1
|
Bae S, Mai V, Mun S, Dong D, Han K, Park S, Hyun J. Lonafarnib Protects Against Muscle Atrophy Induced by Dexamethasone. J Cachexia Sarcopenia Muscle 2025; 16:e13665. [PMID: 39686867 PMCID: PMC11696026 DOI: 10.1002/jcsm.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Muscle atrophy, including glucocorticoid-induced muscle wasting from treatments such as dexamethasone (DEX), results in significant reductions in muscle mass, strength and function. This study investigates the potential of lonafarnib, a farnesyltransferase inhibitor, to counteract DEX-induced muscle atrophy by targeting key signalling pathways. METHODS We utilized in vitro models with C2C12 myotubes treated with DEX and in vivo models with Caenorhabditis elegans and DEX-treated Sprague-Dawley rats. Myotube morphology was assessed by measuring area, fusion index and diameter. Muscle function was evaluated by grip strength and compound muscle action potential (CMAP) in the gastrocnemius (GC) and tibialis anterior (TA) muscles. Molecular mechanisms were explored through RNA sequencing and Western blotting to assess changes in mitochondrial function and muscle signalling pathways. RESULTS Lonafarnib (2 μM) significantly improved myotube area (1.49 ± 0.14 × 105 μm2 vs. 1.03 ± 0.49 × 105 μm2 in DEX, p < 0.05), fusion index (18.73 ± 1.23% vs. 13.3 ± 1.56% in DEX, p < 0.05) and myotube diameter (31.89 ± 0.89 μm vs. 21.56 ± 1.01 μm in DEX, p < 0.05) in C2C12 myotubes. In C. elegans, lonafarnib (100 μM) increased the pharyngeal pumping rate from 212 ± 7.21 contractions/min in controls to 308 ± 17.09 contractions/min at day 4 (p < 0.05), indicating enhanced neuromuscular function. In DEX-induced atrophic rats, lonafarnib improved maximal grip strength (DEX: 13.91 ± 0.78 N vs. 1 μM lonafarnib: 16.18 ± 0.84 N and 5 μM lonafarnib: 16.71 ± 0.83 N, p < 0.05), increased muscle weight in GC, and enhanced CMAP amplitudes in both GC and TA muscles. Western blot analysis showed that lonafarnib treatment upregulated UCP3 and ANGPTL4 and increased phosphorylation of mTOR and S6 ribosomal protein (p < 0.05), indicating enhanced mitochondrial function and protein synthesis. Knockdown models further demonstrated that lonafarnib could partially rescue muscle atrophy phenotypes, indicating its action through multiple molecular pathways. CONCLUSIONS Lonafarnib mitigates dexamethasone-induced muscle atrophy by enhancing mitochondrial function and activating anabolic pathways. These findings support further investigation of lonafarnib as a therapeutic agent for muscle atrophy in clinical settings.
Collapse
Affiliation(s)
- Sanghoon Bae
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative MedicineDankook UniversityCheonanKorea
| | - Van‐Hieu Mai
- Natural Product Research Institute, College of PharmacySeoul National UniversitySeoulKorea
| | - Seyoung Mun
- Department of Microbiology, College of Science & TechnologyDankook UniversityCheonanKorea
- Smart Animal Bio InstituteDankook UniversityCheonanKorea
- Center for Bio‐Medical Core FacilityDankook UniversityCheonanKorea
- College of Science & TechnologyDankook UniversityCheonanKorea
| | - Dalong Dong
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative MedicineDankook UniversityCheonanKorea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonanKorea
| | - Kyudong Han
- Department of Microbiology, College of Science & TechnologyDankook UniversityCheonanKorea
- Smart Animal Bio InstituteDankook UniversityCheonanKorea
- Center for Bio‐Medical Core FacilityDankook UniversityCheonanKorea
| | - Sunghyouk Park
- Natural Product Research Institute, College of PharmacySeoul National UniversitySeoulKorea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative MedicineDankook UniversityCheonanKorea
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonanKorea
- Department of Rehabilitation Medicine, College of MedicineDankook UniversityCheonanKorea
- Wiregene Co. Ltd.ChungjuKorea
| |
Collapse
|
2
|
Ohguro H, Nishikiori N, Sato T, Watanabe M, Higashide M, Furuhashi M. Pemafibrate Induces a Low Level of PPARα Agonist-Stimulated mRNA Expression of ANGPTL4 in ARPE19 Cell. Bioengineering (Basel) 2024; 11:1247. [PMID: 39768065 PMCID: PMC11673482 DOI: 10.3390/bioengineering11121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
To elucidate the unidentified roles of a selective peroxisome proliferator-activated receptor α (PPARα) agonist, pemafibrate (Pema), on the pathogenesis of retinal ischemic diseases (RID)s, the pharmacological effects of Pema on the retinal pigment epithelium (RPE), which is involved in the pathogenesis of RID, were compared with the pharmacological effects of the non-fibrate PPARα agonist GW7647 (GW). For this purpose, the human RPE cell line ARPE19 that was untreated (NT) or treated with Pema or GW was subjected to Seahorse cellular metabolic analysis and RNA sequencing analysis. Real-time cellular metabolic function analysis revealed that pharmacological effects of the PPARα agonist actions on essential metabolic functions in RPE cells were substantially different between Pema-treated cells and GW-treated cells. RNA sequencing analysis revealed the following differentially expressed genes (DEGs): (1) NT vs. Pema-treated cells, 37 substantially upregulated and 72 substantially downregulated DEGs; (2) NT vs. GW-treated cells, 32 substantially upregulated and 54 substantially downregulated DEGs; and (3) Pema vs. GW, 67 substantially upregulated and 51 markedly downregulated DEGs. Gene ontology (GO) analysis and ingenuity pathway analysis (IPA) showed several overlaps or differences in biological functions and pathways estimated by the DEGs between NT and Pema-treated cells and between NT and GW-treated cells, presumably due to common PPARα agonist actions or unspecific off-target effects to each. For further estimation, overlaps of DEGs among different pairs of comparisons (NT vs. Pema, NT vs. GW, and Pema vs. GW) were listed up. Angiopoietin-like 4 (ANGPTL4), which has been shown to cause deterioration of RID, was the only DEG identified as a common significantly upregulated DEG in all three pairs of comparisons, suggesting that ANGPTL4 was upregulated by the PPARα agonist action but that its levels were substantially lower in Pema-treated cells than in GW-treated cells. In qPCR analysis, such lower efficacy for upregulation of the mRNA expression of ANGPTL4 by Pema than by GW was confirmed, in addition to substantial upregulation of the mRNA expression of HIF1α by both agonists. However, different Pema and GW-induced effects on mRNA expression of HIF1α (Pema, no change; GW, significantly downregulated) and mRNA expression of ANGPTL4 (Pema, significantly upregulated; GW, significantly downregulated) were observed in HepG2 cells, a human hepatocyte cell line. The results of this study suggest that actions of the PPARα agonists Pema and GW are significantly organ-specific and that lower upregulation of mRNA expression of the DR-worsening factor ANGPTL4 by Pema than by GW in ARPE19 cells may minimize the risk for development of RID.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| |
Collapse
|
3
|
Liu Y, Lin H, Liu M, Lin L, Wen Y. Establishment of a Mitochondrial Metabolism-Related Diagnostic Model in Schizophrenia Based on LASSO Algorithm. Psychiatry Investig 2024; 21:618-628. [PMID: 38960439 PMCID: PMC11222072 DOI: 10.30773/pi.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.
Collapse
Affiliation(s)
- Yinfang Liu
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Han Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Meicen Liu
- Department of Pharmacy, The First Hospital of Longyan, Longyan, China
| | - Liping Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Yaohui Wen
- Department of Laboratory Medicine, The Third Hospital of Longyan, Longyan, China
| |
Collapse
|
4
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Chen Y, Du H, Wang X, Li B, Chen X, Yang X, Zhao C, Zhao J. ANGPTL4 May Regulate the Crosstalk Between Intervertebral Disc Degeneration and Type 2 Diabetes Mellitus: A Combined Analysis of Bioinformatics and Rat Models. J Inflamm Res 2023; 16:6361-6384. [PMID: 38161353 PMCID: PMC10757813 DOI: 10.2147/jir.s426439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The crosstalk between intervertebral disc degeneration (IVDD) and type 2 diabetes mellitus (T2DM) has been investigated. However, the common mechanism underlying this phenomenon has not been clearly elucidated. This study aimed to explore the shared gene signatures of IVDD and T2DM. Methods The expression profiles of IVDD (GSE27494) and T2DM (GSE20966) were acquired from the Gene Expression Omnibus database. Five hub genes including ANGPTL4, CCL2, CCN3, THBS2, and INHBA were preliminarily screened. GO (Gene Ontology) enrichment analysis, functional correlation analysis, immune filtration, Transcription factors (TFs)-mRNA-miRNA coregulatory network, and potential drugs prediction were performed following the identification of hub genes. RNA sequencing, in vivo and in vitro experiments on rats were further performed to validate the expression and function of the target gene. Results Five hub genes (ANGPTL4, CCL2, CCN3, THBS2, and INHBA) were identified. GO analysis demonstrated the regulation of the immune system, extracellular matrix (ECM), and SMAD protein signal transduction. There was a strong correlation between hub genes and different functions, including lipid metabolism, mitochondrial function, and ECM degradation. The immune filtration pattern grouped by disease and the expression of hub genes showed significant changes in the immune cell composition. TFs-mRNA-miRNA co-expression networks were constructed. In addition, pepstatin showed great drug-targeting relevance based on potential drugs prediction of hub genes. ANGPTL4, a gene that mediates the inhibition of lipoprotein lipase activity, was eventually determined after hub gene screening, validation by different datasets, RNA sequencing, and experiments. Discussion This study screened five hub genes and ANGPTL4 was eventually determined as a potential target for the regulation of the crosstalk in patients with IVDD and T2DM.
Collapse
Affiliation(s)
- Yan Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Han Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Changqing Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
6
|
Circadian Angiopoietin-Like-4 as a Novel Therapy in Cardiovascular Disease. Trends Mol Med 2021; 27:627-629. [PMID: 33980464 DOI: 10.1016/j.molmed.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023]
Abstract
Angiopoietin-like 4 (ANGPTL4) is critical for regulating plasma lipids, and thus an attractive therapeutic target for cardiovascular diseases. Unfortunately, targeting ANGPTL4 results in a proinflammatory and ultimately lethal phenotype in animals. The serendipitous discovery of cardiac ANGPTL4 as a circadian protein reveals novel mechanistic insight and a solution for this therapeutic dilemma.
Collapse
|
7
|
Mølmen KS, Hammarström D, Pedersen K, Lian Lie AC, Steile RB, Nygaard H, Khan Y, Hamarsland H, Koll L, Hanestadhaugen M, Eriksen AL, Grindaker E, Whist JE, Buck D, Ahmad R, Strand TA, Rønnestad BR, Ellefsen S. Vitamin D 3 supplementation does not enhance the effects of resistance training in older adults. J Cachexia Sarcopenia Muscle 2021; 12:599-628. [PMID: 33788419 PMCID: PMC8200443 DOI: 10.1002/jcsm.12688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lifestyle therapy with resistance training is a potent measure to counteract age-related loss in muscle strength and mass. Unfortunately, many individuals fail to respond in the expected manner. This phenomenon is particularly common among older adults and those with chronic diseases (e.g. chronic obstructive pulmonary disease, COPD) and may involve endocrine variables such as vitamin D. At present, the effects of vitamin D supplementation on responses to resistance training remain largely unexplored. METHODS Ninety-five male and female participants (healthy, n = 71; COPD, n = 24; age 68 ± 5 years) were randomly assigned to receive either vitamin D3 or placebo supplementation for 28 weeks in a double-blinded manner (latitude 61°N, September-May). Seventy-eight participants completed the RCT, which was initiated by 12 weeks of supplementation-only (two weeks with 10 000 IU/day, followed by 2000 IU/day), followed by 13 weeks of combined supplementation (2000 IU/day) and supervised whole-body resistance training (twice weekly), interspersed with testing and measurements. Outcome measures included multiple assessments of muscle strength (nvariables = 7), endurance performance (n = 6), and muscle mass (n = 3, legs, primary), as well as muscle quality (legs), muscle biology (m. vastus lateralis; muscle fibre characteristics, transcriptome), and health-related variables (e.g. visceral fat mass and blood lipid profile). For main outcome domains such as muscle strength and muscle mass, weighted combined factors were calculated from the range of singular assessments. RESULTS Overall, 13 weeks of resistance training increased muscle strength (13% ± 8%), muscle mass (9% ± 8%), and endurance performance (one-legged, 23% ± 15%; whole-body, 8% ± 7%), assessed as weighted combined factors, and were associated with changes in health variables (e.g. visceral fat, -6% ± 21%; [LDL]serum , -4% ± 14%) and muscle tissue characteristics such as fibre type proportions (e.g. IIX, -3% points), myonuclei per fibre (30% ± 65%), total RNA/rRNA abundances (15%/6-19%), and transcriptome profiles (e.g. 312 differentially expressed genes). Vitamin D3 supplementation did not affect training-associated changes for any of the main outcome domains, despite robust increases in [25(OH)D]serum (∆49% vs. placebo). No conditional effects were observed for COPD vs. healthy or pre-RCT [25(OH)D]serum . In secondary analyses, vitamin D3 affected expression of gene sets involved in vascular functions in muscle tissue and strength gains in participants with high fat mass, which advocates further study. CONCLUSIONS Vitamin D3 supplementation did not affect muscular responses to resistance training in older adults with or without COPD.
Collapse
Affiliation(s)
- Knut Sindre Mølmen
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Daniel Hammarström
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Karianne Pedersen
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Anne Cecilie Lian Lie
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Ragnvald B. Steile
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Håvard Nygaard
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Yusuf Khan
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
- Department of BiotechnologyInland Norway University of Applied SciencesHamarNorway
| | - Håvard Hamarsland
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Lise Koll
- Innlandet Hospital TrustLillehammerNorway
| | | | | | - Eirik Grindaker
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | | | - Daniel Buck
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Rafi Ahmad
- Department of BiotechnologyInland Norway University of Applied SciencesHamarNorway
- Institute of Clinical Medicine, Faculty of Health SciencesUiT – The Arctic University of NorwayTromsøNorway
| | - Tor A. Strand
- Innlandet Hospital TrustLillehammerNorway
- Centre for International HealthUniversity of BergenBergenNorway
| | - Bent R. Rønnestad
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Stian Ellefsen
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
- Innlandet Hospital TrustLillehammerNorway
| |
Collapse
|
8
|
Hostettler IC, O'Callaghan B, Bugiardini E, O'Connor E, Vandrovcova J, Davagnanam I, Alg V, Bonner S, Walsh D, Bulters D, Kitchen N, Brown MM, Grieve J, Werring DJ, Houlden H. ANGPTL6 Genetic Variants Are an Underlying Cause of Familial Intracranial Aneurysms. Neurology 2020; 96:e947-e955. [PMID: 33106390 PMCID: PMC8105901 DOI: 10.1212/wnl.0000000000011125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose To understand the role of the angiopoietin-like 6 gene (ANGPTL6) in intracranial aneurysms (IAs), we investigated its role in a large cohort of familial IAs. Methods Individuals with family history of IA were recruited to the Genetic and Observational Subarachnoid Haemorrhage (GOSH) study. The ANGPTL6 gene was sequenced using Sanger sequencing. Identified genetic variants were compared to a control population. Results We found 6 rare ANGPTL6 genetic variants in 9/275 individuals with a family history of IA (3.3%) (5 missense mutations and 1 nonsense mutation leading to a premature stop codon), none present in controls. One of these had been previously reported: c.392A>T (p.Glu131Val) on exon 2; another was very close: c.332G>A (p.Arg111His). Two further genetic variants lie within the fibrinogen-like domain of the ANGPTL6 gene, which may influence function or level of the ANGPTL6 protein. The last 2 missense mutations lie within the coiled-coil domain of the ANGPTL6 protein. All genetic variants were well conserved across species. Conclusion ANGPTL6 genetic variants are an important cause of IA. Defective or lack of ANGPTL6 protein is therefore an important factor in blood vessel proliferation leading to IA; dysfunction of this protein is likely to cause abnormal proliferation or weakness of vessel walls. With these data, not only do we emphasize the importance of screening familial IA cases for ANGPTL6 and other genes involved in IA, but also highlight the ANGPTL6 pathway as a potential therapeutic target. Classification of Evidence This is a Class III study showing some specificity of presence of the ANGPTL6 gene variant as a marker of familial intracranial aneurysms in a small subset of individuals with familial aneurysms.
Collapse
Affiliation(s)
- Isabel C Hostettler
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Benjamin O'Callaghan
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Enrico Bugiardini
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Emer O'Connor
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Jana Vandrovcova
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Indran Davagnanam
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Varinder Alg
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Stephen Bonner
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Daniel Walsh
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Diederik Bulters
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Neil Kitchen
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Martin M Brown
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Joan Grieve
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - David J Werring
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Henry Houlden
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust.
| | | |
Collapse
|
9
|
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152:116-141. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Citation(s) in RCA: 703] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease worldwide and is strongly associated with the presence of oxidative stress. Disturbances in lipid metabolism lead to hepatic lipid accumulation, which affects different reactive oxygen species (ROS) generators, including mitochondria, endoplasmic reticulum, and NADPH oxidase. Mitochondrial function adapts to NAFLD mainly through the downregulation of the electron transport chain (ETC) and the preserved or enhanced capacity of mitochondrial fatty acid oxidation, which stimulates ROS overproduction within different ETC components upstream of cytochrome c oxidase. However, non-ETC sources of ROS, in particular, fatty acid β-oxidation, appear to produce more ROS in hepatic metabolic diseases. Endoplasmic reticulum stress and NADPH oxidase alterations are also associated with NAFLD, but the degree of their contribution to oxidative stress in NAFLD remains unclear. Increased ROS generation induces changes in insulin sensitivity and in the expression and activity of key enzymes involved in lipid metabolism. Moreover, the interaction between redox signaling and innate immune signaling forms a complex network that regulates inflammatory responses. Based on the mechanistic view described above, this review summarizes the mechanisms that may account for the excessive production of ROS, the potential mechanistic roles of ROS that drive NAFLD progression, and therapeutic interventions that are related to oxidative stress.
Collapse
Affiliation(s)
- Ze Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China
| | - Jingjing Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Institute of Model Animals of Wuhan University, Wuhan, 430072, PR China; Basic Medical School, Wuhan University, Wuhan, 430071, PR China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
10
|
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway. PPAR Res 2017; 2017:8187235. [PMID: 28182091 PMCID: PMC5274667 DOI: 10.1155/2017/8187235] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
The angiopoietin-like 4 (ANGPTL4) protein belongs to a superfamily of secreted proteins structurally related to factors modulating angiogenesis known as angiopoietins. At first, ANGPTL4 has been identified as an adipokine exclusively involved in lipid metabolism, because of its prevalent expression in liver and adipose tissue. This protein regulates lipid metabolism by inhibiting lipoprotein lipase (LPL) activity and stimulating lipolysis of white adipose tissue (WAT), resulting in increased levels of plasma triglycerides (TG) and fatty acids. Subsequently, ANGPTL4 has been shown to be involved in several nonmetabolic and metabolic conditions, both physiological and pathological, including angiogenesis and vascular permeability, cell differentiation, tumorigenesis, glucose homoeostasis, lipid metabolism, energy homeostasis, wound healing, inflammation, and redox regulation. The transcriptional regulation of ANGPTL4 can be modulated by several transcription factors, including PPARα, PPARβ/δ, PPARγ, and HIF-1α, and nutritional and hormonal conditions. Several studies showed that high levels of ANGPTL4 are associated with poor prognosis in patients with various solid tumors, suggesting an important role in cancer onset and progression, metastasis, and anoikis resistance. Here, we have discussed the potential role of ANGPTL4 in mediating the cross talk between metabolic syndromes, such as diabetes and obesity, and cancer through regulation of its expression by PPARs.
Collapse
Affiliation(s)
- Laura La Paglia
- ICAR-CNR, National Research Council of Italy, 90146 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR 1162, 75010 Paris, France
| | - Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Passiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
11
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Li Y, Ma W, Xie C, Zhang M, Yin X, Wang F, Xu J, Shi B. Identification of genes and signaling pathways associated with diabetic neuropathy using a weighted correlation network analysis: A consort study. Medicine (Baltimore) 2016; 95:e5443. [PMID: 27893688 PMCID: PMC5134881 DOI: 10.1097/md.0000000000005443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The molecular mechanisms behind diabetic neuropathy remains to be investigated. METHODS This is a secondary study on microarray dataset (GSE24290) downloaded from Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI), which included 18 nerve tissue samples of progressing diabetic neuropathy (fibers loss ≥500 fibers/mm) and 17 nerve tissue samples of nonprogressing diabetic neuropathy (fibers loss ≤100 fibers/mm). Differentially expressed genes (DEGs) were screened between progressing and nonprogressing diabetic neuropathy. With the DEGs obtained, a weighted gene coexpression network analysis was conducted to identify gene clusters associated with diabetic neuropathy. Diabetes-related microRNAs (miRNAs) and their target genes were predicted and mapped to the genes in the gene clusters identified. Consequently, a miRNA-gene network was constructed, for which gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed. Potential drugs for treatment of diabetic neuropathy were also predicted. RESULTS Total 370 upregulated and 379 downregulated DEGs were screened between nonprogressing and progressing diabetic neuropathy. Has-miR-377, has-miR-216a, and has-miR-217 were associated with diabetes. Inflammation was the most significant GO term. The peroxisome proliferator-activated receptor (PPAR) pathway and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway were significantly KEGG pathways significantly enriched with PPAR gamma (PPARG), stearoyl-CoA desaturase (SCD), cluster of differentiation 36 (CD36), and phosphoenolpyruvate carboxykinase 1 (PCK1). CONCLUSION The study suggests that PPARG, SCD, CD36, PCK1, AMPK pathway, and PPAR pathway may be involved in progression of diabetic neuropathy.
Collapse
Affiliation(s)
- Ya Li
- Department of Endocrinology, The First Hospital Affiliated to Xi’an Jiaotong University
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Medical University, Xi’an
- Department of Endocrinology, Yan’an University Affiliated Hospital, Yan’an, China
| | - Weiguo Ma
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Medical University, Xi’an
| | - Chuanqing Xie
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Medical University, Xi’an
| | - Min Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Medical University, Xi’an
| | - Xiaohong Yin
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Medical University, Xi’an
| | - Fenfen Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Medical University, Xi’an
| | - Jie Xu
- Department of Endocrinology, Yan’an University Affiliated Hospital, Yan’an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Hospital Affiliated to Xi’an Jiaotong University
| |
Collapse
|
13
|
Quercetin Impacts Expression of Metabolism- and Obesity-Associated Genes in SGBS Adipocytes. Nutrients 2016; 8:nu8050282. [PMID: 27187453 PMCID: PMC4882695 DOI: 10.3390/nu8050282] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
Obesity is characterized by the rapid expansion of visceral adipose tissue, resulting in a hypoxic environment in adipose tissue which leads to a profound change of gene expression in adipocytes. As a consequence, there is a dysregulation of metabolism and adipokine secretion in adipose tissue leading to the development of systemic inflammation and finally resulting in the onset of metabolic diseases. The flavonoid quercetin as well as other secondary plant metabolites also referred to as phytochemicals have anti-oxidant, anti-inflammatory, and anti-diabetic effects known to be protective in view of obesity-related-diseases. Nevertheless, its underlying molecular mechanism is still obscure and thus the focus of this study was to explore the influence of quercetin on human SGBS (Simpson Golabi Behmel Syndrome) adipocytes’ gene expression. We revealed for the first time that quercetin significantly changed expression of adipokine (Angptl4, adipsin, irisin and PAI-1) and glycolysis-involved (ENO2, PFKP and PFKFB4) genes, and that this effect not only antagonized but in part even overcompensated the effect mediated by hypoxia in adipocytes. Thus, these results are explained by the recently proposed hypothesis that the protective effect of quercetin is not solely due to its free radical-scavenging activity but also to a direct effect on mitochondrial processes, and they demonstrate that quercetin might have the potential to counteract the development of obesity-associated complications.
Collapse
|
14
|
The Effect of Oxytocin on Social and Non-Social Behaviour and Striatal Protein Expression in C57BL/6N Mice. PLoS One 2015; 10:e0145638. [PMID: 26716999 PMCID: PMC4696826 DOI: 10.1371/journal.pone.0145638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Oxytocin has been suggested as a promising new treatment for neurodevelopmental disorders. However, important gaps remain in our understanding of its mode of action, in particular, to what extent oxytocin modulates social and non-social behaviours and whether its effects are generalizable across both sexes. Here we investigated the effects of a range of oxytocin doses on social and non-social behaviours in C57BL/6N mice of both sexes. As the striatum modulates social and non-social behaviours, and is implicated in neurodevelopmental disorders, we also conducted a pilot exploration of changes in striatal protein expression elicited by oxytocin. Oxytocin increased prepulse inhibition of startle but attenuated the recognition memory in male C57BL/6N mice. It increased social interaction time and suppressed the amphetamine locomotor response in both sexes. The striatum proteome following oxytocin exposure could be clearly discriminated from saline controls. With the caveat that these results are preliminary, oxytocin appeared to alter individual protein expression in directions similar to conventional anti-psychotics. The proteins affected by oxytocin could be broadly categorized as those that modulate glutamatergic, GABAergic or dopaminergic signalling and those that mediate cytoskeleton dynamics. Our results here encourage further research into the clinical application of this peptide hormone, which may potentially extend treatment options across a spectrum of neurodevelopmental conditions.
Collapse
|
15
|
Behaviour and prefrontal protein differences in C57BL/6N and 129 X1/SvJ mice. Brain Res Bull 2015; 116:16-24. [PMID: 26003851 DOI: 10.1016/j.brainresbull.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/24/2023]
Abstract
Experimental animals provide valuable opportunities to establish aetiological mechanisms and test new treatments for neurodevelopmental psychiatric conditions. However, it is increasingly appreciated that inter-strain differences cannot be neglected in the experimental design. In addition, the importance of including females in preclinical - but also clinical - research is now recognised. Here, we compared behaviour and prefrontal protein differences in male and female C57BL/6N and 129X1/SvJ mice as both are commonly used experimental rodents. Relative to 129X1/SvJ mice, both sexes of C57BL/6N mice had weaker sensorimotor gating, measured in the prepulse inhibition (PPI) of startle paradigm, and were more sensitive to amphetamine challenge in the open field. The pattern of protein expression in the prefrontal cortex of C57BL6N mice was also clearly distinct from 129X1/SvJ mice. Proteins differentially expressed were those associated with oxidative metabolism, receptor protein signalling, cell communication and signal transduction and energy pathways. We suggest that the C57BL/6N mouse may usefully proxy features of the neurodevelopmental disorders and could have application in pre-translational screening of new therapeutic approaches. The 129X1/SvJ strain in contrast, might be better suited to experimental studies of causal risk factors expected to lower PPI and increase amphetamine sensitivity.
Collapse
|
16
|
Nonalcoholic Fatty liver disease: pathogenesis and therapeutics from a mitochondria-centric perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:637027. [PMID: 25371775 PMCID: PMC4211163 DOI: 10.1155/2014/637027] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS.
Collapse
|
17
|
Li Y, Teng C. Angiopoietin-like proteins 3, 4 and 8: regulating lipid metabolism and providing new hope for metabolic syndrome. J Drug Target 2014; 22:679-87. [PMID: 24960069 DOI: 10.3109/1061186x.2014.928715] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Angiopoietin-like proteins (ANGPTLs) are a group of eight proteins that share structural similarity to the members of the angiopoietin protein family. ANGPTL3 plays a vital role in the regulation of the plasma levels of triglyceride and cholesterol, mainly via reversible inhibition of the lipoprotein lipase activity. ANGPTL4, which functions as a homo-oligomer different from ANGPTL3 and ANGPTL8, not only regulates the plasma levels of triglyceride and prevents the uptake of dietary lipids into adipose tissues but also inhibits intravascular lipolysis. ANGPTL8 (also called betatrophin) has been identified as an important factor in regulating the triglyceride levels and adipose tissue mass as well as in replenishing the adipose tissue triglyceride store. ANGPTL8 acts together with ANGPTL3 to regulate the lipid metabolism, and ANGPTL8 promotes cleavage of ANGPTL3 to augment the activity of ANGPTL3. In addition, ANGPTL8 promotes proliferation of pancreatic β-cells and enhances insulin secretion. The properties of ANGPTLs in regulating the lipid metabolism suggest their application in the target therapy for metabolic syndrome. As ANGPTLs are regulated by several factors and may be involved in certain specific pathways of lipid metabolism, designing drugs that target ANGPTLs or factors regulating ANGPTLs may be an efficient approach to treat metabolic syndrome.
Collapse
Affiliation(s)
- Yunchao Li
- Laboratory of Animal Development Biology, College of Life Science, Northeast Forestry University, Ministry of Education , Harbin , China
| | | |
Collapse
|
18
|
Samaranayake YH, Cheung BPK, Wang Y, Yau JYY, Yeung KWS, Samaranayake LP. Fluconazole resistance in Candida glabrata is associated with increased bud formation and metallothionein production. J Med Microbiol 2013; 62:303-318. [DOI: 10.1099/jmm.0.044123-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Y. H. Samaranayake
- Oral Bio-sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR
| | - B. P. K. Cheung
- Oral Bio-sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR
| | - Y. Wang
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong SAR
| | - J. Y. Y. Yau
- Oral Bio-sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR
| | - K. W. S. Yeung
- Oral Bio-sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR
| | - L. P. Samaranayake
- Oral Bio-sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong SAR
| |
Collapse
|
19
|
Sárközy M, Zvara Á, Gyémánt N, Fekete V, Kocsis GF, Pipis J, Szűcs G, Csonka C, Puskás LG, Ferdinandy P, Csont T. Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats. Cardiovasc Diabetol 2013; 12:16. [PMID: 23320804 PMCID: PMC3599923 DOI: 10.1186/1475-2840-12-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/05/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Metabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome. METHODS Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR. RESULTS Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3-ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e.g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e.g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin 18. Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by metabolic syndrome. CONCLUSIONS Metabolic syndrome significantly alters cardiac gene expression profile which may be involved in development of cardiac pathologies in the presence of metabolic syndrome.
Collapse
Affiliation(s)
- Márta Sárközy
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Department of Functional Genomics, Biological Research Center, Szeged, Hungary
| | - Nóra Gyémánt
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Veronika Fekete
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella F Kocsis
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Judit Pipis
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gergő Szűcs
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Department of Functional Genomics, Biological Research Center, Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Csont
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
20
|
Holmström MH, Iglesias-Gutierrez E, Zierath JR, Garcia-Roves PM. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab 2012; 302:E731-9. [PMID: 22252943 DOI: 10.1152/ajpendo.00159.2011] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tissue-specific role of mitochondrial respiratory capacity in the development of insulin resistance and type 2 diabetes is unclear. We determined mitochondrial function in glycolytic and oxidative skeletal muscle and liver from lean (+/?) and obese diabetic (db/db) mice. In lean mice, the mitochondrial respiration pattern differed between tissues. Tissue-specific mitochondrial profiles were then compared between lean and db/db mice. In liver, mitochondrial respiratory capacity and protein expression, including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), was decreased in db/db mice, consistent with increased mitochondrial fission. In glycolytic muscle, mitochondrial respiration, as well as protein and mRNA expression of mitochondrial markers, was increased in db/db mice, suggesting increased mitochondrial content and fatty acid oxidation capacity. In oxidative muscle, mitochondrial complex I function and PGC-1α and mitochondrial transcription factor A (TFAM) protein levels were decreased in db/db mice, along with increased level of proteins related to mitochondrial dynamics. In conclusion, mitochondrial respiratory performance is under the control of tissue-specific mechanisms and is not uniformly altered in response to obesity. Furthermore, insulin resistance in glycolytic skeletal muscle can be maintained by a mechanism independent of mitochondrial dysfunction. Conversely, insulin resistance in liver and oxidative skeletal muscle from db/db mice is coincident with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Maria H Holmström
- Karolinska Institutet, Section of Integrative Physiology, Stockholm, Sweden
| | | | | | | |
Collapse
|
21
|
Leung PTY, Wang Y, Mak SST, Ng WC, Leung KMY. Differential proteomic responses in hepatopancreas and adductor muscles of the green-lipped mussel Perna viridis to stresses induced by cadmium and hydrogen peroxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:49-61. [PMID: 21684241 DOI: 10.1016/j.aquatox.2011.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
This study aimed to reveal the proteomic responses in the hepatopancreas and adductor muscle of a common biomonitor, Perna viridis after 14-day exposure to two model chemicals, cadmium (Cd; a toxic metal) and hydrogen peroxide (H(2)O(2); a pro-oxidant), using two-dimensional gel electrophoresis coupled with multivariate statistical analyses. Unique sets of tissue-specific protein expression signatures were revealed corresponding to the two treatment groups. In the hepatopancreas, 15 and 2 spots responded to Cd and H(2)O(2) treatments respectively. 6 and 7 spots were differentially expressed in the adductor muscle for Cd and H(2)O(2) treatments, respectively. 15 differentially expressed spots were successfully identified by MALDI-TOF/TOF MS analysis. These proteins are involved in glycolysis, amino acid metabolism, energy homeostasis, oxidative stress response, redox homeostasis and protein folding, heat-shock response, and muscle contraction modulation. This is the first time, to have demonstrated that Cd exposure not only leads to substantial oxidative stress but also results in endoplasmic reticulum stress in hepatopancreas of the mussel. Such notable stress responses may be attributable to high Cd accumulation in this tissue. Our results suggested that investigations on these stress-associated protein changes could be used as a new and complementary approach in pollution monitoring by this popular biomonitor species.
Collapse
Affiliation(s)
- Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
22
|
Abstract
Over the last decades, substantial progress has been made in defining the molecular events and relevant tissues controlling insulin action and the potential defects that lead to insulin resistance and later on Type 2 diabetes mellitus (T2DM). Mitochondrial dysfunction has been postulated as a common mechanism implicated in the development of insulin resistance and T2DM aetiology. Since then there has been growing interest in this area of research and many studies have addressed whether mitochondrial function/dysfunction is implicated in the progression of T2DM or if it is just a consequence. Mitochondria are adjusted to the specific needs of the tissue and to the environmental interactions or pathophysiological state that it encounters. This review offers a current state of the subject in a tissue specific approach. We will focus our attention on skeletal muscle, liver, and white adipose tissue as the main insulin sensitive organs. Hypothalamic mitochondrial function will be also discussed.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Diabetes and Obesity Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
23
|
Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CRI, Boukamp P, Pan JY, Tan SH, Kersten S, Li HY, Ding JL, Tan NS. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 2011; 19:401-15. [PMID: 21397862 DOI: 10.1016/j.ccr.2011.01.018] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/11/2010] [Accepted: 01/04/2011] [Indexed: 11/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Tumor cells exploit various signaling pathways to promote their growth and metastasis. To our knowledge, the role of angiopoietin-like 4 protein (ANGPTL4) in cancer remains undefined. Here, we found that elevated ANGPTL4 expression is widespread in tumors, and its suppression impairs tumor growth associated with enhanced apoptosis. Tumor-derived ANGPTL4 interacts with integrins to stimulate NADPH oxidase-dependent production of O(2)(-). A high ratio of O(2)(-):H(2)O(2) oxidizes/activates Src, triggering the PI3K/PKBα and ERK prosurvival pathways to confer anoikis resistance, thus promoting tumor growth. ANGPTL4 deficiency results in diminished O(2)(-) production and a reduced O(2)(-):H(2)O(2) ratio, creating a cellular environment conducive to apoptosis. ANGPTL4 is an important redox player in cancer and a potential therapeutic target.
Collapse
MESH Headings
- Angiopoietin-Like Protein 4
- Angiopoietins/genetics
- Angiopoietins/metabolism
- Animals
- Anoikis
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Line, Tumor
- Cell Survival
- Female
- Humans
- Hydrogen Peroxide/metabolism
- Immunoblotting
- Integrins/metabolism
- Intracellular Space/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Binding
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxides/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Pengcheng Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM. Frontal-subcortical protein expression following prenatal exposure to maternal inflammation. PLoS One 2011; 6:e16638. [PMID: 21347362 PMCID: PMC3037372 DOI: 10.1371/journal.pone.0016638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/30/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Maternal immune activation (MIA) during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear. METHODOLOGY/PRINCIPAL FINDINGS Using two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control) intravenously on gestation day (GD) 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC). These were proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK), eukaryotic initiation factor (eIF) 4A-II, creatine kinase (CK)-B, L-lactate dehydrogenase (LDH)-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein), 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP) 60, and 90-beta in the PFC. CONCLUSIONS/SIGNIFICANCE This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.
Collapse
Affiliation(s)
- Michelle Y. Deng
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Sylvia Lam
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Urs Meyer
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Joram Feldon
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Qi Li
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Ran Wei
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Lawrence Luk
- Genome Research Centre, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Siew Eng Chua
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Yu Wang
- Department of Pharmacology, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Grainne Mary McAlonan
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| |
Collapse
|
25
|
Hyperglycemia-induced mitochondrial alterations in liver. Life Sci 2010; 87:197-214. [DOI: 10.1016/j.lfs.2010.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/21/2010] [Accepted: 06/05/2010] [Indexed: 01/07/2023]
|
26
|
Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP. Proteomics of drug resistance in Candida glabrata
biofilms. Proteomics 2010; 10:1444-54. [DOI: 10.1002/pmic.200900611] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Robciuc MR, Tahvanainen E, Jauhiainen M, Ehnholm C. Quantitation of serum angiopoietin-like proteins 3 and 4 in a Finnish population sample. J Lipid Res 2009; 51:824-31. [PMID: 19826106 DOI: 10.1194/jlr.m002618] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have developed and validated quantitative ELISAs for human angiopoietin-like (ANGPTL)3 and 4 and correlated their serum levels with parameters of lipid and carbohydrate metabolism. For this study, we used a random subsample of the Health 2000 Health Examination Survey consisting of 125 men and 125 women, aged 30-94 years. The anthropometric and biochemical parameters of subjects were characterized in detail. ANGPTL 3 and 4 levels were determined using the developed ELISAs. The intra- and inter-assay coefficients of variation for the assays were less than 15%. The average serum concentration of ANGPTL3 was 368 +/- 168 ng/ml (mean +/- SD) and for ANGPTL4 it was 18 +/- 23 ng/ml (mean +/- SD). ANGPTL4 serum levels displayed high variability between individuals ranging from 2 to 158 ng/ml. In post-heparin plasma, both ANGPTL 3 and 4 were increased. Low levels of ANGPTL3 were associated with decreased HDL-cholesterol and increased triglyceride levels. ANGPTL4 levels were positively correlated with FFAs (P = 0.044) and waist-hip ratio (P = 0.016). The developed ELISAs will be important tools to clarify the role of ANGPTL 3 and 4 in human energy metabolism and partitioning of triglycerides between sites of storage (adipose tissue) and oxidation (skeletal and cardiac muscle).
Collapse
Affiliation(s)
- Marius R Robciuc
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Public Health Genomics Research Unit, Biomedicum, Helsinki, Finland
| | | | | | | |
Collapse
|
28
|
Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci 2009; 54:1847-56. [PMID: 19052866 DOI: 10.1007/s10620-008-0585-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/13/2008] [Indexed: 02/07/2023]
Abstract
Fat is either white or brown, the latter being found principally in neonates. White fat, which comprises adipocytes, pre-adipocytes, macrophages, endothelial cells, fibroblasts, and leukocytes, actively participates in hormonal and inflammatory systems. Adipokines include hormones such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidine, chemerin, omentin, and inflammatory cytokines, including tumor necrosis factor alpha (TNF), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator protein (PAI). Multiple roles in metabolic and inflammatory responses have been assigned to adipokines; this review describes the molecular actions and clinical significance of the more important adipokines. The array of adipokines evidences diverse roles for adipose tissue, which looms large in the mediators of inflammation and metabolism. For this reason, treating obesity is more than a reduction of excess fat; it is also the treatment of obesity's comorbidities, many of which will some day be treated by drugs that counteract derangements induced by adipokine excesses.
Collapse
Affiliation(s)
- Susan E Wozniak
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | | |
Collapse
|
29
|
Hui X, Zhu W, Wang Y, Lam KSL, Zhang J, Wu D, Kraegen EW, Li Y, Xu A. Major urinary protein-1 increases energy expenditure and improves glucose intolerance through enhancing mitochondrial function in skeletal muscle of diabetic mice. J Biol Chem 2009; 284:14050-7. [PMID: 19336396 PMCID: PMC2682853 DOI: 10.1074/jbc.m109.001107] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/31/2009] [Indexed: 12/21/2022] Open
Abstract
Major urinary protein-1 (MUP-1) is a low molecular weight secreted protein produced predominantly from the liver. Structurally it belongs to the lipocalin family, which carries small hydrophobic ligands such as pheromones. However, the physiological functions of MUP-1 remain poorly understood. Here we provide evidence demonstrating that MUP-1 is an important player in regulating energy expenditure and metabolism in mice. Both microarray and real-time PCR analysis demonstrated that the MUP-1 mRNA abundance in the liver of db/db obese mice was reduced by approximately 30-fold compared with their lean littermates, whereas this change was partially reversed by treatment with the insulin-sensitizing drug rosiglitazone. In both dietary and genetic obese mice, the circulating concentrations of MUP-1 were markedly decreased compared with the lean controls. Chronic elevation of circulating MUP-1 in db/db mice, using an osmotic pump-based protein delivery system, increased energy expenditure and locomotor activity, raised core body temperature, and decreased glucose intolerance as well as insulin resistance. At the molecular level, MUP-1-mediated improvement in metabolic profiles was accompanied by increased expression of genes involved in mitochondrial biogenesis, elevated mitochondrial oxidative capacity, decreased triglyceride accumulation, and enhanced insulin-evoked Akt signaling in skeletal muscle but not in liver. Altogether, these findings raise the possibility that MUP-1 deficiency might contribute to the metabolic dysregulation in obese/diabetic mice, and suggest that the beneficial metabolic effects of MUP-1 are attributed in part to its ability in increasing mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Xiaoyan Hui
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
John-Aryankalayil M, Palayoor ST, Cerna D, Falduto MT, Magnuson SR, Coleman CN. NS-398, ibuprofen, and cyclooxygenase-2 RNA interference produce significantly different gene expression profiles in prostate cancer cells. Mol Cancer Ther 2009; 8:261-73. [PMID: 19139136 DOI: 10.1158/1535-7163.mct-08-0928] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays a significant role in tumor development and progression. Nonsteroidal anti-inflammatory drugs (NSAID) exhibit potent anticancer effects in vitro and in vivo by COX-2-dependent and COX-2-independent mechanisms. In this study, we used microarray analysis to identify the change of expression profile regulated by a COX-2-specific NSAID NS-398 (0.01 and 0.1 mmol/L), a nonspecific NSAID ibuprofen (0.1 and 1.5 mmol/L) and RNA interference (RNAi)-mediated COX-2 inhibition in PC3 prostate cancer cells. A total of 3,362 differentially expressed genes with 2-fold change and P<0.05 were identified. Low concentrations of NSAIDs and COX-2 RNAi altered very few genes (1-3%) compared with the higher concentration of NS-398 (17%) and ibuprofen (80%). Ingenuity Pathway Analysis was used for distributing the differentially expressed genes into biological networks and for evaluation of functional significance. The top 3 networks for both NSAIDs included functional categories of DNA replication, recombination and repair, and gastrointestinal disease. Immunoresponse function was specific to NS-398, and cell cycle and cellular movement were among the top functions for ibuprofen. Ingenuity Pathway Analysis also identified renal and urologic disease as a function specific for ibuprofen. This comprehensive study identified several COX-2-independent targets of NSAIDs, which may help explain the antitumor and radiosensitizing effects of NSAIDs. However, none of these categories were reflected in the identified networks in PC3 cells treated with clinically relevant low concentrations of NS-398 and ibuprofen or with COX-2 RNAi, suggesting the benefit to fingerprinting preclinical drug concentrations to improve their relevance to the clinical setting.
Collapse
Affiliation(s)
- Molykutty John-Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Room B3 B 406, Building 10, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Zhou M, Xu A, Tam PKH, Lam KSL, Chan L, Hoo RLC, Liu J, Chow KHM, Wang Y. Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury. Hepatology 2008; 48:1087-96. [PMID: 18698578 PMCID: PMC2597507 DOI: 10.1002/hep.22444] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Adiponectin is an adipocyte-derived hormone with a wide range of beneficial effects on obesity-related medical complications. Numerous epidemiological investigations in diverse ethnic groups have identified a lower adiponectin level as an independent risk factor for nonalcoholic fatty liver diseases and liver dysfunctions. Animal studies have demonstrated that replenishment of adiponectin protects against various forms of hepatic injuries, suggesting it to be a potential drug candidate for the treatment of liver diseases. This study was designed to investigate the cellular and molecular mechanisms underlying the hepatoprotective effects of adiponectin. Our results demonstrated that in adiponectin knockout (ADN-KO) mice, there was a preexisting condition of hepatic steatosis and mitochondrial dysfunction that might contribute to the increased vulnerabilities of these mice to secondary liver injuries induced by obesity and other conditions. Adenovirus-mediated replenishment of adiponectin depleted lipid accumulation, restored the oxidative activities of mitochondrial respiratory chain (MRC) complexes, and prevented the accumulation of lipid peroxidation products in ADN-KO mice but had no obvious effects on mitochondrial biogenesis. The gene and protein levels of uncoupling protein 2 (UCP2), a mitochondrial membrane transporter, were decreased in ADN-KO mice and could be significantly up-regulated by adiponectin treatment. Moreover, the effects of adiponectin on mitochondrial activities and on protection against endotoxin-induced liver injuries were significantly attenuated in UCP2 knockout mice. CONCLUSION These results suggest that the hepatoprotective properties of adiponectin are mediated at least in part by an enhancement of the activities of MRC complexes through a mechanism involving UCP2.
Collapse
Affiliation(s)
- Mingyan Zhou
- Department of Pharmacology, University of Hong Kong, Hong Kong, China,Genome Research Center, University of Hong Kong, Hong Kong, China,Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology, University of Hong Kong, Hong Kong, China,Department of Medicine, University of Hong Kong, Hong Kong, China,Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Paul KH Tam
- Department of Surgery, University of Hong Kong, Hong Kong, China
| | - Karen SL Lam
- Department of Medicine, University of Hong Kong, Hong Kong, China,Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Lawrence Chan
- Division of Diabetes, Endocrinology, and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ruby LC Hoo
- Department of Medicine, University of Hong Kong, Hong Kong, China,Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jing Liu
- Department of Pharmacology, University of Hong Kong, Hong Kong, China,Genome Research Center, University of Hong Kong, Hong Kong, China,Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kim HM Chow
- Department of Pharmacology, University of Hong Kong, Hong Kong, China,Genome Research Center, University of Hong Kong, Hong Kong, China,Research Center of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yu Wang
- Department of Pharmacology, University of Hong Kong, Hong Kong, China,Genome Research Center, University of Hong Kong, Hong Kong, China,Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP. Candida albicans biofilm formation is associated with increased anti-oxidative capacities. Proteomics 2008; 8:2936-47. [DOI: 10.1002/pmic.200701097] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Zhang Z, Cao L, Li J, Liang X, Liu Y, Liu H, Du J, Qu Z, Cui M, Liu S, Gao L, Ma C, Zhang L, Han L, Sun W. Acquisition of anoikis resistance reveals a synoikis-like survival style in BEL7402 hepatoma cells. Cancer Lett 2008; 267:106-15. [PMID: 18433990 DOI: 10.1016/j.canlet.2008.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 03/04/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
Resistance to anoikis is a hallmark of human malignancies. Our results showed that hepatoma cells resisted anoikis by non-proliferation, non-apoptosis and cell cycle arrest which were termed synoikis-like. These synoikis-like cells are more resistant to extracellular stimuli and could spontaneously attach and proliferate again under suitable conditions, which indicate a reversible property of these cells. Microarray expression profile reveals the change of molecules involved in the synoikis-like hepatoma cells and our data indicated that ANGPTL4 contributed to anoikis resistance of hepatoma cells. These results demonstrated that hepatoma cells might resist anoikis through a synoikis-like survival style, which may facilitate tumor metastasis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Immunology, School of Medicine, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med 2008; 18:6-14. [PMID: 18206803 DOI: 10.1016/j.tcm.2007.10.003] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/27/2007] [Accepted: 10/30/2007] [Indexed: 01/01/2023]
Abstract
Recently, a family of proteins structurally similar to the angiogenic regulating factors angiopoietins was identified and designated "angiopoietin-like proteins" (Angptls). Encoded by seven genes, Angptls 1 to 7 all possess an N-terminal coiled-coil domain and a C-terminal fibrinogen-like domain, both characteristic of angiopoietins. However, Angptls do not bind to either the angiopoietin receptor Tie2 or the related protein Tie1 and remain orphan ligands. Nonetheless, Angptls 1, 2, 3, 4, and Angptl6/angiopoietin-related growth factor function to regulate angiogenesis. Angptls 3, 4, and Angptl6/angiopoietin-related growth factor also appear to directly regulate lipid, glucose, and energy metabolism independently of angiogenic effects. Recently, several lines of evidence reveal differential roles of Angptl structural domains in both angiogenesis and metabolism. Here, we briefly review what is currently known about Angptls function.
Collapse
Affiliation(s)
- Tai Hato
- Laboratory of Vascular Biology and Metabolism, Center for Integrated Medical Research, Department of General Thoracic Surgery, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
35
|
|