1
|
Charif SE, Inserra PIF, Di Giorgio NP, Schmidt AR, Lux-Lantos V, Vitullo AD, Dorfman VB. Sequence analysis, tissue distribution and molecular physiology of the GnRH preprogonadotrophin in the South American plains vizcacha (Lagostomus maximus). Gen Comp Endocrinol 2016; 232:174-84. [PMID: 26704854 DOI: 10.1016/j.ygcen.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the regulator of the hypothalamic-hypophyseal-gonadal (HHG) axis. GnRH and GAP (GnRH-associated protein) are both encoded by a single preprohormone. Different variants of GnRH have been described. In most mammals, GnRH is secreted in a pulsatile manner that stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The South-American plains vizcacha, Lagostomus maximus, is a rodent with peculiar reproductive features including natural poly-ovulation up to 800 oocytes per estrous cycle, pre-ovulatory follicle formation throughout pregnancy and an ovulatory process which takes place at mid-gestation and adds a considerable number of secondary corpora lutea. Such features should occur under a special modulation of the HHG axis, guided by GnRH. The aim of this study was to sequence hypothalamic GnRH preprogonadotrophin mRNA in the vizcacha, to compare it with evolutionarily related species and to identify its expression, distribution and pulsatile pattern of secretion. The GnRH1variant was detected and showed the highest homology with that of chinchilla, its closest evolutionarily related species. Two isoforms of transcripts were identified, carrying the same coding sequence, but different 5' untranslated regions. This suggests a sensitive equilibrium between RNA stability and translational efficiency. A predominant hypothalamic localization and a pulsatile secretion pattern of one pulse of GnRH every hour were found. The lower homology found for GAP, also among evolutionarily related species, depicts a potentially different bioactivity.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Abstract
Kisspeptins (Kiss) have been shown to be key components in the regulation of gonadotropin-releasing hormone (GnRH) secretion. In vitro studies have demonstrated an increase in GnRH gene expression by Kiss suggesting regulation of GnRH at both the secretory and pretranslational levels. Here, we define genetic mechanisms that mediate Kiss action on target gene expression. In vitro, sequential deletions of the mouse GnRH (mGnRH) gene promoter fused to the luciferase (LUC) reporter gene localized at kisspeptin-response element (KsRE) between -3446 and -2806 bp of the mGnRH gene. In vivo, transgenic mice bearing sequential deletions of the mGnRH gene promoter linked to the LUC reporter localized an identical KsRE. To define the mechanism of regulation, Kiss was first shown to induce nucleosome-depleted DNA within the KsRE, and a potential binding site for the transcription factor, Otx-2, was revealed. Furthermore, increased Otx-2 mRNA, protein, and binding to the KsRE after Kiss treatment were demonstrated. In conclusion, this work identified elements in GnRH-neuronal cell lines and in transgenic mice that mediate positive regulation of GnRH by Kiss. In addition, we show for the first time that Otx-2 is regulated by Kiss, and plays a role in mediating the transcriptional response of mGnRH gene.
Collapse
|
3
|
The gonadotropin-releasing hormone cell-specific element is required for normal puberty and estrous cyclicity. J Neurosci 2011; 31:3336-43. [PMID: 21368045 DOI: 10.1523/jneurosci.5419-10.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Appropriate tissue-specific gene expression of gonadotropin-releasing hormone (GnRH) is critical for pubertal development and maintenance of reproductive competence. In these studies, a common element in the mouse GnRH (mGnRH) promoter, between -2806 and -2078 bp, is shown to mediate differential regulation of hypothalamic and ovarian mGnRH expression. To further characterize this region, we generated a knock-out mouse (GREKO(-/-)) with a deletion of the mGnRH promoter fragment between -2806 and -2078 bp. GnRH mRNA expression in the brain of GREKO(-/-) was less than the expression in wild-type mice; however, immunohistochemical analysis revealed no difference between the numbers of GnRH neurons among groups. GnRH mRNA expression in the ovary was fivefold higher in GREKO(-/-). The immunohistochemical staining for GnRH in the ovary increased in surface epithelial and granulosa cells and also in the corpora lutea of GREKO(-/-) mice. The reproductive phenotype revealed that the mean day of vaginal opening was delayed, and additionally, there was a significant decrease in the length of proestrus and diestrus-metestrus phases of the estrous cycle, resulting in a shortened estrous cycle in GREKO(-/-) mice. This work supports the hypothesis that the region of the GnRH promoter contained between -2806 and -2078 bp acts as a cell-specific enhancer in the GnRH neuron and as a repressor in the ovary. Deletion of this region in vivo implicates the GnRH promoter in mediating pubertal development and periodic reproductive cycling, and forms the foundation to define the nuclear proteins important for puberty and estrous cycling in mammals.
Collapse
|
4
|
Zhao Y, Chen T, Zhou Y, Li K, Xiao J. An association study between the genetic polymorphisms within GnRHI, LHβ and FSHβ genes and central precocious puberty in Chinese girls. Neurosci Lett 2010; 486:188-92. [PMID: 20869425 DOI: 10.1016/j.neulet.2010.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 06/21/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are three hypothalamic-pituitary-gonadal axis expressing hormones. They play critical roles in the onset of puberty. Here we report the relationship between the three hormones and Central Precocious Puberty (CPP) in Chinese Han girls. METHODS We analyzed the single nucleotide polymorphisms (SNPs) of 5'-flanking regions of these genes by DNA sequencing in 27 CPP samples. Then the SNPs sites were genotyped by ligase detection reaction in a total of 283 Chinese Han CPP cases and 284 matched controls. Distributions of the polymorphisms and haplotypes were calculated for statistical evaluation. RESULTS Nine SNPs (One in GnRHI gene: -2003 C/T; Five in LHβ gene: -1456 C/G, -1424 C/G, -238 G/A, -164 G/A and -34 T/A; Three in FSHβ gene: -1825 T/C, -261 G/T and -132 T/A.) were found. A quantitative genetic association study was made. -1825 T/C in FSHβ gene was related with CPP with a weak effect (P=0.025). A haplotype in the 5'-flanking region of LHβ gene was significantly associated with CPP in Chinese Han girls (P=8.25×10(-09)). However, analysis software showed that none of SNP was found in the regulating control element of these genes. CONCLUSIONS Our finding implies that the polymorphisms in the 5'-flanking regions of FSHβ gene and LHβ gene probably were related to the puberty onset time of these girls. Further studies on the polymorphisms are needed for the exact mechanism.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Biology Science and Technology, DongHua University, 2999 North Ren Min Road, Shanghai 201620, China
| | | | | | | | | |
Collapse
|
5
|
Wang P, Jin T. Hydrogen peroxide stimulates nuclear import of the POU homeodomain protein Oct-1 and its repressive effect on the expression of Cdx-2. BMC Cell Biol 2010; 11:56. [PMID: 20637099 PMCID: PMC2913919 DOI: 10.1186/1471-2121-11-56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 07/16/2010] [Indexed: 11/24/2022] Open
Abstract
Background The ubiquitously expressed POU homeodomain protein Oct-1 serves as a sensor for stress induced by irradiation. We found recently that in pancreatic and intestinal endocrine cells, Oct-1 also functions as a sensor for cyclic AMP (cAMP). The caudal homeobox gene Cdx-2 is a transactivator of proglucagon (gcg) and pro-insulin genes. Oct-1 binds to Cdx-2 promoter and represses its expression. cAMP elevation leads to increased nuclear exclusion of Oct-1, associated with reduced recruitment of nuclear co-repressors to the Cdx-2 promoter and increased Cdx-2 expression. Results We show in this study that inducing oxidative stress by hydrogen peroxide (H2O2) increased nuclear Oct-1 content in both pancreatic α and β cell lines, as well as in a battery of other cells. This increase was then attributed to accelerated nuclear import of Oct-1, assessed by Fluorescence Recovery After Photobleaching (FRAP) using green fluorescence protein (EGFP) tagged Oct-1 molecule. H2O2 treatment was then shown to stimulate the activities of DNA-dependent protein kinase (DNA-PK) and c-jun N-terminal kinase (JNK). Finally, increased Oct-1 nuclear content upon H2O2 treatment in a pancreatic α cell line was associated with reduced Cdx-2 and gcg mRNA expression. Conclusion These observations suggest that Oct-1 functions as a sensor for both metabolic and stress/survival signaling pathways via altering its nuclear-cytoplasmic shuttling.
Collapse
Affiliation(s)
- Peixiang Wang
- Div of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, 10-354 Toronto Medical Discovery Tower, The MaRS Building, 101 College St, Toronto, Ontario M5G 1L7, Canada
| | | |
Collapse
|
6
|
Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, Huang Y, Su B, Li RK, Liu L, Zhang Y, Elsholtz HP, Hu J, Gaisano HY, Jin T. POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP. J Biol Chem 2009; 284:26456-65. [PMID: 19617623 PMCID: PMC2785334 DOI: 10.1074/jbc.m109.030668] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Indexed: 01/30/2023] Open
Abstract
Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor. We found that it also functions as a repressor of Cdx-2, a proglucagon gene activator. Through a mechanism that involves the activation of exchange protein activated by cyclic AMP, elevation of cAMP leads to enhanced phosphorylation and nuclear exclusion of Oct-1 and reduced interactions between Oct-1 or nuclear co-repressors and the Cdx-2 gene promoter, detected by chromatin immunoprecipitation. In rat primary pancreatic islet cells, cAMP elevation also reduces nuclear Oct-1 content, which causes increased proglucagon and proinsulin mRNA expression. Our study therefore identifies a novel mechanism by which cAMP regulates hormone-gene expression and suggests that ubiquitously expressed Oct-1 may play a role in metabolic homeostasis by functioning as a sensor for cAMP.
Collapse
Affiliation(s)
| | - Qinghua Wang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Jane Sun
- From the Division of Cell and Molecular Biology and
- the Departments of Laboratory Medicine and Pathobiology and
| | - Jing Wu
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Hang Li
- From the Division of Cell and Molecular Biology and
| | - Nina Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Yachi Huang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda Su
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ren-ke Li
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ling Liu
- From the Division of Cell and Molecular Biology and
| | - Yi Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Jim Hu
- the Departments of Laboratory Medicine and Pathobiology and
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Herbert Y. Gaisano
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tianru Jin
- From the Division of Cell and Molecular Biology and
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Departments of Laboratory Medicine and Pathobiology and
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Department of Nutrition, School of Public Health, Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
7
|
Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 2009; 30:10-29. [PMID: 18708085 DOI: 10.1016/j.yfrne.2008.07.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 04/28/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is the first key hormone of reproduction. GnRH analogs are extensively used in in vitro fertilization, and treatment of sex hormone-dependent cancers, due to their ability to bring about 'chemical castration'. The interaction of GnRH with its cognate type I receptor (GnRHR) in pituitary gonadotropes results in the activation of Gq/G(11), phospholipase Cbeta (PLCbetaI), PLA(2), and PLD. Sequential activation of the phospholipases generates the second messengers inositol 1, 4, 5-trisphosphate (IP(3)), diacylglycerol (DAG), and arachidonic acid (AA), which are required for Ca(2+) mobilization, the activation of various protein kinase C isoforms (PKCs), and the production of prostaglandin (PG) and other metabolites of AA, respectively. PKC isoforms are the major mediators of the downstream activation of a number of mitogen-activated protein kinase (MAPK) cascades by GnRH, namely: extracellular signal-regulated kinase (ERK), jun-N-terminal kinase (JNK), and p38MAPK. The activated MAPKs phosphorylate both cytosolic and nuclear proteins to initiate the transcriptional activation of the gonadotropin subunit genes and the GnRHR. While Ca(2+) mobilization has been found to initiate rapid gonadotropin secretion, Ca(2+), together with various PKC isoforms, MAPKs and AA metabolites also serve as key nodes, in the GnRH-stimulated signaling network that enables the gonadotropes to decode GnRH pulse frequencies and translating that into differential gonadotropin synthesis and release. Even though pulsatility of GnRH is recognized as a major determinant for differential gonadotropin subunit gene expression and gonadotropin secretion very little is yet known about the signaling circuits governing GnRH action at the 'Systems Biology' level. Direct apoptotic and metastatic effects of GnRH analogs in gonadal steroid-dependent cancers expressing the GnRHR also seem to be mediated by the activation of the PKC/MAPK pathways. However, the mechanisms dictating life (pituitary) vs. death (cancer) decisions made by the same GnRHR remain elusive. Understanding these molecular mechanisms triggered by the GnRHR through biochemical and 'Systems Biology' approaches would provide the basis for the construction of the dynamic connectivity maps, which operate in the various cell types (endocrine, cancer, and immune system) targeted by GnRH. The connectivity maps will open a new vista for exploring the direct effects of GnRH analogs in tumors and the design of novel combined therapies for fertility control, reproductive disorders and cancers.
Collapse
|
8
|
|
9
|
Leclerc GM, Boockfor FR. Calcium influx and DREAM protein are required for GnRH gene expression pulse activity. Mol Cell Endocrinol 2007; 267:70-9. [PMID: 17241740 PMCID: PMC1852481 DOI: 10.1016/j.mce.2006.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/28/2006] [Accepted: 12/19/2006] [Indexed: 12/19/2022]
Abstract
Recent evidence using GT1-7 cells indicates that GnRH pulsatility depends on exocytotic-release and gene transcription events. To determine whether calcium or DREAM may play a role in linking these processes, we used an L-type Ca(2+)-blocker (nimodipine) and found that not only GnRH gene expression (GnRH-GE) pulse activity was abolished but also that binding of proteins to OCT1BS-a (essential site for GnRH-GE pulses) was reduced. We further found that only EF-hand forms of DREAM were expressed in GT1-7 and that DREAM was part of the complex binding to OCT1BS-a. Finally, microinjection of DREAM antibody into cells abolished GnRH-GE pulses demonstrating its importance in pulsatility. These results reveal that calcium and DREAM may bridge cytoplasmic and nuclear events enabling temporal coordination of intermittent activity. Expression of DREAM in various cell types coupled with the universal role of calcium raise the possibility that these factors may play similar role in other secretory cells.
Collapse
Affiliation(s)
- Gilles M Leclerc
- Laboratory of Molecular Dynamics, Department of Cell Biology and Anatomy Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
10
|
Doyle GA, Sheng XR, Schwebel CL, Ferraro TN, Berrettini WH, Buono RJ. Identification and functional significance of polymorphisms in the μ-opioid receptor gene (Oprm) promoter of C57BL/6 and DBA/2 mice. Neurosci Res 2006; 55:244-54. [PMID: 16644048 DOI: 10.1016/j.neures.2006.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 03/03/2006] [Accepted: 03/13/2006] [Indexed: 11/30/2022]
Abstract
C57BL/6J and DBA/2J mice demonstrate differences in morphine preference when tested in a two-bottle choice paradigm. Quantitative trait loci (QTL) mapping suggested the proximal region of chromosome 10 was responsible for 41% of the observed genetic variance. The mu-opioid receptor (MOR) gene (Oprm) maps to this region and is a prime candidate for explaining the QTL. We hypothesized that variations in Oprm between these strains are responsible for differences in morphine preference. We identify five single nucleotide polymorphisms (SNPs) in the Oprm promoter; three within or near putative transcription factor binding sites. Promoter fragments were amplified from genomic DNA by polymerase chain reaction (PCR) and subcloned into luciferase reporter vectors. A significant difference in basal Oprm promoter activity was seen with C57BL/6 and DBA/2 approximately 1675 constructs in MOR-positive BE(2)-C cells, but not in MOR-negative Neuro-2a cells. In BE(2)-C cells, average DBA/2 approximately 1675 construct activity was 1.3-2.0x greater than average C57BL/6 activity suggesting that the SNPs might alter MOR expression in these two mouse strains. Significant differences in promoter activities between the two cell lines suggest that cell-type-specific transcription factors are involved. No significant differences in construct activity were found between untreated and morphine-treated BE(2)-C or Neuro-2a cells, suggesting that morphine does not regulate transcription of Oprm.
Collapse
Affiliation(s)
- Glenn A Doyle
- The Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | |
Collapse
|
11
|
Leclerc GM, Boockfor FR. Identification of a novel OCT1 binding site that is necessary for the elaboration of pulses of rat GnRH promoter activity. Mol Cell Endocrinol 2005; 245:86-92. [PMID: 16337733 DOI: 10.1016/j.mce.2005.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 10/27/2005] [Indexed: 11/27/2022]
Abstract
Recent evidence from our laboratory demonstrated that the OCT1 protein was necessary for GnRH gene promoter pulse activity through its interaction with a specific OCT1 binding site (OCT1BS-a, -1,774/-1,781). In light of the importance of this POU homeoprotein in pulsatile function, we focused on two other highly conserved OCT1 sites within this region, OCT1BS-b (-1,694/-1,701, previously AT-b), and OCT1BS-c (-1,569/-1,562). Mutagenesis of these sites revealed that alteration of OCT1BS-c, but not OCT1BS-b, virtually abolished gene expression pulses in GT1-7 cells. EMSAs confirmed that OCT1 can bind to both sites. Taken together, our findings demonstrate clearly that more than one Oct1 binding site is necessary for GnRH promoter pulses. Moreover, the lack of an influence observed with OCT1BS-b on pulse activity indicates that OCT1 action is not general to all OCT1 sites, but specific to certain octamer sequences in the NSE region of the GnRH promoter.
Collapse
Affiliation(s)
- Gilles M Leclerc
- Laboratory of Molecular Dynamics, Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, 29425, USA
| | | |
Collapse
|
12
|
Kam KY, Jeong KH, Norwitz ER, Jorgensen EM, Kaiser UB. Oct-1 and nuclear factor Y bind to the SURG-1 element to direct basal and gonadotropin-releasing hormone (GnRH)-stimulated mouse GnRH receptor gene transcription. Mol Endocrinol 2004; 19:148-62. [PMID: 15388790 DOI: 10.1210/me.2004-0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cis-regulatory element localized to position -292/-285 of the mouse GnRH receptor (mGnRHR) gene promoter, designated Sequence Underlying Responsiveness to GnRH 1 (SURG-1), has been shown previously to contribute to stimulation of mGnRHR gene expression by GnRH. We have identified three specific protein-DNA complexes on the SURG-1 element by EMSA using nuclear extracts from the gonadotrope-derived alphaT3-1 and LbetaT2 cell lines. Serial mutagenesis and supershift assays identified nuclear factor Y (NF-Y) binding to -288/-284 and Oct-1 binding to a TAAT sequence at -290/-287. Binding of these two transcription factors was confirmed in vivo by chromatin immunoprecipitation assay and increased in response to GnRH stimulation. To define the functional significance of these sequences in the regulation of mGnRHR gene transcription, transient transfection assays were performed in alphaT3-1 cells using a 1.2-kb mGnRHR (-1164/+62) gene promoter-luciferase reporter construct with selective mutations of the Oct-1, NF-Y, and/or the previously characterized activating protein 1 (AP-1) binding site (-274/-268). Individual mutations in the Oct-1, NF-Y, and AP-1 sites decreased both basal expression and stimulation by GnRH agonist, and the combined mutation of the Oct-1 and AP-1 binding sites further reduced basal transcriptional activity and abolished GnRH stimulation. Overexpression of NF-YA increased GnRHR promoter activity, whereas expression of a dominant negative NF-YA mutant decreased activity, further supporting a role of NF-Y in regulation of mGnRHR gene transcription. In addition, knockdown of Oct-1 by small interfering RNA confirmed that Oct-1 is important for mGnRHR gene expression. In conclusion, NF-Y and Oct-1 bind to the SURG-1 element to direct basal and GnRH-stimulated expression of the mGnRHR gene.
Collapse
Affiliation(s)
- Kyung-Yoon Kam
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 2003; 28:294-304. [PMID: 12826401 DOI: 10.1016/s0968-0004(03)00088-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When herpes simplex virus (HSV) infects human cells, it is able to enter two modes of infection: lytic and latent. A key activator of lytic infection is a virion protein called VP16, which, upon infection of a permissive cell, forms a transcriptional regulatory complex with two cellular proteins - the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1 - to activate transcription of the first set of expressed viral genes. This regulatory complex, called the VP16-induced complex, reveals mechanisms of combinatorial control of transcription. The activities of Oct-1 and HCF-1 - two important regulators of cellular gene expression and proliferation - illuminate strategies by which HSV might coexist with its host.
Collapse
|