1
|
Association of Urinary Iodine Concentration with Depressive Symptoms among Adults: NHANES 2007-2018. Nutrients 2022; 14:nu14194165. [PMID: 36235816 PMCID: PMC9573473 DOI: 10.3390/nu14194165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The association between iodine status and depressive symptoms has not been investigated in the general population. Therefore, we drew 8935 participants from the National Health and Nutrition Examination Survey (NHANES) 2007-2018 to explore their association. In NHANES, Inductively Coupled Plasma Dynamic Reaction Cell Mass Spectroscopy was utilized to measure urinary iodine concentration (UIC), and Patient Health Questionnaire-9 was used to assess depressive symptoms. Meanwhile, we fitted logistic regression and restricted cubic spline models. We found that high UIC was associated with a higher prevalence of depressive symptoms than the normal UIC group (OR: 1.50, 95% CI: 1.04-2.16). This association was particularly pronounced and further strengthened among females (OR: 1.90, 95% CI: 1.19-3.01) and participants aged 40-59 (OR: 1.90, 95% CI: 1.11-3.25). Moreover, we found that low UIC was associated with a high prevalence of depressive symptoms among females (OR: 1.50, 95% CI: 1.02-2.18). Moreover, the dose-response relationship between UIC and depressive symptoms presented a general trend of decreased, steady transiently, and then increased. We found that participants with high UIC had a higher prevalence of depressive symptoms than those with normal UIC. Meanwhile, we also found that females with low UIC had higher odds of reporting depressive symptoms.
Collapse
|
2
|
Boretti A, Banik BK. Potential Effects of Iodine Supplementation on Inflammatory Processes and Toxin Removal Following COVID-19 Vaccination. Biol Trace Elem Res 2022; 200:3941-3944. [PMID: 34709555 PMCID: PMC8552616 DOI: 10.1007/s12011-021-02996-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Alberto Boretti
- Deanship of Research, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia.
| | - Bimal K Banik
- Deanship of Research, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia
| |
Collapse
|
3
|
The Influence of Oxidative Stress on Thyroid Diseases. Antioxidants (Basel) 2021; 10:antiox10091442. [PMID: 34573074 PMCID: PMC8465820 DOI: 10.3390/antiox10091442] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/19/2023] Open
Abstract
Thyroid diseases, including neoplasms, autoimmune diseases and thyroid dysfunctions, are becoming a serious social problem with rapidly increasing prevalence. The latter is increasingly linked to oxidative stress. There are many methods for determining the biomarkers of oxidative stress, making it possible to evaluate the oxidative profile in patients with thyroid diseases compared to the healthy population. This opens up a new perspective for investigating the role of elevated parameters of oxidative stress and damage in people with thyroid diseases, especially of neoplastic nature. An imbalance between oxidants and antioxidants is observed at different stages and in different types of thyroid diseases. The organ, which is part of the endocrine system, uses free radicals (reactive oxygen species, ROS) to produce hormones. Thyroid cells release enzymes that catalyse ROS generation; therefore, a key role is played by the internal defence system and non-enzymatic antioxidants that counteract excess ROS not utilised to produce thyroid hormones, acting as a buffer to neutralise free radicals and ensure whole-body homeostasis. An excess of free radicals causes structural cell damage, undermining genomic stability. Looking at the negative effects of ROS accumulation, oxidative stress appears to be implicated in both the initiation and progression of carcinogenesis. The aim of this review is to investigate the oxidation background of thyroid diseases and to summarise the links between redox imbalance and thyroid dysfunction and disease.
Collapse
|
4
|
Protective role of selenium on thyroid morphology in iodine-induced autoimmune thyroiditis in Wistar rats. Exp Ther Med 2020; 20:3425-3437. [PMID: 32905063 PMCID: PMC7465433 DOI: 10.3892/etm.2020.9029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Excess iodine may induce and exacerbate autoimmune thyroiditis (AIT) in humans and animals. In order to assess the potential protective mechanisms of selenium (Se) in thyroid autoimmunity, the effects of inorganic Se (sodium selenite) administration on thyroid morphology and follicular cytology were investigated in adult Wistar rats with iodine-induced AIT. A total of 48 adult Wistar rats (24 females, 24 males) were allocated to one of four dietary regimens: C0, control; C1, only potassium iodine (KI); C2, concomitant KI and Se; C3, only KI initially, followed by Se administration. For AIT induction the rats were fed with 0.05% KI for 56 days. Se-treated rats received 0.3 mg/l sodium selenite in drinking water. Thyroid tissues were collected for pathologic diagnosis after 7 days in C0 group, 56 days in C1 and C2 groups, and 112 days in C3 group. In C1 group, moderate to severe thyroiditis was observed in 83% of males and 50% of female rats (P=0.223). In C3 group 16.7% of male rats developed moderate thyroiditis and none in C2 group, whereas no females were identified with moderate to severe thyroiditis in C2 or C3 group. Thus, the administration of Se was proven to have protective effects against thyroiditis cytology in both male and female Wistar rats.
Collapse
|
5
|
de Faria CC, Fortunato RS. The role of dual oxidases in physiology and cancer. Genet Mol Biol 2020; 43:e20190096. [PMID: 32453337 PMCID: PMC7265977 DOI: 10.1590/1678-4685/gmb-2019-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
NOX/DUOX enzymes are transmembrane proteins that carry electrons through biological membranes generating reactive oxygen species. The NOX family is composed of seven members, which are NOX1 to NOX5 and DUOX1 and 2. DUOX enzymes were initially called thyroid oxidases, based on their high expression level in the thyroid tissue. However, DUOX expression has been documented in several extrathyroid tissues, mostly at the apical membrane of the salivary glands, the airways, and the intestinal tract, revealing additional cellular functions associated with DUOX-related H2O2 generation. In this review, we will briefly summarize the current knowledge regarding DUOX structure and physiological functions, as well as their possible role in cancer biology.
Collapse
Affiliation(s)
- Caroline Coelho de Faria
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Soares Fortunato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
H 2O 2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel) 2019; 8:antiox8050126. [PMID: 31083324 PMCID: PMC6563055 DOI: 10.3390/antiox8050126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormone synthesis requires adequate hydrogen peroxide (H2O2) production that is utilized as an oxidative agent during the synthesis of thyroxin (T4) and triiodothyronine (T3). Thyroid H2O2 is generated by a member of the family of NADPH oxidase enzymes (NOX-es), termed dual oxidase 2 (DUOX2). NOX/DUOX enzymes produce reactive oxygen species (ROS) as their unique enzymatic activity in a timely and spatially regulated manner and therefore, are important regulators of diverse physiological processes. By contrast, dysfunctional NOX/DUOX-derived ROS production is associated with pathological conditions. Inappropriate DUOX2-generated H2O2 production results in thyroid hypofunction in rodent models. Recent studies also indicate that ROS improperly released by NOX4, another member of the NOX family, are involved in thyroid carcinogenesis. This review focuses on the current knowledge concerning the redox regulation of thyroid hormonogenesis and cancer development with a specific emphasis on the NOX and DUOX enzymes in these processes.
Collapse
|
7
|
Liu S, Han W, Zang Y, Zang H, Wang F, Jiang P, Wei H, Liu X, Wang Y, Ma X, Ge Y. Identification of Two Missense Mutations in DUOX1 (p.R1307Q) and DUOXA1 (p.R56W) That Can Cause Congenital Hypothyroidism Through Impairing H 2O 2 Generation. Front Endocrinol (Lausanne) 2019; 10:526. [PMID: 31428054 PMCID: PMC6688124 DOI: 10.3389/fendo.2019.00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/16/2019] [Indexed: 11/30/2022] Open
Abstract
Context: The DUOX/DUOXA systems play a key role in H2O2 generation in thyroid cells, which is required for iodine organification and thyroid hormone synthesis. DUOX2/DUOXA2 defects can cause congenital hypothyroidism (CH), but it is unknown whether DUOX1/DUOXA1 mutations can also cause CH. Objective: We aimed to identify DUOX1/DUOXA1 mutations and explore their role in the development of CH by investigating their functional impacts on H2O2 generation. Patients and Methods: Forty-three children with CH with goiter were enrolled, in whom all exons and flanking intronic regions of DUOX1/DUOXA1 were directly sequenced. We characterized the functional effects of identified mutations on the expression of DUOX1 and DUOXA1 and H2O2 generation. Results: We identified a heterozygous DUOX1 missense mutation (G > A base substitution at nucleotide 3920 in exon 31) that changed a highly conserved arginine to glutamine at residual 1307 (p.R1307Q) in patient 1. A heterozygous-missense mutation (c.166 C>T; p.R56W) was identified in DUOXA1 in patient 2. Functional studies demonstrated that both p.R1307Q mutant or p.R56W mutant decreased the DUOX1 expression at mRNA and protein levels, with a corresponding impairment in H2O2 generation (P < 0.01). The results also showed that intact DUOXA1 was required for full activity of DUOX1 and H2O2 generation. Conclusions: We have identified two heterozygous missense mutations in DUOX1 and DUOXA1 in two patients that can cause CH through disrupting the coordination of DUOX1 and DUOXA1 in the generation of H2O2. This study for the first time demonstrates that the DUOX1/DUOXA1 system, if genetically defective, can cause CH.
Collapse
Affiliation(s)
- Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxiu Han
- Department of Biochemistry and Molecular Biology, Medical School of Qingdao University, Qingdao, China
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Yucui Zang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zang
- Department of Biochemistry and Molecular Biology, Medical School of Qingdao University, Qingdao, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Hongwei Wei
- Center of Newborn Screening, Linyi Women and Children Hospital, Linyi, China
| | - Xiangju Liu
- Prenatal Diagnosis Center, Taian Maternal and Child Health Hospital, Taian, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xu Ma
- Graduate School, Peking Union Medical College, Beijing, China
- Center for Genetic Eugenics, National Research Institute for Family Planning, Beijing, China
- World Health Organization Collaborating Center for Research in Human Reproduction, Beijing, China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology, Medical School of Qingdao University, Qingdao, China
- *Correspondence: Yinlin Ge
| |
Collapse
|
8
|
Qin F, Pan X, Yang J, Li S, Shao L, Zhang X, Liu B, Li J. Dietary Iodine Affected the GSH-Px to Regulate the Thyroid Hormones in Thyroid Gland of Rex Rabbits. Biol Trace Elem Res 2018; 181:251-257. [PMID: 28577235 DOI: 10.1007/s12011-017-1064-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022]
Abstract
Iodine (I) is an essential trace element that can influence animal health and productivity. In this study, we investigated the effects of dietary iodine on the antioxidant indices of organ (liver and thyroid gland) and messenger RNA (mRNA) expression of glutathione peroxidase (GSH-Px) in Rex rabbits. A total of 120 4-month-old Rex rabbits (2235.4 ± 13.04 g BW) were divided into four equal groups, and their diets were supplemented with iodine (0, 0.2, 2, or 4 mg/kg dry matter (DM)). The iodine concentration in basal diet (control group) was 0.36 mg/kg DM. In most of measured parameters, supplemental iodine exerted no significant effect. Growth and slaughter performance and organ weight were not influenced significantly by iodine supplementation. Serum T3 was significantly lower in 2-mg I group than in 0.2 and 4-mg I groups (P < 0.05). Superoxide dismutase (SOD), GSH-Px, methane dicarboxylic aldehyde (MDA), and thyroperoxidase (TPO) in the serum and liver were not influenced (P > 0.05). Conversely, serum catalase (CAT) was significantly reduced (P < 0.05). In the thyroid, GSH-Px was higher in the 2-mg I group than in the 0.2- and 4-mg I groups (P < 0.05). RT-PCR results showed that the mRNA expression level of GSH-Px in the liver was not significantly influenced (P > 0.05). In the thyroid gland, the mRNA expression level of GSH-Px was higher in the 2-mg I group than in the 4-mg I group (P < 0.05), which agreed with the activity of GSH-Px. In conclusion, iodine supplementation exerted no effect on the performance and antioxidant capacity of the body, but dietary iodine influenced serum T3 or GSH-Px in the thyroid gland. Thus, on the basis of serum T3 and GSH-Px levels in the thyroid gland, we hypothesized that GSH-Px secretion was increased by adding dietary iodine in the thyroid, which may inhibit the H2O2 generation and further influence the thyroid hormone synthesis.
Collapse
Affiliation(s)
- Feng Qin
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xiaoqing Pan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jie Yang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Sheng Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Le Shao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xia Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Beiyi Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jian Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| |
Collapse
|
9
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
10
|
Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 2017; 458:6-15. [PMID: 28153798 DOI: 10.1016/j.mce.2017.01.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) 3,5,3',5'- tetraiodothyronine or thyroxine (T4) and 3,5,3'- triiodothyronine (T3) contain iodine atoms as part of their structure, and their synthesis occur in the unique structures called thyroid follicles. Iodide reaches thyroid cells through the bloodstream that supplies the basolateral plasma membrane of thyrocytes, where it is avidly taken up through the sodium/iodide symporter (NIS). Thyrocytes are also specialized in the secretion of the high molecular weight protein thyroglobulin (TG) in the follicular lumen. The iodination of the tyrosyl residues of TG preceeds TH biosynthesis, which depends on the interaction of iodide, TG, hydrogen peroxide (H2O2) and thyroid peroxidase (TPO) at the apical plasma membrane of thyrocytes. Thyroid hormone biosynthesis is under the tonic control of thyrotropin (TSH), while the iodide recycling ability is very important for normal thyroid function. We discuss herein the biochemical aspects of TH biosynthesis and release, highlighting the novel molecules involved in the process.
Collapse
Affiliation(s)
- Denise P Carvalho
- Biophysics Institute of Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Corinne Dupuy
- Université Paris-Saclay, Orsay, France; UMR 8200 CNRS, Villejuif, France; Institut de Cancérologie Gustave Roussy, Villejuif, Ile-de-France, France
| |
Collapse
|
11
|
Abstract
After the identification of thyroid H2O2 generation system (DUOX) and of its maturation factors (DUOXA), defects in DUOX2 and/or DUOXA2 were rapidly recognized as the possible cause of congenital hypothyroidism (CH) due to thyroid dyshormonogenesis. The present Review reports data on the prevalence of DUOX2 mutations, which is variable among different series but invariably high, pointing to DUOX2 defects as one of the leading causes of dyshormonogenesis. Differently, DUOXA defects seem to be rarely involved in the pathogenesis of CH. Genotype-phenotype correlations are also reported, highlighting the great intra- and inter-familial phenotype variability which appears to be a constant feature of the defects in the H2O2 generation systems. Finally, the hypotheses to explain the phenotypic variability of the DUOX2/A2 mutations are discussed, such as the existence of other H2O2 generating systems, the age variability in thyroid hormones requirements, the differences in ethnicity, in iodine intake, and in the methodological approaches.
Collapse
Affiliation(s)
- Marina Muzza
- Endocrine Unit, Fondazione IRCCS Ca' Granda Policlinico, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Rossich LE, Thomasz L, Nicola JP, Nazar M, Salvarredi LA, Pisarev M, Masini-Repiso AM, Christophe-Hobertus C, Christophe D, Juvenal GJ. Effects of 2-iodohexadecanal in the physiology of thyroid cells. Mol Cell Endocrinol 2016; 437:292-301. [PMID: 27568464 DOI: 10.1016/j.mce.2016.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Iodide has direct effects on thyroid function. Several iodinated lipids are biosynthesized by the thyroid and they were postulated as intermediaries in the action of iodide. Among them, 2-iodohexadecanal (2-IHDA) has been identified and proposed to play a role in thyroid autoregulation. The aim of this study was to compare the effect of iodide and 2-IHDA on thyroid cell physiology. For this purpose, FRTL-5 thyroid cells were incubated with the two compounds during 24 or 48 h and several thyroid parameters were evaluated such as: iodide uptake, intracellular calcium and H2O2 levels. To further explore the molecular mechanism involved in 2-IHDA action, transcript and protein levels of genes involved in thyroid hormone biosynthesis, as well as the transcriptional expression of these genes were evaluated in the presence of iodide and 2-IHDA. The results obtained indicate that 2-IHDA reproduces the action of excess iodide on the "Wolff-Chaikoff" effect as well as on thyroid specific genes transcription supporting its role in thyroid autoregulation.
Collapse
Affiliation(s)
- Luciano E Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Juan P Nicola
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | - Magali Nazar
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | - Leonardo A Salvarredi
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Mario Pisarev
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires School of Medicine, CONICET, Buenos Aires, Argentina
| | - Ana M Masini-Repiso
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | | | | | - Guillermo J Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Abstract
Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes.
Collapse
Affiliation(s)
- Rabii Ameziane-El-Hassani
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- Unité de Biologie et de Recherche Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires, BP 1382, Rabat M-10001, Morocco
| | - Martin Schlumberger
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- University Paris-Saclay, Orsay F-91400, France
| | - Corinne Dupuy
- Institut Gustave Roussy, UMR 8200 CNRS, 114 Rue Edouard Vaillant, Villejuif F-94805, France
- University Paris-Saclay, Orsay F-91400, France
| |
Collapse
|
14
|
Hedayati M, Zarif Yeganeh M, Sheikholeslami S, Afsari F. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer. Crit Rev Clin Lab Sci 2016; 53:217-27. [PMID: 26678667 DOI: 10.3109/10408363.2015.1129529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations.
Collapse
Affiliation(s)
- Mehdi Hedayati
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Marjan Zarif Yeganeh
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sara Sheikholeslami
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Farinaz Afsari
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
15
|
O'Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6:135-156. [PMID: 26210446 PMCID: PMC4550764 DOI: 10.1016/j.redox.2015.07.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
Maintaining the redox balance between generation and elimination of reactive oxygen species (ROS) is critical for health. Disturbances such as continuously elevated ROS levels will result in oxidative stress and development of disease, but likewise, insufficient ROS production will be detrimental to health. Reduced or even complete loss of ROS generation originates mainly from inactivating variants in genes encoding for NADPH oxidase complexes. In particular, deficiency in phagocyte Nox2 oxidase function due to genetic variants (CYBB, CYBA, NCF1, NCF2, NCF4) has been recognized as a direct cause of chronic granulomatous disease (CGD), an inherited immune disorder. More recently, additional diseases have been linked to functionally altered variants in genes encoding for other NADPH oxidases, such as for DUOX2/DUOXA2 in congenital hypothyroidism, or for the Nox2 complex, NOX1 and DUOX2 as risk factors for inflammatory bowel disease. A comprehensive overview of novel developments in terms of Nox/Duox-deficiency disorders is presented, combined with insights gained from structure-function studies that will aid in predicting functional defects of clinical variants.
Collapse
Affiliation(s)
- Sharon O'Neill
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Julie Brault
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Marie-Jose Stasia
- Université Grenoble Alpes, TIMC-IMAG Pôle Biologie, CHU de Grenoble, Grenoble, France; CGD Diagnosis and Research Centre, Pôle Biologie, CHU de Grenoble, Grenoble, France
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res 2015; 8:8. [PMID: 26146517 PMCID: PMC4490680 DOI: 10.1186/s13044-015-0020-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy and in most countries, incidence rates are increasing. Although differences in population iodine intake are a determinant of benign thyroid disorders, the role of iodine intake in TC remains uncertain. We review the evidence linking iodine intake and TC from animal studies, ecological studies of iodine intake and differentiated and undifferentiated TC, iodine intake and mortality from TC and occult TC at autopsy, as well as the case–control and cohort studies of TC and intake of seafood and milk products. We perform a new meta-analysis of pooled measures of effect from case–control studies of total iodine intake and TC. Finally, we examine the post-Chernobyl studies linking iodine status and risk of TC after radiation exposure. The available evidence suggests iodine deficiency is a risk factor for TC, particularly for follicular TC and possibly, for anaplastic TC. This conclusion is based on: a) consistent data showing an increase in TC (mainly follicular) in iodine deficient animals; b) a plausible mechanism (chronic TSH stimulation induced by iodine deficiency); c) consistent data from before and after studies of iodine prophylaxis showing a decrease in follicular TC and anaplastic TC; d) the indirect association between changes in iodine intake and TC mortality in the decade from 2000 to 2010; e) the autopsy studies of occult TC showing higher microcarcinoma rates with lower iodine intakes; and f) the case control studies suggesting lower risk of TC with higher total iodine intakes.
Collapse
Affiliation(s)
- Michael B Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 7, LFV D21, CH-8092 Zürich, Switzerland
| | - Valeria Galetti
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 7, LFV E14, CH-8092 Zürich, Switzerland
| |
Collapse
|
17
|
Cardoso-Weide L, Cardoso-Penha R, Costa M, Ferreira A, Carvalho D, Santisteban P. DuOx2 Promoter Regulation by Hormones, Transcriptional Factors and the Coactivator TAZ. Eur Thyroid J 2015; 4:6-13. [PMID: 25960956 PMCID: PMC4404926 DOI: 10.1159/000379749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 02/06/2015] [Indexed: 01/13/2023] Open
Abstract
The production of H2O2, which is essential to thyroid hormone synthesis, involves two NADPH oxidases: dual oxidases 1 and 2 (DuOx1 and DuOx2). A functional study with human DuOx genes and their 5'-flanking regions showed that DuOx1 and -2 promoters are different from thyroid-specific gene promoters. Furthermore, their transcriptional activities are not restricted to thyroid cells. While regulation of Tg (thyroglobulin) and TPO (thyroperoxidase) expression have been extensively studied, DuOx2 promoter regulation by hormones and transcriptional factors need to be more explored. Herein we investigated the role of TSH, insulin and insulin-like growth factor 1 (IGF-1), as well as the cAMP effect on DuOx2 promoter (ptx41) activity in transfected rat thyroid cell lines (PCCL3). We also assessed DuOx2 promoter activity in the presence of transcriptional factors crucial to thyroid development such as TTF-1 (thyroid transcription factor 1), PAX8, CREB, DREAM, Nkx2.5 and the coactivator TAZ in HeLa and HEK 293T-transfected cells. Our results show that TSH and forskolin, which increase cAMP in thyroid cells, stimulated DuOx2 promoter activity. IGF-1 led to pronounced stimulation, while insulin induction was not statistically different from DuOx2 promoter basal activity. All transcriptional factors selected for this work and coactivator TAZ, except DREAM, stimulated DuOx2 promoter activity. Moreover, Nkx2.5 and TAZ synergistically increased DuOx2 promoter activity. In conclusion, we show that DuOx2 expression is regulated by hormones and transcription factors involved in thyroid organogenesis and carcinogenesis, reinforcing the importance of the control of H2O2 generation in the thyroid.
Collapse
Affiliation(s)
- L.C. Cardoso-Weide
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense (UFF), Niterói, Brazil
- *L.C. Cardoso-Weide, Departamento de Patologia, 4° andar, sala 4, Faculdade de Medicina, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense (UFF), Rua Marques do Paraná, 303, Niterói, RJ 24033-900 (Brazil), E-Mail
| | - R.C. Cardoso-Penha
- Laboratório de Fisiologia Endócrina Doris Rosenthal, IBCCF, Rio de Janeiro, Brazil
| | - M.W. Costa
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Vic., Australia
| | - A.C.F. Ferreira
- NUMPEX, Polo de Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - D.P. Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, IBCCF, Rio de Janeiro, Brazil
| | - P.S. Santisteban
- Instituto de Investigaciones Biomédicas Alberto Sols, Spanish Council of Research-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Carvalho DP, Dupuy C. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress. Eur Thyroid J 2013; 2:160-7. [PMID: 24847449 PMCID: PMC4017742 DOI: 10.1159/000354745] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/31/2013] [Indexed: 01/18/2023] Open
Abstract
Somatic mutations are present at high levels in the rat thyroid gland, indicating that the thyrocyte is under oxidative stress, a state in which cellular oxidant levels are high. The most important class of free radicals, or reactive metabolites, is reactive oxygen species (ROS), such as superoxide anion (O2 (-)), hydroxyl radical (OH) and hydrogen peroxide (H2O2). The main source of ROS in every cell type seems to be mitochondrial respiration; however, recent data support the idea that NADPH:O(2) oxidoreductase flavoproteins or simply NADPH oxidases (NOX) are enzymes specialized in controlled ROS generation at the subcellular level. Several decades ago, high concentrations of H2O2 were detected at the apical surface of thyrocytes, where thyroid hormone biosynthesis takes place. Only in the last decade has the enzymatic source of H2O2 involved in thyroid hormone biosynthesis been well characterized. The cloning of two thyroid genes encoding NADPH oxidases dual oxidases 1 and 2 (DUOX1 and DUOX2) revealed that DUOX2 mutations lead to hereditary hypothyroidism in humans. Recent reports have also described the presence of NOX4 in the thyroid gland and have suggested a pathophysiological role of this member of the NOX family. In the present review, we describe the participation of NADPH oxidases not only in thyroid physiology but also in gland pathophysiology, particularly the involvement of these enzymes in the regulation of thyroid oxidative stress.
Collapse
Affiliation(s)
- Denise P. Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Denise P. Carvalho, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, 373, CCS, Bloco G, Cidade Universitária Rio de Janeiro, Rio de Janeiro, RJ 21941902 (Brazil), E-Mail
| | - Corinne Dupuy
- Université Paris-Sud, UMR 8200 CNRS, Institute Gustave Roussy, Villejuif, France
| |
Collapse
|
19
|
Zhang X, Krause KH, Xenarios I, Soldati T, Boeckmann B. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 2013; 8:e58126. [PMID: 23505460 PMCID: PMC3591440 DOI: 10.1371/journal.pone.0058126] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/30/2013] [Indexed: 12/20/2022] Open
Abstract
A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Central Medical University, University of Geneva, Geneva, Switzerland
| | - Ioannis Xenarios
- SwissProt, Swiss Institute of Bioinformatics, Geneva, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics (CIG), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland
| | - Brigitte Boeckmann
- SwissProt, Swiss Institute of Bioinformatics, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
20
|
The role of oxidative stress on the pathogenesis of graves' disease. J Thyroid Res 2011; 2012:302537. [PMID: 22175033 PMCID: PMC3235898 DOI: 10.1155/2012/302537] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Graves' disease is a most common cause of hyperthyroidism. It is an autoimmune disease, and autoimmune process induces an inflammatory reaction, and reactive oxygen species (ROSs) are among its products. When balance between oxidants and antioxidants is disturbed, in favour of the oxidants it is termed "oxidative stress" (OS). Increased OS characterizes Graves' disease. It seems that the level of OS is increased in subjects with Graves' ophthalmopathy compared to the other subjects with Graves' disease. Among the other factors, OS is involved in proliferation of orbital fibroblasts. Polymorphism of the 8-oxoG DNA N-glycosylase 1 (hOGG1) involved in repair of the oxidative damaged DNA increases in the risk for developing Grave's disease. Treatment with glucocorticoids reduces levels of OS markers. A recent large clinical trial evaluated effect of selenium on mild Graves' ophthalmopathy. Selenium treatment was associated with an improved quality of life and less eye involvement and slowed the progression of Graves' orbitopathy, compared to placebo.
Collapse
|
21
|
Paschke R. Molecular pathogenesis of nodular goiter. Langenbecks Arch Surg 2011; 396:1127-36. [PMID: 21487943 DOI: 10.1007/s00423-011-0788-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/13/2011] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Familial clustering of goiters mostly with an autosomal dominant pattern of inheritance has repeatedly been reported. Moreover, other environmental and etiologic factors are likely to be involved in the development of euthyroid goiter. Therefore, a multifactorial etiology based on complex interactions of both genetic predisposition and the individuals' environment is likely. METHODS The line of events from early thyroid hyperplasia to multinodular goiter argues for the predominant neoplastic (i.e., originating from a single mutated cell) character of nodular structures. Etiologically, relevant somatic mutations are known in two thirds of papillary and follicular thyroid carcinomas and hot thyroid nodules. In contrast, the somatic mutations relevant for benign cold or benign isocaptant thyroid nodules which constitute the majority of thyroid nodules are unknown. RESULTS The nodular process is triggered by the oxidative nature of thyroid hormone synthesis or additional oxidative stress caused by iodine deficiency or smoking. If the antioxidant defense is not effective, this oxidative stress will cause DNA damage followed by an increase of the spontaneous mutation rate which is a substrate for tumorogenesis. CONCLUSIONS Therefore, the hallmark of thyroid physiology--H(2)O(2) production during hormone synthesis--is very likely the ultimate cause for the frequent mutagenesis in the thyroid gland. Because iodine deficiency increases the oxidative burden, DNA damage and mutagenesis could provide the basis for the frequent nodular transformation of endemic goiters.
Collapse
Affiliation(s)
- Ralf Paschke
- Department for Endocrinology and Nephrology, University of Leipzig, Liebigstrasse 20, D-04103, Leipzig, Germany.
| |
Collapse
|
22
|
Fortunato RS, Lima de Souza EC, Ameziane-el Hassani R, Boufraqech M, Weyemi U, Talbot M, Lagente-Chevallier O, de Carvalho DP, Bidart JM, Schlumberger M, Dupuy C. Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. J Clin Endocrinol Metab 2010; 95:5403-11. [PMID: 20826581 DOI: 10.1210/jc.2010-1085] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Thyroperoxidase (TPO) and dual oxidase (DUOX) are present at the apical membrane of thyrocytes, where TPO catalyzes thyroid hormone biosynthesis in the presence of H2O2 produced by DUOX. Both enzymes are colocalized and associated, but the consequences of this interaction remain obscure. OBJECTIVE The objective of this study was to evaluate the functional consequences of TPO-DUOX interaction at the plasma membrane. DESIGN The functional consequences of DUOX-TPO interaction were studied by measuring extracellular H2O2 concentration and TPO activity in a heterologous system. For this purpose, HEK293 cells were transiently transfected with a combination of human TPO with human DUOX1 or DUOX2 in the presence of their respective maturation factors, DUOXA1 or DUOXA2. The effect of human DUOX2 mutants in which cysteine residues in the N-terminal domain were replaced by glycines was also analyzed. RESULTS We observed that production of H2O2 decreases both TPO and DUOX activities. We show that TPO presents a catalase-like effect that protects DUOX from inhibition by H2O2. This catalase-like effect depends on the association between both enzymes, which probably occurs through the DUOX peroxidase-like domain because this effect was not observed with human DUOX2 mutants. CONCLUSION The DUOX-TPO association at the plasma membrane is relevant for normal enzyme properties. Normally, TPO consumes H2O2 produced by DUOX, decreasing the availability of this substance at the apical membrane of thyrocytes and, in turn, probably decreasing the oxidative damage of macromolecules.
Collapse
Affiliation(s)
- Rodrigo Soares Fortunato
- Instituto de Biofisica Carlos Chagas Filho, CCS-Bloc G-Cidade Universitaria, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci 2009; 46:302-18. [DOI: 10.3109/10408360903306384] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Nishihara E, Amino N, Maekawa K, Yoshida H, Ito M, Kubota S, Fukata S, Miyauchi A. Prevalence of TSH receptor and Gsalpha mutations in 45 autonomously functioning thyroid nodules in Japan. Endocr J 2009; 56:791-8. [PMID: 19550078 DOI: 10.1507/endocrj.k09e-073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Somatic mutations of the thyrotropin receptor (TSHR) gene and the gene encoding the alpha subunit of the stimulatory GTP-binding protein (Gsalpha) are the main cause for autonomously functioning thyroid nodules (AFTN) in iodine-deficient regions of the world. In iodine-sufficient regions, including Japan, the genetic relevance of AFTN is unclear. In a series of 45 Japanese subjects with AFTN, exons 9 and 10 of the TSHR and exons 7-10 of Gsalpha , where the activating mutations have been found, were analyzed using direct sequencing. We found 29 somatic mutations: 22 in the TSHR gene and 7 in the Gsalpha gene. The most frequent mutation in TSHR was Met453Thr (10 cases), followed by clustered residues from codons 630 through 633 on TSHR (7 cases). Mutations of Gsalpha were detected at codon 201 in 5 cases and at codon 227 in 2 cases. No patients had coexistent TSHR and Gsalpha mutations in the same nodule. All mutated residues but one, which was deleted at codon 403 on the TSHR gene, are constitutively active. The prevalences of a germline polymorphism of Asp727Glu on the TSHR gene and incidental papillary thyroid carcinoma in thyroid surgical specimens were similar to those reported in other studies. In the present study, more than half of the cases with AFTN had a somatic activating mutation either of the TSHR or Gsalpha gene, despite their high iodine intake.
Collapse
|
25
|
Nadolnik LI, Niatsetskaya ZV, Lupachyk SV. Effect of oxidative stress on rat thyrocyte iodide metabolism. Cell Biochem Funct 2008; 26:366-73. [DOI: 10.1002/cbf.1452] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Krohn K, Maier J, Paschke R. Mechanisms of Disease: hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. ACTA ACUST UNITED AC 2007; 3:713-20. [PMID: 17893690 DOI: 10.1038/ncpendmet0621] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/24/2007] [Indexed: 12/22/2022]
Abstract
Somatic mutations can be identified in two-thirds of papillary and follicular thyroid carcinomas and 'hot' thyroid nodules, whereas equivalent mutations relevant for benign 'cold' thyroid nodules are unknown. This Review summarizes current knowledge about early molecular conditions for nodular and tumor transformation in the thyroid gland. We reconstruct a line of events that could explain the predominant neoplastic character (i.e. originating from a single mutated cell) of thyroid nodular lesions. This process might be triggered by the oxidative nature of thyroid hormone synthesis or additional oxidative stress caused by iodine deficiency or smoking. If the antioxidant defense is not effective, this oxidative stress can cause DNA damage followed by an increase in the spontaneous mutation rate, which is a platform for tumor genesis. The hallmark of thyroid physiology--H2O2 production during hormone synthesis--is therefore very likely to be the ultimate cause of frequent mutagenesis in the thyroid gland. DNA damage and mutagenesis could provide the basis for the frequent nodular transformation of endemic goiters.
Collapse
Affiliation(s)
- Knut Krohn
- Interdisciplinary Center for Clinical Research, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
27
|
Maier J, van Steeg H, van Oostrom C, Paschke R, Weiss RE, Krohn K. Iodine deficiency activates antioxidant genes and causes DNA damage in the thyroid gland of rats and mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:990-9. [PMID: 17467074 DOI: 10.1016/j.bbamcr.2007.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 01/17/2023]
Abstract
Because thyroid nodules are frequent in areas with iodine deficiency the aim of this study was to characterise molecular events during iodine deficiency that could explain mutagenesis and nodule formation. We therefore studied gene expression of catalytic enzymes prominent for H(2)O(2) detoxification and antioxidative defence, quantified DNA oxidation and damage as well as spontaneous mutation rates (SMR) in mice and rats fed an iodine controlled diet. Antioxidative enzymes such as superoxide dismutase 3, glutathione peroxidase 4 and the peroxiredoxins 3 and 5 showed increased mRNA expression, which indicates increased radical burden that could be the cause of additional oxidized base adducts found in thyroidal genomic DNA in our experiments of iodine deficiency. Furthermore, the uracil content of thyroid DNA was significantly higher in the iodine-deficient compared to the control group. While SMR is very high in the normal thyroid gland it is not changed in experimental iodine deficiency. Our data suggest that iodine restriction causes oxidative stress and DNA modifications. A higher uracil content of the thyroid DNA could be a precondition for C-->T transitions often detected as somatic mutations in nodular thyroid tissue. However, the absence of increased SMR would argue for more efficient DNA repair in response to iodine restriction.
Collapse
Affiliation(s)
- J Maier
- III Medical Department, Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Lupachik SV, Nadol’nik LI, Netsetskaya ZV, Vinogradov VV. Effect of long-term injection of high doses of potassium iodide on iodine metabolism in rat thyroid gland. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abstract
Thyroid hormone biosynthesis depends on iodide uptake and its incorporation into the acceptor protein thyroglobulin (Tg), a high molecular weight protein secreted into the follicular lumen. The sodium-iodide symporter (NIS) is responsible for thyroid iodide uptake, the first step in thyroid hormonogenesis. Iodide is subsequently transported through the cellular membrane by pendrin (PDS) and then incorporated into Tg. Iodide oxidation and organification occur mainly in the thyrocyte apical surface and these reactions are catalyzed by thyroperoxidase (TPO) in the presence of hydrogen peroxide. Thus, thyroid iodide organification depends on TPO activity, which is modulated by the concentration of substrates (thyroglobulin and iodide) and cofactor (hydrogen peroxide). Hydrogen peroxide generation is catalyzed by the thyroid NADPH oxidase (ThOx), which is present in the apical pole of thyrocytes, is stimulated by thyrotropin and is inhibited by iodide. Hydrogen peroxide generation is the limiting step in thyroid hormone biosynthesis under iodine sufficiency conditions.
Collapse
Affiliation(s)
- Mário Vaisman
- Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
| | | | | |
Collapse
|
30
|
Morand S, Chaaraoui M, Kaniewski J, Dème D, Ohayon R, Noel-Hudson MS, Virion A, Dupuy C. Effect of iodide on nicotinamide adenine dinucleotide phosphate oxidase activity and Duox2 protein expression in isolated porcine thyroid follicles. Endocrinology 2003; 144:1241-8. [PMID: 12639906 DOI: 10.1210/en.2002-220981] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroperoxidase requires H(2)O(2) to catalyze the biosynthesis of thyroxine residues on thyroglobulin. Iodide inhibits the generation of H(2)O(2), and consequently the synthesis of thyroid hormones (Wolff-Chaikoff effect). The H(2)O(2) generator is a calcium-dependent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involving the flavoprotein Duox2. NADPH oxidase activity and Duox2 require cAMP to be expressed in pig thyrocytes. We studied the effect of iodide on NADPH oxidase activity, the DUOX2 gene, and Duox2 protein expression in pig thyroid follicles cultured for 48 h with forskolin or a cAMP analog. Iodide inhibited the cellular release of H(2)O(2) and NADPH oxidase activity, effects prevented by methimazole. Northern blot studies showed that iodide did not reduce DUOX2 mRNA levels but did reduce those of TPO and NIS. Western blot analyses using a Duox2-specific antipeptide showed that Duox2 has two N-glycosylation states, which have oligosaccharide motifs accounting for about 15 kDa and 25 kDa, respectively, of the apparent molecular mass. Cyclic AMP increased the amount of the highly glycosylated form of Duox2, an effect antagonized by iodide in a methimazole-dependent manner. These data suggest that an oxidized form of iodide inhibits the H(2)O(2) generator at a posttranscriptional level by reducing the availability of the mature Duox2 protein.
Collapse
Affiliation(s)
- Stanislas Morand
- Unité 486, Institut National de la Santé et de la Recherche Médicale, Université Paris 11, Faculté de Pharmacie, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|