1
|
Alvarez de la Rosa D, Ramos-Hernández Z, Weller-Pérez J, Johnson TA, Hager GL. The impact of mineralocorticoid and glucocorticoid receptor interaction on corticosteroid transcriptional outcomes. Mol Cell Endocrinol 2024; 594:112389. [PMID: 39423940 DOI: 10.1016/j.mce.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The mineralocorticoid and glucocorticoid receptors (MR and GR, respectively) are members of the steroid receptor subfamily of nuclear receptors. Their main function is to act as ligand-activated transcription factors, transducing the effects of corticosteroid hormones (aldosterone and glucocorticoids) by modulating gene expression. Corticosteroid signaling is essential for homeostasis and adaptation to different forms of stress. GR responds to glucocorticoids by regulating genes involved in development, metabolism, immunomodulation and brain function. MR is best known for mediating the effects of aldosterone, a key hormone controlling electrolyte and water homeostasis. In addition to aldosterone, MR binds glucocorticoids (cortisol and corticosterone) with equally high affinity. This ligand promiscuity has important repercussions to understand MR function, as well as glucocorticoid signaling. MR and GR share significant sequence and structural similarities, regulate overlapping sets of genes and are able to interact forming heteromeric complexes. However, the precise role of these heteromers in regulating corticosteroid-regulated transcriptional outcomes remains an open question. In this review, we examine the evidence supporting MR-GR heteromerization, the molecular determinants of complex formation and their possible role in differential regulation of transcription in different cellular contexts and ligand availability.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Zuleima Ramos-Hernández
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Julián Weller-Pérez
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Liu H, Konzen S, Coy A, Rege J, Gomez-Sanchez CE, Rainey WE, Turcu AF. An in Vitro triple screen model for human mineralocorticoid receptor activity. J Steroid Biochem Mol Biol 2024; 243:106568. [PMID: 38866188 DOI: 10.1016/j.jsbmb.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
The mineralocorticoid receptor (MR, NR3C2) mediates ion and water homeostasis in epithelial cells of the distal nephron and other tissues. Aldosterone, the prototypical mineralocorticoid, regulates electrolyte and fluid balance. Cortisol binds to MR with equal affinity to aldosterone, but many MR-expressing tissues inactivate cortisol to cortisone via 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2). Dysregulated MR activation contributes to direct cardiovascular tissue insults. Besides aldosterone and cortisol, a variety of MR agonists and/or HSD11B2 inhibitors are putative players in the pathophysiology of low-renin hypertension (LRH), and cardiovascular and metabolic pathology. We developed an in vitro human MR (hMR) model, to facilitate screening for MR agonists, antagonists, and HSD11B2 inhibitors. The CV1 monkey kidney cells were transduced with lentivirus to stably express hMR and an MR-responsive gaussia luciferase gene. Clonal populations of MR-expressing cells (CV1-MRluc) were further transduced to express HSD11B2 (CV1-MRluc-HSD11B2). CV1-MRluc and CV1-MRluc-HSD11B2 cells were treated with aldosterone, cortisol, 11-deoxycorticosterone (DOC), 18-hydroxycorticosterone (18OHB), 18-hydroxycortisol (18OHF), 18-oxocortisol (18oxoF), progesterone, or 17-hydroxyprogesterone (17OHP). In CV1-MRLuc cells, aldosterone and DOC displayed similar potency (EC50: 0.45 nM and 0.30 nM) and maximal response (31- and 23-fold increase from baseline) on hMR; 18oxoF and 18OHB displayed lower potency (19.6 nM and 56.0 nM, respectively) but similar maximal hMR activation (25- and 27-fold increase, respectively); cortisol and corticosterone exhibited higher maximal responses (73- and 52-fold, respectively); 18OHF showed no MR activation. Progesterone and 17OHP inhibited aldosterone-mediated MR activation. In the MRluc-HSD11B2 model, the EC50 of cortisol for MR activation increased from 20 nM (CV1-MRLuc) to ∼2000 nM, while the EC50 for aldosterone remained unchanged. The addition of 18β-glycyrrhetinic acid (18β-GA), a HSD11B2 inhibitor, restored the potency of cortisol back to ∼70 nM in CV1-hMRLuc-HSD11B2 cells. Together, these two cell models will facilitate the discovery of novel MR-modulators, informing MR-mediated pathophysiology mechanisms and drug development efforts.
Collapse
Affiliation(s)
- Haiping Liu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA
| | - Sonja Konzen
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA
| | - Asha Coy
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Celso E Gomez-Sanchez
- Medical Service, G. V. (Sonny) Montgomery VA Medical Service and Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - William E Rainey
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
3
|
Lai W, Huang S, Liu J, Zhou B, Yu Z, Brown J, Hong G. Toll-like receptor 4-dependent innate immune responses are mediated by intracrine corticosteroids and activation of glycogen synthase kinase-3β in astrocytes. FASEB J 2024; 38:e23781. [PMID: 38941212 DOI: 10.1096/fj.202301923rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11β-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11β-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3β, activation of NF-κB, and the GSK-3β-dependent increases of C3, IL-1β, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3β-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11β-HSD1, NF-κB, C3 and IL-1β, decreased astrocytic p-Ser9GSK-3β in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3β/NF-κB signaling.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Siying Huang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| |
Collapse
|
4
|
Ali Y, Gomez-Sanchez CE, Plonczynski M, Naray-Fejes-Toth A, Fejes-Toth G, Gomez-Sanchez EP. mTOR Regulates Mineralocorticoid Receptor Transcriptional Activity by ULK1-Dependent and -Independent Mechanisms. Endocrinology 2024; 165:bqae015. [PMID: 38325289 PMCID: PMC10887451 DOI: 10.1210/endocr/bqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.
Collapse
Affiliation(s)
- Yusuf Ali
- Research Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Celso E Gomez-Sanchez
- Research Service, G. V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Maria Plonczynski
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | - Geza Fejes-Toth
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03755, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
5
|
Zola M, Bousquet E, Bourges JL, Azan F, Zhao M, Jaworski T, Pussard E, Behar-Cohen F. Ocular steroidome in human eyes and in eyes with complex central serous chorioretinopathy (CSCR). Sci Rep 2023; 13:14111. [PMID: 37644063 PMCID: PMC10465571 DOI: 10.1038/s41598-023-41126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
The exact link between systemic and ocular endogenous corticoids (steroidome) is unclear and whether the ocular steroidome is altered in CSCR eyes is unknown. The aims of this study were to analyze the human steroidome in the aqueous humor as a function of age, sex and time of the day, to correlate systemic and ocular steroidome and to analyze the ocular steroidome in long lasting complex inactive CSCR. Based on our results, we present two CSCR cases treated by the combination of oral mineralocorticoid antagonist and glucocorticoids drops. In a cross-sectional study, aqueous humor (AH) was collected between 8am and 6 pm from 50 unaffected individuals (25 men and 25 women) and from 14 patients with chronic CSCR, during cataract surgery. In addition, simultaneous serum and AH were collected from 27 individuals undergoing cataract surgery and, simultaneous AH and vitreous were collected from 9 patients undergoing cataract and vitrectomy to estimate corticoids levels in the different compartments. The steroidome was determined using a LC-MS/MS method that quantifies 13 endogenous corticoids from the gluco, mineralocorticoid and androgen pathways. In AH and vitreous, the highest corticoid level is reached by cortisol (F), that represents less than 10% of F serum level. The cortisol levels in the serum did not correlate with ocular cortisol levels. Serum and ocular cortisone (E) levels correlate, although less than 5% of circulating E reaches the eye. The only mineralocorticoids measured in the AH were corticosterone (B) and its inactive form, the 11-desoxycorticosterone (A). There was no influence of circadian rhythm on cortisol ocular levels and there was no correlation between the age or the sex and the level of F, E, A, and B. In eyes with chronic inactive CSCR, the levels of the active glucocorticoid form F was lower than in control eyes and the F/E ratio was reduced by 50% but the B/A ratio was higher indicating imbalance towards active mineralocorticoids. Base on this observation, we propose to combine an antagonist of the mineralocorticoid receptor together with topical glucocorticoids in two CSCR patients, resistant to all other treatments, with favorable outcome. Our results indicate that the ocular psteroidome is highly regulated suggesting a local metabolism of ocular corticoids. In eyes with long-lasting complex inactive CSCR, the steroidome analysis shows lower active glucocorticoids and higher active mineralocorticoids.
Collapse
Affiliation(s)
- Marta Zola
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
- Department of Ophthalmology, Hôpital Foch, Suresnes, France
| | - Elodie Bousquet
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Jean-Louis Bourges
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Fréderic Azan
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France
| | - Min Zhao
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Thara Jaworski
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France
| | - Eric Pussard
- Department of Genetic and Hormonology, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris-Saclay, Le Kremlin Bicêtre, France
| | - Francine Behar-Cohen
- Department of Ophthalmology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, Physiopathology of Ocular Diseases: Therapeutic Innovations, University Paris Cité, Paris, France.
- Department of Ophthalmology, Hôpital Foch, Suresnes, France.
| |
Collapse
|
6
|
Crompton M, Skinner LJ, Satchell SC, Butler MJ. Aldosterone: Essential for Life but Damaging to the Vascular Endothelium. Biomolecules 2023; 13:1004. [PMID: 37371584 PMCID: PMC10296074 DOI: 10.3390/biom13061004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The renin angiotensin aldosterone system is a key regulator of blood pressure. Aldosterone is the final effector of this pathway, acting predominantly via mineralocorticoid receptors. Aldosterone facilitates the conservation of sodium and, with it, water and acts as a powerful stimulus for potassium excretion. However, evidence for the pathological impact of excess mineralocorticoid receptor stimulation is increasing. Here, we discussed how in the heart, hyperaldosteronism is associated with fibrosis, cardiac dysfunction, and maladaptive hypertrophy. In the kidney, aldosterone was shown to cause proteinuria and fibrosis and may contribute to the progression of kidney disease. More recently, studies suggested that aldosterone excess damaged endothelial cells. Here, we reviewed how damage to the endothelial glycocalyx may contribute to this process. The endothelial glycocalyx is a heterogenous, negatively charged layer on the luminal surface of cells. Aldosterone exposure alters this layer. The resulting structural changes reduced endothelial reactivity in response to protective shear stress, altered permeability, and increased immune cell trafficking. Finally, we reviewed current therapeutic strategies for limiting endothelial damage and suggested that preventing glycocalyx remodelling in response to aldosterone exposure may provide a novel strategy, free from the serious adverse effect of hyperkalaemia seen in response to mineralocorticoid blockade.
Collapse
Affiliation(s)
| | | | | | - Matthew J. Butler
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
7
|
Ali Y, Gomez-Sanchez EP, Gomez-Sanchez CE. Mammalian Target of Rapamycin Inhibition Decreases Angiotensin II-Induced Steroidogenesis in HAC15 Human Adrenocortical Carcinoma Cells. Endocrinology 2022; 164:bqac185. [PMID: 36320101 PMCID: PMC9923797 DOI: 10.1210/endocr/bqac185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) inhibitors suppress adrenal cortical carcinoma cell proliferation and cortisol production; the relationship between mTOR and aldosterone production has not been examined. METHODS HAC15 cells were incubated with an mTOR activator and several inhibitors including AZD8055 (AZD) in the presence and absence of angiotensin II (AngII). The expression of rapamycin-sensitive adapter protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (Rictor), adaptor proteins of mTOR complex 1 and 2, respectively, were studied in the HAC15 cells and deleted by CRISPR/gRNA. RESULTS The mTOR inhibitors decreased aldosterone induced by AngII. Inhibition of mTOR by AZD significantly suppressed AngII-induced aldosterone and cortisol formation in a dose-dependent manner, whereas the mTOR activator MHY had no effect. AZD did not alter forskolin-induced aldosterone production showing that it is specific to the AngII signaling pathway. AngII-mediated ERK and mTOR activation were suppressed by AZD, along with a concomitant dose-dependent reduction of AngII-induced steroidogenic enzymes including steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase-type 2, CYP17A1, and aldosterone synthase protein. Furthermore, mTOR components ribosomal protein S6 kinase (P70S6K) and protein kinase B phosphorylation levels were decreased by AZD. As mTOR exerts its main effects by forming complexes with adaptor proteins Raptor and Rictor, the roles of these individual complexes were studied. We found an increase in the phosphorylation of Raptor and Rictor by AngII and that their CRISPR/gRNA-mediated knockdown significantly attenuated AngII-induced aldosterone and cortisol production. CONCLUSION mTOR signaling has a critical role in transducing the AngII signal initiating aldosterone and cortisol synthesis in HAC15 cells and that inhibition of mTOR could be a therapeutic option for conditions associated with excessive renin-angiotensin system-mediated steroid synthesis.
Collapse
Affiliation(s)
- Yusuf Ali
- G. V. (Sonny) Montgomery, VA Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- G. V. (Sonny) Montgomery, VA Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|