1
|
Yao B, Yang C, Pan C, Li Y. Thyroid hormone resistance: Mechanisms and therapeutic development. Mol Cell Endocrinol 2022; 553:111679. [PMID: 35738449 DOI: 10.1016/j.mce.2022.111679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
As an essential primary hormone, thyroid hormone (TH) is indispensable for human growth, development and metabolism. Impairment of TH function in several aspects, including TH synthesis, activation, transportation and receptor-dependent transactivation, can eventually lead to thyroid hormone resistance syndrome (RTH). RTH is a rare syndrome that manifests as a reduced target cell response to TH signaling. The majority of RTH cases are related to thyroid hormone receptor β (TRβ) mutations, and only a few RTH cases are associated with thyroid hormone receptor α (TRα) mutations or other causes. Patients with RTH suffer from goiter, mental retardation, short stature and bradycardia or tachycardia. To date, approximately 170 mutated TRβ variants and more than 20 mutated TRα variants at the amino acid level have been reported in RTH patients. In addition to these mutated proteins, some TR isoforms can also reduce TH function by competing with primary TRs for TRE and RXR binding. Fortunately, different treatments for RTH have been explored with structure-activity relationship (SAR) studies and drug design, and among these treatments. With thyromimetic potency but biochemical properties that differ from those of primary TH (T3 and T4), these TH analogs can bypass specific defective transporters or reactive mutant TRs. However, these compounds must be carefully applied to avoid over activating TRα, which is associated with more severe heart impairment. The structural mechanisms of mutation-induced RTH in the TR ligand-binding domain are summarized in this review. Furthermore, strategies to overcome this resistance for therapeutic development are also discussed.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Chunyan Yang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| | - Chengxi Pan
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
2
|
Paisdzior S, Schuelke M, Krude H. What is the Role of Thyroid Hormone Receptor Alpha 2 (TRα2) in Human Physiology? Exp Clin Endocrinol Diabetes 2022; 130:296-302. [PMID: 35255520 DOI: 10.1055/a-1716-7980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thyroid hormone receptors are nuclear receptors that function as transcription factors and are regulated by thyroid hormones. To date, a number of variants and isoforms are known. This review focuses on the thyroid hormone receptor α (TRα), in particular TRα2, an isoform that arises from alternative splicing of the THRA mRNA transcript. Unlike the TRα1 isoform, which can bind T3, the TRα2 isoform lacks a ligand-binding domain but still binds to DNA thereby antagonizing the transcriptional activity of TRα1. Although a regulatory role has been proposed, the physiological function of this TRα2 antagonism is still unclear due to limited in vitro and mouse model data. Recently, the first patients with resistance to thyroid hormone due to mutations in THRA, the TRα encoding gene, affecting the antagonistic function of TRα2 were described, suggesting a significant role of this particular isoform in human physiology.
Collapse
Affiliation(s)
- Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Schuelke
- NeuroCure Cluster of Excellence; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Ren B, Zhu Y. A New Perspective on Thyroid Hormones: Crosstalk with Reproductive Hormones in Females. Int J Mol Sci 2022; 23:ijms23052708. [PMID: 35269847 PMCID: PMC8911152 DOI: 10.3390/ijms23052708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that thyroid hormones (THs) are vital for female reproductive system homeostasis. THs regulate the reproductive functions through thyroid hormone receptors (THRs)-mediated genomic- and integrin-receptor-associated nongenomic mechanisms, depending on TH ligand status and DNA level, as well as transcription and extra-nuclear signaling transduction activities. These processes involve the binding of THs to intracellular THRs and steroid hormone receptors or membrane receptors and the recruitment of hormone-response elements. In addition, THs and other reproductive hormones can activate common signaling pathways due to their structural similarity and shared DNA consensus sequences among thyroid, peptide, and protein hormones and their receptors, thus constituting a complex and reciprocal interaction network. Moreover, THs not only indirectly affect the synthesis, secretion, and action of reproductive hormones, but are also regulated by these hormones at the same time. This crosstalk may be one of the pivotal factors regulating female reproductive behavior and hormone-related diseases, including tumors. Elucidating the interaction mechanism among the aforementioned hormones will contribute to apprehending the etiology of female reproductive diseases, shedding new light on the treatment of gynecological disorders.
Collapse
Affiliation(s)
- Bingtao Ren
- School of Pharmacy, Fudan University, Shanghai 200032, China;
| | - Yan Zhu
- Laboratory of Reproductive Pharmacology, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-64438416
| |
Collapse
|
4
|
Abstract
µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with CRYM, an important modulator of metabolism, are reviewed.
Collapse
Affiliation(s)
- Christian J Kinney
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| | - Robert J Bloch
- Department of Physiology School of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201
| |
Collapse
|
5
|
Anyetei-Anum CS, Roggero VR, Allison LA. Thyroid hormone receptor localization in target tissues. J Endocrinol 2018; 237:R19-R34. [PMID: 29440347 PMCID: PMC5843491 DOI: 10.1530/joe-17-0708] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1, TRβ1 and other subtypes, are members of the nuclear receptor superfamily that mediate the action of thyroid hormone signaling in numerous tissues to regulate important physiological and developmental processes. Their most well-characterized role is as ligand-dependent transcription factors; TRs bind thyroid hormone response elements in the presence or absence of thyroid hormone to facilitate the expression of target genes. Although primarily residing in the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. We have identified multiple nuclear localization signals and nuclear export signals within TRα1 and TRβ1 that interact with importins and exportins, respectively, to mediate translocation across the nuclear envelope. More recently, enigmatic cytoplasmic functions have been ascribed to other TR subtypes, expanding the diversity of the cellular response to thyroid hormone. By integrating data on localization signal motifs, this review provides an overview of the complex interplay between TR's dynamic transport pathways and thyroid hormone signaling activities. We examine the variation in TR subtype response to thyroid hormone signaling, and what is currently known about regulation of the variety of tissue-specific localization patterns, including targeting to the nucleus, the mitochondria and the inner surface of the plasma membrane.
Collapse
Affiliation(s)
| | - Vincent R Roggero
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| | - Lizabeth A Allison
- Department of BiologyCollege of William and Mary, Williamsburg, Virginia, USA
| |
Collapse
|
6
|
Zhang J, Roggero VR, Allison LA. Nuclear Import and Export of the Thyroid Hormone Receptor. VITAMINS AND HORMONES 2017; 106:45-66. [PMID: 29407444 DOI: 10.1016/bs.vh.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome.
Collapse
Affiliation(s)
- Jibo Zhang
- College of William and Mary, Williamsburg, VA, United States
| | | | | |
Collapse
|
7
|
Flamant F, Gauthier K, Richard S. Genetic Investigation of Thyroid Hormone Receptor Function in the Developing and Adult Brain. Curr Top Dev Biol 2017; 125:303-335. [PMID: 28527576 DOI: 10.1016/bs.ctdb.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones exert a broad influence on brain development and function, which has been extensively studied over the years. Mouse genetics has brought an important contribution, allowing precise analysis of the interplay between TRα1 and TRβ1 nuclear receptors in neural cells. However, the exact contribution of each receptor, the possible intervention of nongenomic signaling, and the nature of the genetic program that is controlled by the receptors remain poorly understood.
Collapse
Affiliation(s)
- Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France.
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| | - Sabine Richard
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| |
Collapse
|
8
|
Roggero VR, Zhang J, Parente LE, Doshi Y, Dziedzic RC, McGregor EL, Varjabedian AD, Schad SE, Bondzi C, Allison LA. Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Mol Cell Endocrinol 2016; 419:185-97. [PMID: 26525414 PMCID: PMC4684427 DOI: 10.1016/j.mce.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/27/2023]
Abstract
The thyroid hormone receptor α1 (TRα1) is a nuclear receptor for thyroid hormone that shuttles rapidly between the nucleus and cytoplasm. Our prior studies showed that nuclear import of TRα1 is directed by two nuclear localization signals, one in the N-terminal A/B domain and the other in the hinge domain. Here, we showed using in vitro nuclear import assays that TRα1 nuclear localization is temperature and energy-dependent and can be reconstituted by the addition of cytosol. In HeLa cells expressing green fluorescent protein (GFP)-tagged TRα1, knockdown of importin 7, importin β1 and importin α1 by RNA interference, or treatment with an importin β1-specific inhibitor, significantly reduced nuclear localization of TRα1, while knockdown of other importins had no effect. Coimmunoprecipitation assays confirmed that TRα1 interacts with importin 7, as well as importin β1 and the adapter importin α1, suggesting that TRα1 trafficking into the nucleus is mediated by two distinct pathways.
Collapse
Affiliation(s)
- Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Jibo Zhang
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Laura E Parente
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Yazdi Doshi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Rose C Dziedzic
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Emma L McGregor
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Arev D Varjabedian
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sara E Schad
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, VA, 23668, USA
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
9
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
10
|
Mavinakere MS, Powers JM, Subramanian KS, Roggero VR, Allison LA. Multiple novel signals mediate thyroid hormone receptor nuclear import and export. J Biol Chem 2012; 287:31280-97. [PMID: 22815488 PMCID: PMC3438959 DOI: 10.1074/jbc.m112.397745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we identified a novel nuclear localization signal in the A/B domain of thyroid hormone receptor α1 that is absent in thyroid hormone receptor β1 and inactive in the oncoprotein v-ErbA. Our prior studies showed that thyroid hormone receptor α1 exits the nucleus through two pathways, one dependent on the export factor CRM1 and the other CRM1-independent. Here, we identified three novel CRM1-independent nuclear export signal (NES) motifs in the ligand-binding domain as follows: a highly conserved NES in helix 12 (NES-H12) and two additional NES sequences spanning helix 3 and helix 6, respectively. Mutations predicted to disrupt the α-helical structure resulted in a significant decrease in NES-H12 activity. The high degree of conservation of helix 12 suggests that this region may function as a key NES in other nuclear receptors. Furthermore, our mutagenesis studies on NES-H12 suggest that altered shuttling of thyroid hormone receptor β1 may be a contributing factor in resistance to thyroid hormone syndrome. Taken together, our findings provide a detailed mechanistic understanding of the multiple signals that work together to regulate TR shuttling and transcriptional activity, and they provide important insights into nuclear receptor function in general.
Collapse
Affiliation(s)
- Manohara S Mavinakere
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | | | | | |
Collapse
|
11
|
Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response. Biochim Biophys Acta Gen Subj 2012; 1830:3900-7. [PMID: 22704954 DOI: 10.1016/j.bbagen.2012.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid hormone receptors TRα1, TRβ1 and TRβ2 are broadly expressed and exert a pleiotropic influence on many developmental and homeostatic processes. Extensive genetic studies in mice precisely defined their respective function. SCOPE OF REVIEW The purpose of the review is to discuss two puzzling issues: MAJOR CONCLUSIONS Mouse genetics support a balanced contribution of expression pattern and receptor intrinsic properties in defining the receptor respective functions. The molecular mechanisms sustaining cell specific response remain hypothetical and based on studies performed with other nuclear receptors. GENERAL SIGNIFICANCE The isoform-specificity and cell-specificity questions have many implications for clinical research, drug development, and endocrine disruptor studies. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
12
|
Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:3908-16. [PMID: 22484490 DOI: 10.1016/j.bbagen.2012.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tissue homeostasis depends on the balance between cell proliferation and differentiation. Thyroid hormones (THs), through binding to their nuclear receptors, can regulate the expression of many genes involved in cell cycle control and cellular differentiation. This can occur by direct transcriptional regulation or by modulation of the activity of different signaling pathways. SCOPE OF REVIEW In this review we will summarize the role of the different receptor isoforms in growth and maturation of selected tissues and organs. We will focus on mammalian tissues, and therefore we will not address the fundamental role of the THs during amphibian metamorphosis. MAJOR CONCLUSIONS The actions of THs are highly pleiotropic, affecting many tissues at different developmental stages. As a consequence, their effects on proliferation and differentiation are highly heterogeneous depending on the cell type, the cellular context, and the developmental or transformation status. Both during development and in the adult, stem cells are essential for proper organ formation, maintenance and regeneration. Recent evidence suggests that some of the actions of the thyroid hormone receptors could be secondary to regulation of stem/progenitor cell function. Here we will also include the latest knowledge on the role of these receptors in proliferation and differentiation of embryonic and adult stem cells. GENERAL SIGNIFICANCE The thyroid hormone receptors are potent regulators of proliferation and differentiation of many cell types. This can explain the important role of the thyroid hormones and their receptors in key processes such as growth, development, tissue homeostasis or cancer. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
13
|
Blanchet E, Bertrand C, Annicotte JS, Schlernitzauer A, Pessemesse L, Levin J, Fouret G, Feillet-Coudray C, Bonafos B, Fajas L, Cabello G, Wrutniak-Cabello C, Casas F. Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis. FASEB J 2011; 26:40-50. [PMID: 21914860 DOI: 10.1096/fj.11-186841] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thyroid hormone is a major determinant of energy expenditure and a key regulator of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) that acts as a mitochondrial transcription factor of the organelle genome, which leads, in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Here we generated mice specifically lacking p43 to address its physiological influence. We found that p43 is required for normal glucose homeostasis. The p43(-/-) mice had a major defect in insulin secretion both in vivo and in isolated pancreatic islets and a loss of glucose-stimulated insulin secretion. Moreover, a high-fat/high-sucrose diet elicited more severe glucose intolerance than that recorded in normal animals. In addition, we observed in p43(-/-) mice both a decrease in pancreatic islet density and in the activity of complexes of the respiratory chain in isolated pancreatic islets. These dysfunctions were associated with a down-regulation of the expression of the glucose transporter Glut2 and of Kir6.2, a key component of the K(ATP) channel. Our findings establish that p43 is an important regulator of glucose homeostasis and pancreatic β-cell function and provide evidence for the first time of a physiological role for a mitochondrial endocrine receptor.
Collapse
Affiliation(s)
- Emilie Blanchet
- UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Monfoulet LE, Rabier B, Dacquin R, Anginot A, Photsavang J, Jurdic P, Vico L, Malaval L, Chassande O. Thyroid hormone receptor β mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Miner Res 2011; 26:2036-44. [PMID: 21594896 DOI: 10.1002/jbmr.432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Excess thyroid hormone (TH) in adults causes osteoporosis and increases fracture risk. However, the mechanisms by which TH affects bone turnover are not elucidated. In particular, the roles of thyroid hormone receptor (TR) isotypes in the mediation of TH effects on osteoblast-mediated bone formation and osteoclast-mediated bone resorption are not established. In this study we have induced experimental hypothyroidism or hyperthyroidism in adult wild-type, TRα- or TRβ-deficient mice and analyzed the effects of TH status on the structure and remodeling parameters of trabecular bone. In wild-type mice, excess TH decreased bone volume and mineralization. High TH concentrations were associated with a high bone-resorption activity, assessed by increased osteoclast surfaces and elevated concentrations of serum bone-resorption markers. Serum markers of bone formation also were higher in TH-treated mice. TRα deficiency did not prevent TH action on bone volume, bone mineralization, bone formation, or bone resorption. In contrast, TRβ deficiency blocked all the early effects of excess TH observed in wild-type mice. However, prolonged exposure to low or high TH concentrations of TRβ-deficient mice induced mild modifications of bone structure and remodeling parameters. Together our data suggest that TRβ receptors mediate the acute effects produced by transient changes of TH concentrations on bone remodeling, whereas TRα receptors mediate long-term effects of chronic alterations of TH metabolism. These data shed new light on the respective roles of TRs in the control of bone metabolism by TH.
Collapse
|
15
|
Takayama S, Hostick U, Haendel M, Eisen J, Darimont B. An F-domain introduced by alternative splicing regulates activity of the zebrafish thyroid hormone receptor alpha. Gen Comp Endocrinol 2008; 155:176-89. [PMID: 17583703 PMCID: PMC3758257 DOI: 10.1016/j.ygcen.2007.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/19/2007] [Accepted: 04/13/2007] [Indexed: 11/15/2022]
Abstract
Thyroid hormones (THs) play an important role in vertebrate development; however, the underlying mechanisms of their actions are still poorly understood. Zebrafish (Danio rerio) is an emerging vertebrate model system to study the roles of THs during development. In general, the response to THs relies on closely related proteins and mechanisms across vertebrate species, however some species-specific differences exist. In contrast to mammals, zebrafish has two TRalpha genes (thraa, thrab). Moreover, the zebrafish thraa gene expresses a TRalpha isoform (TRalphaA1) that differs from other TRs by containing additional C-terminal amino acids. C-terminal extensions, called "F domains", are common in other members of the nuclear receptor superfamily and modulate the response of these receptors to hormones. Here we demonstrate that the F-domain constrains the transcriptional activity of zebrafish TRalpha by altering the selectivity of this receptor for certain coactivator binding motifs. We found that the F-domain of zebrafish TRalphaA1 is encoded on a separate exon whose inclusion is regulated by alternative splicing, indicating a regulatory role of the F-domain in vivo. Quantitative expression analyses revealed that TRalphaA1 is primarily expressed in reproductive organs whereas TRalphaB and the TRalphaA isoform that lacks the F-domain (TRalphaA1-2) appear to be ubiquitous. The relative expression levels of these TRalpha transcripts differ in a tissue-specific manner suggesting that zebrafish uses both alternative splicing and differential expression of TRalpha genes to diversify the cellular response to THs.
Collapse
Affiliation(s)
- Sachiko Takayama
- Institutes of Molecular Biology, University of Oregon, Eugene, OR, 97403-1229, USA
| | - Ute Hostick
- Institutes of Molecular Biology, University of Oregon, Eugene, OR, 97403-1229, USA
- Neuroscience, University of Oregon, Eugene, OR, 97403-1229, USA
| | - Melissa Haendel
- Neuroscience, University of Oregon, Eugene, OR, 97403-1229, USA
| | - Judith Eisen
- Neuroscience, University of Oregon, Eugene, OR, 97403-1229, USA
| | - Beatrice Darimont
- Institutes of Molecular Biology, University of Oregon, Eugene, OR, 97403-1229, USA
- Corresponding author: Institute of Molecular Biology University of Oregon Eugene, OR, 97403-1229 Phone: (541) 346-5265 Fax: (541) 346-5891
| |
Collapse
|