1
|
Butz H, Vereczki V, Budai B, Rubovszky G, Gyebrovszki R, Vida R, Szőcs E, Gerecs B, Kohánka A, Tóth E, Likó I, Kacskovics I, Patócs A. Glucocorticoid Receptor Isoforms in Breast Cancer Raise Implications for Personalised Supportive Therapies. Int J Mol Sci 2024; 25:11813. [PMID: 39519365 PMCID: PMC11546579 DOI: 10.3390/ijms252111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Glucocorticoid receptor (GR) activation may promote metastasis in oestrogen receptor-negative and triple-negative breast cancer (TNBC). However, the role of the GRβ isoform, which has opposing effects to the main isoform, has not been studied in clinical samples. We aimed to analyse the intracellular localisation of total GR and GRβ in vitro using plasmid constructs and fluorescent immunocytochemistry. Additionally, our goal was to perform immunostaining for total GR and GRβ on two cohorts: (i) on 194 clinical breast cancer samples to compare the expression in different molecular subtypes, and (ii) on 161 TNBC samples to analyse the association of GR with survival. We supplemented our analysis with RNA data from 1097 TNBC cases. We found that in the absence of the ligand, GR resided in the cytoplasm of breast cancer cells, while upon ligand activation, it translocated to the nucleus. A negative correlation was found between cytoplasmic GRtotal and Ki67 in luminal A tumours, while the opposite trend was observed in TNBC samples. Tumours with strong lymphoid infiltration showed higher cytoplasmic GRtotal staining compared to those with weaker infiltration. Patients with high nuclear GRtotal staining had shorter progression-free survival in univariate analysis. High cytoplasmic GRβ was a marker for better overall survival in multivariate analysis (10-year overall survival HR [95% CI]: 0.46 [0.22-0.95], p = 0.036). As a conclusions, this study is the first to investigate GRβ expression in breast tumours. Different expression and cellular localisation of GRtotal and GRβ were observed in the context of molecular subtypes, underscoring the complex role of GR in breast cancer. An inverse association between cytoplasmic GRtotal and the Ki67 proliferation index was observed in luminal A and TNBC. Regarding the impact of GR on outcomes in TNBC patients, while cytoplasmic GRβ was associated with a better prognosis, patients with nuclear GRtotal staining may be at a higher risk of disease progression, as it negatively affects survival. Caution should be exercised when using glucocorticoids in patients with nuclear GR staining, as it may negatively impact survival.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary
- HUN-REN-SU Hereditary Tumours Research Group, Hungarian Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Viktória Vereczki
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Barna Budai
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
| | - Gábor Rubovszky
- Department of Thoracic and Abdominal Tumours and Clinical Pharmacology, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary;
| | - Rebeka Gyebrovszki
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Ramóna Vida
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary
| | - Erika Szőcs
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Centre, 1122 Budapest, Hungary
| | - Bence Gerecs
- Department of Surgical and Molecular Pathology and the National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary
| | - Andrea Kohánka
- Department of Surgical and Molecular Pathology and the National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary
| | - Erika Tóth
- Department of Surgical and Molecular Pathology and the National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary
| | - István Likó
- HUN-REN-SU Hereditary Tumours Research Group, Hungarian Research Network, 1089 Budapest, Hungary
| | - Imre Kacskovics
- Department of Immunology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary;
- ImmunoGenes-ABS Ltd., 2092 Budakeszi, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumour Biology Laboratory, Comprehensive Cancer Centre, National Institute of Oncology, 1122 Budapest, Hungary; (V.V.); (B.B.); (A.P.)
- HUN-REN-SU Hereditary Tumours Research Group, Hungarian Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
3
|
Liu L, Wen Y, Ni Q, Chen L, Wang H. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming. Biol Res 2023; 56:61. [PMID: 37978540 PMCID: PMC10656939 DOI: 10.1186/s40659-023-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, and related diseases) in adults. Through ethanol's direct effects and its indirect effects mediated by maternal-derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal development, which damages the offspring health and increases susceptibility to various chronic diseases after birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a "thrifty phenotype" in the fetal period, and show "catch-up growth" in the case of abundant nutrition after birth; when encountering adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms induced by PEE based on our research and that of other investigators. This should provide new perspectives for the effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-originated diseases.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
4
|
Kolb KL, Mira ALS, Auer ED, Bucco ID, de Lima e Silva CE, dos Santos PI, Hoch VBB, Oliveira LC, Hauser AB, Hundt JE, Shuldiner AR, Lopes FL, Boysen TJ, Franke A, Pinto LFR, Soares-Lima SC, Kretzschmar GC, Boldt ABW. Glucocorticoid Receptor Gene ( NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes (Basel) 2023; 14:1805. [PMID: 37761945 PMCID: PMC10530687 DOI: 10.3390/genes14091805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The regulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with polymorphisms and the methylation degree of the glucocorticoid receptor gene (NR3C1) and is potentially involved in the development of metabolic syndrome (MetS). In order to evaluate the association between MetS with the polymorphisms, methylation, and gene expression of the NR3C1 in the genetically isolated Brazilian Mennonite population, we genotyped 20 NR3C1 polymorphisms in 74 affected (MetS) and 138 unaffected individuals without affected first-degree relatives (Co), using exome sequencing, as well as five variants from non-exonic regions, in 70 MetS and 166 Co, using mass spectrometry. The methylation levels of 11 1F CpG sites were quantified using pyrosequencing (66 MetS and 141 Co), and the NR3C1 expression was evaluated via RT-qPCR (14 MetS and 25 Co). Age, physical activity, and family environment during childhood were associated with MetS. Susceptibility to MetS, independent of these factors, was associated with homozygosity for rs10482605*C (OR = 4.74, pcorr = 0.024) and the haplotype containing TTCGTTGATT (rs3806855*T_ rs3806854*T_rs10482605*C_rs10482614*G_rs6188*T_rs258813*T_rs33944801*G_rs34176759*A_rs17209258*T_rs6196*T, OR = 4.74, pcorr = 0.048), as well as for the CCT haplotype (rs41423247*C_ rs6877893*C_rs258763*T), OR = 6.02, pcorr = 0.030), but not to the differences in methylation or gene expression. Thus, NR3C1 polymorphisms seem to modulate the susceptibility to MetS in Mennonites, independently of lifestyle and early childhood events, and their role seems to be unrelated to DNA methylation and gene expression.
Collapse
Affiliation(s)
- Kathleen Liedtke Kolb
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Ana Luiza Sprotte Mira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Eduardo Delabio Auer
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Isabela Dall’Oglio Bucco
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Carla Eduarda de Lima e Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Priscila Ianzen dos Santos
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Internal Medicine, Medical Clinic Department, UFPR, Rua General Carneiro, 181, 11th Floor, Alto da Glória, Curitiba 80210-170, PR, Brazil
| | - Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Aline Borsato Hauser
- Laboratory School of Clinical Analysis, Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba 80210-170, PR, Brazil;
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee, 160, Haus 32, 23562 Lübeck, Germany;
| | - Alan R. Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA;
| | - Fabiana Leão Lopes
- Human Genetics Branch, National Institute of Mental Health, 35 Convent Drive, Bethesda, MD 20892, USA;
- Institute of Psychiatry, Federal University Rio de Janeiro, Av. Venceslau Brás, 71, Rio de Janeiro 22290-140, RJ, Brazil
| | - Teide-Jens Boysen
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Luis Felipe Ribeiro Pinto
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Sheila Coelho Soares-Lima
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Gabriela Canalli Kretzschmar
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| |
Collapse
|
5
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
6
|
Lee ZY, Tran T. Genomic and non-genomic effects of glucocorticoids in respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:1-30. [PMID: 37524484 DOI: 10.1016/bs.apha.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cortisol is an endogenous steroid hormone essential for the natural resolution of inflammation. Synthetic glucocorticoids (GCs) were developed and are currently amongst the most widely prescribed anti-inflammatory drugs in our modern clinical landscape owing to their potent anti-inflammatory activity. However, the extent of GC's effects has yet to be fully elucidated. Indeed, GCs modulate a broad spectrum of cellular activity, from their classical regulation of gene expression to acute non-genomic mechanisms of action. Furthermore, tissue specific effects, disease specific conditions, and dose-dependent responses complicate their use, with side-effects potentially plaguing their use. It is thus vital to outline and consolidate the effects of GCs, to demystify and maximize their therapeutic potential while avoiding pitfalls that would otherwise render them obsolete.
Collapse
Affiliation(s)
- Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Nascimento M, Teixeira ES, Dal' Bó IF, Peres KC, Rabi LT, Cury AN, Cançado NA, Miklos ABPP, Schwengber F, Bufalo NE, Ward LS. NR3C1 rs6198 Variant May Be Involved in the Relationship of Graves' Disease with Stressful Events. Biomedicines 2023; 11:biomedicines11041155. [PMID: 37189773 DOI: 10.3390/biomedicines11041155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Although stressful events are known to trigger Graves' disease (GD), the mechanisms involved in this process are not well understood. The NR3C1 gene, encoding for the glucocorticoid receptor (GR), presents single nucleotide polymorphisms (SNPs) that are associated with stress-related diseases. To investigate the relationship between NR3C1 SNPs, GD susceptibility, and clinical features, we studied 792 individuals, including 384 patients, among which 209 presented with Graves' orbitopathy (GO), and 408 paired healthy controls. Stressful life events were evaluated in a subset of 59 patients and 66 controls using the IES-R self-report questionnaire. SNPs rs104893913, rs104893909, and rs104893911 appeared at low frequencies and presented similar profiles in patients and controls. However, variant forms of rs6198 were rarer in GD patients, suggesting a protective effect. Stressful events were more common in patients than controls, and were reported to have clearly occurred immediately before the onset of GD symptoms in 23 cases. However, no association was found between these events and rs6198 genotypes or GD/GO characteristics. We suggest that the NR3C1 rs6198 polymorphism may be an important protective factor against GD, but its relationship with stressful events needs further investigation.
Collapse
Affiliation(s)
- Matheus Nascimento
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Elisângela Souza Teixeira
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Izabela Fernanda Dal' Bó
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | - Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
- Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu 13300-200, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas 13043-900, SP, Brazil
| | - Adriano Namo Cury
- Unit of Endocrinology and Metabolism, Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, SP, Brazil
- Discipline of Endocrinology, School of Medical Sciences of Santa Casa de São Paulo (FCMSC-SP), Sao Paulo 01221-010, SP, Brazil
| | - Natália Amaral Cançado
- Unit of Endocrinology and Metabolism, Santa Casa de Misericórdia de São Paulo, São Paulo 01221-010, SP, Brazil
- Discipline of Endocrinology, School of Medical Sciences of Santa Casa de São Paulo (FCMSC-SP), Sao Paulo 01221-010, SP, Brazil
| | - Ana Beatriz Pinotti Pedro Miklos
- Endocrinology and Metabology Service of the Institute of Medical Assistance to State Civil Servants (IAMSPE), São Paulo 04029-000, SP, Brazil
| | - Fernando Schwengber
- Endocrinology and Metabology Service of the Institute of Medical Assistance to State Civil Servants (IAMSPE), São Paulo 04029-000, SP, Brazil
| | - Natássia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
- Department of Medicine, Max Planck University Center, Indaiatuba 13343-060, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas 13045-755, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| |
Collapse
|
8
|
Kazakou P, Nicolaides NC, Chrousos GP. Basic Concepts and Hormonal Regulators of the Stress System. Horm Res Paediatr 2023; 96:8-16. [PMID: 35272295 DOI: 10.1159/000523975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human organisms have to cope with a large number of external or internal stressful stimuli that threaten - or are perceived as threatening - their internal dynamic balance or homeostasis. To face these disturbing forces, or stressors, organisms have developed a complex neuroendocrine system, the stress system, which consists of the hypothalamic-pituitary-adrenal axis and the locus caeruleus/norepinephrine-autonomic nervous system. SUMMARY Upon exposure to stressors beyond a certain threshold, the activation of the stress system leads to a series of physiological and behavioral adaptations that help achieve homeostasis and increase the chances of survival. When, however, the stress response to stressors is inadequate, excessive, or prolonged, the resultant maladaptation may lead to the development of several stress-related pathologic conditions. Adverse environmental events, especially during critical periods of life, such as prenatal life, childhood, and puberty/adolescence, in combination with the underlying genetic background, may leave deep, long-term epigenetic imprints in the human expressed genome. KEY MESSAGES In this review, we describe the components of the stress system and its functional interactions with other homeostatic systems of the organism; we present the hormonal regulators of the stress response, and we discuss the development of stress-related pathologies.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
9
|
Nicolaides NC. The Human Glucocorticoid Receptor Beta: From Molecular Mechanisms to Clinical Implications. Endocrinology 2022; 163:6691806. [PMID: 36059139 DOI: 10.1210/endocr/bqac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Glucocorticoids play a fundamental role in a plethora of cellular processes and physiologic functions through binding on a ubiquitously expressed receptor, the glucocorticoid receptor (GR), which functions as a ligand-activated transcription factor influencing the transcription rate of numerous genes in a positive or negative fashion. For many years, we believed that the pleiotropic actions of glucocorticoids were mediated by a single GR protein expressed by the NR3C1 gene. Nowadays, we know that the NR3C1 gene encodes 2 main receptor isoforms, the GRα and the GRβ, through alternative splicing of the last exons. Furthermore, the alternative initiation of GR mRNA translation generates 8 distinct GRα and possibly 8 different GRβ receptor isoforms. The tremendous progress of cellular, molecular, and structural biology in association with the data explosion provided by bioinformatics have enabled a deeper understanding of the role of GRβ in cellular homeostasis. In this review article, I will provide an update on the cellular properties and functions of hGRβ and summarize the current knowledge about the evolving role of the beta isoform of glucocorticoid receptor in endocrine physiology, pathophysiology, and beyond.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens 11527, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
10
|
Homeostatic Regulation of Glucocorticoid Receptor Activity by Hypoxia-Inducible Factor 1: From Physiology to Clinic. Cells 2021; 10:cells10123441. [PMID: 34943949 PMCID: PMC8699886 DOI: 10.3390/cells10123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) represent a well-known class of lipophilic steroid hormones biosynthesised, with a circadian rhythm, by the adrenal glands in humans and by the inter-renal tissue in teleost fish (e.g., zebrafish). GCs play a key role in the regulation of numerous physiological processes, including inflammation, glucose, lipid, protein metabolism and stress response. This is achieved through binding to their cognate receptor, GR, which functions as a ligand-activated transcription factor. Due to their potent anti-inflammatory and immune-suppressive action, synthetic GCs are broadly used for treating pathological disorders that are very often linked to hypoxia (e.g., rheumatoid arthritis, inflammatory, allergic, infectious, and autoimmune diseases, among others) as well as to prevent graft rejections and against immune system malignancies. However, due to the presence of adverse effects and GC resistance their therapeutic benefits are limited in patients chronically treated with steroids. For this reason, understanding how to fine-tune GR activity is crucial in the search for novel therapeutic strategies aimed at reducing GC-related side effects and effectively restoring homeostasis. Recent research has uncovered novel mechanisms that inhibit GR function, thereby causing glucocorticoid resistance, and has produced some surprising new findings. In this review we analyse these mechanisms and focus on the crosstalk between GR and HIF signalling. Indeed, its comprehension may provide new routes to develop novel therapeutic targets for effectively treating immune and inflammatory response and to simultaneously facilitate the development of innovative GCs with a better benefits-risk ratio.
Collapse
|
11
|
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma. Mar Drugs 2021; 19:md19110586. [PMID: 34822457 PMCID: PMC8620935 DOI: 10.3390/md19110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges to the management of severe asthma is the poor therapeutic response to treatment with glucocorticosteroids. Compounds derived from marine sources have received increasing interest in recent years due to their prominent biologically active properties for biomedical applications, as well as their sustainability and safety for drug development. Based on the pathobiological features associated with glucocorticoid resistance in severe asthma, many studies have already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On the other hand, in the last decade, many studies described the potentially anti-inflammatory effects of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory mechanisms of action for these marine-derived biologically active compounds, we observed some of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC) resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular mechanism involved in GC resistant asthma and provides a basis for the development of effective marine-derived drugs.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (C.M.G.); (A.G.V.)
| | - Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
- Correspondence: (C.M.G.); (A.G.V.)
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Antonela Antoniu
- Department of Medicine II—Palliative Care Nursing, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
12
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
14
|
HIV-1 Tat Protein Promotes Neuroendocrine Dysfunction Concurrent with the Potentiation of Oxycodone's Psychomotor Effects in Female Mice. Viruses 2021; 13:v13050813. [PMID: 33946474 PMCID: PMC8147167 DOI: 10.3390/v13050813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with neuroendocrine dysfunction which may contribute to co-morbid stress-sensitive disorders. The hypothalamic-pituitary-adrenal (HPA) or -gonadal (HPG) axes are perturbed in up to 50% of HIV patients. The mechanisms are not known, but we have found the HIV-1 trans-activator of transcription (Tat) protein to recapitulate the clinical phenotype in male mice. We hypothesized that HPA and/or HPG dysregulation contributes to Tat-mediated interactions with oxycodone, an opioid often prescribed to HIV patients, in females. Female mice that conditionally-expressed the Tat1-86 protein [Tat(+) mice] or their counterparts that did not [Tat(-) control mice] were exposed to forced swim stress (or not) and behaviorally-assessed for motor and anxiety-like behavior. Some mice had glucocorticoid receptors (GR) or corticotropin-releasing factor receptors (CRF-R) pharmacologically inhibited. Some mice were ovariectomized (OVX). As seen previously in males, Tat elevated basal corticosterone levels and potentiated oxycodone's psychomotor activity in females. Unlike males, females did not demonstrate adrenal insufficiency and oxycodone potentiation was not regulated by GRs or CRF-Rs. Rather OVX attenuated Tat/oxycodone interactions. Either Tat or oxycodone increased anxiety-like behavior and their combination increased hypothalamic allopregnanolone. OVX increased basal hypothalamic allopregnanolone and obviated Tat or oxycodone-mediated fluctuations. Together, these data provide further evidence for Tat-mediated dysregulation of the HPA axis and reveal the importance of HPG axis regulation in females. HPA/HPG disruption may contribute vulnerability to affective and substance use disorders.
Collapse
|
15
|
Ramos-Ramírez P, Tliba O. Glucocorticoid Receptor β (GRβ): Beyond Its Dominant-Negative Function. Int J Mol Sci 2021; 22:3649. [PMID: 33807481 PMCID: PMC8036319 DOI: 10.3390/ijms22073649] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids (GCs) act via the GC receptor (GR), a receptor ubiquitously expressed in the body where it drives a broad spectrum of responses within distinct cell types and tissues, which vary in strength and specificity. The variability of GR-mediated cell responses is further extended by the existence of GR isoforms, such as GRα and GRβ, generated through alternative splicing mechanisms. While GRα is the classic receptor responsible for GC actions, GRβ has been implicated in the impairment of GRα-mediated activities. Interestingly, in contrast to the popular belief that GRβ actions are restricted to its dominant-negative effects on GRα-mediated responses, GRβ has been shown to have intrinsic activities and "directly" regulates a plethora of genes related to inflammatory process, cell communication, migration, and malignancy, each in a GRα-independent manner. Furthermore, GRβ has been associated with increased cell migration, growth, and reduced sensitivity to GC-induced apoptosis. We will summarize the current knowledge of GRβ-mediated responses, with a focus on the GRα-independent/intrinsic effects of GRβ and the associated non-canonical signaling pathways. Where appropriate, potential links to airway inflammatory diseases will be highlighted.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Henderson I, Caiazzo E, McSharry C, Guzik TJ, Maffia P. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol Res 2020; 160:105189. [PMID: 32911071 PMCID: PMC7672256 DOI: 10.1016/j.phrs.2020.105189] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
Glucocorticosteroids are the first-line therapy for controlling airway inflammation in asthma. They bind intracellular glucocorticoid receptors to trigger increased expression of anti-inflammatory genes and suppression of pro-inflammatory gene activation in asthmatic airways. In the majority of asthma patients, inhaled glucocorticoids are clinically efficacious, improving lung function and preventing exacerbations. However, 5–10 % of the asthmatic population respond poorly to high dose inhaled and then systemic glucocorticoids. These patients form a category of severe asthma associated with poor quality of life, increased morbidity and mortality, and constitutes a major societal and health care burden. Inadequate therapeutic responses to glucocorticoid treatment is also reported in other inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease; however, asthma represents the most studied steroid-refractory disease. Several cellular and molecular events underlying glucocorticoid resistance in asthma have been identified involving abnormalities of glucocorticoid receptor signaling pathways. These events have been strongly related to immunological dysregulation, genetic, and environmental factors such as cigarette smoking or respiratory infections. A better understanding of the multiple mechanisms associated with glucocorticoid insensitivity in asthma phenotypes could improve quality of life for people with asthma but would also provide transferrable knowledge for other inflammatory diseases. In this review, we provide an update on the molecular mechanisms behind steroid-refractory asthma. Additionally, we discuss some therapeutic options for treating those asthmatic patients who respond poorly to glucocorticoid therapy.
Collapse
Affiliation(s)
- Ishbel Henderson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elisabetta Caiazzo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Flynn JK, Dankers W, Morand EF. Could GILZ Be the Answer to Glucocorticoid Toxicity in Lupus? Front Immunol 2019; 10:1684. [PMID: 31379872 PMCID: PMC6652235 DOI: 10.3389/fimmu.2019.01684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jacqueline K Flynn
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Wendy Dankers
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Eric F Morand
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Front Immunol 2019; 10:1545. [PMID: 31333672 PMCID: PMC6621919 DOI: 10.3389/fimmu.2019.01545] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones widely used for the treatment of inflammation, autoimmune diseases, and cancer. To exert their broad physiological and therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear receptor superfamily of transcription factors. Despite their success, GCs are hindered by the occurrence of side effects and glucocorticoid resistance (GCR). Increased knowledge on GC and GR biology together with a better understanding of the molecular mechanisms underlying the GC side effects and GCR are necessary for improved GC therapy development. We here provide a general overview on the current insights in GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic strategies are proposed based on recently recognized distinct molecular mechanisms of the GR. We will explain the SEDIGRAM concept, which was launched based on our research results.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Souffriau
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Ghersa F, Delsouc MB, Goyeneche AA, Vallcaneras SS, Meresman G, Telleria CM, Casais M. Reduced inflammatory state promotes reinnervation of endometriotic-like lesions in TNFRp55 deficient mice. Mol Hum Reprod 2019; 25:385-396. [PMID: 31070761 DOI: 10.1093/molehr/gaz026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a chronic gynecological disease, characterized by growth of endometrial tissue in ectopic sites due to alteration of peritoneal homeostasis and deregulation of apoptosis. Here we have examined whether TNFRp55 deficiency modulates the pro-inflammatory state and the reinnervation of endometriotic-like lesions in mice. Two-month-old female C57BL/6 mice, eight wild type (WT) and eight TNFRp55-/- (KO) were used in the study. Endometriotic-like lesions were induced experimentally. The right uterine horn was removed from the animal, divided longitudinally, cut in three square pieces and sutured to the intestine mesentery. After 4 weeks, the lesions and the peritoneal fluid were collected. The level of TNFα in the peritoneal fluid was evaluated by enzyme-linked immunosorbent assay (EIA). The expressions of COX2, GRα and GRβ were evaluated in the lesions by western blot and immunohistochemistry. β-III TUBULIN, BDNF and NGF protein concentrations were evaluated in the lesions by western blot. Gene expression of Pgp 9.5, SP and Th was analyzed by RT-PCR, whereas relative concentrations of TRKA, NTRp75, phosphorylated NFκB (pNFκB) and total NFκB in lesions were measured by EIA. Compared with the WT group, the KO mice showed lower TNFα levels in the peritoneal fluid and lower numbers of COX2 immunoreactive cells along with increased expression of GRα, β-III TUBULIN, Pgp 9.5, SP, Th, BDNF, NGF, NTRp75 and pNFκB in the lesions. Future histological studies will be necessary to confirm the sensory/sympathetic imbalance in the endometriotic-like lesions of the KO mice. Our results suggest that a reduced inflammatory state promotes reinnervation of endometriotic-like lesions in TNFRp55-/- mice. Chronic deregulation of TNF receptors can have serious consequences for women with advanced endometriosis.
Collapse
Affiliation(s)
- F Ghersa
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - M B Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - A A Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | - S S Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| | - G Meresman
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, CP C1428ADN, Buenos Aires, Argentina
| | - C M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | - M Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Ejército de Los Andes 950, CP D5700HHW, San Luis, Argentina
| |
Collapse
|
21
|
Cortisol-induced SRSF3 expression promotes GR splicing, RACK1 expression and breast cancer cells migration. Pharmacol Res 2019; 143:17-26. [PMID: 30862604 DOI: 10.1016/j.phrs.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Recent data have demonstrated that triple negative breast cancer (TNBC) with high glucocorticoid receptor (GR) expression are associated to therapy resistance and increased mortality. Given that GR alternative splicing generates mainly GRα, responsible of glucocorticoids action, we investigated its role in the regulation of RACK1 (Receptor for Activated C Kinase 1), a scaffolding protein with a GRE (Glucocorticoid Response Element) site on its promoter and involved in breast cancer cells migration and invasion. We provide the first evidence that GRα transcriptionally regulates RACK1 by a mechanism connected to SRSF3 splicing factor, which promotes GRα, essential for RACK1 transcriptional regulation and consequently for cells migration. We also establish that this mechanism can be positively regulated by cortisol. Hence, our data elucidate RACK1 transcriptional regulation and demonstrate that SRSF3 involvement in cells migration implies its role in controlling different pathways thus highlighting that new players have to be considered in GR-positive TNBC.
Collapse
|
22
|
Nassoro DD, Mkhoi ML, Sabi I, Meremo AJ, Lawala PS, Mwakyula IH. Adrenal Insufficiency: A Forgotten Diagnosis in HIV/AIDS Patients in Developing Countries. Int J Endocrinol 2019; 2019:2342857. [PMID: 31341472 PMCID: PMC6612386 DOI: 10.1155/2019/2342857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 11/17/2022] Open
Abstract
Adrenal insufficiency (AI) is one of the most common endocrine disease in patients with HIV/AIDS, leading to high morbidity and mortality in HIV patients who become critically ill. Various etiologies are associated with the condition, including cytomegalovirus (CMV), Mycobacterium tuberculosis, lymphoma, Kaposi's sarcoma, and drugs such as rifampin, among others. HIV patients with advanced disease develop relative cortisol deficiency largely due to the reduction of cortisol reserve, which predisposes patients to adrenal crisis in periods of stress or critical illness. The prevalence of AI in HIV/AIDS patients during HAART era is higher in developing than developed countries, probably due to limited access to both diagnosis and adequate treatments which increases the risk of opportunistic infections. The clinical features of functional adrenal insufficiency in HIV/AIDS patients can be masked by various infectious, noninfectious, and iatrogenic causes, which reduce clinical recognition of the condition. Development of simple screening algorithms may help clinicians reach the diagnosis when approaching these patients. In many low-income countries, most HIV patients are diagnosed with advanced disease; thus, further research is necessary to elucidate the prevalence of adrenal insufficiency in HIV/AIDS patients and the condition's impact on mortality in this population.
Collapse
Affiliation(s)
- David D. Nassoro
- Department of Internal Medicine, Mbeya Zonal Referral Hospital, Mbeya, Tanzania
- Department of Internal Medicine, University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Mkhoi L. Mkhoi
- Department of Microbiology and Immunology, School of Medicine & Dentistry, College of Health Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Issa Sabi
- National Institute for Medical Research, Mbeya Medical Research Center, Mbeya, Tanzania
| | - Alfred J. Meremo
- Department of Internal Medicine, School of Medicine & Dentistry, College of Health Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Paul S. Lawala
- Department of Psychiatry and Mental Health, University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
- Department of Psychiatry and Mental Health, Mbeya Zonal Referral Hospital, Mbeya, Tanzania
| | - Issakwisa Habakkuk Mwakyula
- Department of Internal Medicine, Mbeya Zonal Referral Hospital, Mbeya, Tanzania
- Department of Internal Medicine, University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| |
Collapse
|
23
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
24
|
Abstract
Primary generalized glucocorticoid resistance or Chrousos syndrome is a rare disorder, which affects all tissues expressing the human glucocorticoid receptor. It is characterized by generalized, partial tissue insensitivity to glucocorticoids caused by genetic defects in the NR3C1 gene. We and others have applied standard methods of molecular and structural biology to investigate the molecular mechanisms and conformational alterations through which the mutant glucocorticoid receptors lead to the broad spectrum of clinical manifestations of Chrousos syndrome. The ever-increasing application of novel technologies, including the next-generation sequencing, will enhance our knowledge in factors that influence the glucocorticoid signal transduction in a positive or negative fashion.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
25
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018; 9:235. [PMID: 29867767 PMCID: PMC5964134 DOI: 10.3389/fendo.2018.00235] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.
Collapse
Affiliation(s)
- Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maia L. Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Romina Paula Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Anja Steininger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|
26
|
Racchi M, Buoso E, Ronfani M, Serafini MM, Galasso M, Lanni C, Corsini E. Role of Hormones in the Regulation of RACK1 Expression as a Signaling Checkpoint in Immunosenescence. Int J Mol Sci 2017; 18:ijms18071453. [PMID: 28684670 PMCID: PMC5535944 DOI: 10.3390/ijms18071453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Immunosenescence defines the decline in immune function that occurs with aging. This has been associated, at least in part, with defective cellular signaling via protein kinase C (PKC) signal transduction pathways. Our data suggest reduced PKC activation and consequently reduced response to lipopolysaccharide (LPS) stimulation and cytokine release. The lack of PKC activation seems to be dependent on the reduced expression of the receptor for activated C kinase 1 (RACK1), a scaffolding protein involved in multiple signal transduction cascades. The defective expression of RACK1 may be dependent on age-related alteration of the balance between the adrenal hormones cortisol and dehydroepiandrosterone (DHEA). DHEA levels reduce with aging, while cortisol levels remain substantially unchanged, resulting in an overall increase in the cortisol:DHEA ratio. These hormonal changes are significant in the context of RACK1 expression and signaling function because DHEA administration in vivo and in vitro can restore the levels of RACK1 and the function of the PKC signaling cascade in aged animals and in human cells. In contrast, there is evidence that cortisol can act as a negative transcriptional regulator of RACK1 expression. The rack1 gene promoter contains a glucocorticoid responsive element that is also involved in androgen signaling. Furthermore DHEA may have an indirect influence on the post-transcriptional regulation of the functions of the glucocorticoid receptor. In this review, we will examine the role of the hormonal regulation of rack1 gene transcriptional regulation and the consequences on signaling and function in immune cells and immunosenescence.
Collapse
Affiliation(s)
- Marco Racchi
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Erica Buoso
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Melania Ronfani
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Melania M Serafini
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
- Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy.
| | - Marilisa Galasso
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Cristina Lanni
- Department of Drug Sciences, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental Science and Policy, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
27
|
Chatzopoulou A, Schoonheim PJ, Torraca V, Meijer AH, Spaink HP, Schaaf MJM. Functional analysis reveals no transcriptional role for the glucocorticoid receptor β-isoform in zebrafish. Mol Cell Endocrinol 2017; 447:61-70. [PMID: 28242321 DOI: 10.1016/j.mce.2017.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/30/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023]
Abstract
In humans, two splice variants of the glucocorticoid receptor (GR) exist: the canonical α-isoform, and the β-isoform, which has been shown to have a dominant-negative effect on hGRα. Previously, we have established the occurrence of a GR β-isoform in zebrafish, and in the present study we have investigated the functional role of the zebrafish GRβ (zGRβ). Reporter assays in COS-1 cells demonstrated a dominant-negative effect of zGRβ but no such effect was observed in zebrafish PAC2 cells using induction of the fk506 binding protein 5 (fkbp5) gene as readout. Subsequently, we generated a transgenic fish line with inducible expression of zGRβ. Transcriptome analysis suggested transcriptional regulation of genes by zGRβ in this line, but further validation failed to confirm this role. Based on these results, its low expression level and its poor evolutionary conservation, we suggest that the zebrafish GR β-isoform does not have a functional role in transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Vincenzo Torraca
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
28
|
Buoso E, Galasso M, Ronfani M, Serafini MM, Lanni C, Corsini E, Racchi M. Role of spliceosome proteins in the regulation of glucocorticoid receptor isoforms by cortisol and dehydroepiandrosterone. Pharmacol Res 2017; 120:180-187. [PMID: 28373129 DOI: 10.1016/j.phrs.2017.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Dehydroepiandrosterone (DHEA) can counteract the activity of cortisol by modulating the glucocorticoid receptor β (GRβ) expression and antagonizing the binding of GRα to the glucocorticoid responsive element (GRE) in RACK1 (Receptor for Activated C Kinase 1) promoter. These observations are important in the context of immunosenescence and can be extended to recognize a complex hormonal balance in the control of GR isoform expression and consequently in the expression of GR responsive genes. To elucidate the mechanism of DHEA on GR alternative splicing, we investigated its possible involvement in the expression of proteins such as the Serine/arginine (SR)-Rich Splicing Factors (SRSF) regulating GR splicing, specifically SRSF9 and SRSF3 also known as SRp30c and SRp20 respectively. We demonstrated that DHEA can induce the up-regulation of GR mRNA which is preferentially directed toward the β isoform. The effect is due to an increase in expression of the splicing factor SRSF9. On the other hand cortisol up-regulated SRSF3, the splicing factor promoting GRα isoform. We demonstrated that DHEA and cortisol modulate SRSF9 and SRSF3 in a different way and our data suggest that the anti-glucocorticoid effect of DHEA, among other mechanisms, is also exerted by modulating the expression of proteins involved in the splicing of the GR pre-mRNA.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco - Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Marilisa Galasso
- Dipartimento di Scienze del Farmaco - Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Melania Ronfani
- Dipartimento di Scienze del Farmaco - Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze del Farmaco - Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria n.15, 27100 Pavia, Italy
| | - Cristina Lanni
- Dipartimento di Scienze del Farmaco - Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Emanuela Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari - Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco - Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| |
Collapse
|
29
|
Nicolaides NC, Charmandari E, Kino T, Chrousos GP. Stress-Related and Circadian Secretion and Target Tissue Actions of Glucocorticoids: Impact on Health. Front Endocrinol (Lausanne) 2017; 8:70. [PMID: 28503165 PMCID: PMC5408025 DOI: 10.3389/fendo.2017.00070] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/24/2017] [Indexed: 12/13/2022] Open
Abstract
Living organisms are highly complex systems that must maintain a dynamic equilibrium or homeostasis that requires energy to be sustained. Stress is a state in which several extrinsic or intrinsic disturbing stimuli, the stressors, threaten, or are perceived as threatening, homeostasis. To achieve homeostasis against the stressors, organisms have developed a highly sophisticated system, the stress system, which provides neuroendocrine adaptive responses, to restore homeostasis. These responses must be appropriate in terms of size and/or duration; otherwise, they may sustain life but be associated with detrimental effects on numerous physiologic functions of the organism, leading to a state of disease-causing disturbed homeostasis or cacostasis. In addition to facing a broad spectrum of external and/or internal stressors, organisms are subject to recurring environmental changes associated with the rotation of the planet around itself and its revolution around the sun. To adjust their homeostasis and to synchronize their activities to day/night cycles, organisms have developed an evolutionarily conserved biologic system, the "clock" system, which influences several physiologic functions in a circadian fashion. Accumulating evidence suggests that the stress system is intimately related to the circadian clock system, with dysfunction of the former resulting in dysregulation of the latter and vice versa. In this review, we describe the functional components of the two systems, we discuss their multilevel interactions, and we present how excessive or prolonged activity of the stress system affects the circadian rhythm of glucocorticoid secretion and target tissue effects.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- *Correspondence: Nicolas C. Nicolaides,
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Tomoshige Kino
- Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - George P. Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ’Aghia Sophia’ Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
30
|
Nagy Z, Acs B, Butz H, Feldman K, Marta A, Szabo PM, Baghy K, Pazmany T, Racz K, Liko I, Patocs A. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease. J Steroid Biochem Mol Biol 2016; 155:76-84. [PMID: 26480216 DOI: 10.1016/j.jsbmb.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies.
Collapse
Affiliation(s)
- Zsolt Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Bence Acs
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Karolina Feldman
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Alexa Marta
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter M Szabo
- Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Kornelia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Karoly Racz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Istvan Liko
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Gedeon Richter PLC, Budapest, Hungary
| | - Attila Patocs
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
31
|
Human Glucocorticoid Receptor β Regulates Gluconeogenesis and Inflammation in Mouse Liver. Mol Cell Biol 2015; 36:714-30. [PMID: 26711253 DOI: 10.1128/mcb.00908-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/02/2015] [Indexed: 11/20/2022] Open
Abstract
While in vitro studies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, the in vivo function of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expression in vivo by both GRα-dependent and GRα-independent mechanisms.
Collapse
|
32
|
Samuvel DJ, Saxena N, Dhindsa JS, Singh AK, Gill GS, Grobelny DW, Singh I. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis. PLoS One 2015; 10:e0141781. [PMID: 26513477 PMCID: PMC4626178 DOI: 10.1371/journal.pone.0141781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Nishant Saxena
- Charles P. Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jasdeep S. Dhindsa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gurmit S. Gill
- Akaal Pharma Pty Ltd., 310E Thomas Cherry Building, Bundoora, Australia
| | | | - Inderjit Singh
- Charles P. Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Endogenous glucocorticoids regulate a variety of physiologic processes and are crucial to the systemic stress response. Glucocorticoid receptors are expressed throughout the body, but there is considerable heterogeneity in glucocorticoid sensitivity and induced biological responses across tissues. The immunoregulatory properties of glucocorticoids are exploited in the clinic for the treatment of inflammatory and autoimmune disorders as well as certain hematological malignancies, but adverse side effects hamper prolonged use. Fully understanding the molecular events that shape the physiologic effects of glucocorticoid treatment will provide insight into optimal glucocorticoid therapies, reliable assessment of glucocorticoid sensitivity in patients, and may advance the development of novel GR agonists that exert immunosuppressive effects while avoiding harmful side effects. In this review, we provide an overview of mechanisms that affect glucocorticoid specificity and sensitivity in health and disease, focusing on the distinct isoforms of the glucocorticoid receptor and their unique regulatory and functional properties.
Collapse
Affiliation(s)
- Derek W Cain
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
34
|
Pinto A, Malacrida B, Oieni J, Serafini MM, Davin A, Galbiati V, Corsini E, Racchi M. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. Br J Pharmacol 2015; 172:2918-27. [PMID: 25626076 PMCID: PMC4439885 DOI: 10.1111/bph.13097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 01/21/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). EXPERIMENTAL APPROACH The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. KEY RESULTS DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. CONCLUSIONS AND IMPLICATIONS These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent.
Collapse
Affiliation(s)
- Antonella Pinto
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| | - Beatrice Malacrida
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| | - Jacopo Oieni
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| | | | | | - Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di MilanoMilan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di MilanoMilan, Italy
| | - Marco Racchi
- Department of Drug Sciences – Pharmacology, University of PaviaPavia, Italy
| |
Collapse
|
35
|
Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest 2015; 45:504-14. [PMID: 25715669 DOI: 10.1111/eci.12426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/23/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary Generalized Glucocorticoid Resistance or Chrousos syndrome is a rare genetic condition characterized by end-organ insensitivity to glucocorticoids owing to inactivating mutations of the NR3C1 gene. MATERIALS AND METHODS We conducted a systematic review of the published, peer-reviewed medical literature using MEDLINE (1975 through November 2014) to identify original articles and reviews on this topic. The search terms included 'primary generalized glucocorticoid resistance', 'Chrousos syndrome', 'glucocorticoid receptor gene' and 'glucocorticoid receptor mutations'. RESULTS Only a few cases of Chrousos syndrome have been described to date, ranging from asymptomatic to severe forms of mineralocorticoid and/or androgen excess. All reported cases have been associated with point mutations or deletions in the NR3C1 gene. The tremendous progress of molecular biology has enabled us to apply standard methods to investigate the molecular mechanisms of action of the mutant glucocorticoid receptors (GRs). We and others have identified and functionally characterized novel mutations causing Chrousos syndrome, while structural biology has enabled us to have a better understanding of how conformational changes of the receptor cause glucocorticoid resistance. In this review, we also present our results of the functional characterization of two recently described mutations, and we discuss the diagnostic approaches and therapeutic management of patients with Chrousos syndrome. CONCLUSIONS Although Chrousos syndrome is a rare condition, many clinical cases remain unrecognized for a long time. We recommend determination of the 24-h urinary free cortisol excretion and sequencing of the NR3C1 gene in patients with hyperandrogenism and/or hypertension of unknown origin.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | |
Collapse
|
36
|
Chrousos GP, Zapanti ED. Hypothalamic-pituitary-adrenal axis in HIV infection and disease. Endocrinol Metab Clin North Am 2014; 43:791-806. [PMID: 25169568 DOI: 10.1016/j.ecl.2014.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HIV infection induces hypothalamic-pituitary-adrenal (HPA) axis derangements. Partial glucocorticoid resistance has been observed in a subset of AIDS patients, possibly owing to HIV-induced altered cytokine secretion and action. Because glucocorticoids have immunomodulatory effects, the severity of the HPA axis disorder could play a central role in disease progression. The characteristic phenotype of AIDS patients (visceral obesity, lipodystrophy) may be owing to effects of HIV proteins on the HPA axis, including changes in glucocorticoid and insulin sensitivity of target tissues, as well as altered cytokine production and interaction with the HPA axis, genetic causes, comorbidities, and, possibly, use of antiretroviral agents.
Collapse
Affiliation(s)
- George P Chrousos
- First Department of Pediatrics, "Agia Sofia" Children's Hospital, University of Athens, Thivon and Papadiamantopoulou, Athens 11527, Greece
| | - Evangelia D Zapanti
- First Endocrine Department and Diabetes Center, Alexandra Hospital, 80 Vassilisis Sofias Avenue, Athens 11528, Greece.
| |
Collapse
|
37
|
Sánchez-Ramón S, Valor L. [Therapy with intravenous gammaglobulins in systemic inflammatory autoimmune diseases: new indications?]. Med Clin (Barc) 2014; 143:130-3. [PMID: 24480286 DOI: 10.1016/j.medcli.2013.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 11/15/2022]
Affiliation(s)
| | - Lara Valor
- Servicio de Reumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
38
|
Nicolaides NC, Charmandari E, Chrousos GP, Kino T. Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Ann N Y Acad Sci 2014; 1318:71-80. [PMID: 24890877 PMCID: PMC4104011 DOI: 10.1111/nyas.12464] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The stress system effectively restores the internal balance--or homeostasis--of living organisms in the face of random external or internal changes, the stressors. This highly complex system helps organisms to provide a series of neuroendocrine responses to stressors--the stress response--through coordinated activation of the hypothalamic-pituitary-adrenal (HPA) axis and the locus coeruleus/norepinephrine autonomic nervous systems. In addition to stressors, life is influenced by daily light/dark changes due to the 24-h rotation of Earth. To adjust to these recurrent day/night cycles, the biological clock system employs the heterodimer of transcription factors circadian locomotor output cycle kaput/brain-muscle-arnt-like protein 1 (CLOCK/BMAL1), along with a set of other transcription factors, to regulate the circadian pattern of gene expression. Interestingly, the stress system, through the HPA axis, communicates with the clock system; therefore, any uncoupling or dysregulation could potentially cause several disorders, such as metabolic, autoimmune, and mood disorders. In this review, we discuss the biological function of the two systems, their interactions, and the clinical implications of their dysregulation or uncoupling.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism, and Diabetes, First Department of
Pediatrics, University of Athens Medical School, “Aghia Sophia”
Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Clinical Research Center,
Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism, and Diabetes, First Department of
Pediatrics, University of Athens Medical School, “Aghia Sophia”
Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Clinical Research Center,
Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P. Chrousos
- Division of Endocrinology, Metabolism, and Diabetes, First Department of
Pediatrics, University of Athens Medical School, “Aghia Sophia”
Children’s Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Clinical Research Center,
Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Saudi Diabetes Study Research Group, King Fahd Medical Research Center, King
Abdulaziz University, Jeddah, Saudi Arabia
| | - Tomoshige Kino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland
| |
Collapse
|
39
|
Bhatia R, Muraskas J, Janusek LW, Mathews H. Measurement of the glucocorticoid receptor: relevance to the diagnosis of critical illness-related corticosteroid insufficiency in children. J Crit Care 2014; 29:691.e1-5. [PMID: 24747037 DOI: 10.1016/j.jcrc.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 01/01/2023]
Abstract
Diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in children continues to remain difficult and controversial in that no consensus for either exists among pediatric critical care physicians. Critical illness-related corticosteroid insufficiency is defined as a corticosteroid response that is inadequate for the severity of the illness experienced by the patient. Critical illness-related corticosteroid insufficiency manifests as an insufficient corticosteroid mediated down-regulation of proinflammatory cytokines, due to either corticosteroid tissue resistance and/or inadequate circulating levels of cortisol. The tissue resistance is likely due to alterations in the functionality of the intracellular receptor for corticosteroids, the glucocorticoid receptor (GR). This article details the role of the GR during critical illness with a focus upon the measurement of the GR, as a potentially important means by which to clinically assess the level of corticosteroid tissue-resistant in patients suspected of CIRCI. Measurement of the GR may be particularly useful as a means by which to determine the judicious administration of steroids, maximizing their therapeutic potential, whereas minimizing the morbidity that can be associated with their use.
Collapse
Affiliation(s)
- Rahul Bhatia
- Division of Pediatric Critical Care, Department of Pediatrics, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL.
| | - Jonathan Muraskas
- Division of Neonatology and Perinatal Medicine, Department of Pediatrics, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL
| | - Linda Witek Janusek
- Department of Health Promotion, Health Science Division, Loyola University of Chicago, Niehoff School of Nursing, Maywood, IL
| | - Herbert Mathews
- Department of Microbiology and Immunology, Health Science Division, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL
| |
Collapse
|
40
|
Treatment of chronic inflammatory demyelinating polyneuropathy: from molecular bases to practical considerations. Autoimmune Dis 2014; 2014:201657. [PMID: 24527207 PMCID: PMC3914592 DOI: 10.1155/2014/201657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nervous system, in which both cellular and humoral immune responses are involved. The disease is clinically heterogeneous with some patients displaying pure motor form and others also showing a variable degree of sensory dysfunction; disease evolution may also differ from patient to patient, since monophasic, progressive, and relapsing forms are reported. Underlying such clinical variability there is probably a broad spectrum of molecular dysfunctions that are and will be the target of therapeutic strategies. In this review we first explore the biological bases of current treatments and subsequently we focus on the practical management that must also take into account pharmacoeconomic issues.
Collapse
|
41
|
Guerrero J, Gatica HA, Rodríguez M, Estay R, Goecke IA. Septic serum induces glucocorticoid resistance and modifies the expression of glucocorticoid isoforms receptors: a prospective cohort study and in vitro experimental assay. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R107. [PMID: 23759144 PMCID: PMC4056039 DOI: 10.1186/cc12774] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/12/2013] [Indexed: 12/20/2022]
Abstract
Background A protective role for glucocorticoid therapy in animal models of sepsis was shown many decades ago. In human sepsis, there is new interest in glucocorticoid therapy at a physiological dose after reports of improved response to vasopressor drugs and decreased mortality in a selected group of patients. However, other reports have not confirmed these results. Cellular glucocorticoid resistance could explain a possible cause of that. To evaluate this hypothesis, we evaluated the expression of glucocorticoid receptor beta, the dominant negative isoform of glucocorticoid receptor, in peripheral mononuclear cells of septic patients and the effect of serum septic patients over glucocorticoid receptor expression and glucocorticoid sensitivity in immune cells culture. Methods A prospective cohort study and an in vitro experimental study with matched controls were developed. Nine patients with septic shock and nine healthy controls were prospectively enrolled. Mononuclear cells and serum samples were obtained from the patients with sepsis on admission to the Intensive Care Unit and on the day of discharge from hospital, and from healthy volunteers matched by age and sex with the patients. Glucocorticoid receptor alpha and beta expression from patients and from immune cell lines cultured in the presence of serum from septic patients were studied by western blot. Glucocorticoid sensitivity was studied in control mononuclear cells cultured in the presence of serum from normal or septic patients. A statistical analysis was performed using a Mann-Whitney test for non-parametric data and analysis of variance for multiple comparison; P < 0.05 was considered significant. Results The patients' glucocorticoid receptor beta expression was significantly higher on admission than on discharge, whereas the alpha receptor was not significantly different. In vitro, septic serum induced increased expression of both receptors in T and B cells in culture, with a greater effect on receptor beta than the control serum. Septic serum induced glucocorticoid resistance in control mononuclear cells. Conclusion There is a transient increased expression of glucocorticoid receptor beta in mononuclear cells from septic patients. Serum from septic patients induces cell glucocorticoid resistance in vitro. Our findings support a possible cell glucocorticoid resistance in sepsis.
Collapse
|
42
|
DuBois DC, Sukumaran S, Jusko WJ, Almon RR. Evidence for a glucocorticoid receptor beta splice variant in the rat and its physiological regulation in liver. Steroids 2013; 78:312-20. [PMID: 23257260 PMCID: PMC3552070 DOI: 10.1016/j.steroids.2012.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/22/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022]
Abstract
Glucocorticoids are important regulators of metabolism and immune function. Synthetic glucocorticoids are extensively used for immunosuppression/anti-inflammatory therapy. Since the glucocorticoid receptor (GR) is central to most hormone effects; its in vivo regulation will influence hormone/drug action. An alternative splice variant, GRβ, is present in humans and may function as a dominant negative regulator of GR transcriptional activity. Recently, a similar splice variant was reported in mouse, although the mechanism of alternative splicing differs from that in humans. We present evidence that a splice variant of GR with an alternative C-terminus also occurs in the rat by a mechanism of intron inclusion. A highly quantitative qRT-PCR assay for the simultaneous measurement of both splice variants in a single sample was developed in order to accurately measure their regulation. We used this assay to assess the tissue specific expression of both mRNAs, and demonstrate that GRα is predominant in all tissues. In addition, the regulation of both GRα and GRβ mRNA by various physiological factors in rat liver was assessed. GRα showed a robust circadian rhythm, which was entrained with the circadian oscillation of the endogenous hormone. Time series experiments showed that both corticosteroids and LPS but not insulin dosing resulted in the transient down-regulation of GRα mRNA. LPS treatment also resulted in down-regulation of GRβ expression. A modest up-regulation in GRβ expression was observed only in animals having chronically elevated plasma insulin concentrations. However the expression of GRβ was significantly lower than that of GRα in all cases.
Collapse
Affiliation(s)
- Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, UDA.
| |
Collapse
|
44
|
Quax RAM, van Laar JAM, van Heerebeek R, Greiner K, Ben-Chetrit E, Stanford M, Wallace GR, Fortune F, Ghabra M, Soylu M, Hazes JMW, Lamberts SWJ, Kappen JH, van Hagen PM, Koper JW, Feelders RA. Glucocorticoid sensitivity in Behçet's disease. Endocr Connect 2012; 1:103-11. [PMID: 23781311 PMCID: PMC3681319 DOI: 10.1530/ec-12-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Glucocorticoid (GC) sensitivity is highly variable among individuals and has been associated with susceptibility to develop (auto-)inflammatory disorders. The purpose of the study was to assess GC sensitivity in Behçet's disease (BD) by studying the distribution of four GC receptor (GR) gene polymorphisms and by measuring in vitro cellular GC sensitivity. METHODS Healthy controls and patients with BD in three independent cohorts were genotyped for four functional GR gene polymorphisms. To gain insight into functional differences in in vitro GC sensitivity, 19 patients with BD were studied using two bioassays and a whole-cell dexamethasone-binding assay. Finally, mRNA expression levels of GR splice variants (GR-α and GR-β) were measured. RESULTS Healthy controls and BD patients in the three separate cohorts had similar distributions of the four GR polymorphisms. The Bcll and 9β minor alleles frequency differed significantly between Caucasians and Mideast and Turkish individuals. At the functional level, a decreased in vitro cellular GC sensitivity was observed. GR number in peripheral blood mononuclear cells was higher in BD compared with controls. The ratio of GR-α/GR-β mRNA expression levels was significantly lower in BD. CONCLUSIONS Polymorphisms in the GR gene are not associated with susceptibility to BD. However, in vitro cellular GC sensitivity is decreased in BD, possibly mediated by a relative higher expression of the dominant negative GR-β splice variant. This decreased in vitro GC sensitivity might play an as yet unidentified role in the pathophysiology of BD.
Collapse
Affiliation(s)
- R A M Quax
- Department of Internal Medicine, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
- Correspondence should be addressed to R A M Quax Email
| | - J A M van Laar
- Department of Immunology, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| | - R van Heerebeek
- Department of Internal Medicine, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| | | | - E Ben-Chetrit
- Department of MedicineHadassah-Hebrew University Medical CenterJerusalemIsrael
| | - M Stanford
- Department of OphthalmologyKing's CollegeLondonUK
| | - G R Wallace
- Academic Unit of OphthalmologyUniversity of BirminghamBirminghamUK
| | - F Fortune
- Department of Oral MedicineQueen Mary's CollegeLondonUK
| | - M Ghabra
- University HospitalDamascusSyria
| | - M Soylu
- Department of OphthalmologyUniversity of Cukurova School of MedicineAdanaTurkey
| | - J M W Hazes
- Department of Rheumatology, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - S W J Lamberts
- Department of Internal Medicine, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| | - J H Kappen
- Department of Immunology, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| | - P M van Hagen
- Department of Immunology, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| | - J W Koper
- Department of Internal Medicine, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| | - R A Feelders
- Department of Internal Medicine, Erasmus MCUniversity Medical Center's-Gravendijkwal 2303015 CE, RotterdamThe Netherlands
| |
Collapse
|
45
|
Parathyroid hormone-related protein and glucocorticoid receptor beta are regulated by cortisol in the kidney of male mice. Life Sci 2011; 89:615-20. [DOI: 10.1016/j.lfs.2011.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 07/20/2011] [Accepted: 07/27/2011] [Indexed: 11/22/2022]
|
46
|
Wang M, Shi P, Chen B, Shi G, Li H, Wang H. Superantigen-induced glucocorticoid insensitivity in the recurrence of chronic rhinosinusitis with nasal polyps. Otolaryngol Head Neck Surg 2011; 145:717-22. [PMID: 21727245 DOI: 10.1177/0194599811413859] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate a potential mechanism by which superantigens could induce glucocorticoid insensitivity in chronic rhinosinusitis (CRS) patients. STUDY DESIGN Prospective cohort study. SETTING Tertiary medical center. SUBJECTS AND METHODS Sinonasal polyps were obtained from CRS patients with nasal polyps (CRSwNP; 20 without recurrence, 18 with recurrent NP followed for 1.5-2.0 years) and nasal mucosa from 16 CRS patients without nasal polyps (CRSsNP). Specimens were tested by enzyme-linked immunosorbent assay for staphylococcal exotoxins (SEs) including SEA, SEB, SEC, SED, and toxic shock syndrome toxin type-1 (TSST-1) and assessed by immunohistochemistry for glucocorticoid receptor (GR) α and β, and the GRβ/GRα ratio was analyzed. RESULTS In CRSwNP, 13 of 18 (72.22%) subjects with subsequently recurrent NP, 11 of 20 (55.00%) subjects without NP recurrence, and 1 of 16 (6.25%) CRSsNP subjects with positive reactions for SEs were obtained. There were no positive results in controls. The expressions of GRβ in 3 CRS groups and controls were significantly different (all P < .05), and a similar increasing tendency of the GRβ/GRα ratio was found among groups besides the comparison of CRSwNP versus recurrent NP groups (P = .053). Furthermore, there was a clear trend of increased GRβ expression in the enzyme-linked immunosorbent assay (ELISA)-positive samples compared with ELISA-negative samples. Concerning GRα, the expression was enhanced significantly just in toxin-positive recurrent NP versus controls (P = .048), but the relative induction of GRβ was much higher, thereby leading to a higher GRβ/GRα ratio. CONCLUSIONS Bacterial superantigens may contribute to glucocorticoid insensitivity through induction of GRβ, which appears to be a marker of steroid insensitivity in CRSwNP.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
47
|
Dobos J, Kenessey I, Tímár J, Ladányi A. Glucocorticoid receptor expression and antiproliferative effect of dexamethasone on human melanoma cells. Pathol Oncol Res 2011; 17:729-34. [PMID: 21455635 DOI: 10.1007/s12253-011-9377-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Glucocorticoids, such as dexamethasone are widely used in cancer therapy and have cell type-specific pro- or antiapoptotic effects. We examined whether melanoma cells are sensitive to dexamethasone treatment. We have demonstrated for the first time that in human melanoma cell lines as well as in benign and malignant melanocytic tumors glucocorticoid receptor (GCR) is present both at mRNA and protein level. Dexamethasone applied at high doses inhibited the in vitro growth of WM983A human melanoma cells. The inhibitory effect was due to apoptosis induction. In the case of this relatively sensitive cell line dexamethasone enhanced the effect of the chemotherapeutic drug DTIC.
Collapse
Affiliation(s)
- Judit Dobos
- Center of Surgical and Molecular Tumor Pathology, National Institute of Oncology, Budapest, Hungary.
| | | | | | | |
Collapse
|
48
|
Iudicibus SD, Franca R, Martelossi S, Ventura A, Decorti G. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease. World J Gastroenterol 2011; 17:1095-108. [PMID: 21448414 PMCID: PMC3063901 DOI: 10.3748/wjg.v17.i9.1095] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/21/2010] [Accepted: 12/28/2010] [Indexed: 02/06/2023] Open
Abstract
Natural and synthetic glucocorticoids (GCs) are widely employed in a number of inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in moderate to severe active Crohn’s disease and ulcerative colitis. Despite their extensive therapeutic use and the proven effectiveness, considerable clinical evidence of wide inter-individual differences in GC efficacy among patients has been reported, in particular when these agents are used in inflammatory diseases. In recent years, a detailed knowledge of the GC mechanism of action and of the genetic variants affecting GC activity at the molecular level has arisen from several studies. GCs interact with their cytoplasmic receptor, and are able to repress inflammatory gene expression through several distinct mechanisms. The glucocorticoid receptor (GR) is therefore crucial for the effects of these agents: mutations in the GR gene (NR3C1, nuclear receptor subfamily 3, group C, member 1) are the primary cause of a rare, inherited form of GC resistance; in addition, several polymorphisms of this gene have been described and associated with GC response and toxicity. However, the GR is not self-standing in the cell and the receptor-mediated functions are the result of a complex interplay of GR and many other cellular partners. The latter comprise several chaperonins of the large cooperative hetero-oligomeric complex that binds the hormone-free GR in the cytosol, and several factors involved in the transcriptional machinery and chromatin remodeling, that are critical for the hormonal control of target genes transcription in the nucleus. Furthermore, variants in the principal effectors of GCs (e.g. cytokines and their regulators) have also to be taken into account for a comprehensive evaluation of the variability in GC response. Polymorphisms in genes involved in the transport and/or metabolism of these hormones have also been suggested as other possible candidates of interest that could play a role in the observed inter-individual differences in efficacy and toxicity. The best-characterized example is the drug efflux pump P-glycoprotein, a membrane transporter that extrudes GCs from cells, thereby lowering their intracellular concentration. This protein is encoded by the ABCB1/MDR1 gene; this gene presents different known polymorphic sites that can influence its expression and function. This editorial reviews the current knowledge on this topic and underlines the role of genetics in predicting GC clinical response. The ambitious goal of pharmacogenomic studies is to adapt therapies to a patient’s specific genetic background, thus improving on efficacy and safety rates.
Collapse
|
49
|
Yun SP, Ryu JM, Han HJ. Involvement of β1-integrin via PIP complex and FAK/paxillin in dexamethasone-induced human mesenchymal stem cells migration. J Cell Physiol 2011; 226:683-92. [PMID: 20717960 DOI: 10.1002/jcp.22383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although glucocorticoids strongly affect numerous biological processes including cell growth, development, and homeostasis, their effects on migration of human mesenchymal stem cells (hMSCs) are unclear. Therefore, we investigated the role of dexamethasone (DEX) and its related signaling pathways on migration of hMSCs. We found that DEX, at 10(-8) to 10(-6) M, significantly increased migration after a 24 h incubation, and DEX (10(-6) M) increased migration at >12 h. Moreover, DEX (10(-6) M) increased the level of glucocorticoid receptor (GR)-α mRNA and protein expression, but not GR-β mRNA. The increases in DEX-induced migration were inhibited by the GR antagonist mifepristone (10(-7) M). In addition, DEX increased integrin-linked kinase (ILK) and α-parvin expression but did not change PINCH-1/2 expression in lysate. DEX also increased formations of complex with ILK and α-parvin, and ILK and PINCH-1/2 as shown by immunoprecipitation, which were all inhibited by mifepristone. DEX-induced migration was blocked by ILK and α-parvin small interfering(si)RNAs. In addition, DEX increased focal adhesion kinase (FAK) and paxillin expression, which were attenuated by ILK and α-parvin siRNAs. DEX-induced cell migration was inhibited by FAK/paxillin siRNAs. DEX also increased β1-integrin expression, which was blocked by FAK/paxillin siRNAs. In addition, DEX-induced cell migration was inhibited by β1-integrin siRNA. Downregulation of ILK, α-parvin, FAK/paxillin and β1-integrin expression by siRNAs decreased DEX-induced filamentous(F)-actin organization and migration of hMSCs. In conclusion, DEX partially stimulates hMSC migration by the expression of β1-integrin through formation of a PINCH-1/2/ILK/α-parvin complex (PIP complex), and FAK and paxillin expression.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Biotherapy Human Resources Center (BK21), Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
50
|
Marwick JA, Adcock IM, Chung KF. Overcoming reduced glucocorticoid sensitivity in airway disease: molecular mechanisms and therapeutic approaches. Drugs 2010; 70:929-48. [PMID: 20481652 DOI: 10.2165/10898520-000000000-00000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a considerable and growing unmet medical need in respiratory disease concerning effective anti-inflammatory therapies for conditions such as severe asthma, chronic obstructive pulmonary disease and cystic fibrosis. These diseases share a predominant characteristic of an enhanced and uncontrolled inflammatory response in the lungs, which contributes to disease progression, hospitalization and mortality. These diseases are poorly controlled by current anti-inflammatory therapies including glucocorticoids, which are otherwise effective in many other inflammatory conditions or in milder disease such as asthma. The exact cause of this apparent impairment of glucocorticoid function remains largely unclear; however, recent studies have now implicated a number of possible mechanisms. Central among these is an elevation of the oxidant burden in the lungs and the resulting reduction in the activity of histone deacetylase (HDAC)-2. This contributes to both the enhancement of proinflammatory mediator expression and the impaired ability of the glucocorticoid receptor (GR)-alpha to repress proinflammatory gene expression. The oxidant-mediated reduction in HDAC-2 activity is, in part, a result of an elevation in the phosphoinositol 3-kinase (PI3K) delta/Akt signalling pathway. Blockade of the PI3Kdelta pathway restores glucocortiocoid function in both in vitro and in vivo models, and in primary cells from disease. In addition, inhibition of the PI3Kdelta and PI3Kgamma isoforms is anti-inflammatory in both innate and adaptive immune responses. Consequently, selective inhibition of this pathway may provide a therapeutic strategy both as a novel anti-inflammatory and in combination therapy with glucocorticoids to restore their function. However, a number of other oxidant-related and -unrelated mechanisms, including altered kinase signalling and expression of the dominant negative GRbeta, may also play a role in the development of glucocorticoid insensitivity. Further elucidation of these mechanisms and pathways will enable novel therapeutic targeting for alternative anti-inflammatory drugs or combination therapies providing restoration for the anti-inflammatory action of glucocorticoids.
Collapse
Affiliation(s)
- John A Marwick
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK.
| | | | | |
Collapse
|