1
|
Cinco R, Malott K, Lim J, Ortiz L, Pham C, del Rosario A, Welch J, Luderer U. Decreased glutathione synthesis in granulosa cells, but not oocytes, of growing follicles decreases fertility in mice†. Biol Reprod 2024; 111:1097-1106. [PMID: 39151022 PMCID: PMC11565241 DOI: 10.1093/biolre/ioae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/18/2024] Open
Abstract
Prior studies showed that mice deficient in the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in synthesis of the thiol antioxidant glutathione, have decreased ovarian glutathione concentrations, chronic ovarian oxidative stress, poor oocyte quality resulting in early preimplantation embryonic mortality and decreased litter size, and accelerated age-related decline in ovarian follicle numbers. Global deficiency of the catalytic subunit of this enzyme, Gclc, is embryonic lethal. We tested the hypothesis that granulosa cell- or oocyte-specific deletion of Gclc recapitulates the female reproductive phenotype of global Gclm deficiency. We deleted Gclc in granulosa cells or oocytes of growing follicles using Gclc floxed transgenic mice paired with Amhr2-Cre or Zp3-Cre alleles, respectively. We discovered that granulosa cell-specific deletion of Gclc in Amhr2Cre;Gclc(f/-) mice recapitulates the decreased litter size observed in Gclm-/- mice but does not recapitulate the accelerated age-related decline in ovarian follicles observed in Gclm-/- mice. In addition to having lower glutathione concentrations in granulosa cells, Amhr2Cre;Gclc(f/-) mice also had decreased glutathione concentrations in oocytes. By contrast, oocyte-specific deletion of Gclc in Zp3Cre;Gclc(f/-) mice did not affect litter size or accelerate the age-related decline in follicle numbers, and these mice did not have decreased oocyte glutathione concentrations, consistent with transport of glutathione between cells via gap junctions. The results suggest that glutathione deficiency at earlier stages of follicle development may be required to generate the accelerated follicle depletion phenotype observed in global Gclm null mice.
Collapse
Affiliation(s)
- Rachel Cinco
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Kelli Malott
- Environmental Health Sciences Graduate Program, University of California Irvine, Irvine CA, USA
- Department of Environmental and Occupational Health, University of California Irvine, Irvine CA, USA
| | - Jinhwan Lim
- Department of Environmental and Occupational Health, University of California Irvine, Irvine CA, USA
- Department of Medicine, University of California Irvine, Irvine CA USA
| | - Laura Ortiz
- Department of Medicine, University of California Irvine, Irvine CA USA
| | - Christine Pham
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Angelica del Rosario
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Jennifer Welch
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ulrike Luderer
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
- Environmental Health Sciences Graduate Program, University of California Irvine, Irvine CA, USA
- Department of Environmental and Occupational Health, University of California Irvine, Irvine CA, USA
- Department of Medicine, University of California Irvine, Irvine CA USA
- Center for Occupational and Environmental Health, University of California Irvine, Irvine CA, USA
| |
Collapse
|
2
|
Zhang Q, Sun F, Zhang R, Zhao D, Zhu R, Cheng X, Long X, Hou X, Yan R, Cao Y, Guo F, Yan L, Hu Y. The evolution of ovarian somatic cells characterized by transcriptome and chromatin accessibility across rodents, monkeys, and humans. LIFE MEDICINE 2024; 3:lnae028. [PMID: 39872443 PMCID: PMC11749874 DOI: 10.1093/lifemedi/lnae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 01/30/2025]
Abstract
The ovary plays a crucial role in the reproductive system of female mammals by producing mature oocytes through folliculogenesis. Non-human model organisms are extensively utilized in research on human ovarian biology, thus necessitating the investigation of conservation and divergence in molecular mechanisms across species. In this study, we employed integrative single-cell analysis of transcriptome and chromatin accessibility to identify the evolutionary conservation and divergence patterns of ovaries among humans, monkeys, mice, rats, and rabbits. Our analyses revealed that theca cells exhibited the most significant changes during evolution based on scRNA-seq and scATAC-seq datasets. Furthermore, we discovered common cis-regulatory architectures in theca cells across species by conducting joint analyses of scRNA-seq and scATAC-seq datasets. These findings have potential applications in non-human biomedical and genetic research to validate molecular mechanisms found in human organisms. Additionally, our investigation into non-coding genomic regions identified intergenic highly transcribed regions (igHTRs) that may contribute to the evolution of species-specific phenotypic traits. Overall, our study provides valuable insights into understanding the molecular characteristics of adult ovaries while offering new perspectives for studying human ovarian physiology and diseases.
Collapse
Affiliation(s)
- Qiancheng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruifeng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Donghong Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Long
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinling Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqiong Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Zhu S, Huo S, Wang Z, Huang C, Li C, Song H, Yang X, He R, Ding C, Qiu M, Zhu XJ. Follistatin controls the number of murine teeth by limiting TGF-β signaling. iScience 2024; 27:110785. [PMID: 39286503 PMCID: PMC11403059 DOI: 10.1016/j.isci.2024.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Supernumerary teeth are common developmental anomalies of dentition. However, the factors and mechanisms driving their formation remain largely unknown. Here, we report that conditional knockout of Fst, encoding an antagonist for the transforming growth factor β (TGF-β) signaling pathway, in both oral epithelium and mesenchyme of mice (Fst CKO ) led to supernumerary upper incisor teeth, arising from the lingual dental epithelium of the native teeth and preceded by an enlarged and split lingual cervical loop. Fst-deficiency greatly activated TGF-β signaling in developing maxillary incisor teeth, associated with increased epithelium cell proliferation. Moreover, Fst CKO teeth exhibited increased expression of Tbx1, Sp6, and Sox2, which were identified as direct targets of TGF-β/SMAD2 signaling. Finally, we show that upregulation of Tbx1 in response to Fst-deficiency was largely responsible for the formation of extra teeth in Fst CKO mice. Taken together, our investigation indicates a novel role for Fst in controlling murine tooth number by restricting TGF-β signaling.
Collapse
Affiliation(s)
- Shicheng Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suman Huo
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhongzheng Wang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Caiyan Huang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chuanxu Li
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hanjing Song
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueqin Yang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rui He
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Cheng Ding
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Jing Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
4
|
Wei T, Mo L, Wu Z, Zou T, Huang J. Gonadal transcriptome analysis of genes related to sex differentiation and sex development in the Pomacea canaliculata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101235. [PMID: 38631127 DOI: 10.1016/j.cbd.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
As an invasive alien animal, Pomacea canaliculata poses a great danger to the ecology and human beings. Recently, there has been a gradual shift towards bio-friendly control. Based on the development of RNA interference and CRISPR technology as molecular regulatory techniques for pest control, it was determined if the knockout of genes related to sex differentiation in P. canaliculata could induce sterility, thereby helping in population control. However, the knowledge of sex differentiation- and development-related genes in P. canaliculata is currently lacking. Here, transcriptomic approaches were used to study the genes expressed in the two genders of P. canaliculata at various developmental stages. Gonad transcriptomes of immature or mature males and females were compared, revealing 12,063 genes with sex-specific expression, of which 6066 were male- and 5997 were female-specific. Among the latter, 581 and 235 genes were up-regulated in immature and mature females, respectively. The sex-specific expressed genes identified included GnRHR2 and TSSK3 in males and ZAR1 and WNT4 in females. Of the genes, six were involved in reproduction: CCNBLIP1, MND1, DMC1, DLC1, MRE11, and E(sev)2B. Compared to immature snail gonads, the expression of HSP90 and CDK1 was markedly reduced in gonadal. It was hypothesized that the two were associated with the development of females. These findings provided new insights into crucial genetic information on sex differentiation and development in P. canaliculata. Additionally, some candidate genes were explored, which can contribute to future studies on controlling P. canaliculata using molecular regulatory techniques.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Lili Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Tongxiang Zou
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China.
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi 541006, China; College of Life Sciences, Guangxi Normal University, Guilin, Guangxi 541006, China.
| |
Collapse
|
5
|
Granados-Aparici S, Yang Q, Clarke HJ. SMAD4 promotes somatic-germline contact during murine oocyte growth. eLife 2024; 13:RP91798. [PMID: 38819913 PMCID: PMC11142639 DOI: 10.7554/elife.91798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFβ) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFβ mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Research Institute, McGill University Health CentreMontrealCanada
- Present address: Cancer CIBER (CIBERONC)MadridSpain
- Present address: Pathology Department, Medical School, University of Valencia-INCLIVAValenciaSpain
| | - Qin Yang
- Research Institute, McGill University Health CentreMontrealCanada
| | - Hugh J Clarke
- Research Institute, McGill University Health CentreMontrealCanada
- Departments of Obstetrics and Gynecology and Biology, Division of Experimental Medicine, McGill UniversityMontréalCanada
| |
Collapse
|
6
|
Douglas JC, Sekulovski N, Arreola MR, Oh Y, Hayashi K, MacLean JA. Normal Ovarian Function in Subfertile Mouse with Amhr2-Cre-Driven Ablation of Insr and Igf1r. Genes (Basel) 2024; 15:616. [PMID: 38790245 PMCID: PMC11121541 DOI: 10.3390/genes15050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants.
Collapse
Affiliation(s)
- Jenna C. Douglas
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Madison R. Arreola
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - Yeongseok Oh
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
| | - James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; (J.C.D.)
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
7
|
Hurtado A, Mota-Gómez I, Lao M, Real FM, Jedamzick J, Burgos M, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Complete male-to-female sex reversal in XY mice lacking the miR-17~92 cluster. Nat Commun 2024; 15:3809. [PMID: 38714644 PMCID: PMC11076593 DOI: 10.1038/s41467-024-47658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024] Open
Abstract
Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.
Collapse
Grants
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P11-CVI-7291 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- grant no. 101045439, 3D-REVOLUTION EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Ministerio de Ciencia e Innovación. Agencia Estatal de Investigación. Grant No. PID2022-139302NB-I00
Collapse
Affiliation(s)
- Alicia Hurtado
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/UPO/JA, Seville, Spain
| | - Irene Mota-Gómez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Miguel Lao
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Francisca M Real
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johanna Jedamzick
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Miguel Burgos
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/UPO/JA, Seville, Spain.
| | - Rafael Jiménez
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain.
| | - Francisco J Barrionuevo
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain.
| |
Collapse
|
8
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
9
|
Xu D, Song S, Wang F, Li Y, Li Z, Yao H, Zhao Y, Zhao Z. Single-cell transcriptomic atlas of goat ovarian aging. J Anim Sci Biotechnol 2023; 14:151. [PMID: 38053167 DOI: 10.1186/s40104-023-00948-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process, and ovarian aging is shown by a decrease in the number and quality of oocytes. However, little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging, especially in goats. Therefore, the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution. RESULTS For the first time, we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn, young and aging goats, and identified nine ovarian cell types with distinct gene-expression signatures. Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes, such as Wnt beta-catenin signalling was enriched in germ cells, whereas ovarian steroidogenesis was enriched in granulosa cells (GCs). Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system, oxidative phosphorylation, and apoptosis. Subsequently, we identified a series of dynamic genes, such as AMH, CRABP2, THBS1 and TIMP1, which determined the fate of GCs. Additionally, FOXO1, SOX4, and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging. CONCLUSIONS This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell type-specific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases.
Collapse
Affiliation(s)
- Dejun Xu
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shuaifei Song
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Fuguo Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yawen Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Ziyuan Li
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hui Yao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhongquan Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Vann K, Weidner AE, Walczyk AC, Astapova O. Paxillin knockout in mouse granulosa cells increases fecundity†. Biol Reprod 2023; 109:669-683. [PMID: 37552051 PMCID: PMC10651069 DOI: 10.1093/biolre/ioad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Paxillin is an intracellular adaptor protein involved in focal adhesions, cell response to stress, steroid signaling, and apoptosis in reproductive tissues. To investigate the role of paxillin in granulosa cells, we created a granulosa-specific paxillin knockout mouse model using Cre recombinase driven by the Anti-Müllerian hormone receptor 2 gene promoter. Female granulosa-specific paxillin knockout mice demonstrated increased fertility in later reproductive age, resulting in higher number of offspring when bred continuously up to 26 weeks of age. This was not due to increased numbers of estrous cycles, ovulated oocytes per cycle, or pups per litter, but this was due to shorter time to pregnancy and increased number of litters in the granulosa-specific paxillin knockout mice. The number of ovarian follicles was not significantly affected by the knockout at 30 weeks of age. Granulosa-specific paxillin knockout mice had slightly altered estrous cycles but no difference in circulating reproductive hormone levels. Knockout of paxillin using clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR-Cas9) in human granulosa-derived immortalized KGN cells did not affect cell proliferation or migration. However, in cultured primary mouse granulosa cells, paxillin knockout reduced cell death under basal culture conditions. We conclude that paxillin knockout in granulosa cells increases female fecundity in older reproductive age mice, possibly by reducing granulosa cell death. This study implicates paxillin and its signaling network as potential granulosa cell targets in the management of age-related subfertility.
Collapse
Affiliation(s)
- Kenji Vann
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Adelaide E Weidner
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ariana C Walczyk
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Olga Astapova
- Division of Endocrinology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Tscherner AK, McClatchie T, Kaboba G, Boison D, Baltz JM. Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress. Cells 2023; 12:2500. [PMID: 37887344 PMCID: PMC10604916 DOI: 10.3390/cells12202500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos.
Collapse
Affiliation(s)
- Allison K. Tscherner
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| | - Taylor McClatchie
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
| | - Gracia Kaboba
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA;
| | - Jay M. Baltz
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
12
|
Bi S, Tu Z, Chen D, Zhang S. Histone modifications in embryo implantation and placentation: insights from mouse models. Front Endocrinol (Lausanne) 2023; 14:1229862. [PMID: 37600694 PMCID: PMC10436591 DOI: 10.3389/fendo.2023.1229862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Embryo implantation and placentation play pivotal roles in pregnancy by facilitating crucial maternal-fetal interactions. These dynamic processes involve significant alterations in gene expression profiles within the endometrium and trophoblast lineages. Epigenetics regulatory mechanisms, such as DNA methylation, histone modification, chromatin remodeling, and microRNA expression, act as regulatory switches to modulate gene activity, and have been implicated in establishing a successful pregnancy. Exploring the alterations in these epigenetic modifications can provide valuable insights for the development of therapeutic strategies targeting complications related to pregnancy. However, our current understanding of these mechanisms during key gestational stages remains incomplete. This review focuses on recent advancements in the study of histone modifications during embryo implantation and placentation, while also highlighting future research directions in this field.
Collapse
Affiliation(s)
- Shilei Bi
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Shuang Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| |
Collapse
|
13
|
Shoorei H, Seify M, Talebi SF, Majidpoor J, Dehaghi YK, Shokoohi M. Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon 2023; 9:e16848. [PMID: 37303564 PMCID: PMC10250808 DOI: 10.1016/j.heliyon.2023.e16848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-β-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3β-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERβ), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Koohestani Dehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Shokoohi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Tao R, Stöhr O, Wang C, Qiu W, Copps KD, White MF. Hepatic follistatin increases basal metabolic rate and attenuates diet-induced obesity during hepatic insulin resistance. Mol Metab 2023; 71:101703. [PMID: 36906067 PMCID: PMC10033741 DOI: 10.1016/j.molmet.2023.101703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE Body weight change and obesity follow the variance of excess energy input balanced against tightly controlled EE (energy expenditure). Since insulin resistance can reduce energy storage, we investigated whether genetic disruption of hepatic insulin signaling reduced adipose mass with increased EE. METHODS Insulin signaling was disrupted by genetic inactivation of Irs1 (Insulin receptor substrate 1) and Irs2 in hepatocytes of LDKO mice (Irs1L/L·Irs2L/L·CreAlb), creating a state of complete hepatic insulin resistance. We inactivated FoxO1 or the FoxO1-regulated hepatokine Fst (Follistatin) in the liver of LDKO mice by intercrossing LDKO mice with FoxO1L/L or FstL/L mice. We used DEXA (dual-energy X-ray absorptiometry) to assess total lean mass, fat mass and fat percentage, and metabolic cages to measure EE (energy expenditure) and estimate basal metabolic rate (BMR). High-fat diet was used to induce obesity. RESULTS Hepatic disruption of Irs1 and Irs2 (LDKO mice) attenuated HFD (high-fat diet)-induced obesity and increased whole-body EE in a FoxO1-dependent manner. Hepatic disruption of the FoxO1-regulated hepatokine Fst normalized EE in LDKO mice and restored adipose mass during HFD consumption; moreover, hepatic Fst disruption alone increased fat mass accumulation, whereas hepatic overexpression of Fst reduced HFD-induced obesity. Excess circulating Fst in overexpressing mice neutralized Mstn (Myostatin), activating mTORC1-promoted pathways of nutrient uptake and EE in skeletal muscle. Similar to Fst overexpression, direct activation of muscle mTORC1 also reduced adipose mass. CONCLUSIONS Thus, complete hepatic insulin resistance in LDKO mice fed a HFD revealed Fst-mediated communication between the liver and muscle, which might go unnoticed during ordinary hepatic insulin resistance as a mechanism to increase muscle EE and constrain obesity.
Collapse
Affiliation(s)
- Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Caixia Wang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Wei Qiu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reprod Sci 2023; 30:560-568. [PMID: 35739352 DOI: 10.1007/s43032-022-01014-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Mitochondria are dynamic organelles that regulate their size, shape, and morphology through mechanisms called fusion and fission, to continually adapt themselves to their bioenergetic environment. These mechanisms play a critical role to maintain the mitochondrial function under metabolic and environmental stress. Mitofusin 1 (MFN1) and mitofusin 2 (MFN2) are transmembrane GTPases that regulate mitochondrial fusion mechanism and are required for the maintenance of cellular homeostasis. In this study, we aimed to determine the role of mitofusins in female reproductive competence and senescence using a mouse model with oocyte-specific double deletion of Mfn1 and Mfn2, eliminating the potential functional redundancy of these two proteins. Oocyte-specific targeted double deletion of Mfn1 and Mfn2 in mice resulted in female infertility associated with impaired follicular development and oocyte maturation. It also resulted in altered mitochondrial dynamics and mitochondrial dysfunction. Lack of Mfn1 and Mfn2 in oocytes resulted in accelerated follicular depletion and impaired oocyte quality which are consistent with phenotype of reproductive aging.
Collapse
|
16
|
Jia S, Wilbourne J, Crossen MJ, Zhao F. Morphogenesis of the female reproductive tract along antero-posterior and dorso-ventral axes is dependent on Amhr2+ mesenchyme in mice†. Biol Reprod 2022; 107:1477-1489. [PMID: 36130202 PMCID: PMC9752753 DOI: 10.1093/biolre/ioac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e., perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - McKenna J Crossen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Ito H, Emori C, Kobayashi M, Maruyama N, Fujii W, Naito K, Sugiura K. Cooperative effects of oocytes and estrogen on the forkhead box L2 expression in mural granulosa cells in mice. Sci Rep 2022; 12:20158. [PMID: 36424497 PMCID: PMC9691737 DOI: 10.1038/s41598-022-24680-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Forkhead box L2 (FOXL2) plays a critical role in the development and function of mammalian ovaries. In fact, the causative effects of FOXL2 misregulations have been identified in many ovarian diseases, such as primary ovarian insufficiency and granulosa cell tumor; however, the mechanism by which FOXL2 expression is regulated is not well studied. Here, we showed that FOXL2 expression in ovarian mural granulosa cells (MGCs) requires stimulation by both oocyte-derived signals and estrogen in mice. In the absence of oocytes or estrogen, expression of FOXL2 and its transcriptional targets, Cyp19a1 and Fst mRNA, in MGCs were significantly decreased. Moreover, expression levels of Sox9 mRNA, but not SOX9 protein, were significantly increased in the FOXL2-reduced MGCs. FOXL2 expression in MGCs was maintained with either oocytes or recombinant proteins of oocyte-derived paracrine factors, BMP15 and GDF9, together with estrogen, and this oocyte effect was abrogated with an ALK5 inhibitor, SB431542. In addition, the FOXL2 level was significantly decreased in MGCs isolated from Bmp15-/- /Gdf9+/- mice. Therefore, oocyte, probably with estrogen, plays a critical role in the regulation of FOXL2 expression in mural granulosa cells in mice.
Collapse
Affiliation(s)
- Haruka Ito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Emori
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Present Address: Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mei Kobayashi
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Nawaz A, Bilal M, Fujisaka S, Kado T, Aslam MR, Ahmed S, Okabe K, Igarashi Y, Watanabe Y, Kuwano T, Tsuneyama K, Nishimura A, Nishida Y, Yamamoto S, Sasahara M, Imura J, Mori H, Matzuk MM, Kudo F, Manabe I, Uezumi A, Nakagawa T, Oishi Y, Tobe K. Depletion of CD206 + M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat Commun 2022; 13:7058. [PMID: 36411280 PMCID: PMC9678897 DOI: 10.1038/s41467-022-34191-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-β1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-β signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.
Collapse
Affiliation(s)
- Allah Nawaz
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.16694.3c0000 0001 2183 9479Present Address: Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215 USA
| | - Muhammad Bilal
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Shiho Fujisaka
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Tomonobu Kado
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Muhammad Rahil Aslam
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Saeed Ahmed
- grid.415712.40000 0004 0401 3757Department of Medicine and Surgery, Rawalpindi Medical University, Rawalpindi, Punjab 46000 Pakistan
| | - Keisuke Okabe
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan ,grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiko Igarashi
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yoshiyuki Watanabe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Takahide Kuwano
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Koichi Tsuneyama
- grid.267335.60000 0001 1092 3579Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503 Japan
| | - Ayumi Nishimura
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yasuhiro Nishida
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Seiji Yamamoto
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Masakiyo Sasahara
- grid.267346.20000 0001 2171 836XDepartment of Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Johji Imura
- grid.267346.20000 0001 2171 836XDepartment of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Hisashi Mori
- grid.267346.20000 0001 2171 836XDepartment of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Martin M. Matzuk
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030-3411 USA
| | - Fujimi Kudo
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Ichiro Manabe
- grid.136304.30000 0004 0370 1101Department of Systems Medicine, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Akiyoshi Uezumi
- grid.267335.60000 0001 1092 3579Department of Nutritional Physiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takashi Nakagawa
- grid.267346.20000 0001 2171 836XDepartment of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| | - Yumiko Oishi
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Kazuyuki Tobe
- grid.267346.20000 0001 2171 836XFirst Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama-shi, Toyama 930-0194 Japan
| |
Collapse
|
19
|
Cheng J, Liu Y. Knockout of cyclin B1 in granulosa cells causes female subfertility. Cell Cycle 2022; 21:1867-1878. [PMID: 35536551 PMCID: PMC9359391 DOI: 10.1080/15384101.2022.2074740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In mammalian cells, cyclin B1 plays a pivotal role in mitotic and meiotic progression. It has been reported that infertility occurs after disruption of cyclin B1 (Ccnb1) in male germ cells and oocytes. However, it remains to be elucidated whether the specific disruption of Ccnb1 in granulosa cells influences the reproductive activity of female mice. Amhr2 is expressed in granulosa cells (GCs) of the ovary. Here, we mated Ccnb1Flox/Flox mice with a transgenic mouse strain expressing Amhr2-Cre to generate GC-specific Ccnb1 knockout mice. The results showed that Ccnb1 Flox/Flox, Amhr2-Cre (Ccnb1 cKO) mice were subfertile but had normal oocyte meiotic progress, spindle shape and protein levels of cohesin subunits REC8 and SMC3 on arm chromosomes during meiosis I. A further study found that 32.4% of oocytes from Ccnb1 cKO mice exhibited chromosome condensation and spindle disassembly after the first polar body extrusion and failed to undergo second meiosis, which was never found in oocytes from Ccnb1Flox/Flox mice. In addition, the percentages of 2-cell embryos, morulas, and blastocysts in the Ccnb1 mutant group were all dramatically decreased compared to those in the Ccnb1Flox/Flox group (39.2% vs. 86.8%, 26.0% vs. 85.0%, 19.1% vs. 85.8%, respectively). Therefore, GC-specific Ccnb1 deletion in mice could cause fewer and poor-quality blastocysts and subsequent subfertility, which plays an important role in understanding the function of cyclin B1 in reproduction.
Collapse
Affiliation(s)
- Jinmei Cheng
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, Xicheng, China
| | - Yixun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, Xicheng, China
| |
Collapse
|
20
|
Roy S, Sinha N, Huang B, Cline-Fedewa H, Gleicher N, Wang J, Sen A. Jumonji Domain-containing Protein-3 (JMJD3/Kdm6b) Is Critical for Normal Ovarian Function and Female Fertility. Endocrinology 2022; 163:6565906. [PMID: 35396990 PMCID: PMC9070484 DOI: 10.1210/endocr/bqac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
In females, reproductive success is dependent on the expression of a number of genes regulated at different levels, one of which is through epigenetic modulation. How a specific epigenetic modification regulates gene expression and their downstream effect on ovarian function are important for understanding the female reproductive process. The trimethylation of histone3 at lysine27 (H3K27me3) is associated with gene repression. JMJD3 (or KDM6b), a jumonji domain-containing histone demethylase specifically catalyzes the demethylation of H3K27me3, that positively influences gene expression. This study reports that the expression of JMJD3 specifically in the ovarian granulosa cells (GCs) is critical for maintaining normal female fertility. Conditional deletion of Jmjd3 in the GCs results in a decreased number of total healthy follicles, disrupted estrous cycle, and increased follicular atresia culminating in subfertility and premature ovarian failure. At the molecular level, the depletion of Jmjd3 and RNA-seq analysis reveal that JMJD3 is essential for mitochondrial function. JMJD3-mediated reduction of H3K27me3 induces the expression of Lif (Leukemia inhibitory factor) and Ctnnb1 (β-catenin), that in turn regulate the expression of key mitochondrial genes critical for the electron transport chain. Moreover, mitochondrial DNA content is also significantly decreased in Jmjd3 null GCs. Additionally, we have uncovered that the expression of Jmjd3 in GCs decreases with age, both in mice and in humans. Thus, in summary, our studies highlight the critical role of JMJD3 in nuclear-mitochondrial genome coordination that is essential for maintaining normal ovarian function and female fertility and underscore a potential role of JMJD3 in female reproductive aging.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: Aritro Sen, PhD, Reproductive and Developmental Sciences Program, Department of Animal Sciences, 766 Service Rd, Interdisciplinary Science & Technology Building, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Ullah A, Wang MJ, Yang JP, Adu-Gyamfi EA, Czika A, Sah SK, Feng Q, Wang YX. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod Biomed Online 2021; 44:791-802. [DOI: 10.1016/j.rbmo.2021.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
22
|
Abstract
The reproductive lifespan of female mammals is limited and ultimately depends on the production of a sufficient number of high quality oocytes from a pool of non-growing primordial follicles that are set aside during embryonic and perinatal development. Recent studies show multiple signaling pathways are responsible for maintaining primordial follicle arrest and regulation of activation. Identification of these pathways and their regulatory mechanisms is essential for developing novel treatments for female infertility, improving existing in vitro fertilization techniques, and more recently, restoring the function of cryopreserved ovarian tissue. This review focuses on recent developments in transforming growth factor beta (TGFβ) family signaling in ovarian follicle development and its potential application to therapeutic design. Mouse models have been an essential tool for discovering genes critical for fertility, and recent advancements in human organ culture have additionally allowed for the translation of murine discoveries into human research and clinical settings.
Collapse
|
23
|
Follistatin mediates learning and synaptic plasticity via regulation of Asic4 expression in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:2109040118. [PMID: 34544873 PMCID: PMC8488609 DOI: 10.1073/pnas.2109040118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
Adult neurogenesis, which is known to be a heritable trait, is thought to be involved in learning, stress-related anxiety, and antidepressant action. In this study, we map genes influencing adult neurogenesis and identify a candidate gene, follistatin (Fst) for further study. By utilizing a brain-specific knockout and viral vector-mediated gene transfer, we reveal the importance of hippocampal FST in neurogenesis, learning, and synaptic plasticity. From RNA sequencing and chromatin immunoprecipitation experiments, we identify Asic4 as a critical downstream target gene regulated by FST. Our work demonstrates that FST functions in the hippocampus at least in part through regulating Asic4 expression. Overall, we illustrate the role of hippocampal Fst in learning and synaptic plasticity. The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.
Collapse
|
24
|
Zhang L, An G, Wu S, Wang J, Yang D, Zhang Y, Li X. Long-term intermittent cold exposure affects peri-ovarian adipose tissue and ovarian microenvironment in rats. J Ovarian Res 2021; 14:107. [PMID: 34419111 PMCID: PMC8379824 DOI: 10.1186/s13048-021-00851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Li Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Gaihong An
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuai Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Danfeng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yongqiang Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Xi Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
25
|
Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-β signaling pathway. Proc Natl Acad Sci U S A 2021; 118:2111401118. [PMID: 34385332 PMCID: PMC8379946 DOI: 10.1073/pnas.2111401118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.
Collapse
|
26
|
Jiménez R, Burgos M, Barrionuevo FJ. Sex Maintenance in Mammals. Genes (Basel) 2021; 12:genes12070999. [PMID: 34209938 PMCID: PMC8303465 DOI: 10.3390/genes12070999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022] Open
Abstract
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual hormones that induce the subsequent differentiation of the male reproductive tract. On the other hand, the lack of masculinizing hormones in XX embryos permits the formation of the female reproductive tract. It was long assumed that once the gonad is differentiated, this developmental decision is irreversible. However, several findings in the last decade have shown that this is not the case and that a continuous sex maintenance is needed. Deletion of Foxl2 in the adult ovary lead to ovary-to-testis transdifferentiation and deletion of either Dmrt1 or Sox9/Sox8 in the adult testis induces the opposite process. In both cases, mutant gonads were genetically reprogrammed, showing that both the male program in ovaries and the female program in testes must be actively repressed throughout the individual's life. In addition to these transcription factors, other genes and molecular pathways have also been shown to be involved in this antagonism. The aim of this review is to provide an overview of the genetic basis of sex maintenance once the gonad is already differentiated.
Collapse
|
27
|
Lindeman RE, Murphy MW, Agrimson KS, Gewiss R, Bardwell V, Gearhart M, Zarkower D. The conserved sex regulator DMRT1 recruits SOX9 in sexual cell fate reprogramming. Nucleic Acids Res 2021; 49:6144-6164. [PMID: 34096593 PMCID: PMC8216462 DOI: 10.1093/nar/gkab448] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.
Collapse
Affiliation(s)
- Robin E Lindeman
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark W Murphy
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kellie S Agrimson
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rachel L Gewiss
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vivian J Bardwell
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Zarkower
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|
29
|
El-Derany MO, Said RS, El-Demerdash E. Bone Marrow-Derived Mesenchymal Stem Cells Reverse Radiotherapy-Induced Premature Ovarian Failure: Emphasis on Signal Integration of TGF-β, Wnt/β-Catenin and Hippo Pathways. Stem Cell Rev Rep 2021; 17:1429-1445. [PMID: 33594662 DOI: 10.1007/s12015-021-10135-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Radiotherapy is an indispensable cancer treatment approach. However, it is associated with hazardous consequences on multiple organs characterized by insidious worsening severity over time. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BM-MSCs) in radiation-induced premature ovarian failure (POF). Exposing female rats to 3.2 Gy whole-body ϒ-rays successfully induced POF. One week later, a single intravenous injection of BM-MSCs (2*106) cells was administered. BM-MSCs perfectly home to the damaged ovaries, enhanced ovarian follicle pool, and preserved the ovarian function manifested by restoring serum estradiol and follicle stimulating hormone levels, besides, rescuing the fertility outcomes of irradiated rats. These events have been associated with inhibiting ovarian apoptosis (Bax/Bcl2, caspase 3) and enhancing proliferation (PCNA). Interestingly, BM-MSCs reversed the inhibition of ovarian FOXO3 expression induced by radiation which resulted in increased primordial follicles stock. Moreover, BM-MSCs recovered the suppressed folliculogenesis process induced by radiation through upregulating FOXO1, GDF-9, and Fst genes expression accompanied by downregulating TGF-β which enhanced granulosa cells proliferation and secondary follicle development. Mechanistically, BM-MSCs miRNAs epigenetically upregulate Wnt/β-catenin and Hippo signaling pathways which are implicated in ovarian follicles growth and maturation. Therefore, BM-MSCs presented a ray of hope in the treatment of radiation-associated POF through genetic and epigenetic modulation of the integrated TGF-β, Wnt/β-catenin, and Hippo pathways which control apoptosis, proliferation, and differentiation of ovarian follicles.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
30
|
Shafiei S, Farah O, Dufort D. Maternal Cripto is required for proper uterine decidualization and peri-implantation uterine remodeling. Biol Reprod 2021; 104:1045-1057. [PMID: 33590845 DOI: 10.1093/biolre/ioab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cripto encodes for a cell surface receptor whose role in embryonic development and stem cell maintenance has been studied. Cripto mRNA and protein have been detected in the human uterus at all stages of the menstrual cycle. To date, there is not much known about Cripto's role in female reproduction. As Cripto null Knockout (KO) is embryonic lethal, we created a conditional KO (cKO) mouse model in which Cripto is deleted only in the reproductive tissues using a Cre-loxP system. Pregnancy rate and number of pups per litter were evaluated as general fertility indices. We observed a significant decrease in pregnancy rate and litter size with loss of uterine Cripto indicating that Cripto cKO females are subfertile. We showed that although the preimplantation period is normal in Cripto cKO females, 20% of cKO females fail to establish pregnancy and an additional 20% of females undergo full litter loss after implantation between day 5.5 postcoitum (d5.5pc) and d8.5pc. We showed that subfertility caused by loss of uterine Cripto is due to defects in uterine decidualization, remodeling, and luminal closure and is accompanied by significant downregulation of Bmp2, Wnt4 and several components of Notch signaling pathway which all are known to be important factors in uterine remodeling and decidualization. Our study demonstrates that Cripto is expressed in the uterus during critical stages of early pregnancy and its deletion results in subfertility due to implantation failure, impaired peri-implantation uterine remodeling and impaired uterine decidualization.
Collapse
Affiliation(s)
- Shiva Shafiei
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Omar Farah
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Daniel Dufort
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada.,Department of Obstetrics and Gynecology, McGill University , Montreal, Canada.,Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
31
|
Meinsohn MC, Hughes CHK, Estienne A, Saatcioglu HD, Pépin D, Duggavathi R, Murphy BD. A role for orphan nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) in primordial follicle activation. Sci Rep 2021; 11:1079. [PMID: 33441767 PMCID: PMC7807074 DOI: 10.1038/s41598-020-80178-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Liver receptor homolog-1 (NR5A2) is expressed specifically in granulosa cells of developing ovarian follicles where it regulates the late stages of follicle development and ovulation. To establish its effects earlier in the trajectory of follicular development, NR5A2 was depleted from granulosa cells of murine primordial and primary follicles. Follicle populations were enumerated in neonates at postnatal day 4 (PND4) coinciding with the end of the formation of the primordial follicle pool. The frequency of primordial follicles in PND4 conditional knockout (cKO) ovaries was greater and primary follicles were substantially fewer relative to control (CON) counterparts. Ten-day in vitro culture of PND4 ovaries recapitulated in vivo findings and indicated that CON mice developed primary follicles in the ovarian medulla to a greater extent than did cKO animals. Two subsets of primordial follicles were observed in wildtype ovaries: one that expressed NR5A2 and the second in which the transcript was absent. Neither expressed the mitotic marker. KI-67, indicating their developmental quiescence. RNA sequencing on PND4 demonstrated that loss of NR5A2 induced changes in 432 transcripts, including quiescence markers, inhibitors of follicle activation, and regulators of cellular migration and epithelial-to-mesenchymal transition. These experiments suggest that NR5A2 expression poises primordial follicles for entry into the developing pool.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Camilla H K Hughes
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Anthony Estienne
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Hatice D Saatcioglu
- Pediatric Surgical Research Laboratories, Simches Research Center, Massachusetts General Hospital, 185 Cambridge St., Boston, MA, 02114, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Simches Research Center, Massachusetts General Hospital, 185 Cambridge St., Boston, MA, 02114, USA
| | - Raj Duggavathi
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., MS1085, Ste-Anne de Bellevue, QC, H9X 3V9, Canada
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, J2S 7C6, Canada.
| |
Collapse
|
32
|
Sang YJ, Wang Q, Zheng F, Hua Y, Wang XY, Zhang JZ, Li K, Wang HQ, Zhao Y, Zhu MS, Sun HX, Li CJ. Ggps1 deficiency in the uterus results in dystocia by disrupting uterine contraction. J Mol Cell Biol 2020; 13:116-127. [PMID: 33340314 PMCID: PMC8104943 DOI: 10.1093/jmcb/mjaa066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022] Open
Abstract
Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.
Collapse
Affiliation(s)
- Yong-Juan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Qiang Wang
- Department of Neurosurgery, Jingling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Feng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Xin-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Jing-Zi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Kang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Quan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Hai-Xiang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
33
|
Cheng J, Li Y, Zhang Y, Wang X, Sun F, Liu Y. Conditional deletion of Wntless in granulosa cells causes impaired corpora lutea formation and subfertility. Aging (Albany NY) 2020; 13:1001-1016. [PMID: 33291079 PMCID: PMC7835029 DOI: 10.18632/aging.202222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
WNT proteins are widely expressed in the murine ovaries. WNTLESS is a regulator essential for all WNTs secretion. However, the complexity and overlapping expression of WNT signaling cascades have prevented researchers from elucidating their function in the ovary. Therefore, to determine the overall effect of WNT on ovarian development, we depleted the Wntless gene in oocytes and granulosa cells. Our results indicated no apparent defect in fertility in oocyte-specific Wntless knockout mice. However, granulosa cell (GC) specific Wntless deletion mice were subfertile and recurred miscarriages. Further analysis found that GC-specific Wntless knockout mice had noticeably smaller corpus luteum (CL) in the ovaries than control mice, which is consistent with a significant reduction in luteal cell marker gene expression and a noticeable increase in apoptotic gene expression. Also, the deletion of Wntless in GCs led to a significant decrease in ovarian HCGR and β-Catenin protein levels. In conclusion, Wntless deficient oocytes had no discernible impact on mouse fertility. In contrast, the loss of Wntless in GCs caused subfertility and impaired CL formation due to reduced LHCGR and β-Catenin protein levels, triggering GC apoptosis.
Collapse
Affiliation(s)
- Jinmei Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Ningxia 751400, China
| | - Yinchuan Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuxia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yixun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
34
|
Luo W, Gu L, Li J, Gong Y. Transcriptome sequencing revealed that knocking down FOXL2 affected cell proliferation, the cell cycle, and DNA replication in chicken pre-ovulatory follicle cells. PLoS One 2020; 15:e0234795. [PMID: 32645018 PMCID: PMC7347172 DOI: 10.1371/journal.pone.0234795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a single-exon gene encoding a forkhead transcription factor, which is mainly expressed in the ovary, eyelids and the pituitary gland. FOXL2 plays an essential role in ovarian development. To reveal the effects of FOXL2 on the biological process and gene expression of ovarian granulosa cells (GCs), we established stable FOXL2-knockdown GCs and then analysed them using transcriptome sequencing. It was observed that knocking down FOXL2 affected the biological processes of cell proliferation, DNA replication, and apoptosis and affected cell cycle progression. FOXL2 knockdown promoted cell proliferation and DNA replication, decreased cell apoptosis, and promoted mitosis. In addition, by comparing the transcriptome after FOXL2 knockdown, we found a series of DEGs (differentially expressed genes) and related pathways. These results indicated that, through mediating these genes and pathways, the FOXL2 might induce the cell proliferation, cycle, and DNA replication, and play a key role during ovarian development and maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Lantao Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Jinqiu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
35
|
Transcriptome analysis revealed key signaling networks regulating ovarian activities in the domestic yak. Theriogenology 2020; 147:50-56. [PMID: 32092605 DOI: 10.1016/j.theriogenology.2020.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/19/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
Abstract
Domestic yaks are the most important livestock species on the Qinghai-Tibetan Plateau. Adult female yaks normally breed in warm season and enter anestrous in cold season. Currently, how the ovarian activity is regulated at the molecular level remains to be determined. This study was conducted to investigate follicular development and gene expression patterns of yak ovarian tissues in the warm and cold seasons. Dynamics of follicular development was evaluated based on histological analyses and global gene expression was examined by using RNA-sequencing (RNA-seq) technology. Firstly, we found that follicle development of yak cows in cold season was different from that in warm season. Interestingly, ovaries collected from yaks in cold season contained a significant higher number of antral follicles and some of these follicles showed signs of polycystic structure, indicating abnormal granulosa cell function. RNA-seq analyses of ovarian tissues from non-pregnant adult yaks in cold and warm season revealed that a list of 320 transcripts were differentially expressed, specifically, 79 were up-regulated and 241 were down-regulated in the ovaries from yaks during the cold season. Further analysis demonstrated that transcripts associated with estrogen secretion and metabolism signaling pathway were altered, including FST, CYP1A1, PIK3R1 and PIK3R2. This study showed histological features of follicle development and revealed candidate genes that may have important roles in regulating ovarian activities in the yak seasonal reproduction.
Collapse
|
36
|
RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nat Commun 2019; 10:5116. [PMID: 31712577 PMCID: PMC6848188 DOI: 10.1038/s41467-019-13060-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
Collapse
|
37
|
Hernández-Montiel W, Collí-Dula RC, Ramón-Ugalde JP, Martínez-Núñez MA, Zamora-Bustillos R. RNA-seq Transcriptome Analysis in Ovarian Tissue of Pelibuey Breed to Explore the Regulation of Prolificacy. Genes (Basel) 2019; 10:E358. [PMID: 31083386 PMCID: PMC6562736 DOI: 10.3390/genes10050358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
The Pelibuey sheep (Ovis aries) is an indigenous breed distributed in the tropical regions of Mexico. The prolificacy of this sheep is on average from 1 to 1.5 lambs, being an important breeding characteristic that owners seek to increase with the purpose of economic improvements. New-generation RNA sequencing technology has been used to identify the genes that are expressed in the ovarian tissue of sheep that have two or more lambs per parturition, as well as to elucidate the metabolic pathways that are affected by the expression of these genes, with the purpose of better understanding the prolificacy in the sheep. In the present study, the transcriptional expression of multiparous and uniparous sheep was compared using RNA sequencing. Multiparous (M group) and uniparous (U group) sheep that had a genealogical record for three generations (M, n = 5 and U, n = 5) were selected. RNA was extracted from ovarian tissue and subsequently used to prepare the libraries that were sequenced using the Illumina NextSeq500 platform. A total of 31,575 genes were detected from the transcriptomic analysis of which 4908 were significantly expressed (p-value ≤ 0.001) in the ovary of sheep. Subsequently, a second filter was carried out to evaluate the false discovery rate (FDR) and select those genes with p-values ≤ 0.05 and values of expression ≥ 1 (log2), obtaining 354 differential expressed genes (DEG): 120 genes up-regulated and 234 genes down-regulated in the group M with respect to the group U. Through Gene Ontology (GO) and metabolic analysis, we obtained information on the function of differentially expressed genes, and its importance in the reproduction of multiparous sheep. This result suggest that genes identified in the present study participate in the development of the final stages of follicles.
Collapse
Affiliation(s)
- Wilber Hernández-Montiel
- División de Estudios de Posgrado e Investigación, TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico.
| | | | - Julio Porfirio Ramón-Ugalde
- División de Estudios de Posgrado e Investigación, TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico.
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico.
| | - Roberto Zamora-Bustillos
- División de Estudios de Posgrado e Investigación, TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico.
| |
Collapse
|
38
|
Haraguchi H, Hirota Y, Saito-Fujita T, Tanaka T, Shimizu-Hirota R, Harada M, Akaeda S, Hiraoka T, Matsuo M, Matsumoto L, Hirata T, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality. FASEB J 2019; 33:2610-2620. [PMID: 30260703 DOI: 10.1096/fj.201801401r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functions of tumor suppressor p53 and its negative regulator mouse double minute 2 homolog (Mdm2) in ovarian granulosa cells remain to be elucidated, and the current study aims at clarifying this issue. Mice with Mdm2 deficiency in ovarian granulosa cells [ Mdm2-loxP/ progesterone receptor ( Pgr)-Cre mice] were infertile as a result of impairment of oocyte maturation, ovulation, and fertilization, and those with Mdm2/p53 double deletion in granulosa cells ( Mdm2-loxP/ p53-loxP/ Pgr-Cre mice) showed normal fertility, suggesting that p53 induction in the ovarian granulosa cells is detrimental to ovarian function by disturbing oocyte quality. Another model of Mdm2 deletion in ovarian granulosa cells ( Mdm2-loxP/ anti-Mullerian hormone type 2 receptor-Cre mice) also showed subfertility as a result of the failure of ovulation and fertilization, indicating critical roles of ovarian Mdm2 in ovulation and fertilization. Mdm2-p53 pathway in cumulus granulosa cells transcriptionally controlled an orphan nuclear receptor steroidogenic factor 1 (SF1), a key regulator of ovarian function. Importantly, MDM2 and SF1 levels in human cumulus granulosa cells were positively associated with the outcome of oocyte maturation and fertilization in patients undergoing infertility treatment. These findings suggest that the Mdm2-p53-SF1 axis in ovarian cumulus granulosa cells directs ovarian function by affecting their neighboring oocyte quality.-Haraguchi, H., Hirota, Y., Saito-Fujita, T., Tanaka, T., Shimizu-Hirota, R., Harada, M., Akaeda, S., Hiraoka, T., Matsuo, M., Matsumoto, L., Hirata, T., Koga, K., Wada-Hiraike, O., Fujii, T., Osuga, Y. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality.
Collapse
Affiliation(s)
- Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Precursory Research for Innovative Medical Care, Japan Agency for Medical Research and Development, Tokyo, Japan; and
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Wang X, Mittal P, Castro CA, Rajkovic G, Rajkovic A. Med12 regulates ovarian steroidogenesis, uterine development and maternal effects in the mammalian egg. Biol Reprod 2019; 97:822-834. [PMID: 29126187 DOI: 10.1093/biolre/iox143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
The transcriptional factor MED12 is part of the essential mediator transcriptional complex that acts as a transcriptional coactivator in all eukaryotes. Missense gain-of-function mutations in human MED12 are associated with uterine leiomyomas, yet the role of MED12 deficiency in tumorigenesis and reproductive biology has not been fully explored. We generated a Med12 reproductive conditional knockout mouse model to evaluate its role in uterine mesenchyme, granulosa cells, and oocytes. Mice heterozygous for Med12 deficiency in granulosa cells and uterus (Med12fl/+ Amhr2-Cre) were subfertile, while mice homozygous for Med12 deficiency in granulosa cells and uterus (Med12fl/fl Amhr2-Cre) were infertile. Morphological and histological analysis of the Med12fl/fl Amhr2-Cre reproductive tract revealed atrophic uteri and hyperchromatic granulosa cells with disrupted expression of Lhcgr, Esr1, and Esr2. Med12fl/fl Amhr2-Cre mice estrous cycle was disrupted, and serum analysis showed blunted rise in estradiol in response to pregnant mare serum gonadotropin. Uterine atrophy was partially rescued by exogenous steroid supplementation with dysregulation of Notch1 and Smo expression in steroid supplemented Med12fl/fl Amhr2-Cre uteri, indicating intrinsic uterine defects. Oocyte-specific ablation of Med12 caused infertility without disrupting normal folliculogenesis and ovulation, consistent with maternal effects of Med12 in early embryo development. These results show the critical importance of Med12 in reproductive tract development and that Med12 loss of function does not cause tumorigenesis in reproductive tissues.
Collapse
Affiliation(s)
- Xinye Wang
- Tsinghua MD Program, Tsinghua University School of Medicine, Beijing, China.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Priya Mittal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Gabriel Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
St-Jean G, Boyer A, Zamberlam G, Godin P, Paquet M, Boerboom D. Targeted ablation of Wnt4 and Wnt5a in Müllerian duct mesenchyme impedes endometrial gland development and causes partial Müllerian agenesis. Biol Reprod 2019; 100:49-60. [PMID: 30010727 DOI: 10.1093/biolre/ioy160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Wnt4 and Wnt5a have well-established roles in the embryonic development of the female reproductive tract, as well as in implantation, decidualization, and ovarian function in adult mice. Although these roles appear to overlap, whether Wnt5a and Wnt4 are functionally redundant in these tissues has not been determined. We addressed this by concomitantly inactivating Wnt4 and Wnt5a in the Müllerian mesenchyme and in ovarian granulosa cells by crossing mice bearing floxed alleles to the Amhr2cre strain. Whereas fertility was reduced by ∼50% in Wnt4flox/flox; Amhr2cre/+ and Wnt5aflox/flox; Amhr2cre/+ females, Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice were either nearly or completely sterile. Loss of fertility was not due to an ovarian defect, as serum ovarian hormone levels, follicle counts, and ovulation rates were comparable to controls. Conversely, the uterus was abnormal in Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice, with thin myometrial and stromal layers, frequent fibrosis and a >90% reduction in numbers of uterine glands, suggesting redundant or additive roles of Wnt4 and Wnt5a in uterine adenogenesis. Loss of fertility in Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice was attributed to defects in decidualization, implantation, and placental development, the severity of which were proportional to the extent of gland loss. Furthermore, a third of Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ females had a partial agenesis of Müllerian duct-derived structures, but with normal oviducts and ovaries. Together, our results suggest that Wnt4 and Wnt5a play redundant roles in the development of the female reproductive tract, and may provide insight into the etiology of certain cases of Müllerian agenesis in women.
Collapse
Affiliation(s)
- Guillaume St-Jean
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Alexandre Boyer
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Gustavo Zamberlam
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Philippe Godin
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Université de Montréal, Québec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| |
Collapse
|
41
|
Li J, Liu J, Campanile G, Plastow G, Zhang C, Wang Z, Cassandro M, Gasparrini B, Salzano A, Hua G, Liang A, Yang L. Novel insights into the genetic basis of buffalo reproductive performance. BMC Genomics 2018; 19:814. [PMID: 30419816 PMCID: PMC6233259 DOI: 10.1186/s12864-018-5208-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022] Open
Abstract
Background Fertility is a complex trait that has a major impact on the development of the buffalo industry. Genome-wide association study (GWAS) has increased the ability to detect genes influencing complex traits, and many important genes related to reproductive traits have been identified in ruminants. However, reproductive traits are influenced by many factors. The development of the follicle is one of the most important internal processes affecting fertility. Genes found by GWAS to be associated with follicular development may directly affect fertility. The present study combined GWAS and RNA-seq of follicular granulosa cells to identify important genes which may affect fertility in the buffalo. Results The 90 K Affymetrix Axiom Buffalo SNP Array was used to identify the SNPs, genomic regions, and genes that were associated with reproductive traits. A total of 40 suggestive loci (related to 28 genes) were identified to be associated with six reproductive traits (first, second and third calving age, calving interval, the number of services per conception and open days). Interestingly, the mRNA expressions of 25 of these genes were also observed in buffalo follicular granulosa cells. The IGFBP7 gene showed high level of expression during whole antral follicle growth. The knockdown of IGFBP7 in buffalo granulosa cells promoted cell apoptosis and hindered cell proliferation, and increased the production of progesterone and estradiol. Furthermore, a notable signal was detected at 2.3–2.7 Mb on the equivalent of bovine chromosome 5 associated with age at second calving, calving interval, and open days. Conclusions The genes associated with buffalo reproductive traits in this study may have effect on fertility by regulating of follicular growth. These results may have important implications for improving buffalo breeding programs through application of genomic information. Electronic supplementary material The online version of this article (10.1186/s12864-018-5208-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of Immunology, Zunyi Medical College, Zunyi, Guizhou, China
| | - Jiajia Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Graham Plastow
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Chunyan Zhang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Guohua Hua
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aixin Liang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Gilbert SB, Roof AK, Rajendra Kumar T. Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 2018; 32:219-239. [PMID: 29779578 PMCID: PMC5973545 DOI: 10.1016/j.beem.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gonadotropins are pituitary gonadotrope-derived glycoprotein hormones. They act by binding to G-protein coupled receptors on gonads. Gonadotropins play critical roles in reproduction by regulating both gametogenesis and steroidogenesis. Although biochemical and physiological studies provided a wealth of knowledge, gene manipulation techniques using novel mouse models gave new insights into gonadotropin synthesis, secretion and action. Both gain of function and loss of function mouse models for understanding gonadotropin action in a whole animal context have already been generated. Moreover, recent studies on gonadotropin actions in non-gonadal tissues challenged the central dogma of classical gonadotropin actions in gonads and revealed new signaling pathways in these non-gonadal tissues. In this Chapter, we have discussed our current understanding of gonadotropin synthesis, secretion and action using a variety of genetically engineered mouse models.
Collapse
Affiliation(s)
- Sara Babcock Gilbert
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Allyson K Roof
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T Rajendra Kumar
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
43
|
Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol 2018; 465:36-47. [PMID: 28687450 DOI: 10.1016/j.mce.2017.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022]
Abstract
It has been well established for decades that androgens, namely testosterone (T) plays an important role in female reproductive physiology as the precursor for oestradiol (E2). However, in the last decade a direct role for androgens, acting via the androgen receptor (AR), in female reproductive function has been confirmed. Deciphering the specific roles of androgens in ovarian function has been hindered as complete androgen resistant females cannot be generated by natural breeding. In addition, androgens can be converted into estrogens which has caused confusion when interpreting findings from pharmacological studies, as observed effects could have been mediated via the AR or estrogen receptor. The creation and analysis of genetic mouse models with global and cell-specific disruption of the Ar gene, the sole mediator of pure androgenic action, has now allowed the elucidation of a role for AR-mediated androgen actions in the regulation of normal and pathological ovarian function. This review aims to summarize findings from clinical, animal, pharmacological and novel genetic AR mouse models to provide an understanding of the important roles androgens play in the ovary, as well as providing insights into the human implications of these roles.
Collapse
Affiliation(s)
- K A Walters
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - D J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, Australia
| |
Collapse
|
44
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
45
|
Hayata T, Chiga M, Ezura Y, Asashima M, Katabuchi H, Nishinakamura R, Noda M. Dullard deficiency causes hemorrhage in the adult ovarian follicles. Genes Cells 2018. [PMID: 29521016 DOI: 10.1111/gtc.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In mammals, the ovarian follicles are regulated at least in part by bone morphogenetic protein (BMP) family members. Dullard (also known as Ctdnep1) gene encodes a phosphatase that suppresses BMP signaling by inactivating or degrading BMP receptors. Here we report that the Col1a1-Cre-induced Dullard mutant mice displayed hemorrhagic ovarian cysts, with red blood cells accumulated in the follicles, resulting in infertility. Cells expressing Cre driven by Col1a1 2.3-kb promoter and their descendants were found in granulosa cells in the ovary and in Sertoli cells in the testis. DullardmRNA was localized to granulosa cells in the ovary. Genes involved in steroid hormone genesis including Cyp11a1, Hsd3b1 and Star were reduced, whereas expression of Smad6 and Smad7, BMP-inducible inhibitory Smads, was up-regulated in the Dullard mutant ovaries. Tamoxifen-inducible Dullard deletion in the whole body using Rosa26-CreER mice also resulted in hemorrhagic ovarian cysts in 2 weeks, which was rescued by administration of LDN-193189, a chemical inhibitor of BMP receptor kinase, suggesting that the hemorrhage in the Dullard-deficient ovarian follicles might be caused by increased BMP signaling. Thus, we conclude that Dullard is essential for ovarian homeostasis at least in part via suppression of BMP signaling.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Biological Signaling and Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan
| | - Masahiko Chiga
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan.,Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan
| | | | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo, Kumamoto, Kumamoto, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan.,Department of Orthopedic Surgery, School of Medicine, Tokyo Medical & Dental University, Bunkyo, Tokyo, Japan.,Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan
| |
Collapse
|
46
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
47
|
Dang Y, Wang X, Hao Y, Zhang X, Zhao S, Ma J, Qin Y, Chen ZJ. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis 2018; 9:106. [PMID: 29367615 PMCID: PMC5833760 DOI: 10.1038/s41419-017-0163-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
Premature ovarian insufficiency (POI) imposes great challenges on women’s fertility and lifelong health. POI is highly heterogeneous and encompasses occult, biochemical, and overt stages. MicroRNAs (miRNAs) are negative regulators of gene expression, whose roles in physiology and diseases like cancers and neurological disorders have been recognized, but little is known about the miRNAs profile and functional relevance in biochemical POI (bPOI). In this study, the expression of miRNAs and mRNAs in granulosa cells (GCs) of bPOI women was determined by two microarrays, respectively. MiR-379-5p, PARP1, and XRCC6 were differentially expressed in GCs of bPOI as revealed by microarrays. Subsequently, functional studies demonstrated that miR-379-5p overexpression inhibited granulosa cell proliferation and attenuated DNA repair efficiency. Furthermore, both PARP1 and XRCC6 showed lower levels in GCs from patients with bPOI and were identified as executives of miR-379-5p. Therefore, our data first uncovered potentially pathogenic miR-379-5p and two novel targets PARP1 and XRCC6 in bPOI, which corroborated the significance of DNA repair for POI, and brought up an epigenetic explanation for the disease.
Collapse
Affiliation(s)
- Yujie Dang
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Xiaoyan Wang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Yajing Hao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China.
| | - Zi-Jiang Chen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China. .,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250001, China. .,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250001, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China. .,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
48
|
Rosales Nieto CA, Thompson AN, Martin GB. A new perspective on managing the onset of puberty and early reproductive performance in ewe lambs: a review. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Global changes in industry and society have led us to reassess the numerous factors that combine to influence the time of onset of puberty and the efficiency of reproduction in young sheep. Age and weight have long been considered the dominant factors that influence the onset of puberty and, for many years, it has been accepted that these relationships are mediated by the hormone, leptin, produced by body fat. However, recent studies showing that muscle mass also plays a role have challenged this dogma and also presented new options for our understanding of metabolic inputs into the brain control of reproduction. Moreover, the possibility that an improvement in meat production will simultaneously advance puberty is exciting from an industry perspective. An industry goal of strong reproductive performance in the first year of life is becoming possible and, with it, a major step upwards in the lifetime reproductive performance of ewes. The concept of early puberty is not well accepted by producers for a variety of reasons, but the new data show clear industry benefits, so the next challenge is to change that perception and encourage producers to manage young ewes so they produce their first lamb at 1 year of age.
Collapse
|
49
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
50
|
Liu H, Xu G, Yuan Z, Dong Y, Wang J, Lu W. Effect of kisspeptin on the proliferation and apoptosis of bovine granulosa cells. Anim Reprod Sci 2017; 185:1-7. [PMID: 28830628 DOI: 10.1016/j.anireprosci.2017.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that kisspeptin (Kp-10) is expressed in mammalian ovaries; however, the expression and role of Kp-10 in bovine ovarian granulosa cells are still unclear. In this study, we assessed the expression of Kp-10 and its effects on the proliferation and apoptosis of bovine granulosa cells. Immunohistochemical analysis showed that Kp-10 was expressed in the cytoplasm of bovine ovarian granulosa cells. Moreover, MTT assays showed that 100nM Kp-10 significantly inhibited the viability of granulosa cells (P<0.05). Flow cytometry analysis showed that Kp-10 could significantly increase accumulation of cells in the G1 phase, decrease accumulation of cells in the S phase, and promote apoptosis in bovine granulosa cells (P<0.05). Additionally, Kp-10 decreased the mRNA levels of Bcl-2, an anti-apoptotic gene; increased the mRNA levels of caspase-3, a pro-apoptotic gene; and increased the mRNA levels of Fas and Fasl (P< 0.05). Thus, our findings demonstrated for the first time that Kp-10 inhibited proliferation and promoted apoptosis in bovine ovarian granulosa cells. These findings provide insights into our understanding of the role of Kp-10 in mediating the proliferation of bovine granulosa cells.
Collapse
Affiliation(s)
- Hongyu Liu
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Gaoqing Xu
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiyu Yuan
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yangyunyi Dong
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|