affiliation(s)
- Arno Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Vaziri-Sani F, Oak S, Radtke J, Lernmark K, Lynch K, Agardh CD, Cilio CM, Lethagen AL, Ortqvist E, Landin-Olsson M, Törn C, Hampe CS. ZnT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset. Autoimmunity 2010; 43:598-606. [PMID: 20298127 DOI: 10.3109/08916930903555927] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoantibodies to the islet-specific zinc transporter isoform 8 (ZnT8) are detected in the majority of type 1 diabetes patients prior to and at clinical diagnosis. The presence of ZnT8Ab after diagnosis has not been investigated. This study analyzed the autoantibody response to ZnT8 in regard to age at onset and disease duration. Two new onset type 1 diabetes patient cohorts with different age distributions at onset (2-17 and 15-34 years of age at onset), a longitudinal subset of the younger type 1 diabetes patient cohort (n = 32), and a cohort of GAD65Ab-positive LADA patients (n = 47) was analyzed for the presence of autoantibodies directed to the two major isoforms, ZnT8-Arginine (ZnT8R) and ZnT8-Tryptophan (ZnT8W). The majority of type 1 diabetes patients tested positive for ZnT8Ab to both isoforms. ZnT8Ab titers were significantly higher in the younger type 1 diabetes patients as compared with the older cohort (ZnT8RAb at a median of 148 and 29 U/ml, respectively, p < 0.001) (ZnT8WAb at a median of 145 and 58 U/ml, respectively, p < 0.01). ZnT8RAb and ZnT8WAb titers were significantly lower in the LADA patients (ZnT8RAb at a median of 14 U/ml, ZnT8WAb at a median of 25 U/ml) as compared with either type 1 diabetes cohorts. In our longitudinal analysis of type 1 diabetes patients after clinical diagnosis, ZnT8Ab levels to both isoforms declined significantly during the initial year of disease (ZnT8RAb from a median of 320-162 U/ml, p = 0.0001; ZnT8WAb from a median of 128-46 U/ml, p = 0.0011). The antibody titers further declined during the following 4 years (p < 0.0001). We conclude that ZnT8Ab presents a useful marker for type 1 diabetes, especially in younger patients at disease diagnosis.
Collapse
Affiliation(s)
- Fariba Vaziri-Sani
- Department of Clinical Sciences, University Hospital MAS, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The lack of anti-idiotypic antibodies, not the presence of the corresponding autoantibodies to glutamate decarboxylase, defines type 1 diabetes. Proc Natl Acad Sci U S A 2008; 105:5471-6. [PMID: 18367670 DOI: 10.1073/pnas.0800578105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies to glutamate decarboxylase 65 (GAD65Ab) are commonly believed to be a major characteristic for type 1 diabetes (T1D). We investigated the presence of GAD65Ab in healthy individuals (n = 238) and first-degree relatives (FDRs) of T1D patients (n = 27) who tested negative for GAD65Ab in conventional RIAs. Sera were applied to affinity columns coated with GAD65-specific mAbs to absorb anti-idiotypic antibodies (anti-Ids). The absorbed sera were analyzed for binding to GAD65 by RIAs. Both healthy individuals and FDRs present GAD65Ab that are inhibited by anti-Id, masking them in conventional detection methods. The presence of GAD65Ab-specific anti-Ids was confirmed by competitive ELISA. Remarkably, T1D patients (n = 54) and Stiff Person Syndrome patients (n = 8) show a specific lack of anti-Ids to disease-associated GAD65Ab epitopes. Purified anti-Ids from healthy individuals and FDRs inhibited the binding of GAD65Ab from T1D patients to GAD65. We conclude that masked GAD65Ab are present in the healthy population and that a lack of particular anti-Ids, rather than GAD65Ab per se, is a characteristic of T1D. The lack of these inhibitory antibodies may contribute to T cell activation by GAD65Ab.
Collapse
|
17
|
Steed J, Gilliam LK, Harris RA, Lernmark A, Hampe CS. Antigen presentation of detergent-free glutamate decarboxylase (GAD65) is affected by human serum albumin as carrier protein. J Immunol Methods 2008; 334:114-21. [PMID: 18353353 DOI: 10.1016/j.jim.2008.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 02/04/2008] [Accepted: 02/12/2008] [Indexed: 11/27/2022]
Abstract
The smaller isoform of glutamate decarboxylase (GAD65) is a major autoantigen in type 1 diabetes (TID). Its hydrophobic character requires detergent to keep the protein in solution, which complicates studies of antigen processing and presentation. In this study an attempt was made to replace detergent with human serum albumin (HSA) for in vitro antigen presentation. Different preparations of recombinant human GAD65 solubilized by HSA were incubated with Priess B cells (HLA DRB1*0401) and antigen presentation was tested with HLA DRB1*0401-restricted and epitope-specific T33.1 (GAD65 epitope 274-286) and T35 (GAD65 epitope 115-127) T-cell hybridomas. Specific epitope recognition by T33.1 (274-286) and T35 (115-127) cells varied between the different GAD65/HSA preparations, and a reverse pattern of antigen presentation was detected by the two hybridoma. The HSA-specific T-cell hybridoma 17.9 response to the different GAD65/HSA preparations followed the same pattern as that observed for the T33.1 cells. The content of immunoreactive GAD65 measured with four GAD65 antibodies indicated that the lowest GAD65 concentration resulted in the highest 274-286, but the lowest 115-127 presentation. This suggests that HSA-GAD65 interactions qualitatively affect the epitope specificity of GAD65 presentation. HSA may enhance the 274-286 epitope presentation, while suppressing the 115-127 epitope.
Collapse
Affiliation(s)
- Jordan Steed
- Robert H. Williams Laboratory, Department of Medicine, University of Washington, Health Sciences Building K-165, 1959 Pacific Avenue NE, Seattle, WA 98195-3771, USA
| | | | | | | | | |
Collapse
|
18
|
Larsson HE, Lynch K, Lernmark B, Hansson G, Lernmark A, Ivarsson SA. Relationship between increased relative birthweight and infections during pregnancy in children with a high-risk diabetes HLA genotype. Diabetologia 2007; 50:1161-9. [PMID: 17406854 DOI: 10.1007/s00125-007-0648-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Accepted: 02/07/2007] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Children with high-risk type 1 diabetes HLA genotype have increased risk of high relative birthweight (HrBW), while cord blood islet autoantibodies decrease the risk. As gestational infections may affect offspring type 1 diabetes risk, the aims were to test whether: (1) children of mothers reporting gestational infections have increased HrBW; (2) gestational infections explain islet autoantibody reduction of HrBW; and (3) gestational infections affect the association between HLA and HrBW. SUBJECTS AND METHODS HLA genotypes and autoantibodies to glutamic acid decarboxylase, insulinoma-associated protein 2 and insulin were determined in cord blood of children born to non-diabetic mothers in the Diabetes Prediction in Skåne (DiPiS) study. Mothers reported gestational infections when the child was 2 months old. RESULTS Fever or gastroenteritis during pregnancy was reported by 2,848/19,756 mothers (14%); 339 in more than one trimester. Children whose mothers reported infections had increased risk of HrBW (p = 0.0003), particularly in the absence of cord blood islet autoantibodies (interaction between HrBW, islet autoantibodies and infections, p = 0.0005). The effect on HrBW by high-risk HLA-DQ2/8 was aggravated by infections in more than one trimester (odds ratio [OR] = 5.24; p = 0.003) (interaction; p = 0.022). When infections were reported, cord blood islet autoantibodies decreased HrBW (OR = 0.34; p = 0.0002). CONCLUSIONS/INTERPRETATION This study revealed that: (1) gestational fever, gastroenteritis, or both, increased the risk of HrBW; (2) cord blood islet autoantibodies decreased the risk of HrBW only in combination with infections; and (3) infections aggravated the association between HLA-DQ2/8 and HrBW. These data suggest an interaction between HLA, gestational infections, islet autoantibodies and fetal growth.
Collapse
Affiliation(s)
- H E Larsson
- Department of Clinical Sciences, University Hospital MAS, Lund University, 205-02 Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Hampe CS, Hall TR, Agren A, Rolandsson O. Longitudinal changes in epitope recognition of autoantibodies against glutamate decarboxylase 65 (GAD65Ab) in prediabetic adults developing diabetes. Clin Exp Immunol 2007; 148:72-8. [PMID: 17286757 PMCID: PMC1868852 DOI: 10.1111/j.1365-2249.2007.03334.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We analysed the beta cell-specific autoimmunity reflected in autoantibodies to the smaller isoform of glutamate decarboxylase (GAD65Ab) in the prediabetic period of GAD65Ab-positive healthy adults who developed Type 2 diabetes (T2D) during a follow-up period of 10 years. We found that of the adults that tested GAD65Ab-positive at baseline (n=25), six developed T2D and one developed Type 1 diabetes (T1D). Of the subjects that tested GAD65Ab-negative at baseline (n=2209), 81 developed T2D, one developed T1D and four developed unclassified diabetes, indicating that the risk for GAD65Ab-positive healthy adults to develop diabetes is increased sixfold. The GAD65Ab epitopes were characterized in a competition radioligand binding assay using recombinant Fab derived of GAD65-specific monoclonal antibodies. We observed that the GAD65Ab epitope specificities in the prediabetic period changed dynamically. Specifically, the binding to a middle and a C-terminal epitope increased during the follow-up period (P=0 x 03), causing a significant increase in the number of epitopes recognized (P=0 x 03). These findings are similar to previous observations of dynamic changes in the prediabetic period of schoolchildren at high risk for T1D development. However, the character of the epitopes differs between the two populations, suggesting differences in the beta cell-specific autoimmune response in the prediabetic period of patients with latent autoimmune diabetes in adults (LADA) and T1D.
Collapse
Affiliation(s)
- C S Hampe
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
20
|
Padoa CJ, Crowther NJ, Thomas JW, Hall TR, Bekris LM, Torn C, Landin-Olsson M, Ortqvist E, Palmer JP, Lernmark A, Hampe CS. Epitope analysis of insulin autoantibodies using recombinant Fab. Clin Exp Immunol 2005; 140:564-71. [PMID: 15932520 PMCID: PMC1809383 DOI: 10.1111/j.1365-2249.2005.02802.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autoantibodies to insulin are often the first autoantibodies detected in young children with type 1 diabetes and can be present before the onset of clinical diabetes. These autoantibodies and their epitopes are, however, not well characterized. We explored the use of monoclonal antibodies and their recombinant Fab as reagents for epitope analysis. In this study we cloned and characterized the recombinant Fab of the insulin-specific monoclonal antibody CG7C7. We found the epitope of this antibody to be located predominantly at the A-chain loop of the insulin molecule. The recombinant Fab was then used to compete for insulin binding against insulin autoantibodies present in sera from patients with type 1 or type 1.5 diabetes. In competition experiments with sera positive for autoantibodies to insulin the recombinant Fab significantly reduced the binding to [125I]-insulin by sera of type 1 (n = 35) and type 1.5 diabetes [latent autoimmune diabetes in adults (LADA)] (n = 14) patients (P < 0.0001). We conclude that competition between insulin-specific monoclonal antibodies or their recombinant Fab and insulin autoantibodies should prove useful in the epitope analysis of autoantibodies to insulin.
Collapse
Affiliation(s)
- C J Padoa
- Department of Chemical Pathology, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gilliam LK, Binder KA, Banga JP, Madec AM, Ortqvist E, Kockum I, Luo D, Hampe CS. Multiplicity of the antibody response to GAD65 in Type I diabetes. Clin Exp Immunol 2004; 138:337-41. [PMID: 15498046 PMCID: PMC1809224 DOI: 10.1111/j.1365-2249.2004.02610.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Type I diabetes (TID) is an autoimmune disease characterized in part by the presence of autoantibodies directed against glutamic acid decarboxylase 65 (GAD65), among other pancreatic islet antigens. We investigated the independent epitope specificities of these GAD65 antibodies (GAD65Ab) and their combinations in the sera of new onset TID patients and first-degree relatives positive for GAD65Ab. For our analysis, we used four GAD65-specific recombinant Fabs (rFabs) that recognize different conformational determinants of GAD65 located throughout the molecule, including the N-terminal, the middle and the C-terminal regions. We used these epitope-specific rFabs in competition assays to determine the binding specificity of the autoantibodies found in patient sera. Among the 61 sera from newly diagnosed GAD65Ab-positive TID patients GAD65 binding was competed for 23 sera by all four rFabs, 29 by at least two rFabs, and in nine sera were displaced by one or no rFab. In contrast, none of the 24 sera from GAD65Ab-positive first-degree relatives of TID patients were displaced by all four rFabs. When using all four rFabs simultaneously to compete with GAD65Ab binding, binding of sera from TID patients was reduced by an average of 70%. A significantly weaker competition was observed when evaluating sera of GAD65Ab-positive first-degree relatives (P < 0.0001).
Collapse
Affiliation(s)
- L K Gilliam
- Robert H. Williams Laboratory, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Ramachandra G Naik
- Consultant Endocrinologist, Bombay Hospital and Medical Research Center, 12 New Marine Lines, Mumbai, India 400 020
| | | |
Collapse
|