1
|
Nowak Z, Preizner-Rzucidło E, Gawlik J, Starzyk JB, Januś D. Primary Adrenal Insufficiency, Complete Sex Reversal, and Unique Clinical Phenotype in a Patient with Severe CYP11A1 (P450scc) Deficiency-Case Report and Literature Overview. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1231. [PMID: 39457196 PMCID: PMC11505906 DOI: 10.3390/children11101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) is a group of genetic disorders that lead to the dysfunction of the steroidogenesis pathway, resulting in steroid hormone deficiency of varied intensity. The cholesterol side-chain cleavage enzyme (P450scc), coded by the CYP11A1 gene, is vital to the first step in the biosynthesis of steroid hormones, which is the conversion of cholesterol to pregnenolone. Therefore, its deficiency causes a general steroid hormone shortage. OBJECTIVE We report a case of CAH caused by P450scc deficiency with complete 46, XY sex reversal, characteristic facial features (narrow middle section of the face, small ears with thick helix, fleshy upturned lobules), and dysmorphic macrocephaly along with shortened upper and lower extremities. RESULTS Our patient carries a compound heterozygotic pathogenic variant of the CYP11A1 gene, with two frameshift pathogenic variants NM_000781.3(CYP11A1):c.358del (p.Arg120Aspfs*18) in exon 2 and NM_000781.3(CYP11A1):c.835del (p.Ile279Tyrfs*10) in exon 5. To date, only around 50 cases with CYP11A1 pathogenic variants have been reported worldwide. We believe this is the first described case of a newborn with severe, classic P450scc deficiency in Poland. CONCLUSIONS CYP11A1 (P450scc) deficiency is a rare and complex disorder that leads to primary adrenal insufficiency and may present with 46, XY disorders of sex development (DSD), phenotypic variations, and associated endocrinological abnormalities. This case, along with others cited, highlights the diverse presentations of DSD in individuals with pathogenic CYP11A1 variants. Optimal management necessitates a multidisciplinary approach by a specialized DSD team. Gonadectomy is a key consideration to decrease the teratogenic risk associated with intra-abdominal gonadal tissue.
Collapse
Affiliation(s)
- Zuzanna Nowak
- Hospital of the Brothers Hospitallers of Saint John of God, 31-061 Krakow, Poland;
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewelina Preizner-Rzucidło
- Department of Genetics, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | | | - Jerzy B. Starzyk
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Department of Pediatric and Adolescent Endocrinology, University Children Hospital in Krakow, 30-663 Krakow, Poland
| | - Dominika Januś
- Department of Pediatric and Adolescent Endocrinology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Department of Pediatric and Adolescent Endocrinology, University Children Hospital in Krakow, 30-663 Krakow, Poland
| |
Collapse
|
2
|
Justin Margret J, Jain SK. L-Cysteine Upregulates Testosterone Biosynthesis and Blood-Testis Barrier Genes in Cultured Human Leydig Cells and THP-1 Monocytes and Increases Testosterone Secretion in Human Leydig Cells. Biomolecules 2024; 14:1171. [PMID: 39334937 PMCID: PMC11430594 DOI: 10.3390/biom14091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Leydig cells are the primary source of testosterone or androgen production in male mammals. The blood-testis barrier (BTB) maintains structural integrity and safeguards germ cells from harmful substances by blocking their entry into the seminiferous tubules. L-cysteine is essential to the production of glutathione, a powerful antioxidant crucial to protecting against oxidative stress-induced damage. Animal studies have demonstrated the protective effect of L-cysteine in preventing testicular damage caused by chemicals or radiation. This study examines whether L-cysteine enhances the expression of testosterone biosynthesis and the BTB genes in human Leydig cells and THP-1 monocytes. The Leydig cells and THP-1 monocytes were treated with L-cysteine for 24 h. RNA was extracted following treatment, and the gene expression was analyzed using quantitative RT-PCR. Testosterone levels in the cell supernatant were measured using an ELISA kit. L-cysteine treatment in Leydig cells significantly upregulated the expression of CYP11A1 (p = 0.03) and the BTB genes CLDN1 (p = 0.03), CLDN11 (p = 0.02), and TJP1 (p = 0.02). Similarly, L-cysteine significantly upregulated the expression of CYP11A1 (p = 0.03) and CYP19A1 (p < 0.01), and the BTB genes CLDN1 (p = 0.04), CLDN2 (p < 0.01), CLDN4 (p < 0.01), CLDN11 (p < 0.01), and TJP1 (p = 0.03) in THP-1 monocytes. Further, L-cysteine supplementation increased the testosterone secretion levels in human Leydig cells. The findings suggest that L-cysteine supplementation could be used as an adjuvant therapy to promote the integrity of the BTB genes, testosterone biosynthesis and secretion, and the maintenance of testicular functions, which in turn mitigates the risk of male infertility.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
3
|
Alhamoudi KM, Alswailem M, Alghamdi B, Alashwal A, Alzahrani AS. A CYP11A1 homozygous exonic variant inducing an alternative splicing, frameshift and truncation in a family with congenital adrenal hyperplasia. Heliyon 2024; 10:e35058. [PMID: 39157388 PMCID: PMC11328098 DOI: 10.1016/j.heliyon.2024.e35058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Background Congenital adrenal hyperplasia (CAH) is a heterogeneous group of adrenal steroidogenesis disorders with variable degrees of glucocorticoid, mineralocorticoid and sex steroid deficiencies. CYP11A1 gene encodes the mitochondrial cholesterol side-chain cleavage enzyme (P450scc), which initiates the first reaction in steroidogenesis by converting cholesterol to pregnenolone. Variants in this gene are extremely rare but associated with severe forms of CAH due to its early and critical function in various steroid biosynthesis pathways. Here, we report a CYP11A1 exonic homozygous variant that, although exonic in location, affects splicing by creating an additional aberrant splicing site with frameshift and truncation of the gene. Patients and methods The proband is a 23-year old 46,XY patient raised as a girl. She was a product of normal pregnancy for first-degree relative parents. Soon after birth, she had vomiting, dehydration, hypotension, hyponatremia and hyperkalemia. She was started on glucocorticoids and mineralocorticoids with prompt recovery. Apart from a chronic need for these medications, her neonatal and childhood history was unremarkable. She sought medical advice at age 19 years for delayed puberty with primary amenorrhea and lack of breast development. On evaluation, she had normal external female genitalia, no breast development, undescended testes and absent uterus and ovaries. Her hormonal evaluation revealed very low estrogen, testosterone, cortisol, aldosterone, 17-hydroxyprogesterone, and androstenedione levels. ACTH, LH, FSH and renin were very high consistent with primary gonadal and adrenal failure. Her parents are healthy first-degree cousins. She has three sisters, all with 46,XX karyotype. One of them is clinically and biochemically normal while the other two sisters have normal female phenotype, normal uterus and ovaries, similar hormonal profile to the proband but different karyotype (46,XX) and absence of undescended testes. gDNA was used for whole exome sequencing (WES). Sanger sequencing was performed to confirm the detected variant and its segregation with the disease. Results WES identified a homozygous missense variant in CYP11A1 changing the second nucleotide (GCG > GTG) at position 189 in exon 3 and resulting in a change of Alanine to Valine (p.Ala189Val). This variant was confirmed by PCR and Sanger sequencing. It was found in a homozygous form in the proband and her two affected sisters and in a heterozygous form in the unaffected sister. In-silico analysis predicted this variant to create a new splicing site with frameshift and truncation of the gene transcript. This was confirmed by isolation of RNA, cDNA synthesis, gel electrophoresis and sequencing. Conclusion We describe a family with a very rare form of CAH due to a CYP11A1 variant leading to creation of a new splice site, frameshift and premature truncation of the protein.
Collapse
Affiliation(s)
- Kheloud M. Alhamoudi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Alashwal
- Department of Paediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ali S. Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Amano N, Narumi S, Aizu K, Miyazawa M, Okamura K, Ohashi H, Katsumata N, Ishii T, Hasegawa T. Single-Exon Deletions of ZNRF3 Exon 2 Cause Congenital Adrenal Hypoplasia. J Clin Endocrinol Metab 2024; 109:641-648. [PMID: 37878959 DOI: 10.1210/clinem/dgad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
CONTEXT Primary adrenal insufficiency (PAI) is a life-threatening condition characterized by the inability of the adrenal cortex to produce sufficient steroid hormones. E3 ubiquitin protein ligase zinc and ring finger 3 (ZNRF3) is a negative regulator of Wnt/β-catenin signaling. R-spondin 1 (RSPO1) enhances Wnt/β-catenin signaling via binding and removal of ZNRF3 from the cell surface. OBJECTIVE This work aimed to explore a novel genetic form of PAI. METHODS We analyzed 9 patients with childhood-onset PAI of biochemically and genetically unknown etiology using array comparative genomic hybridization. To examine the functionality of the identified single-exon deletions of ZNRF3 exon 2, we performed three-dimensional (3D) structure modeling and in vitro functional studies. RESULTS We identified various-sized single-exon deletions encompassing ZNRF3 exon 2 in 3 patients who showed neonatal-onset adrenal hypoplasia with glucocorticoid and mineralocorticoid deficiencies. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the 3 distinct single-exon deletions were commonly transcribed into a 126-nucleotide deleted mRNA and translated into 42-amino acid deleted protein (ΔEx2-ZNRF3). Based on 3D structure modeling, we predicted that interaction between ZNRF3 and RSPO1 would be disturbed in ΔEx2-ZNRF3, suggesting loss of RSPO1-dependent activation of Wnt/β-catenin signaling. Cell-based functional assays with the TCF-LEF reporter showed that RSPO1-dependent activation of Wnt/β-catenin signaling was attenuated in cells expressing ΔEx2-ZNRF3 as compared with those expressing wild-type ZNRF3. CONCLUSION We provided genetic evidence linking deletions encompassing ZNRF3 exon 2 and congenital adrenal hypoplasia, which might be related to constitutive inactivation of Wnt/β-catenin signaling by ΔEx2-ZNRF3.
Collapse
Affiliation(s)
- Naoko Amano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Pediatrics, Saitama City Hospital, Saitama, 336-8522, Japan
| | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Katsuya Aizu
- Division of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, 330-8777, Japan
| | - Mari Miyazawa
- Department of Pediatrics, Kochi Health Sciences Center, Kochi, 781-8555, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, 330-8777, Japan
| | - Noriyuki Katsumata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
5
|
Phadte A, Arya S, Sarathi V, Lila A, Maheshwari M, Memon SS, Rane A, Patil V, Rai K, Raghav D, Kunwar A, Bandgar T. Side-chain cleavage enzyme deficiency: Systematic review and case series. Clin Endocrinol (Oxf) 2023; 98:351-362. [PMID: 36357326 DOI: 10.1111/cen.14848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE P450 side-chain cleavage deficiency (SCCD) patients present with primary adrenal insufficiency (PAI) with or without undervirilized external genitalia. The distinction between classic and nonclassic steroidogenic acute regulatory protein deficiency has been described, whereas in SCCD is unclear. The data on gonadal function and its correlation with SCCD genotype has not been studied. We describe our experience and perform a systematic review of genetically proven SCCD patients to determine the distinct phenotypic and genotypic characteristics of 46,XY SCCD patients with typical male external genitalia (SCCD-TMG) and atypical (SCCD-AG) external genitalia. DESIGN, PATIENTS AND MEASUREMENTS Retrospective review of three genetically proven SCCD patients from our centre and per-patient data analysis from a systematic review of 52 probands was performed. SCCD-TMG (n = 19) was defined as external genitalia of Sinnecker score 1 with 46,XY karyotype; the rest (Sinnecker 2-5) were classified as SCCD-AG (n = 15). RESULTS We report two new Indian cases of SCCD with three novel likely pathogenic variants and pubertal follow-up of a previously reported patient. In systematic review, age at diagnosis of PAI and elevated renin were not different between 46,XY SCCD-TMG (n = 19) and SCCD-AG (n = 15), whereas spontaneous puberty (9/9 vs. 0/3, p = .0045), normal prepubertal (5/5 vs. 6/6, p = .002), pubertal gonadotropins (2/9 vs. 0/3, p = 1) and normal pubertal testosterone (9/11 vs. 0/3, p = .027) were more common in SCCD-TMG. Testicular adrenal rest tumours were exclusive to SCCD-TMG (n = 4). SCCD-TMG was associated with four particular genotypes [monoallelic p.Glu314Lys with another deleterious variant on the second allele (p.Glu314Lys/X-CHS: X-compound heterozygous state), biallelic p.Arg451Trp, p.Phe215Ser/p.Arg232Ter and monoallelic p.Val79Ile]. 46,XX SCCD patients with p.Glu314Lys/X-CHS also had normal gonadotropins with spontaneous puberty. CONCLUSION SCCD-TMG is associated with four specific genotypes and distinct gonadal characteristics from SCCD-AG with overlapping features of PAI.
Collapse
Affiliation(s)
- Aditya Phadte
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Sneha Arya
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Anurag Lila
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Madhur Maheshwari
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Saba Samad Memon
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Ankita Rane
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Virendra Patil
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Khushnandan Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Darpan Raghav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
6
|
Guo X, Zhang Y, Yu Y, Zhang L, Ullah K, Ji M, Jin B, Shu J. Getting pregnant with congenital adrenal hyperplasia: Assisted reproduction and pregnancy complications. A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:982953. [PMID: 36120452 PMCID: PMC9470834 DOI: 10.3389/fendo.2022.982953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Many patients with congenital adrenal hyperplasia (CAH) refrain from seeking pregnancy, suffer from infertility or worry about pregnancy complications, mainly due to genitalia abnormalities, anovulation, unreceptive endometrium and metabolic disturbances. Despite those challenges, many live births have been reported. In this systematic review, we focused on the key to successful assisted reproduction strategies and the potential pregnancy complications. We did a systematic literature search of Pubmed, Medline and Scopus for articles reporting successful pregnancies in CAH other than 21-hydroxylase deficiency, and found 25 studies reporting 39 pregnancies covering deficiency in steroidogenic acute regulatory protein, 17α-hydroxylase/17,20-lyase, 11β-hydroxylase, P450 oxidoreductase, cytochrome b5 and 3β-hydroxysteroid dehydrogenase. We summarized various clinical manifestations and tailored reproduction strategy for each subtype. Furthermore, a meta-analysis was performed to evaluate the pregnancy complications of CAH patients. A total of 19 cross-sectional or cohort studies involving 1311 pregnancies of classic and non-classic CAH patients were included. Surprisingly, as high as 5.5% (95% CI 2.3%-9.7%) of pregnancies were electively aborted, and the risk was significantly higher in those studies with a larger proportion of classic CAH than those with only non-classical patients (8.43% (4.1%-13.81%) VS 3.75%(1.2%-7.49%)), which called for better family planning. Pooled incidence of miscarriage was 18.2% (13.4%-23.4%) with a relative risk (RR) of 1.86 (1.27-2.72) compared to control. Glucocorticoid treatment in non-classical CAH patients significantly lowered the miscarriage rate when compared to the untreated group (RR 0.25 (0.13-0.47)). CAH patients were also more susceptible to gestational diabetes mellitus, with a prevalence of 7.3% (2.4%-14.1%) and a RR 2.57 (1.29-5.12). However, risks of preeclampsia, preterm birth and small for gestational age were not significantly different. 67.8% (50.8%-86.9%) CAH patients underwent Cesarean delivery, 3.86 (1.66-8.97) times the risk of the control group. These results showed that fertility is possible for CAH patients but special care was necessary when planning, seeking and during pregnancy. Systematic Review Registration PROSPERO https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=342642, CRD42022342642.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yu Zhang
- School of Nursing, Hangzhou Medical College, Hangzhou, China
| | - Yiqi Yu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Mengxia Ji
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Matusik P, Gach A, Zajdel-Cwynar O, Pinkier I, Kudela G, Gawlik A. A Novel Intronic Splice-Site Mutation of the CYP11A1 Gene Linked to Adrenal Insufficiency with 46,XY Disorder of Sex Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137186. [PMID: 34281122 PMCID: PMC8295740 DOI: 10.3390/ijerph18137186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022]
Abstract
A novel CYP11A1: c.1236 + 5G > A was identified, expanding the mutation spectrum of the congenital adrenal insufficiency with 46,XY sex reversal. In a now 17-year-old girl delivered full-term (G2P2, parents unrelated), adrenal failure was diagnosed in the first year of life based on clinical picture of acute adrenal crisis with vomiting, dehydration, weight loss, hypotension, and electrolyte disturbances. At the time, hormonal tests revealed primary adrenocortical insufficiency and steroid profiles showed lack of products of steroidogenesis, and since then the patient has been treated with substitution doses of hydrocortisone and fludrocortisone. At the age of 14, considering the absence of puberty symptoms, extended diagnostic tests revealed elevated LH levels (26.5 mIU/mL) with pre-puberty FSH levels (4.9 mIU/mL), low estradiol (28 pmol/L), testosterone (<2.5 ng/mL), and extremely high levels of ACTH (4961 pg/mL). A cytogenetic study revealed a 46 XY karyotype. A molecular examination confirmed the missense mutation and a novel splice-site mutation of CYP11A1 gene. Compound heterozygosity for the CYP11A1 gene with a known pathogenic variant in one allele and a novel splice site mutation in the second allele is most probably responsible for congenital adrenal insufficiency with 46,XY sex reversal. We discuss the necessity of cytogenetic test in the case of early onset of adrenal failure in the absence of steroidogenesis metabolites in the steroid profile.
Collapse
Affiliation(s)
- Pawel Matusik
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-207-1654
| | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (A.G.); (I.P.)
| | | | - Iwona Pinkier
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (A.G.); (I.P.)
| | - Grzegorz Kudela
- Department of Pediatric Surgery and Urology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aneta Gawlik
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
8
|
Prenatal diagnosis and molecular cytogenetic characterization of a chromosome 15q24 microdeletion. Taiwan J Obstet Gynecol 2021; 59:432-436. [PMID: 32416893 DOI: 10.1016/j.tjog.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis, molecular cytogenetic characterization and genetic counseling of a chromosome 15q24 microdeletion of paternal origin. CASE REPORT A 34-year-old primigravid woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY. Simultaneous array comparative genomic hybridization (aCGH) analysis on amniotic fluid revealed a de novo 2.571-Mb microdeletion of 15q24.1-q24.2. Prenatal ultrasound findings were unremarkable except persistent left superior vena cava and enlarged coronary sinus. The woman requested repeat amniocentesis at 22 weeks of gestation, and aCGH analysis confirmed the result of arr 15q24.1q24.2 (72,963,970-75,535,330) × 1.0 [GRCh37 (hg19)] and a 15q24 microdeletion encompassing the genes of STRA6, CYP11A1, SEMA7A, ARID3B, CYP1A1, CYP1A2, CSK and CPLX3. The parents did not have such a deletion, and polymorphic DNA marker analysis confirmed a paternal origin of the de novo deletion. Metaphase fluorescence in situ hybridization analysis confirmed a 15q24 deletion. The parents elected to terminate the pregnancy, and a malformed fetus was delivered with characteristic facial dysmorphism. CONCLUSION Simultaneous aCGH analysis of uncultured amniocytes at amniocentesis may help to detect rare de novo microdeletion disorders.
Collapse
|
9
|
Kalinchenko NY, Kasyanova YV, Tiulpakov AN. [Dizygotic pregnancy as a possible mechanism of fetal gestation with a biallel mutation in the CYP11A1 gene: clinical case description]. ACTA ACUST UNITED AC 2020; 66:45-49. [PMID: 33351358 DOI: 10.14341/probl12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/04/2020] [Accepted: 07/22/2020] [Indexed: 11/06/2022]
Abstract
One of the variants of congenital dysfunction of the adrenal cortex is a deficiency of the enzyme P450scc, which catalyzes the first stage of steroidogenesis. This is a rare autosomal recessive disease, the classic manifestation of which is primary adrenal insufficiency with a deficiency of gluco-and mineralocorticoids and a violation of the synthesis of sex steroids, which usually leads to a complete lack of masculinization in patients with karyotype 46, XY and hypergonadotropic hypogonadism in both sexes. Previously, it was suggested That p450scc deficiency is incompatible with the normal course of pregnancy, since the enzyme is expressed in the placenta, where it is necessary for the synthesis of progesterone, the main pregnancy hormone, and, consequently, the birth of a child with A p450scc deficiency is impossible. However, the literature describes clinical cases of p450scc deficiency with partially preserved enzyme function, which explains the normal course of pregnancy. Whereas cases of confirmed p450scc deficiency with zero enzyme activity are unique, not being explained until now. We present a description of severe p450scc deficiency in a child born from a dizygotic twin pregnancy in which the second Sib was healthy. It is possible that the preserved hormonal function of the second placenta and (or) treatment with progesterone analogs during gestation contributed to gestation in this rare form of steroidogenesis disorder.
Collapse
|
10
|
Kallali W, Gray E, Mehdi MZ, Lindsay R, Metherell LA, Buonocore F, Suntharalingham JP, Achermann JC, Donaldson M. Long-term outcome of partial P450 side-chain cleavage enzyme deficiency in three brothers: the importance of early diagnosis. Eur J Endocrinol 2020; 182:K15-K24. [PMID: 31917682 PMCID: PMC7087497 DOI: 10.1530/eje-19-0696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE CYP11A1 mutations cause P450 side-chain cleavage (scc) deficiency, a rare form of congenital adrenal hyperplasia with a wide clinical spectrum. We detail the phenotype and evolution in a male sibship identified by HaloPlex targeted capture array. FAMILY STUDY The youngest of three brothers from a non-consanguineous Scottish family presented with hyperpigmentation at 3.7 years. Investigation showed grossly impaired glucocorticoid function with ACTH elevation, moderately impaired mineralocorticoid function, and normal external genitalia. The older brothers were found to be pigmented also, with glucocorticoid impairment but normal electrolytes. Linkage studies in 2002 showed that all three brothers had inherited the same critical regions of the maternal X chromosome suggesting an X-linked disorder, but analysis of NR0B1 (DAX-1, adrenal hypoplasia) and ABCD1 (adrenoleukodystrophy) were negative. In 2016, next-generation sequencing revealed compound heterozygosity for the rs6161 variant in CYP11A1 (c.940G>A, p.Glu314Lys), together with a severely disruptive frameshift mutation (c.790_802del, K264Lfs*5). The brothers were stable on hydrocortisone and fludrocortisone replacement, testicular volumes (15-20 mL), and serum testosterone levels (24.7, 33.3, and 27.2 nmol/L) were normal, but FSH (41.2 µ/L) was elevated in the proband. The latter had undergone left orchidectomy for suspected malignancy at the age of 25 years and was attending a fertility clinic for oligospermia. Initial histology was reported as showing nodular Leydig cell hyperplasia. However, histological review using CD56 staining confirmed testicular adrenal rest cell tumour (TART). CONCLUSION This kinship with partial P450scc deficiency demonstrates the importance of precise diagnosis in primary adrenal insufficiency to ensure appropriate counselling and management, particularly of TART.
Collapse
Affiliation(s)
- Wafa Kallali
- Children’s Hospital El Bechir Hamza of Tunis, Tunis, Tunisia
| | - Ewan Gray
- David Elder Medical Practice, Glasgow, UK
| | | | - Robert Lindsay
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Federica Buonocore
- Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jenifer P Suntharalingham
- Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - John C Achermann
- Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Malcolm Donaldson
- Child Health Section of University of Glasgow School of Medicine, Queen Elizabeth University Hospital, Glasgow, UK
- Correspondence should be addressed to M Donaldson;
| |
Collapse
|
11
|
Reddish MJ, Guengerich FP. Human cytochrome P450 11B2 produces aldosterone by a processive mechanism due to the lactol form of the intermediate 18-hydroxycorticosterone. J Biol Chem 2019; 294:12975-12991. [PMID: 31296661 DOI: 10.1074/jbc.ra119.009830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Human cytochrome P450 (P450) 11B2 catalyzes the formation of aldosterone, the major endogenous human mineralocorticoid. Aldosterone is important for the regulation of electrolyte homeostasis. Mutations and overexpression of P450 11B2 (also known as aldosterone synthase) can lead to hypertension, congestive heart failure, and diabetic nephropathy. The enzyme is therefore a target for drug development to manage these various disorders. P450 11B2 catalyzes aldosterone formation from 11-deoxycorticosterone through three distinct oxidation steps. It is currently unknown to which degree these reactions happen in sequence without the intermediate products dissociating from the enzyme (i.e. processively) or whether these reactions happen solely distributively, in which the intermediate products must first dissociate and then rebind to the enzyme before subsequent oxidation. We present here a comprehensive investigation of processivity in P450 11B2-catalyzed reactions using steady-state, pre-steady-state, pulse-chase, equilibrium-binding titrations, and stopped-flow binding studies. We utilized the data obtained to develop a kinetic model for P450 11B2 and tested this model by enzyme kinetics simulations. We found that although aldosterone is produced processively, the enzyme preferentially utilizes a distributive mechanism that ends with the production of 18-OH corticosterone. This seemingly contradictory observation could be resolved by considering the ability of the intermediate product 18-OH corticosterone to exist as a lactol form, with the equilibrium favoring the ring-closed lactol configuration. In summary, our refined model for P450 11B2 catalysis indicates isomerization of the intermediate to a lactol can explain why P450 11B2 must produce aldosterone through a processive mechanism despite favoring a distributive mechanism.
Collapse
Affiliation(s)
- Michael J Reddish
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
12
|
Sarathi V, Nagalingam C. Normal male external genitalia do not rule out CYP11A1 deficiency. BMJ Case Rep 2019; 12:12/7/e228235. [PMID: 31289154 DOI: 10.1136/bcr-2018-228235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Defects in the initial steps of steroidogenesis usually present with female external genitalia in both 46,XX and 46,XY. Hence, they are not often considered in the differential diagnosis of primary adrenal insufficiency children with normal male external genitalia. Here, we report a boy with normal male external genitalia who presented with hyperpigmentation since the age of 2 years but diagnosis was delayed till 11 years of age. Evaluation revealed low-serum cortisol with elevated adrenocorticotropic hormone and direct renin level confirming primary adrenal insufficiency. Clinical exome sequencing analysis revealed a homozygous c.1351C>T (p.R451W) mutation in exon 8 of the CYP11A1 gene which was confirmed on Sanger sequencing. Both parents were heterozygous for the variation. To conclude, we report the first case of CYP11A1 deficiency from India. The report reiterates the existence of non-classic CYP11A1 deficiency characterised by primary adrenal insufficiency and normal male external genitalia in 46,XY.
Collapse
Affiliation(s)
- Vijaya Sarathi
- Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.,Endocrinology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
| | - Chithambaram Nagalingam
- Paediatrics, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| |
Collapse
|
13
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
14
|
Maharaj A, Buonocore F, Meimaridou E, Ruiz-Babot G, Guasti L, Peng HM, Capper CP, Burgos-Tirado N, Prasad R, Hughes CR, Maudhoo A, Crowne E, Cheetham TD, Brain CE, Suntharalingham JP, Striglioni N, Yuksel B, Gurbuz F, Gupta S, Lindsay R, Couch R, Spoudeas HA, Guran T, Johnson S, Fowler DJ, Conwell LS, McInerney-Leo AM, Drui D, Cariou B, Lopez-Siguero JP, Harris M, Duncan EL, Hindmarsh PC, Auchus RJ, Donaldson MD, Achermann JC, Metherell LA. Predicted Benign and Synonymous Variants in CYP11A1 Cause Primary Adrenal Insufficiency Through Missplicing. J Endocr Soc 2018; 3:201-221. [PMID: 30620006 PMCID: PMC6316989 DOI: 10.1210/js.2018-00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/25/2018] [Indexed: 01/11/2023] Open
Abstract
Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.Glu314Lys) in CYP11A1 in 19 individuals from 13 different families (allele frequency within undiagnosed PAI in our cohort, 0.102 vs 0.0026 in the Genome Aggregation Database; P < 0.0001). Seventeen individuals harbored a second heterozygous rare disruptive variant in CYP11A1 and two had very rare synonymous changes in trans (c.990G>A, Thr330 = ; c.1173C>T, Ser391 =). Although p.Glu314Lys is predicted to be benign and showed no loss-of-function in an Escherichia coli assay system, in silico and in vitro studies revealed that the rs6161/c.940G>A variant, plus the c.990G>A and c.1173C>T changes, affected splicing and that p.Glu314Lys produces a nonfunctional protein in mammalian cells. Taken together, these findings show that compound heterozygosity involving a relatively common and predicted "benign" variant in CYP11A1 is a major contributor to PAI of unknown etiology, especially in European populations. These observations have implications for personalized management and demonstrate how variants that might be overlooked in standard analyses can be pathogenic when combined with other very rare disruptive changes.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Eirini Meimaridou
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Cameron P Capper
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Neikelyn Burgos-Tirado
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claire R Hughes
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ashwini Maudhoo
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Elizabeth Crowne
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Timothy D Cheetham
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Caroline E Brain
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Niccolò Striglioni
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Bilgin Yuksel
- Department of Pediatric Endocrinology and Diabetes, Cukurova University, Adana, Turkey
| | - Fatih Gurbuz
- Department of Pediatric Endocrinology and Diabetes, Cukurova University, Adana, Turkey
| | - Sangay Gupta
- Department of Pediatrics, Hull Royal Infirmary, Hull, United Kingdom
| | - Robert Lindsay
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Couch
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Helen A Spoudeas
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Tulay Guran
- Department Pediatric Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Stephanie Johnson
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Dallas J Fowler
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Louise S Conwell
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Aideen M McInerney-Leo
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Delphine Drui
- Department of Endocrinology, l’Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Bertrand Cariou
- INSERM UMR 1087, CNRS UMR 6291, l'Institut du Thorax, Université de Nantes, Nantes, France
| | - Juan P Lopez-Siguero
- Pediatric Endocrinology Unit, Children’s Hospital, Institute of Biomedical Research in Malaga, Málaga, Spain
| | - Mark Harris
- Lady Cilento Children’s Hospital, Brisbane, Queensland, Australia,University of Queensland, Brisbane, Queensland, Australia
| | - Emma L Duncan
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia,Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Peter C Hindmarsh
- Department of Paediatrics, University College London Hospitals, London, United Kingdom
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Malcolm D Donaldson
- Section of Child Health, Glasgow University School of Medicine, Glasgow, United Kingdom
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Correspondence: Louise A. Metherell, PhD, Centre for Endocrinology, William Harvey Research Institute, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom. E-mail:
| |
Collapse
|
15
|
Baranowski ES, Arlt W, Idkowiak J. Monogenic Disorders of Adrenal Steroidogenesis. Horm Res Paediatr 2018; 89:292-310. [PMID: 29874650 PMCID: PMC6067656 DOI: 10.1159/000488034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Disorders of adrenal steroidogenesis comprise autosomal recessive conditions affecting steroidogenic enzymes of the adrenal cortex. Those are located within the 3 major branches of the steroidogenic machinery involved in the production of mineralocorticoids, glucocorticoids, and androgens. This mini review describes the principles of adrenal steroidogenesis, including the newly appreciated 11-oxygenated androgen pathway. This is followed by a description of pathophysiology, biochemistry, and clinical implications of steroidogenic disorders, including mutations affecting cholesterol import and steroid synthesis, the latter comprising both mutations affecting steroidogenic enzymes and co-factors required for efficient catalysis. A good understanding of adrenal steroidogenic pathways and their regulation is crucial as the basis for sound management of these disorders, which in the majority present in early childhood.
Collapse
Affiliation(s)
- Elizabeth S. Baranowski
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom,Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom,*Prof. Wiebke Arlt, Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham B15 2TT (UK), E-Mail
| | - Jan Idkowiak
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom,Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
16
|
Goursaud C, Mallet D, Janin A, Menassa R, Tardy-Guidollet V, Russo G, Lienhardt-Roussie A, Lecointre C, Plotton I, Morel Y, Roucher-Boulez F. Aberrant Splicing Is the Pathogenicity Mechanism of the p.Glu314Lys Variant in CYP11A1 Gene. Front Endocrinol (Lausanne) 2018; 9:491. [PMID: 30233493 PMCID: PMC6134065 DOI: 10.3389/fendo.2018.00491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022] Open
Abstract
Context: The cholesterol side chain cleavage enzyme (CYP11A1) catalyzes the conversion of cholesterol to pregnenolone, the first rate-limiting step of steroidogenesis. CYP11A1 mutations are associated with primary adrenal insufficiency (PAI) as well as disorders of sex development (DSD) in 46,XY patients. Objective: To define the pathogenicity mechanism for the p.Glu314Lys variant, previously reported, and found in four additional patients with CYP11A1 deficiency. Subjects and Methods: DNA of four patients presenting with delayed PAI and/or 46,XY DSD were studied by Sanger or Massively Parallel sequencing. Three CYP11A1 mutations were characterized in vitro and in silico, and one by mRNA analysis on testicular tissue. Results: All patients were compound heterozygous for the previously described p.Glu314Lys variant. In silico studies predicted this mutation as benign with no effect on splicing but mRNA analysis found that it led to incomplete exon 5 skipping. This mechanism was confirmed by minigene experiment. The protein carrying this mutation without exon skipping should conserve almost normal activity, according to in vitro studies. Two other mutations found in trans, the p.Arg120Gln and p.Arg465Trp, had similar activity compared to negative control, consistent with the in silico studies. Conclusions: We provide biological proof that the p. Glu314Lys variant is pathogenic due to its impact on splicing and seems responsible for the moderate phenotype of the four patients reported herein. The present study highlights the importance of considering the potential effect of a missense variant on splicing when it is not predicted to be disease causing.
Collapse
Affiliation(s)
- Claire Goursaud
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- *Correspondence: Claire Goursaud
| | - Delphine Mallet
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Centre de Référence du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Alexandre Janin
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Cardiogénétique Moléculaire, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Institut NeuroMyoGène, CNRS UMR 5310 – INSERM U1217, Université de Lyon 1, Lyon, France
| | - Rita Menassa
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Centre de Référence du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Véronique Tardy-Guidollet
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Centre de Référence du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Gianni Russo
- Centro di Endocrinologia dell'infanzia e dell'adolescenza, Ospedale San Raffaele, Milan, Italy
| | - Anne Lienhardt-Roussie
- Service de Pédiatrie Médicale, Hôpital de la mère et de l'enfant, CHU de Limoges, Limoges, France
| | | | - Ingrid Plotton
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Centre de Référence du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Yves Morel
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Centre de Référence du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Florence Roucher-Boulez
- Laboratoire de Biochimie et Biologie Moléculaire Grand Est, UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Centre de Référence du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Amano N, Narumi S, Hayashi M, Takagi M, Imai K, Nakamura T, Hachiya R, Sasaki G, Homma K, Ishii T, Hasegawa T. Genetic defects in pediatric-onset adrenal insufficiency in Japan. Eur J Endocrinol 2017; 177:187-194. [PMID: 28546232 DOI: 10.1530/eje-17-0027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 01/12/2023]
Abstract
CONTEXT Most patients with pediatric-onset primary adrenal insufficiency (PAI), such as 21-hydroxylase deficiency, can be diagnosed by measuring the urine or serum levels of steroid metabolites. However, the etiology is often difficult to determine in a subset of patients lacking characteristic biochemical findings. OBJECTIVE To assess the frequency of genetic defects in Japanese children with biochemically uncharacterized PAI and characterize the phenotypes of mutation-carrying patients. METHODS We enrolled 63 Japanese children (59 families) with biochemically uncharacterized PAI, and sequenced 12 PAI-associated genes. The pathogenicities of rare variants were assessed based on in silico analyses and structural modeling. We calculated the proportion of mutation-carrying patients according to demographic characteristics. RESULTS We identified genetic defects in 50 (85%) families: STAR in 19, NR0B1 in 18, SAMD9 in seven, AAAS in two, NNT in two, MC2R in one and CDKN1C in one. NR0B1 defects were identified in 78% of the male patients that received both glucocorticoid and mineralocorticoid replacement therapy and had normal male external genitalia. STAR defects were identified in 67% of female and 9% of male patients. Seven of the 19 patients with STAR defects developed PAI at age two or older, out of whom, five did not have mineralocorticoid deficiency. CONCLUSIONS Molecular testing elucidated the etiologies of most biochemically uncharacterized PAI patients. Genetic defects such as NR0B1 defects are presumed based on phenotypes, while others with broad phenotypic variability, such as STAR defects, are difficult to diagnose. Molecular testing is a rational approach to diagnosis in biochemically uncharacterized PAI patients.
Collapse
Affiliation(s)
- Naoko Amano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mie Hayashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Takagi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kazuhide Imai
- Department of Pediatrics, Nishibeppu National Hospital, Oita, Japan
| | - Toshiro Nakamura
- Department of Pediatrics, Kumamoto Chuo Hospital, Kumamoto, Japan
| | - Rumi Hachiya
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Goro Sasaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Keiko Homma
- Clinical Laboratory, Keio University Hospital, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Lara-Velazquez M, Perdomo-Pantoja A, Blackburn PR, Gass JM, Caulfield TR, Atwal PS. A novel splice site variant in CYP11A1 in trans with the p.E314K variant in a male patient with congenital adrenal insufficiency. Mol Genet Genomic Med 2017; 5:781-787. [PMID: 29178636 PMCID: PMC5702577 DOI: 10.1002/mgg3.322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The CYP11A1 gene encodes the cytochrome P450 side-chain cleavage enzyme, which is essential for steroid formation. Recessive variants in this gene can lead to impairment of sexual differentiation caused by a complete or partial loss of steroid hormone production. The phenotypic spectrum in affected 46XY males may vary from surgically repairable defects including cryptorchidism and hypospadias to complete feminization of external gonads, accompanied by symptoms of adrenal dysfunction. METHODS Whole-exome sequencing (WES) of a 12-year-old male proband and his parents was performed after a protracted diagnostic odyssey failed to uncover the cause of his primary adrenal insufficiency. Of note, the proband had early symptomatology and corrective surgery for hypospadias, raising suspicion for a disorder of steroidogenesis. RESULTS WES identified compound heterozygous variants in CYP11A1 including a novel canonical splice site variant (c.425+1G>A) and a previously reported p.E314K variant, which were consistent with a diagnosis of congenital adrenal insufficiency with partial 46XY sex reversal. CONCLUSION Congenital adrenal insufficiency with 46XY sex reversal is a rare disorder that is characterized by dysregulation of steroid hormone synthesis, leading to adrenal and gonadal dysfunction. In this report, we describe a patient with adrenal insufficiency, hypospadias, and skin hyperpigmentation who was found to have a novel c.425+1G>A variant in trans with the p.E314K variant in CYP11A1. We performed structural analyses to examine the effect of the p.E314K variant on protein function and show that it falls in the core of the protein may disrupt cholesterol binding in the active site.
Collapse
Affiliation(s)
| | | | - Patrick R Blackburn
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida.,Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Jennifer M Gass
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida
| | | | - Paldeep S Atwal
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida.,Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
19
|
Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2017; 165:18-37. [PMID: 26960203 DOI: 10.1016/j.jsbmb.2016.03.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Steroidogenesis begins with cellular internalization of low-density lipoprotein particles and subsequent intracellular processing of cholesterol. Disorders in these steps include Adrenoleukodystrophy, Wolman Disease and its milder variant Cholesterol Ester Storage Disease, and Niemann-Pick Type C Disease, all of which may present with adrenal insufficiency. The means by which cholesterol is directed to steroidogenic mitochondria remains incompletely understood. Once cholesterol reaches the outer mitochondrial membrane, its delivery to the inner mitochondrial membrane is regulated by the steroidogenic acute regulatory protein (StAR). Severe StAR mutations cause classic congenital lipoid adrenal hyperplasia, characterized by lipid accumulation in the adrenal, adrenal insufficiency, and disordered sexual development in 46,XY individuals. The lipoid CAH phenotype, including spontaneous puberty in 46,XX females, is explained by a two-hit model. StAR mutations that retain partial function cause a milder, non-classic disease characterized by glucocorticoid deficiency, with lesser disorders of mineralocorticoid and sex steroid synthesis. Once inside the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme, P450scc, encoded by the CYP11A1 gene. Rare patients with mutations of P450scc are clinically and hormonally indistinguishable from those with lipoid CAH, and may also present as milder non-classic disease. Patients with P450scc defects do not have the massive adrenal hyperplasia that characterizes lipoid CAH, but adrenal imaging may occasionally fail to distinguish these, necessitating DNA sequencing.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, United States.
| |
Collapse
|
20
|
Khoury K, Barbar E, Ainmelk Y, Ouellet A, Lavigne P, LeHoux JG. Thirty-Eight-Year Follow-Up of Two Sibling Lipoid Congenital Adrenal Hyperplasia Patients Due to Homozygous Steroidogenic Acute Regulatory (STARD1) Protein Mutation. Molecular Structure and Modeling of the STARD1 L275P Mutation. Front Neurosci 2016; 10:527. [PMID: 27917104 PMCID: PMC5116571 DOI: 10.3389/fnins.2016.00527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Objective: Review the impact of StAR (STARD1) mutations on steroidogenesis and fertility in LCAH patients. Examine the endocrine mechanisms underlying the pathology of the disorder and the appropriate therapy for promoting fertility and pregnancies. Design: Published data in the literature and a detailed 38-year follow-up of two sibling LCAH patients. Molecular structure and modeling of the STARD1 L275P mutation. Setting: University hospital. Patients: Patient A (46,XY female phenotype) and patient B (46,XX female) with LCAH bearing the L275P mutation in STARD1. Interventions: Since early-age diagnosis, both patients underwent corticoid replacement therapy. Patient A received estrogen therapy at pubertal age. Clomiphene therapy was given to Patient B to induce ovulation. Pregnancies were protected with progesterone administration. Main Outcome Measures: Clinical and molecular assessment of adrenal and gonadal functions. Results: Both patients have classic manifestations of corticosteroid deficiency observed in LCAH. Time of onset and severity were different. Patient A developed into a female phenotype due to early and severe damage of Leydig cells. Patient B started a progressive pubertal development, menarche and regular non-ovulatory cycle. She was able to have successful pregnancies. Conclusions: Understanding the molecular structure and function of STARD1 in all steroidogenic tissues is the key for comprehending the heterogeneous clinical manifestations of LCAH, and the development of an appropriate strategy for the induction of ovulation and protecting pregnancies in this disease.
Collapse
Affiliation(s)
- Khalil Khoury
- Department of Pediatrics, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC, Canada
| | - Elie Barbar
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC, Canada
| | - Youssef Ainmelk
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC, Canada
| | - Annie Ouellet
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC, Canada
| | - Pierre Lavigne
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC, Canada
| | - Jean-Guy LeHoux
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke Sherbrooke, QC, Canada
| |
Collapse
|
21
|
Manenda MS, Hamel CJ, Masselot-Joubert L, Picard MÈ, Shi R. Androgen-metabolizing enzymes: A structural perspective. J Steroid Biochem Mol Biol 2016; 161:54-72. [PMID: 26924584 DOI: 10.1016/j.jsbmb.2016.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 11/18/2022]
Abstract
Androgen-metabolizing enzymes convert cholesterol, a relatively inert molecule, into some of the most potent chemical messengers in vertebrates. This conversion involves thermodynamically challenging reactions catalyzed by P450 enzymes and redox reactions catalyzed by Aldo-Keto Reductases (AKRs). This review covers the structures of these enzymes with a focus on active site interactions and proposed mechanisms. Due to their role in a number of diseases, particularly in cancer, androgen-metabolizing enzymes have been targets of drug design. Hence we will also highlight how existing knowledge of structure is being used to this end.
Collapse
Affiliation(s)
- Mahder Seifu Manenda
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Charles Jérémie Hamel
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Loreleï Masselot-Joubert
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec City, QC G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
22
|
Pomahačová R, Sýkora J, Zamboryová J, Paterová P, Varvařovská J, Šubrt I, Dort J, Dortová E. First case report of rare congenital adrenal insufficiency caused by mutations in the CYP11A1 gene in the Czech Republic. J Pediatr Endocrinol Metab 2016; 29:749-52. [PMID: 27008691 DOI: 10.1515/jpem-2015-0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/15/2016] [Indexed: 01/20/2023]
Abstract
We characterized a case of congenital adrenal insufficiency caused by cholesterol side-chain cleavage enzyme (P450scc) deficiency. The patient presented after birth with cardiopulmonary instability, hyponatremia, hyperkalemia, hypoglycemia and metabolic acidosis. We confirmed primary adrenal insufficiency. There were no signs of the external genitalia virilism. The replacement therapy with glucocorticoids and mineralocorticoids led to normal laboratory results. At the age of 12 years, we confirmed hypergonadotropic hypogonadism, which revealed disorder of steroidogenesis in the adrenal glands and in the gonads. The enzymatic block was found at the beginning of steroidogenesis. The mutation was confirmed in the CYP11A1 gene. The patient is compound heterozygote for the novel CYP11A1 missense mutation c.412G>A (p.Gly138Arg) in exon 2 and frameshift mutation c.508_509delCT (p.Leu170Valfs*30) in exon 3. The CYP11A1: c.412G>A (p.Gly138Arg) was predicted as pathogenic by in silico analysis. So far, only 19 patients with CYP11A1 mutations causing P450scc deficiency have been reported worldwide. There are no related reports in the Czech Republic.
Collapse
|
23
|
Morel Y, Roucher F, Plotton I, Goursaud C, Tardy V, Mallet D. Evolution of steroids during pregnancy: Maternal, placental and fetal synthesis. ANNALES D'ENDOCRINOLOGIE 2016; 77:82-9. [PMID: 27155772 DOI: 10.1016/j.ando.2016.04.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
Progesterone, estrogens, androgens and glucocorticoids are involved in pregnancy from implantation to parturition. Their biosynthesis and their metabolism result from complex pathways involving the fetus, the placenta and the mother. The absence of expression of some steroïdogenic enzymes as CYP17 in placenta and in adrenal fetal zone and the better determination of the onset and variation of others especially HSD3B2 during the pregnancy explain the production of the steroid hormones. Moreover the consequences of some disorders of steroidogenesis (especially aromatase, POR, CYP11A1 and 21-hydroxylase deficiencies) in fetus and mother during the pregnancy have permit to elucidate these complex pathways. This better knowledge of steroid hormones production associated with their dosages in maternal plasma/urine or amniotic fluid using new specific assays as LC-MS MS could facilitate the follow-up of normal and pathological pregnancies. Moreover, these advances should be a basis to evaluate the impact of multiple pathologies of the pregnancy and pharmacologic and xenobiotic consequences on their metabolism.
Collapse
Affiliation(s)
- Yves Morel
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France.
| | - Florence Roucher
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Ingrid Plotton
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Claire Goursaud
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Véronique Tardy
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| | - Delphine Mallet
- Service d'hormonologie, endocrinologie moléculaire et maladies rares, CPBE, groupement hospitalier Lyon-Est, 69677 Lyon-Bron, France
| |
Collapse
|
24
|
Sahakitrungruang T. Clinical and molecular review of atypical congenital adrenal hyperplasia. Ann Pediatr Endocrinol Metab 2015; 20:1-7. [PMID: 25883920 PMCID: PMC4397267 DOI: 10.6065/apem.2015.20.1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is one of the most common inherited metabolic disorders. It comprises a group of autosomal recessive disorders caused by the mutations in the genes encoding for steroidogenic enzymes that involved cortisol synthesis. More than 90% of cases are caused by a defect in the enzyme 21-hydroxylase. Four other enzyme deficiencies (cholesterol side-chain cleavage, 17α-hydroxylase [P450c17], 11β-hydroxylase [P450c11β], 3β-hydroxysteroid dehydrogenase) in the steroid biosynthesis pathway, along with one cholesterol transport protein defect (steroidogenic acute regulatory protein), and one electrontransfer protein (P450 oxidoreductase) account for the remaining cases. The clinical symptoms of the different forms of CAH result from the particular hormones that are deficient and those that are produced in excess. A characteristic feature of CAH is genital ambiguity or disordered sex development, and most variants are associated with glucocorticoid deficiency. However, in the rare forms of CAH other than 21-hydroxylase deficiency so-called "atypical CAH", the clinical and hormonal phenotypes can be more complicated, and are not well recognized. This review will focus on the atypical forms of CAH, including the genetic analyses, and phenotypic correlates.
Collapse
Affiliation(s)
- Taninee Sahakitrungruang
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
Abstract
Congenital lipoid adrenal hyperplasia (lipoid CAH) is the most fatal form of CAH, as it disrupts adrenal and gonadal steroidogenesis. Most cases of lipoid CAH are caused by recessive mutations in the gene encoding steroidogenic acute regulatory protein (StAR). Affected patients typically present with signs of severe adrenal failure in early infancy and 46,XY genetic males are phenotypic females due to disrupted testicular androgen secretion. The StAR p.Q258X mutation accounts for about 70% of affected alleles in most patients of Japanese and Korean ancestry. However, it is more prevalent (92.3%) in the Korean population. Recently, some patients have been showed that they had late and mild clinical findings. These cases and studies constitute a new entity of 'nonclassic lipoid CAH'. The cholesterol side-chain cleavage enzyme, P450scc (CYP11A1), plays an essential role converting cholesterol to pregnenolone. Although progesterone production from the fetally derived placenta is necessary to maintain a pregnancy to term, some patients with P450scc mutations have recently been reported. P450scc mutations can also cause lipoid CAH and establish a recently recognized human endocrine disorder.
Collapse
Affiliation(s)
- Chan Jong Kim
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
26
|
Igudin EL, Spirin PV, Prasolov VS, Zubkova NA, Petryaikina EE, Tyul’pakov AN, Rubtsov PM. Functional characterization of two novel splicing mutations of glucokinase gene associated with maturity-onset diabetes of the young type 2 (MODY2). Mol Biol 2014. [DOI: 10.1134/s0026893314020071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Masculinization of gene expression is associated with exaggeration of male sexual dimorphism. PLoS Genet 2013; 9:e1003697. [PMID: 23966876 PMCID: PMC3744414 DOI: 10.1371/journal.pgen.1003697] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/19/2013] [Indexed: 01/24/2023] Open
Abstract
Gene expression differences between the sexes account for the majority of sexually dimorphic phenotypes, and the study of sex-biased gene expression is important for understanding the genetic basis of complex sexual dimorphisms. However, it has been difficult to test the nature of this relationship due to the fact that sexual dimorphism has traditionally been conceptualized as a dichotomy between males and females, rather than an axis with individuals distributed at intermediate points. The wild turkey (Meleagris gallopavo) exhibits just this sort of continuum, with dominant and subordinate males forming a gradient in male secondary sexual characteristics. This makes it possible for the first time to test the correlation between sex-biased gene expression and sexually dimorphic phenotypes, a relationship crucial to molecular studies of sexual selection and sexual conflict. Here, we show that subordinate male transcriptomes show striking multiple concordances with their relative phenotypic sexual dimorphism. Subordinate males were clearly male rather than intersex, and when compared to dominant males, their transcriptomes were simultaneously demasculinized for male-biased genes and feminized for female-biased genes across the majority of the transcriptome. These results provide the first evidence linking sexually dimorphic transcription and sexually dimorphic phenotypes. More importantly, they indicate that evolutionary changes in sexual dimorphism can be achieved by varying the magnitude of sex-bias in expression across a large proportion of the coding content of a genome. Males and females exhibit many differences in morphology, behavior and physiology, yet they share the vast majority of their genomes. Most differences between the sexes are therefore thought to be the product of gene expression differences between females and males. Studies of sex differences in expression assume that genes expressed more in males encode male traits, and genes expressed more in females encode female traits, and this assumption is a key foundation to genetic studies of sexual dimorphism and sexual conflict. Despite this key assumption, this relationship has yet to be empirically tested, as the main model organisms for studies of sex-biased gene expression lack multiple male and female morphs. Here, we use the two male morphs in the wild turkey to show that the magnitude of male-biased gene expression correlates with the manifestation of sexually dimorphic traits. Males with less manifestation of sexual dimorphism in phenotype were both demasculinized for male-biased genes, as well as feminized for female-biased genes. This pattern encompassed the majority of expressed loci, suggesting that evolutionary changes in the magnitude of sexual dimorphism may be achieved by small changes in the magnitude of sex-biased transcription across thousands of genes.
Collapse
|
28
|
Abstract
The cytochrome P450 superfamily consists of a large number of heme-containing monooxygenases. Many human P450s metabolize drugs used to treat human diseases. Others are necessary for synthesis of endogenous compounds essential for human physiology. In some instances, alterations in specific P450s affect the biological processes that they mediate and lead to a disease. In this minireview, we describe medically significant human P450s (from families 2, 4, 7, 11, 17, 19, 21, 24, 27, 46, and 51) and the diseases associated with these P450s.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
29
|
Gucev ZS, Tee MK, Chitayat D, Wherrett DK, Miller WL. Distinguishing deficiencies in the steroidogenic acute regulatory protein and the cholesterol side chain cleavage enzyme causing neonatal adrenal failure. J Pediatr 2013; 162:819-22. [PMID: 23158025 DOI: 10.1016/j.jpeds.2012.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/30/2012] [Accepted: 10/04/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To determine the genetic basis of disordered steroidogenesis in Kuwaiti siblings. STUDY DESIGN Two siblings (46,XX and 46,XY) had normal female external genitalia and severe glucocorticoid and mineralocorticoid deficiency presenting in the first month of life. Abdominal ultrasonography showed normal size adrenal glands, suggesting cholesterol side chain cleavage enzyme (P450scc) deficiency. The CYP11A1 gene encoding P450scc and the STAR gene encoding the steroidogenic acute regulatory protein (StAR) were directly sequenced from leukocyte DNA. RESULTS All exons and intron/exon boundaries of the CYP11A1 gene were normal; the STAR gene was homozygous for a novel 14-base deletion/frameshift in exon 4 (g.4643_4656del), so that no functional protein could be produced. Both parents and an unaffected sibling were heterozygous; zygosity was confirmed with a BsmF1 restriction fragment length polymorphism. CONCLUSIONS Unlike most patients with StAR deficiency, our patients did not have the massive adrenal hyperplasia typical of congenital lipoid adrenal hyperplasia. The distinction between StAR and P450scc deficiency may require gene sequencing.
Collapse
Affiliation(s)
- Zoran S Gucev
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
30
|
Tee MK, Abramsohn M, Loewenthal N, Harris M, Siwach S, Kaplinsky A, Markus B, Birk O, Sheffield VC, Pavari R, Hershkovitz E, Miller WL. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 2013; 98:713-20. [PMID: 23337730 PMCID: PMC3565115 DOI: 10.1210/jc.2012-2828] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. OBJECTIVE We sought to expand clinical and genetic experience with P450scc deficiency. PATIENTS AND METHODS We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. RESULTS Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. CONCLUSIONS Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.
Collapse
|
31
|
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120431. [PMID: 23297354 DOI: 10.1098/rstb.2012.0431] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
32
|
Parajes S, Chan AOK, But WM, Rose IT, Taylor AE, Dhir V, Arlt W, Krone N. Delayed diagnosis of adrenal insufficiency in a patient with severe penoscrotal hypospadias due to two novel P450 side-change cleavage enzyme (CYP11A1) mutations (p.R360W; p.R405X). Eur J Endocrinol 2012; 167:881-5. [PMID: 22968487 PMCID: PMC3494866 DOI: 10.1530/eje-12-0450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/11/2012] [Indexed: 11/13/2022]
Abstract
CONTEXT Cytochrome P450 side-chain cleavage enzyme (CYP11A1) catalyses the first and rate-limiting step of steroidogenesis, the conversion of cholesterol to pregnenolone. CYP11A1 deficiency is commonly associated with adrenal insufficiency, and in 46,XY individuals, with variable degrees of disorder of sex development (DSD). PATIENT AND METHODS The patient was born with hyperpigmentation, micropenis, penoscrotal hypospadias, and mild cryptorchidism. Biochemical and hormonal findings were normal except for low testosterone and low-borderline cortisol. However, no short synacthen test was undertaken. Development was unremarkable apart from an episode labeled as sepsis with documented hyperkalemia and elevated C-reactive protein at age 15 days. Diagnosis of 46,XY DSD was made at age 2.5 months. Progression of hyperpigmentation prompted further investigations and the diagnosis of adrenal insufficiency was established at 2 years with raised ACTH, normal renin activity, and failure of cortisol to respond to short synacthen test. Genetic analyses were performed. The novel CYP11A1 mutations were characterized in vitro and in silico. RESULTS The patient was compound heterozygous for two novel CYP11A1 mutations, p.R360W and p.R405X. p.R360W retained 30-40% of wild-type activity. In silico analyses confirmed these findings and indicated that p.R405X is severe. CONCLUSIONS This study demonstrates the pathogenicity of two novel CYP11A1 mutations found in a patient with delayed diagnosis of CYP11A1 deficiency. Patients with partial deficiencies of steroidogenic enzymes are at risk to be misdiagnosed if adrenal function is not assessed. The adrenocortical function should be routinely assessed in all patients with DSD including severe hypospadias of unknown origin to prevent life-threatening adrenal crises.
Collapse
Affiliation(s)
| | - Angel OK Chan
- Department of PathologyQueen Elizabeth HospitalHong KongPeople's Republic of China
| | - W M But
- Department of PaediatricsQueen Elizabeth HospitalHong KongPeople's Republic of China
| | | | | | | | | | - Nils Krone
- (Correspondence should be addressed to N Krone; E-mail: )
| |
Collapse
|
33
|
Abstract
Adrenal gonadal, placental and brain mitochondria contain several steroidogenic enzymes, notably the cholesterol side chain cleavage enzyme, P450scc, which is the enzymatic rate-limiting step in steroidogenesis which determines cellular steroidogenic capacity. Even before this step, the access of cholesterol to this enzyme system is both rate-limiting and the site of acute regulation via the steroidogenic acute regulatory protein (StAR) which interacts with a complex multi-component 'transduceosome' on the outer mitochondrial membrane (OMM). The components of the transduceosome include the 18 kDa translocator protein (TSPO), the voltage-dependent anion channel (VDAC-1), TSPO-associated protein 7 (PAP7, ACBD3 for acyl-CoA-binding-domain 3), and protein kinase A regulatory subunit 1α (PKAR1A). The precise fashion in which these proteins interact and move cholesterol from the OMM to P450scc, and the means by which cholesterol is loaded into the OMM, remain unclear. Human deficiency diseases have been described for StAR and for P450scc. Mitochondria also contain several 'downstream' steroidogenic enzymes.
Collapse
Affiliation(s)
- Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H3G 1A4, Canada.
| | | |
Collapse
|
34
|
Huang CCJ, Shih MCM, Hsu NC, Chien Y, Chung BC. Fetal glucocorticoid synthesis is required for development of fetal adrenal medulla and hypothalamus feedback suppression. Endocrinology 2012; 153:4749-56. [PMID: 22962254 PMCID: PMC3512012 DOI: 10.1210/en.2012-1258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During pregnancy, fetal glucocorticoid is derived from both maternal supply and fetal secretion. We have created mice with a disruption of the Cyp11a1 gene resulting in loss of fetal steroid secretion but preserving the maternal supply. Cyp11a1null embryos have appreciable although lower amounts of circulating corticosterone, the major mouse glucocorticoid, suggesting that transplacental corticosterone is a major source of corticosterone in fetal circulation. These embryos thus provide a means to examine the effect of fetal glucocorticoids. The adrenal in Cyp11a1 null embryos was disorganized with abnormal mitochondria and oil accumulation. The adrenal medullary cells did not express phenylethanolamine N-methyltransferase and synthesized no epinephrine. Cyp11a1 null embryos had decreased diencephalon Hsd11b1, increased diencephalon Crh, and increased pituitary Pomc expression, leading to higher adrenocorticotropin level in the plasma. These data indicate blunted feedback suppression despite reasonable amounts of circulating corticosterone. Thus, the corticosterone synthesized in situ by the fetus is required for negative feedback suppression of the hypothalamus-pituitary-adrenal axis and for catecholamine synthesis in adrenal medulla.
Collapse
|
35
|
Congenital lipoid adrenal hyperplasia (a rare form of adrenal insufficiency and ambiguous genitalia) caused by a novel mutation of the steroidogenic acute regulatory protein gene. Eur J Pediatr 2012; 171:787-93. [PMID: 22083155 DOI: 10.1007/s00431-011-1620-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
UNLABELLED Congenital lipoid adrenal hyperplasia (lipoid CAH) is a rare autosomal recessive disorder of adrenal and gonadal steroidogenesis. It is most frequently caused by mutations in the steroidogenic acute regulatory protein (StAR) gene. Patients with lipoid CAH typically present with adrenal crisis in early infancy, and those with a 46,XY karyotype have female genitalia. However, it has been recently recognized that the phenotype can be quite variable, in that adrenal insufficiency is detected later in life and patients may have partially masculinized or even normal male genitalia. We report a patient assigned and reared as a female with a 46,XY karyotype and with a homozygous intron 2 (c.178+1G>C) splice site mutation of the StAR gene, which is a novel mutation that causes lipoid CAH. Her clinical presentation was somewhat atypical for a patient with classic lipoid CAH, marked by mild masculinization of the genitalia, detectable adrenal steroids at baseline, and ability to tolerate the stress of a surgical procedure with anesthesia without receiving glucocorticoid treatment. CONCLUSION There is significant phenotypic variability among patients with lipoid CAH. While splice site mutations in the StAR gene lead to premature translational termination, resulting in truncated and non-functional proteins, there is phenotypic variability among patients with such mutations. Our patient appears to have the more atypical phenotype compared to reported patients with similar mutations. The molecular mechanism underlying this heterogeneity remains unclear.
Collapse
|
36
|
Heo GY, Liao WL, Turko IV, Pikuleva IA. Features of the retinal environment which affect the activities and product profile of cholesterol-metabolizing cytochromes P450 CYP27A1 and CYP11A1. Arch Biochem Biophys 2011; 518:119-26. [PMID: 22227097 DOI: 10.1016/j.abb.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/28/2022]
Abstract
The retina is the sensory organ in the back of the eye which absorbs and converts light to electrochemical impulses transferred to the brain. Herein, we studied how retinal environment affects enzyme-mediated cholesterol removal. We focused on two mitochondrial cytochrome P450 enzymes, CYPs 27A1 and 11A1, which catalyze the first steps in metabolism of cholesterol in the retina and other tissues. Phospholipids (PL) from mitochondria of bovine neural retina, retinal pigment epithelium, liver and adrenal cortex were isolated and compared for the effect on kinetic properties of purified recombinant CYPs in the reconstituted system in vitro. The four studied tissues were also evaluated for the mitochondrial PL and cholesterol content and levels of CYPs 27A1, 11A1 and their redox partners. The data obtained were used for modeling the retinal environment in the in vitro enzyme assays in which we detected the P450 metabolites, 22R-hydroxycholesterol and 5-cholestenoic acid, unexpectedly found by us in the retina in our previous studies. The effect of the by-product of the visual cycle pyridinium bis-retinoid A2E on kinetics of CYP27A1-mediated cholesterol metabolism was also investigated. The results provide insight into the retina's regulation of the enzyme-mediated cholesterol removal.
Collapse
Affiliation(s)
- Gun-Young Heo
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | |
Collapse
|
37
|
Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 2011; 52:2111-2135. [PMID: 21976778 DOI: 10.1194/jlr.r016675] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA 94143; UCSF Benioff Children's Hospital, San Francisco, CA 94143.
| | - Himangshu S Bose
- Department of Biochemistry, Mercer University School of Medicine, Savannah, GA 31404; and; Memorial University Medical Center, Savannah, GA 31404
| |
Collapse
|
38
|
Sahakitrungruang T, Tee MK, Blackett PR, Miller WL. Partial defect in the cholesterol side-chain cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 2011; 96:792-8. [PMID: 21159840 PMCID: PMC3047228 DOI: 10.1210/jc.2010-1828] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT The cholesterol side-chain cleavage enzyme (P450scc), encoded by the CYP11A1 gene, converts cholesterol to pregnenolone to initiate steroidogenesis. Genetic defects in P450scc cause a rare autosomal recessive disorder that is clinically indistinguishable from congenital lipoid adrenal hyperplasia (lipoid CAH). Nonclassic lipoid CAH is a recently recognized disorder caused by mutations in the steroidogenic acute regulatory protein (StAR) that retain partial function. OBJECTIVE We describe two siblings with hormonal findings suggesting nonclassic lipoid CAH, who had a P450scc mutation that retains partial function. PATIENTS AND METHODS A 46,XY male presented with underdeveloped genitalia and partial adrenal insufficiency; his 46,XX sister presented with adrenal insufficiency. Hormonal studies suggested nonclassic lipoid CAH. Sequencing of the StAR gene was normal, but compound heterozygous mutations were found in the CYP11A1 gene. Mutations were recreated in the F2 plasmid expressing a fusion protein of the cholesterol side-chain cleavage system. P450scc activity was measured as Vmax/Km for pregnenolone production in transfected COS-1 cells. RESULTS The patients were compound heterozygous for the previously described frameshift mutation 835delA and the novel missense mutation A269V. When expressed in the P450scc moiety of F2, the A269V mutant retained 11% activity of the wild-type F2 protein. CONCLUSIONS There is a broad clinical spectrum of P450scc deficiency. Partial loss-of-function CYP11A1 mutation can present with a hormonal phenotype indistinguishable from nonclassic lipoid CAH.
Collapse
Affiliation(s)
- Taninee Sahakitrungruang
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA
| | | | | | | |
Collapse
|
39
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1460] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
40
|
Mendonca BB, Costa EMF, Belgorosky A, Rivarola MA, Domenice S. 46,XY DSD due to impaired androgen production. Best Pract Res Clin Endocrinol Metab 2010; 24:243-62. [PMID: 20541150 DOI: 10.1016/j.beem.2009.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Disorders of androgen production can occur in all steps of testosterone biosynthesis and secretion carried out by the foetal Leydig cells as well as in the conversion of testosterone into dihydrotestosterone (DHT). The differentiation of Leydig cells from mesenchymal cells is the first walk for testosterone production. In 46,XY disorders of sex development (DSDs) due to Leydig cell hypoplasia, there is a failure in intrauterine and postnatal virilisation due to the paucity of interstitial Leydig cells to secrete testosterone. Enzymatic defects which impair the normal synthesis of testosterone from cholesterol and the conversion of testosterone to its active metabolite DHT are other causes of DSD due to impaired androgen production. Mutations in the genes that codify the enzymes acting in the steps from cholesterol to DHT have been identified in affected patients. Patients with 46,XY DSD secondary to defects in androgen production show a variable phenotype, strongly depending of the specific mutated gene. Often, these conditions are detected at birth due to the ambiguity of external genitalia but, in several patients, the extremely undervirilised genitalia postpone the diagnosis until late childhood or even adulthood. These patients should receive long-term care provided by multidisciplinary teams with experience in this clinical management.
Collapse
Affiliation(s)
- Berenice B Mendonca
- Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Rubtsov P, Karmanov M, Sverdlova P, Spirin P, Tiulpakov A. A novel homozygous mutation in CYP11A1 gene is associated with late-onset adrenal insufficiency and hypospadias in a 46,XY patient. J Clin Endocrinol Metab 2009; 94:936-9. [PMID: 19116240 DOI: 10.1210/jc.2008-1118] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT The first and the rate-limiting step in the biosynthesis of hormones in all steroidogenic tissues, conversion of cholesterol to pregnenolone, is catalyzed by the cholesterol side-change cleavage cytochrome P450 (P450scc) encoded by a single gene, CYP11A1. To date, mutations in CYP11A1 gene have been reported in six patients, all of whom presented with adrenal insufficiency within the first 4 yr of life and severely underandrogenized external genitalia (Prader stages 1-2). OBJECTIVE Our aim was to characterize in vitro and in vivo effects of a novel homozygous CYP11A1 gene mutation identified in a patient with an unusual presentation of P450scc deficiency. METHODS AND PATIENTS A 46,XY patient presented with mid-shaft hypospadias and cryptorchidism at birth and signs of adrenal failure at 9 yr. Mutational analysis of CYP11A1 gene was performed by PCR, followed by direct sequencing. P450scc activity was determined by measuring concentration of pregnenolone synthesized from cholesterol in the medium after a transient transfection of HEK293 cells with P450scc, adrenodoxin, adrenodoxin reductase, and steroidogenic acute regulatory protein expression plasmids. RESULTS The sequencing of CYP11A1 gene in the proband revealed a novel homozygous L222P mutation, whereas both parents were heterozygous carriers for this mutation. In vitro P450scc activity of L222P mutant was approximately 7% compared with the wild type. CONCLUSIONS This case represents the mildest phenotype of P450scc deficiency to be described. The phenotypic presentation was consistent with the partial reduction of P450scc activity of L222P mutant.
Collapse
Affiliation(s)
- Petr Rubtsov
- Department of Endocrine Genetics, Endocrinology Research Center, Moscow 117036, Russian Federation
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Klopocki E, Graul-Neumann LM, Grieben U, Tönnies H, Ropers HH, Horn D, Mundlos S, Ullmann R. A further case of the recurrent 15q24 microdeletion syndrome, detected by array CGH. Eur J Pediatr 2008; 167:903-8. [PMID: 17932688 PMCID: PMC2757600 DOI: 10.1007/s00431-007-0616-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 09/19/2007] [Indexed: 11/24/2022]
Abstract
We report on a 10-year-old patient with developmental delay, craniofacial dysmorphism, digital and genital abnormalities. In addition, muscular hypotonia, strabism, and splenomegaly were observed; inguinal and umbilical hernias were surgically corrected. Mucopolysaccharidoses and CDG syndromes could not be found. Chromosome analysis revealed a normal male karyotype (46,XY). A more detailed investigation of the patient's genomic DNA by microarray-based comparative genomic hybridization (array CGH) detected an interstitial 3.7 Mb deletion ranging from 15q24.1 to 15q24.3 which was shown to be de novo. Interstitial deletions involving 15q24 are rare. Sharp et al. (Hum Mol Genet 16:567-572, 2007) recently characterized a recurrent 15q24 microdeletion syndrome with breakpoints in regions of segmental duplications. The de novo microdeletion described here colocalizes with the minimal deletion region of the 15q24 microdeletion syndrome. The distinct clinical phenotype associated with this novel microdeletion syndrome is similar to the phenotype of our patient with respect to specific facial features, developmental delay, microcephaly, digital abnormalities, and genital abnormalities in males. We present a genotype-phenotype correlation and comparison with patients from the literature.
Collapse
Affiliation(s)
- Eva Klopocki
- Institute of Medical Genetics, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Luitgard M. Graul-Neumann
- Institute of Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ulrike Grieben
- Department of Neuropaediatrics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Holger Tönnies
- Institute of Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Hans-Hilger Ropers
- Max-Planck Institute for Molecular Genetics, Ihnestrasse 63, Berlin, Germany
| | - Denise Horn
- Institute of Medical Genetics, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany ,Max-Planck Institute for Molecular Genetics, Ihnestrasse 63, Berlin, Germany
| | - Reinhard Ullmann
- Max-Planck Institute for Molecular Genetics, Ihnestrasse 63, Berlin, Germany
| |
Collapse
|
44
|
Barbaro M, Cicognani A, Balsamo A, Löfgren Å, Baldazzi L, Wedell A, Oscarson M. Gene dosage imbalances in patients with 46,XY gonadal DSD detected by an in-house-designed synthetic probe set for multiplex ligation-dependent probe amplification analysis. Clin Genet 2008; 73:453-64. [DOI: 10.1111/j.1399-0004.2008.00980.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Kim CJ, Lin L, Huang N, Quigley CA, AvRuskin TW, Achermann JC, Miller WL. Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 2008; 93:696-702. [PMID: 18182448 PMCID: PMC2266942 DOI: 10.1210/jc.2007-2330] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Mitochondrial cytochrome P450scc converts cholesterol to pregnenolone in all steroidogenic tissues. Although progesterone production from the fetally-derived placenta is necessary to maintain pregnancy to term, four patients with mutations in the gene encoding P450scc (CYP11A1), have been described, one in a 46,XX female and three in underandrogenized 46,XY individuals, all with primary adrenal failure. OBJECTIVE Our aim was to determine whether P450scc mutations might be found in other children and to explore genotype/phenotype correlations. METHODS AND PATIENTS We performed mutational analysis of CYP11A1 in individuals with 46,XY disorders of sex development and primary adrenal failure, followed by functional studies of P450scc activity and of P450scc RNA splicing. RESULTS Among nine 46,XY infants with adrenal failure and disordered sexual differentiation, two infants had compound heterozygous mutations in CYP11A1. One patient harbored the novel P450scc missense mutations L141W and V415E, which retained 38 and 0% activity, respectively. The other carried a CYP11A1 frameshift mutation c835delA (0% activity) and a splice site mutation [IVS3+(2-3)insT] that prevented correct splicing of P450scc mRNA. CONCLUSIONS P450scc deficiency is a recently recognized disorder that may be more frequent than originally thought. The phenotypic spectrum ranges from severe loss-of-function mutations associated with prematurity, complete underandrogenization, and severe, early-onset adrenal failure, to partial deficiencies found in children born at term with clitoromegaly and later-onset adrenal failure. In contradistinction to congenital lipoid adrenal hyperplasia caused by steroidogenic acute regulatory protein mutations, adrenal hyperplasia has not been reported in any of the six patients with P450scc deficiency.
Collapse
Affiliation(s)
- Chan Jong Kim
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Shih MC, Hsu NC, Huang CC, Wu TS, Lai PY, Chung BC. Mutation of mouse Cyp11a1 promoter caused tissue-specific reduction of gene expression and blunted stress response without affecting reproduction. Mol Endocrinol 2008; 22:915-23. [PMID: 18174359 DOI: 10.1210/me.2007-0222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroids are synthesized mainly from the adrenal glands catalyzed by steroidogenic enzymes; the expression of these enzymes is controlled by transcription factor steroidogenic factor-1 (SF-1; NR5A1). To understand the physiological effect of genetic changes on steroid secretion, we used Cre-LoxP and gene targeting technology to mutate the binding sequence for SF-1 (SF-1 response element) on the promoter of the mouse Cyp11a1 gene, which encodes a critical enzyme for steroid biosynthesis. The resulting Cyp11a1 L/L mice expressed about 7-fold less cytochrome P450 side-chain cleavage enzyme (CYP11A1) in the adrenal and testis but expressed normal amounts of CYP11A1 in the placenta and ovary. This tissue-specific reduction of gene expression did not affect basal steroid secretion but attenuated the circadian rhythm of glucocorticoid secretion. These mice also failed to induce glucocorticoid secretion in response to stress, leading to retention of CD4+CD8+ double-positive thymocytes. Unlike complete Cyp11a1 disruption, which causes neonatal death, promoter mutation did not decrease life span and caused no defect in reproduction. Thus, CYP11A1 appears in normal mice to be expressed above the minimal required level, providing a large capacity for use in response to stress. Mutation of the SF-1 response element of Cyp11a1 results in reduced stress response due to decreased adrenal CYP11A1 expression and insufficient stress-induced glucocorticoids secretion.
Collapse
Affiliation(s)
- Meng-Chun Shih
- Institute of Molecular Biology, 48, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Uchikawa H, Fujii K, Kohno Y, Katsumata N, Nagao K, Yamada M, Miyashita T. U7 snRNA-mediated correction of aberrant splicing caused by activation of cryptic splice sites. J Hum Genet 2007; 52:891-897. [PMID: 17851636 DOI: 10.1007/s10038-007-0192-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/10/2007] [Indexed: 11/29/2022]
Abstract
A considerable fraction of mutations associated with hereditary disorders and cancers affect splicing. Some of them cause exon skipping or the inclusion of an additional exon, whereas others lead to the inclusion of intronic sequences or deletion of exonic sequences through the activation of cryptic splice sites. We focused on the latter cases and have designed a series of vectors that express modified U7 small nuclear RNAs (snRNAs) containing a sequence antisense to the cryptic splice site. Three cases of such mutation were investigated in this study. In two of them, which occurred in the PTCH1 and BRCA1 genes, canonical splice donor sites had been partially impaired by mutations that activated nearby intronic cryptic splice donor sites. Another mutation found in exonic region in CYP11A created a novel splice donor site. Transient expression of the engineered U7 snRNAs in HeLa cells restored correct splicing in a sequence-specific and dose-dependent manner in the former two cases. In contrast, the third case, in which the cryptic splice donor site in the exonic sequence was activated, the expression of modified U7 snRNA resulted in exon skipping. The correction of aberrant splicing by suppressing intronic cryptic splice sites with modified U7 is expected be a promising alternative to gene replacement therapy.
Collapse
Affiliation(s)
- Hideki Uchikawa
- Department of Genetics, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Yoichi Kohno
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Noriyuki Katsumata
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuaki Nagao
- Department of Genetics, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masao Yamada
- Department of Genetics, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Toshiyuki Miyashita
- Department of Genetics, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
48
|
Gonçalves J, Friães A, Moura L. Congenital adrenal hyperplasia: focus on the molecular basis of 21-hydroxylase deficiency. Expert Rev Mol Med 2007; 9:1-23. [PMID: 17466088 DOI: 10.1017/s1462399407000300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractCongenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by defects in one of several steroidogenic enzymes involved in the synthesis of cortisol from cholesterol in the adrenal glands. More than 90% of cases are caused by 21-hydroxylase deficiency, and the severity of the resulting clinical symptoms varies according to the level of 21-hydroxylase activity. 21-Hydroxylase deficiency is usually caused by mutations in theCYP21A2gene, which is located on the RCCX module, a chromosomal region highly prone to genetic recombination events that can result in a wide variety of complex rearrangements, such as gene duplications, gross deletions and gene conversions of variable extensions. Molecular genotyping ofCYP21A2and the RCCX module has proved useful for a more accurate diagnosis of the disease, and prenatal diagnosis. This article summarises the clinical features of 21-hydroxylase deficiency, explains current understanding of the disease at the molecular level, and highlights recent developments, particularly in diagnosis.
Collapse
Affiliation(s)
- João Gonçalves
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | |
Collapse
|
49
|
Katsumata N. Cholesterol Side-Chain Cleavage Enzyme (SCC) Deficiency. Clin Pediatr Endocrinol 2007; 16:63-8. [PMID: 24790347 PMCID: PMC4004890 DOI: 10.1297/cpe.16.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 04/18/2007] [Indexed: 11/04/2022] Open
Abstract
Cholesterol side-chain cleavage enzyme (SCC) catalyzes the conversion of cholesterol to pregnenolone, the first step in the biosynthesis of all steroid hormones. It was once postulated that SCC deficiency would be lethal, but recent studies have established that SCC deficiency is an autosomal recessive disorder caused by inactivating mutations in the CYP11A1 gene. Clinical manifestations include adrenal insufficiency and 46,XY sex reversal due to disrupted steroidogenesis, which are similar to StAR deficiency. Further accumulation of patients with SCC deficiency should clarify the similarities and differences between SCC deficiency and StAR deficiency.
Collapse
Affiliation(s)
- Noriyuki Katsumata
- Department of Endocrinology and Metabolism, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
50
|
Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL, Achermann JC. Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab 2006; 91:4781-4785. [PMID: 16968793 PMCID: PMC1865081 DOI: 10.1210/jc.2006-1565] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Lipoid congenital adrenal hyperplasia is a severe disorder of adrenal and gonadal steroidogenesis caused by mutations in the steroidogenic acute regulatory protein (StAR). Affected children typically present with life-threatening adrenal insufficiency in early infancy due to a failure of glucocorticoid (cortisol) and mineralocorticoid (aldosterone) biosynthesis, and 46,XY genetic males have complete lack of androgenization and appear phenotypically female due to impaired testicular androgen secretion in utero. OBJECTIVE The objective of this study was to investigate whether nonclassic forms of this condition exist. PATIENTS AND METHODS Sequence analysis of the gene encoding StAR was undertaken in three children from two families who presented with primary adrenal insufficiency at 2-4 yr of age; the males had normal genital development. Identified mutants were tested in a series of biochemical assays. RESULTS DNA sequencing identified homozygous StAR mutations Val187Met and Arg188Cys in these two families. Functional studies of StAR activity in cells and in vitro and cholesterol-binding assays showed these mutants retained approximately 20% of wild-type activity. CONCLUSIONS These patients define a new disorder, nonclassic lipoid congenital adrenal hyperplasia, and represent a new cause of nonautoimmune Addison disease (primary adrenal failure).
Collapse
Affiliation(s)
- Bo Yang Baker
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| | - Lin Lin
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| | - Chan Jong Kim
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| | - Jamal Raza
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| | - Claire P Smith
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| | - Walter L Miller
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| | - John C Achermann
- Department of Pediatrics (B.Y.B., C.J.K., W.L.M.), University of California, San Francisco, CA 94143; UCL Institute of Child Health & Department of Medicine (L.L., J.C.A.), University College London, London WC1N 1EH, UK; Endocrinology (J.R.), National Institute of Child Health, Karachi 75520, Pakistan; Department of Paediatrics (C.P.S.), East Lancashire Hospitals NHS Trust, Blackburn BB2 3HH, UK
| |
Collapse
|