1
|
Han Y, Chen Y, Yang F, Sun X, Zeng S. Mechanism underlying the stimulation by IGF-1 of LHCGR expression in porcine granulosa cells. Theriogenology 2021; 169:56-64. [PMID: 33933758 DOI: 10.1016/j.theriogenology.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
IGF-1 plays important roles in mammalian fertility by promoting cell growth and increasing steroid hormone secretion. Although IGF-1 significantly upregulated luteinizing hormone/choriogonadotropin receptor (LHCGR) gene expression in granulosa cells in a previous study, the mechanism was unclear. The present experiment was designed to primarily explore the regulation of LHCGR expression by IGF-1. First, based on a porcine LHCGR double-luciferase reporter experiment, c-Fos significantly inhibited the activity of the LHCGR promoter. Second, porcine granulosa cells were cultured in vitro with IGF-1, and we observed that the expression of LHCGR was significantly increased and the expression of c-Fos mRNA significantly reduced. After c-Fos overexpression in granulosa cells, IGF-1 attenuated the inhibitory effect of c-Fos on LHCGR. Furthermore, the level of LHCGR mRNA stimulated by IGF-1 in the presence of SB203580 was markedly lower than that of IGF-1 alone action. In conclusion, IGF-1 enhanced the expression of LHCGR by regulating c-Fos in granulosa cells, which may be mediated by the p38MAPK-signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yanhong Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Sun
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Synergistic activation of mutant TERT promoter by Sp1 and GABPA in BRAF V600E-driven human cancers. NPJ Precis Oncol 2021; 5:3. [PMID: 33483600 PMCID: PMC7822828 DOI: 10.1038/s41698-020-00140-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/01/2020] [Indexed: 01/30/2023] Open
Abstract
The activating TERT promoter mutations and BRAFV600E mutation are well-established oncogenic alterations in human cancers. Coexistence of BRAFV600E and TERT promoter mutations is frequently found in multiple cancer types, and is strongly associated with poor patient prognosis. Although the BRAFV600E-elicited activation of ERK has been demonstrated to contribute to TERT reactivation by maintaining an active chromatin state, it still remains to be addressed how activated ERK is selectively recruited to mutant TERT promoter. Here, we report that transcription factor GABPA mediates the regulation of BRAFV600E/MAPK signaling on TERT reactivation by selectively recruiting activated ERK to mutant TERT promoter, where activated ERK can phosphorylate Sp1, thereby resulting in HDAC1 dissociation and an active chromatin state. Meanwhile, phosphorylated Sp1 further enhances the binding of GABPA to mutant TERT promoter. Taken together, our data indicate that GABPA and Sp1 synergistically activate mutant TERT promoter, contributing to tumorigenesis and cancer progression, particularly in the BRAFV600E-driven human cancers. Thus, our findings identify a direct mechanism that bridges two frequent oncogenic alterations together in TERT reactivation.
Collapse
|
3
|
Shimizu K, Nakamura T, Bayasula, Nakanishi N, Kasahara Y, Nagai T, Murase T, Osuka S, Goto M, Iwase A, Kikkawa F. Molecular mechanism of FSHR expression induced by BMP15 in human granulosa cells. J Assist Reprod Genet 2019; 36:1185-1194. [PMID: 31079267 DOI: 10.1007/s10815-019-01469-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/28/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Follicle-stimulating hormone receptor (FSHR) expression in granulosa cells is critical in enabling follicles to achieve accelerated growth. Although FSHR expression has been reported to be epigenetically regulated, the mechanism is unclear. Cooperation between oocytes and granulosa cells is also essential for normal follicular growth. Among oocyte-derived factors, bone morphogenetic protein 15 (BMP15) promotes follicular growth and is suggested to have epigenetic effects. We examined the role of BMP15 in the acquirement of FSHR in human granulosa cells. METHODS Immortalized non-luteinized human granulosa (HGrC1) cells were stimulated with trichostatin A (TSA) or BMP15 to analyze FSHR expression, histone modifications, and USF1/2 binding at the FSHR promoter region. Histone acetyl transferase (HAT) activity and phosphorylation of Smad 1/5/8 and p38 MAPK were examined with or without BMP15, SB203580, and LDN193189. CYP19A1 expression and estradiol production were also studied. RESULTS TSA and BMP15 induced FSHR mRNA expression in a dose-dependent manner and histone modifications were observed with increased binding of USF1/2. BMP15 increased FSHR protein expression, which was suppressed by LDN193189. BMP15 increased phosphorylation of Smad 1/5/8 and significantly increased HAT activity, which was inhibited by LDN193189, but not by SB203580. BMP15 increased phosphorylation of p38 MAPK and USF1. LDN193189 suppressed BMP15-induced phosphorylation of both p38 MAPK and USF1, whereas SB203580 suppressed the phosphorylation of USF1. BMP15 increased CYP19A1 mRNA expression and estradiol production. CONCLUSION BMP15 induced FSHR expression in human granulosa cells through Smad and non-Smad pathways. This mechanism of FSHR induction by BMP15 may be utilized for controlling follicular growth.
Collapse
Affiliation(s)
- Ken Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Bayasula
- Bell Research Center for Reproductive Health and Cancer; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukiyo Kasahara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Nagai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohiko Murase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Maternal and Perinatal Medicine, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, 371-8511, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Interaction of positive coactivator 4 with histone 3.3 protein is essential for transcriptional activation of the luteinizing hormone receptor gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:971-981. [PMID: 30496042 DOI: 10.1016/j.bbagrm.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
The luteinizing hormone receptor (LHR) is essential for sexual development and reproduction in mammals. We have established that Sp1 has a central role in derepression of LHR gene transcription induced by Trichostatin A (TSA) in MCF7 cells. Moreover, the co-activator PC4 which associates directly with Sp1 at the LHR promoter is essential for TSA-mediated LHR transcription. This study explores interactions of PC4 with histone proteins, which presumably triggers chromatin modifications during LHR transcriptional activation. TSA treatment of MCF7 cells expressing PC4-Flag protein induces acetylation of histone 3 (H3) and immunoprecipitation (IP) studies revealed its interaction with PC4-Flag protein. MS/MS analysis of the protein complex obtained after IP from TSA treated samples detected H3.3 acetylated at K9, K14, K18, K23 and K27 as a PC4 interacting protein. The association of PC4 with H3.3 was corroborated by IP and re-ChIP using H3.3 antibody. Similarly, IP and re-ChIP showed association of PC4 with H3 acetylated protein. Knockdown of PC4 in MCF7 cells reduced H3.3 enrichment, H3 acetylation at the Lys sites and LHR promoter activity in TSA treated cells despite an increase in H3 and H3.3 protein induced by TSA, linking PC4 to H3 acetylation and LHR transcription. Depletion of H3.3 A/B in MCF7 cells impair chromatin accessibility and enrichment of Pol II and TFIIB at the LHR promoter and its activation, resulting in marked reduction of LHR gene expression. Together, these findings point to the critical role of PC4 and its association with acetylated H3.3 in TSA-induced LHR gene transcription.
Collapse
|
5
|
Asensio-Juan E, Fueyo R, Pappa S, Iacobucci S, Badosa C, Lois S, Balada M, Bosch-Presegué L, Vaquero A, Gutiérrez S, Caelles C, Gallego C, de la Cruz X, Martínez-Balbás MA. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res 2017; 45:3800-3811. [PMID: 28100697 PMCID: PMC5397186 DOI: 10.1093/nar/gkw1346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/12/2017] [Indexed: 11/14/2022] Open
Abstract
A precise immune response is essential for cellular homeostasis and animal survival. The paramount importance of its control is reflected by the fact that its non-specific activation leads to inflammatory events that ultimately contribute to the appearance of many chronic diseases. However, the molecular mechanisms preventing non-specific activation and allowing a quick response upon signal activation are not yet fully understood. In this paper we uncover a new function of PHF8 blocking signal independent activation of immune gene promoters. Affinity purifications coupled with mass spectrometry analysis identified SIN3A and HDAC1 corepressors as new PHF8 interacting partners. Further molecular analysis demonstrated that prior to interferon gamma (IFNγ) stimulation, PHF8 is bound to a subset of IFNγ-responsive promoters. Through the association with HDAC1 and SIN3A, PHF8 keeps the promoters in a silent state, maintaining low levels of H4K20me1. Upon IFNγ treatment, PHF8 is phosphorylated by ERK2 and evicted from the promoters, correlating with an increase in H4K20me1 and transcriptional activation. Our data strongly indicate that in addition to its well-characterized function as a coactivator, PHF8 safeguards transcription to allow an accurate immune response.
Collapse
Affiliation(s)
- Elena Asensio-Juan
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Stella Pappa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Simona Iacobucci
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carmen Badosa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Sergi Lois
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035 Barcelona, Spain
| | - Miriam Balada
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d?Investigació Biomèdica de Bellvitge (IDIBELL), 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alex Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d?Investigació Biomèdica de Bellvitge (IDIBELL), 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Gutiérrez
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | - Carme Gallego
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035 Barcelona, Spain.,Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
6
|
Ta A, Thakur BK, Dutta P, Sinha R, Koley H, Das S. Double-stranded RNA induces cathelicidin expression in the intestinal epithelial cells through phosphatidylinositol 3-kinase-protein kinase Cζ-Sp1 pathway and ameliorates shigellosis in mice. Cell Signal 2017; 35:140-153. [DOI: 10.1016/j.cellsig.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
7
|
Activation of mutant TERT promoter by RAS-ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas. Proc Natl Acad Sci U S A 2016; 113:14402-14407. [PMID: 27911794 DOI: 10.1073/pnas.1611106113] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although activating BRAF/NRAS mutations are frequently seen in melanomas, they are not sufficient to drive malignant transformation and require additional events. Frequent co-occurrence of mutations in the promoter for telomerase reverse transcriptase (TERT), along with BRAF alterations, has recently been noted and correlated with poorer prognosis, implicating a functional link between BRAF signaling and telomerase reactivation in melanomas. Here, we report that RAS-ERK signaling in BRAF mutant melanomas is critical for regulating active chromatin state and recruitment of RNA polymerase II at mutant TERT promoters. Our study provides evidence that the mutant TERT promoter is a key substrate downstream of the RAS-ERK pathway. Reactivating TERT and hence reconstituting telomerase is an important step in melanoma progression from nonmalignant nevi with BRAF mutations. Hence, combined targeting of RAS-ERK and TERT promoter remodeling is a promising avenue to limit long-term survival of a majority of melanomas that harbor these two mutations.
Collapse
|
8
|
Yang F, Du Y, Zhang J, Jiang Z, Wang L, Hong B. Low-density lipoprotein upregulate SR-BI through Sp1 Ser702 phosphorylation in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1066-1075. [PMID: 27320013 DOI: 10.1016/j.bbalip.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 01/25/2023]
Abstract
Scavenger receptor class B type I (SR-BI) is one of the key proteins in the process of reverse cholesterol transport (RCT), and its major function is to uptake high density lipoprotein (HDL) cholesterol from plasma into liver cells. The regulation of SR-BI expression is important for controlling serum lipid content and reducing the risks of cardiovascular diseases. Here we found that SR-BI expression was significantly increased by LDL in vivo and in vitro, and the transcription factor specific protein 1 (Sp1) plays a critical role in this process. Results from co-immunoprecipitation experiments indicate that the activation of SR-BI was associated with Sp1-recruited protein complexes in the promoter region of SR-BI, where histone acetyltransferase p300 was recruited and histone deacetylase HDAC1 was dismissed. As a result, histone acetylation increased, leading to activation of SR-BI transcription. With further investigation, we found that LDL phosphorylated Sp1 through ERK1/2 pathway, which affected Sp1 protein complexes formation in SR-BI promoter. Using mass spectrometry and site directed mutagenesis, a new Sp1 phosphorylation site Ser702 was defined to be associated with Sp1-HDAC1 interaction and may be important in SR-BI activation, shedding light on the knowledge of delicate mechanism of hepatic HDL receptor SR-BI gene modulation by LDL.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Yu Du
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Jin Zhang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Zhibo Jiang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Li Wang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China.
| | - Bin Hong
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
9
|
Ryu JM, Lee SH, Seong JK, Han HJ. Glutamine contributes to maintenance of mouse embryonic stem cell self-renewal through PKC-dependent downregulation of HDAC1 and DNMT1/3a. Cell Cycle 2016; 14:3292-305. [PMID: 26375799 DOI: 10.1080/15384101.2015.1087620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although glutamine (Gln) is not an essential amino acid, it is considered a critical substrate in many key metabolic processes that control a variety of physiological functions and are involved in regulating early embryonic development. Thus, we investigated the effect of Gln on regulation of mouse embryonic stem cell (mESC) self-renewal and related signaling pathways. Gln deprivation decreased Oct4 expression as well as expression of cell cycle regulatory proteins. However, Gln treatment retained the expression of cell cycle regulatory proteins and the Oct4 in mESCs, which were blocked by compound 968 (a glutaminase inhibitor). In addition, Gln stimulated PI3K/Akt pathway, which subsequently elicited PKCϵ translocation to membrane without an influx of intracellular Ca(2+). Inhibition of Akt and PKC blocked Gln-induced Oct4 expression and proliferation. Gln also stimulated mTOR phosphorylation in a time-dependent manner, which abolished by PKC inhibition. Furthermore, Gln increased the cellular population of both Oct4 and bromodeoxyuridine positive cells, suggesting that Gln regulates self-renewal ability of mESCs. Gln induced a decrease in HDAC1, but not in HDAC2, which were blocked by PKC inhibitors. Gln treatment resulted in an increase in global histone acetylation and methylation. In addition, Gln significantly reduced methylation of the Oct4 promoter region through decrease in DNMT1 and DNMT3a expression, which were blocked by PKC and HDAC inhibitors. In conclusion, Gln stimulates mESC proliferation and maintains mESC undifferentiation status through transcription regulation via the Akt, PKCϵ, and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Sang Hun Lee
- b Medical Science Research Institute, Soonchunhyang University Seoul Hospital ; Seoul , Korea
| | - Je Kyung Seong
- c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea.,d Department of Anatomy and Cell Biology ; Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University ; Seoul , Korea
| | - Ho Jae Han
- a Department of Veterinary Physiology ; College of Veterinary Medicine, Seoul National University ; Seoul , Korea.,c BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, Seoul National University ; Seoul , Korea
| |
Collapse
|
10
|
Doriguzzi A, Haigl B, Gsur A, Sutterlüty-Fall H. The increased Sprouty4 expression in response to serum is transcriptionally controlled by Specific protein 1. Int J Biochem Cell Biol 2015; 64:220-8. [PMID: 25957915 DOI: 10.1016/j.biocel.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022]
Abstract
Sprouty proteins control length and intensity of the intracellular signal transduction cascade activated by mitogens in the cellular environment. As part of a negative feedback loop, their expression is supposed to be elevated by the same factors. In this report, Sprouty4 expression in response to serum and the underlying regulatory mechanisms were investigated. We verified that Sprouty4 expression is activated by serum addition in all tested cells independent of their origin. Strict correlation between Sprouty4 protein levels and promoter activity indicates mainly transcriptional regulation of Sprouty4 serum-responsiveness. Induction of the mitogen-activated protein kinase pathway is required for Sprouty4 promoter activation in the presence of serum. Nonetheless, signal transduction via this pathway is not sufficient to fully induce the Sprouty4 promoter. Instead, deletion and mutation analysis identified two annotated Specific protein 1 binding sites as the critical cis-elements responsible for conferring the serum induction of the promoter. Corroborating, repressed Specific protein 1 activity or levels result in constitutive lowered transcriptional activity of the Sprouty4 promoter. These data demonstrate that Specific protein 1 plays a crucial role in the regulation of Sprouty4 in response to serum.
Collapse
Affiliation(s)
- Angelina Doriguzzi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Barbara Haigl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
VandeVoort CA, Mtango NR, Midic U, Latham KE. Disruptions in follicle cell functions in the ovaries of rhesus monkeys during summer. Physiol Genomics 2015; 47:102-12. [PMID: 25586978 DOI: 10.1152/physiolgenomics.00092.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/13/2015] [Indexed: 11/22/2022] Open
Abstract
Oocytes isolated from female rhesus monkeys following standard ovarian stimulation protocols during the summer months displayed a reduced capacity to mature compared with stimulation during the normal breeding season. Because the gene expression profiles of oocyte-associated cumulus cells and mural granulosa cells (CCs and GCs) are indicative of altered oocyte quality and can provide insight into intrafollicular processes that may be disrupted during oogenesis, we performed array-based transcriptome comparisons of CCs and GCs from summer and normal breeding season stimulation cycles. Summer CCs and GCs both display deficiencies in expression of mRNAs related to cell proliferation, angiogenesis, and endocrine signaling, as well as reduced expression of glycogen phosphorylase. Additionally, CCs display deficiencies in expression of mRNAs related to stress response. These results provide the first insight into the specific molecular pathways and processes that are disrupted in the follicles of rhesus macaque females during the summer season. Some of the changes seen in summer GCs and CCs have been reported in humans and in other model mammalian species. This suggests that the seasonal effects seen in the rhesus monkey may help us to understand better the mechanisms that contribute to reduced oocyte quality and fertility in humans.
Collapse
Affiliation(s)
- Catherine A VandeVoort
- California National Primate Research Center, University of California, Davis, California; Department of Obstetrics and Gynecology, University of California, Davis, California
| | - Namdori R Mtango
- The Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Uros Midic
- Department of Animal Science, Reproductive and Developmental Science Program and Department of Obstetrics and Gynecology, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Reproductive and Developmental Science Program and Department of Obstetrics and Gynecology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
12
|
Miyata K, Yotsumoto F, Nam SO, Odawara T, Manabe S, Ishikawa T, Itamochi H, Kigawa J, Takada S, Asahara H, Kuroki M, Miyamoto S. Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma. Cancer Med 2014; 3:1159-69. [PMID: 25060396 PMCID: PMC4302667 DOI: 10.1002/cam4.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/28/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF-targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5'-deletion promoter constructs identified a GC-rich element between -125 and -178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan; Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Law NC, Weck J, Kyriss B, Nilson JH, Hunzicker-Dunn M. Lhcgr Expression in Granulosa Cells: Roles for PKA-Phosphorylated β-Catenin, TCF3, and FOXO1. Mol Endocrinol 2013; 27:1295-310. [PMID: 23754802 PMCID: PMC3725343 DOI: 10.1210/me.2013-1025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian follicles lacking FSH or FSH receptors fail to progress to a preovulatory stage, resulting in infertility. One hallmark of the preovulatory follicle is the presence of luteinizing hormone/choriogonadotropin receptors (LHCGR) on granulosa cells (GCs). However, the mechanisms by which FSH induces Lhcgr gene expression are poorly understood. Our results show that protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/AKT pathways are required for FSH to activate both the murine Lhcgr-luciferase reporter and expression of Lhcgr mRNA in rat GCs. Based on results showing that an adenovirus (Ad) expressing a steroidogenic factor 1 (SF1) mutant that cannot bind β-catenin abolished FSH-induced Lhcgr mRNA, we evaluated the role of β-catenin in the regulation of Lhcgr gene expression. FSH promoted the PKA-dependent, PI3K-independent phosphorylation of β-catenin on Ser552 and Ser665. FSH activated the β-catenin/T-cell factor (TCF) artificial promoter-reporter TOPFlash via a PKA-dependent, PI3K-independent pathway, and dominant-negative (DN) TCF abolished FSH-activated Lhcgr-luciferase reporter and induction of Lhcgr mRNA. Microarray analysis of GCs treated with Ad-DN-TCF and FSH identified the Lhcgr as the most down-regulated gene. Chromatin immunoprecipitation results placed β-catenin phosphorylated on Ser552 and Ser675 and SF1 on the Lhcgr promoter in FSH-treated GCs; TCF3 was constitutively associated with the Lhcgr promoter. Transduction with an Ad-phospho-β-catenin mutant (Ser552/665/Asp) enhanced Lhcgr mRNA expression in FSH-treated cells greater than 3-fold. Finally, we identified a recognized PI3K/AKT target, forkhead box O1, as a negative regulator of Lhcgr mRNA expression. These results provide new understanding of the complex regulation of Lhcgr gene expression in GCs.
Collapse
Affiliation(s)
- Nathan C Law
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | |
Collapse
|
14
|
Kamiya T, Machiura M, Makino J, Hara H, Hozumi I, Adachi T. Epigenetic regulation of extracellular-superoxide dismutase in human monocytes. Free Radic Biol Med 2013; 61:197-205. [PMID: 23602908 DOI: 10.1016/j.freeradbiomed.2013.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/13/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
Abstract
Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall and plays an important role in normal redox homeostasis. We previously showed the significant reduction or induction of EC-SOD during human monocytic U937 or THP-1 cell differentiation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively; however, its cell-specific expression and regulation have not been fully elucidated. It has been reported that epigenetic factors, such as DNA methylation and histone modification, are involved in several kinds of gene regulation. In this study, we investigated the involvement of epigenetic factors in EC-SOD expression and determined high levels of DNA methylation within promoter and coding regions of EC-SOD in THP-1 cells compared to those in U937 cells. Moreover, treatment with a DNA methyltransferase inhibitor, 5-azacytidine, significantly induced the expression of EC-SOD in THP-1 cells, indicating the importance of DNA methylation in the suppression of EC-SOD expression; however, the DNA methylation status did not change during THP-1 cell differentiation induced by TPA. On the other hand, we detected histone H3 and H4 acetylation during differentiation. Further, pretreatment with histone acetyltransferase inhibitors, CPTH2 or garcinol, significantly suppressed the TPA-inducible EC-SOD expression. We also determined the epigenetic suppression of EC-SOD in peripheral blood mononuclear cells. Treatment with granulocyte macrophage colony-stimulating factor (GM-CSF)/granulocyte-CSF induced that expression. Overall, these findings provide novel evidence that cell-specific and TPA-inducible EC-SOD expression are regulated by DNA methylation and histone H3 and H4 acetylation in human monocytic cells.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Masatomo Machiura
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Junya Makino
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
15
|
Fa S, Pogrmic-Majkic K, Samardzija D, Glisic B, Kaisarevic S, Kovacevic R, Andric N. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells. Toxicol Appl Pharmacol 2013; 270:1-8. [DOI: 10.1016/j.taap.2013.03.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/12/2013] [Accepted: 03/22/2013] [Indexed: 01/27/2023]
|
16
|
The Justy mutant mouse strain produces a spontaneous murine model of salivary gland cancer with myoepithelial and basal cell differentiation. J Transl Med 2013; 93:711-9. [PMID: 23608756 PMCID: PMC3669254 DOI: 10.1038/labinvest.2013.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified a novel mutant mouse strain on the C3HeB/FeJ background named Justy. This strain bears a recessive mutation in the Gon4l gene that greatly reduces expression of the encoded protein, a nuclear factor implicated in transcriptional regulation. Here, we report that Justy mutant mice aged 6 months or older spontaneously developed carcinomas with myoepithelial and basaloid differentiation in salivary glands with an incidence of ∼25%. Tumors developed proximate to submandibular glands and to a lesser extent in the sublingual and parotid glands. Histologically, tumors often had central cavitary lesions filled with necrotic debris that were lined by tumor cells, and had spindle and epithelioid cell differentiation with lesser basaloid to clear cell features. Tumor tissue often had variable evidence of a high mitotic rate, pleomorphism, and invasion into adjacent salivary glands. Neoplastic cells had diffuse immunoreactivity for pancytokeratin (AE1/AE3) and p63. Although CK5/6 immunostaining was seen in the much of the tumor cells, it was often lacking in pleomorphic areas. Tumor cells lacked immunoreactivity for alpha-smooth muscle actin, S100, c-Kit, and glial fibrillary acid protein. In addition, tumors had immunoreactivity for phosphorylated and total epidermal growth factor receptor, suggesting that EGFR signaling may participate in growth regulation of these tumors. These findings indicate that the salivary gland carcinomas occur spontaneously in Justy mice, and that these tumors may offer a valuable model for study of EGFR regulation. In combination, our data suggest that Justy mice warrant further investigation for use as a mouse model for human salivary gland neoplasia.
Collapse
|
17
|
Lin T, Chen Y, Ding Z, Luo G, Liu J, Shen J. Novel insights into the synergistic interaction of a thioredoxin reductase inhibitor and TRAIL: the activation of the ASK1-ERK-Sp1 pathway. PLoS One 2013; 8:e63966. [PMID: 23696862 PMCID: PMC3655947 DOI: 10.1371/journal.pone.0063966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/09/2013] [Indexed: 01/17/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cell death in various types of cancer cells but has little or no effects on normal cells. Unfortunately, not all cancer cells respond to TRAIL; therefore, TRAIL sensitizing agents are currently being explored. Here, we reported that 6-(4-N,N-dimethylaminophenyltelluro)-6-deoxy-β-cyclodextrin (DTCD), a cyclodextrin-derived diorganyl telluride which has been identified as an excellent inhibitor of thioredoxin reductase (TrxR), could sensitize TRAIL resistant human ovarian cancer cells to undergo apoptosis. In vitro, DTCD enhanced TRAIL-induced cytotoxicity in human ovarian cancer cells through up-regulation of DR5. Luciferase analysis and CHIP assays showed that DTCD increased DR5 promoter activity via Sp1 activation. Additionally, DTCD stimulated extracellular signal-regulated kinase (ERK) activation, while the ERK inhibitor PD98059 blocked DTCD-induced DR5 expression and suppressed binding of Sp1 to the DR5 promoter. We further demonstrated that DTCD could induce the release of ASK1 from its complex with Trx-1, and recovered its kinase activity. Meanwhile, suppression of ASK1 by RNA interference led to decreased ERK phosphorylation induced by DTCD. The underlying mechanisms reveal that Trx-1 is heavily oxidized in response to DTCD treatment, in accordance with the fact that DTCD could inhibit the activity of TrxR that reduces oxidized Trx-1. Moreover, using an A2780 xenograft model, DTCD plus TRAIL significantly inhibited the growth of tumor in vivo. Our results suggest that Trx/TrxR system inhibition may play a critical role in apoptosis by combined treatment with DTCD and TRAIL, and raise the possibility that their combination may be a promising strategy for ovarian carcinoma treatment.
Collapse
Affiliation(s)
- Tingting Lin
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Mehmood T, Schneider A, Pannetier S, Hanauer A. Rsk2 Knockdown in PC12 Cells Results in Sp1 Dependent Increased Expression of the Gria2 Gene, Encoding the AMPA Receptor Subunit GluR2. Int J Mol Sci 2013; 14:3358-75. [PMID: 23389038 PMCID: PMC3588048 DOI: 10.3390/ijms14023358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/16/2022] Open
Abstract
The RSK2 protein is a member of the RSK serine-threonine protein kinase family and is encoded by the X-linked rps6ka3 gene in human. Highly heterogeneous loss-of-function mutations affecting this gene are responsible for a severe syndromic form of cognitive impairment, Coffin-Lowry syndrome. RSK2, which is highly conserved in mammals, acts at the distal end of the Ras-ERK signaling pathway and is activated in response to growth factors and neurotransmitters. RSK2 is highly expressed in the hippocampus, and Rsk2-KO mice display spatial learning and memory impairment. We recently showed that ERK1/2 activity is abnormally increased in the hippocampus of Rsk2-KO mice as well as the expression of the AMPA receptor subunit GluR2. The mechanism via which RSK2 deficiency affects the expression of GluR2 in neural cells was unknown. To address this issue we constitutively suppressed the expression of RSK2 in PC12 cells via vector-based shRNA in the present study. We show that Rsk2 silencing leads also to an elevation of ERK1/2 phosphorylation as well as of GluR2 expression and that the increased level of GluR2 expression results from the increased ERK1/2 activity on the transcription factor Sp1. Our results provide evidence that RSK2 modulates ERK1/2 activity on Sp1, which regulates GluR2 expression through transcriptional activation.
Collapse
Affiliation(s)
- Tahir Mehmood
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, INSERM U 964, CNRS UMR 1704, Université de Strasbourg, 67404 Illkirch, France; E-Mails: (A.S.); (S.P.)
- Department of Chemistry, University of Sargodha, 40100 Sargodha, Pakistan
- Authors to whom correspondence should be addressed; E-Mails: (T.M.); (A.H.); Tel.: +92-48-9230546 (T.M.); Fax: +92-48-3222121 (T.M.)
| | - Anne Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, INSERM U 964, CNRS UMR 1704, Université de Strasbourg, 67404 Illkirch, France; E-Mails: (A.S.); (S.P.)
| | - Solange Pannetier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, INSERM U 964, CNRS UMR 1704, Université de Strasbourg, 67404 Illkirch, France; E-Mails: (A.S.); (S.P.)
| | - André Hanauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, INSERM U 964, CNRS UMR 1704, Université de Strasbourg, 67404 Illkirch, France; E-Mails: (A.S.); (S.P.)
- Authors to whom correspondence should be addressed; E-Mails: (T.M.); (A.H.); Tel.: +92-48-9230546 (T.M.); Fax: +92-48-3222121 (T.M.)
| |
Collapse
|
19
|
Wu W, Dong YW, Shi PC, Yu M, Fu D, Zhang CY, Cai QQ, Zhao QL, Peng M, Wu LH, Wu XZ. Regulation of integrin αV subunit expression by sulfatide in hepatocellular carcinoma cells. J Lipid Res 2013; 54:936-52. [PMID: 23345412 DOI: 10.1194/jlr.m031450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrin is important in migration and metastasis of tumor cells. Changes of integrin expression and distribution will cause an alteration of cellular adhesion and migration behaviors. In this study, we investigated sulfatide regulation of the integrin αV subunit expression in hepatoma cells and observed that either exogenous or endogenous sulfatide elicited a robust upregulation of integrin αV subunit mRNA and protein expression in hepatoma cells. This regulatory effect occurred with a corresponding phosphorylation (T739) of the transcription factor Sp1. Based on the electrophoretic mobility shift assay, sulfatide enhanced the integrin αV promoter activity and strengthened the Sp1 complex super-shift. The results of chromatin immunoprecipitation analysis also indicated that sulfatide enhanced Sp1 binding to the integrin αV promoter in vivo. Silence of Sp1 diminished the stimulation of integrin αV expression by sulfatide. In the early stage of sulfatide stimulation, phosphorylation of Erk as well as c-Src was noted, and inhibition of Erk activation with either U0126 or PD98059 significantly suppressed Sp1 phosphorylation and integrin αV expression. We demonstrated that sulfatide regulated integrin αV expression and cell adhesion, which was associated with Erk activation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Transcriptional regulation by post-transcriptional modification—Role of phosphorylation in Sp1 transcriptional activity. Gene 2012; 508:1-8. [DOI: 10.1016/j.gene.2012.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 01/05/2023]
|
21
|
Keating GL, Turner EC, Kinsella BT. Regulation of the human prostacyclin receptor gene in megakaryocytes: Major roles for C/EBPδ and PU.1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:428-45. [DOI: 10.1016/j.bbagrm.2012.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/03/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
22
|
Androgen-induced activation of gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) transcription: essential role of a nonclassical androgen response element half-site. Mol Cell Biol 2012; 32:1566-80. [PMID: 22331472 DOI: 10.1128/mcb.06002-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GRTH, a testis-specific member of the DEAD-box family of RNA helicases essential for spermatogenesis, is present in Leydig cells (LC) and germ cells. In LC, it exerts an autocrine negative regulation on androgen production induced by gonadotropin. GRTH is transcriptionally upregulated by gonadotropin via cyclic AMP/androgen through androgen receptors (AR). For studies of GRTH regulation by androgen in LC, we utilized in vitro/in vivo models. Androgen-induced GRTH expression was prevented by an AR antagonist. Two putative atypical ARE half-sites are present at bp -200 and -827 (ARE1 and ARE2). Point mutation of ARE2 prevented androgen-induced AR binding/function and upregulation of GRTH transcription. Chromatin immunoprecipitation (ChIP) assays showed recruitment of AR, SRC-1, Med-1, transcription factor IIB (TFIIB), and polymerase II (PolII) to GRTH ARE2 (bp -980/-702) and to the promoter region (bp -80/+63). ChIP3C assays revealed short-range chromosomal looping between AR/ARE2 and the core transcriptional machinery at the promoter. Knockdown of Med-1 and/or SRC-1 demonstrated the presence of a nonproductive complex which included AR, TFIIB, and PolII and the essential role of these coactivators in the transcriptional activation of GRTH. Our findings provide new insights into the molecular mechanism of androgen-regulated transcription in LC.
Collapse
|
23
|
Lavoie G, Estève PO, Laulan NB, Pradhan S, St-Pierre Y. PKC isoforms interact with and phosphorylate DNMT1. BMC Biol 2011; 9:31. [PMID: 21619587 PMCID: PMC3118390 DOI: 10.1186/1741-7007-9-31] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 01/03/2023] Open
Abstract
Background DNA methyltransferase 1 (DNMT1) has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC) may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.
Collapse
Affiliation(s)
- Geneviève Lavoie
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, QC, Canada
| | | | | | | | | |
Collapse
|
24
|
Zhu C, Solorzano C, Sahar S, Realini N, Fung E, Sassone-Corsi P, Piomelli D. Proinflammatory stimuli control N-acylphosphatidylethanolamine-specific phospholipase D expression in macrophages. Mol Pharmacol 2011; 79:786-92. [PMID: 21233218 DOI: 10.1124/mol.110.070201] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid amide that modulates pain and inflammation by engaging peroxisome proliferator-activated receptor type-α. Here, we show that the proinflammatory bacterial endotoxin lipopolysaccharide (LPS) decreases PEA biosynthesis in RAW264.7 macrophages by suppressing the transcription of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), which catalyzes the production of PEA and other lipid amides. Using a luciferase reporter construct and chromatin immunoprecipitation, we further show that LPS treatment reduces acetylation of histone proteins bound to the NAPE-PLD promoter, an effect that is blocked by the histone deacetylase inhibitor trichostatin A. The transcription factor Sp1 is involved in regulating baseline NAPE-PLD expression but not in the transcriptional suppression induced by LPS. The ability of LPS to down-regulate PEA biosynthesis is impaired in peritoneal macrophages from mutant NAPE-PLD-deficient mice, in which PEA is produced through a compensatory mechanism distinct from NAPE-PLD. Moreover, NAPE-PLD-deficient mice fail to mount a normal inflammatory reaction in response to carrageenan administration in vivo. Our findings suggest that proinflammatory stimuli suppress NAPE-PLD expression and PEA biosynthesis in macrophages and that this effect might contribute to the inflammatory response.
Collapse
Affiliation(s)
- Chenggang Zhu
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Liao M, Zhang Y, Kang JH, Dufau ML. Coactivator function of positive cofactor 4 (PC4) in Sp1-directed luteinizing hormone receptor (LHR) gene transcription. J Biol Chem 2010; 286:7681-91. [PMID: 21193408 DOI: 10.1074/jbc.m110.188532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LHR has an essential role in sexual development and reproductive function, and its transcription is subjected to several modes of regulation. In this study, we investigated PC4 coactivator function in the control of LHR transcription. Knockdown of PC4 by siRNA inhibited the LHR basal promoter activity and trichostatin A (TSA)-induced gene transcriptional activation and expression in MCF-7 cells. While overexpression of PC4 alone had no effect on the LHR gene, it significantly enhanced Sp1- but not Sp3-mediated LHR transcriptional activity. PC4 directly interacts with Sp1 at the LHR promoter, and this interaction is negatively regulated by PC4 phosphorylation. The coactivator domain (22-91 aa) of PC4 and DNA binding domain of Sp1 are essential for PC4/Sp1 interaction. ChIP assay revealed significant occupancy of PC4 at the LHR promoter that increased upon TSA treatment. Disruption of PC4 expression significantly reduced TSA-induced recruitment of TFIIB and RNAP II, at the promoter. PC4 functions are beyond TSA-induced phosphatase release, PI3K-mediated Sp1 phosphorylation, and HDAC1/2/mSin3A co-repressor release indicating its role as linker coactivator of Sp1 and the transcriptional machinery. These findings demonstrated a critical aspect of LHR modulation whereby PC4 acts as a coactivator of Sp1 to contribute to the human of LHR transcription.
Collapse
Affiliation(s)
- Mingjuan Liao
- Molecular Endocrinology Section, Program of Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
26
|
Kim NH, Kim SN, Kim YK. Involvement of HDAC1 in E-cadherin expression in prostate cancer cells; its implication for cell motility and invasion. Biochem Biophys Res Commun 2010; 404:915-21. [PMID: 21184735 DOI: 10.1016/j.bbrc.2010.12.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 12/14/2010] [Indexed: 01/03/2023]
Abstract
In this study, we investigate the molecular mechanism by which histone deacetylase (HDAC) inhibitors exert anti-invasiveness effect against prostate cancer cells. We first evaluate the growth inhibition effect of HDAC inhibitors in prostate cancer cells, which is accompanied by induction of p21(WAF1) expression and accumulation of acetylated histones. And we found that the migration and invasion of prostate cancer cells is strongly inhibited by treatment with HDAC inhibitors. In parallel, E-cadherin level is highly up-regulated in HDAC inhibitor-treated prostate cancer cells. And siRNA knockdown of E-cadherin significantly diminishes the anti-invasion effect of HDAC inhibitors, indicating that E-cadherin overexpression is one of possible mechanism for anti-invasion effect of HDAC inhibitors. Furthermore, specific downregulation of HDAC1, but not HDAC2, causes E-cadherin expression and subsequent inhibition of cell motility and invasion. Collectively, our data demonstrate that HDAC1 is a major repressive enzyme for E-cadherin expression as well as HDAC inhibitor-mediated anti-invasiveness.
Collapse
Affiliation(s)
- Nam Hyun Kim
- Department of Pharmacology, Kwandong University College of Medicine, Gangneung 210-701, Republic of Korea
| | | | | |
Collapse
|
27
|
Guo L, Eviatar-Ribak T, Miskimins R. Sp1 phosphorylation is involved in myelin basic protein gene transcription. J Neurosci Res 2010; 88:3233-42. [DOI: 10.1002/jnr.22486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Wu N, Siow YL, O K. Ischemia/reperfusion reduces transcription factor Sp1-mediated cystathionine beta-synthase expression in the kidney. J Biol Chem 2010; 285:18225-33. [PMID: 20392694 DOI: 10.1074/jbc.m110.132142] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase (CBS) is a key enzyme that catalyzes the rate-limiting step for homocysteine (Hcy) metabolism via the trans-sulfuration pathway and is also responsible for the production of H(2)S through the desulfhydration reaction. Our recent studies demonstrate that renal ischemia/reperfusion decreased the CBS activity leading to Hcy accumulation and H(2)S reduction in the kidney, which in turn contributed to kidney injury. Both Hcy and H(2)S play important roles in physiological and pathological processes. In this study we investigated the molecular mechanism by which CBS activity was regulated in the kidney. The left kidney of Sprague-Dawley rat was subjected to 45 min of ischemia followed by 6 h of reperfusion. Ischemia/reperfusion caused a significant decrease in CBS mRNA and protein levels in the kidney. As a consequence, there was a marked reduction in the CBS enzyme activity. Transfection of kidney proximal tubular cells with transcription factor (Sp1) small interfering RNA caused a marked reduction in CBS mRNA, indicating a pivotal role for Sp1 in regulating CBS expression in kidney cells. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay detected a lower Sp1 activity in kidneys subjected to ischemia/reperfusion as compared with that in a sham-operated group. ERK-mediated phosphorylation of Sp1 was responsible for a decreased transcriptional activity of Sp1 in the kidney upon ischemia/reperfusion. These results suggest that reduced kidney CBS gene expression during ischemia/reperfusion is mediated via a decrease in Sp1 transcriptional activity. Regulation of CBS-mediated Hcy and H(2)S homeostasis may offer a renal protective effect against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nan Wu
- Department of Animal Science, University of Manitoba, St Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | | | | |
Collapse
|
29
|
Wu J, Wrathall JR, Schachner M. Phosphatidylinositol 3-kinase/protein kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes. Glia 2010; 58:315-28. [PMID: 19672967 DOI: 10.1002/glia.20925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Upregulation of expression of the close homolog of adhesion molecule L1 (CHL1) by reactive astrocytes in the glial scar reduces axonal regeneration and inhibits functional recovery after spinal cord injury (SCI). Here, we investigate the molecular mechanisms underlying upregulation of CHL1 expression by analyzing the signal transduction pathways in vitro. We show that astrogliosis stimulated by bacterial lipopolysaccharide (LPS) upregulates CHL1 expression in primary cultures of mouse cerebral astrocytes, coinciding with elevated protein synthesis and translocation of protein kinase delta (PKCdelta) from cytosol to the membrane fraction. Blocking PKCdelta activity pharmacologically and genetically attenuates LPS-induced elevation of CHL1 protein expression through a phosphatidylinositol 3-kinase (PI3K) dependent pathway. LPS induces extracellular signal-regulated kinases (ERK1/2) phosphorylation through PKCdelta and blockade of ERK1/2 activation abolishes upregulation of CHL1 expression. LPS-triggered upregulation of CHL1 expression mediated through translocation of nuclear factor kappaB (NF-kappaB) to the nucleus is blocked by a specific NF-kappaB inhibitor and by inhibition of PI3K, PKCdelta, and ERK1/2 activities, implicating NF-kappaB as a downstream target for upregulation of CHL1 expression. Furthermore, the LPS-mediated upregulation of CHL1 expression by reactive astrocytes is inhibitory for hippocampal neurite outgrowth in cocultures. Although the LPS-triggered NO-guanylate cyclase-cGMP pathway upregulates glial fibrillary acid protein expression in cultured astrocytes, we did not observe this pathway to mediate LPS-induced upregulation of CHL1 expression. Our results indicate that elevated CHL1 expression by reactive astrocytes requires activation of PI3K/PKCdelta-dependent pathways and suggest that reduction of PI3K/PKCdelta activity represents a therapeutic target to downregulate CHL1 expression and thus benefit axonal regeneration after SCI.
Collapse
Affiliation(s)
- Junfang Wu
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University in the State of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
30
|
Dufau ML, Liao M, Zhang Y. Participation of signaling pathways in the derepression of luteinizing hormone receptor transcription. Mol Cell Endocrinol 2010; 314:221-7. [PMID: 19464346 PMCID: PMC2815110 DOI: 10.1016/j.mce.2009.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/06/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
The luteinizing hormone receptor (LHR) transcription is subject to an epigenetic regulatory mode whereby the proximal Sp1 site acts as an anchor to recruit histone deacetylases (HDAC)1/2 and the Sin3A co-repressor complex. This results in promoter-localized histone hypo-acetylation that contributes to the silencing of LHR transcriptional expression. Chromatin changes resulting from site-specific acetylation and methylation of histones regulate LHR gene expression. The HDAC inhibitor TSA-induced cell-specific phosphatase release from the promoter, which serves as an 'on' mechanism for Sp1 phosphorylation by phosphatidylinositol 3-kinase/protein kinase Czeta (PI3K/PKCzeta) at Ser641, leading to p107 repressor derecruitment and LHR transcriptional activation. The methylation status of the promoter provides another layer of modulation in a cell-specific manner. Maximal derepression of the LHR gene is dependent on complete DNA demethylation of the promoter in conjunction with histone hyperacetylation and release of repressors (p107 and HDAC/Sin3A). Independently, the PKC-alpha/Erk pathway, participates in LHR gene expression through induction of Sp1 phosphorylation at Ser site(s) other than Ser641. This causes dissociation of the HDAC1/mSin3A from the promoter, recruitment of TFIIB and Pol II, and transcriptional activation. Collectively, these findings demonstrate that LHR gene expression at the transcriptional level is regulated by complex and diverse networks, in which coordination and interactions between these regulatory effectors are crucial for silencing/activation of LHR expression.
Collapse
Affiliation(s)
- Maria L Dufau
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | |
Collapse
|
31
|
Regulated Expression of the α Isoform of the Human Thromboxane A2 Receptor during Megakaryocyte Differentiation: A Coordinated Role for WT1, Egr1, and Sp1. J Mol Biol 2009; 394:29-45. [DOI: 10.1016/j.jmb.2009.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/21/2009] [Accepted: 09/03/2009] [Indexed: 11/24/2022]
|
32
|
Kim SN, Kim NH, Lee W, Seo DW, Kim YK. Histone deacetylase inhibitor induction of P-glycoprotein transcription requires both histone deacetylase 1 dissociation and recruitment of CAAT/enhancer binding protein beta and pCAF to the promoter region. Mol Cancer Res 2009; 7:735-44. [PMID: 19435809 DOI: 10.1158/1541-7786.mcr-08-0296] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although histone deacetylase (HDAC) inhibitors are appreciated as a promising class of anticancer drugs, recent reports show that P-glycoprotein (P-gp) is induced by HDAC inhibitor treatment in cancer cells, resulting in multidrug resistance of cancer cells to other chemotherapeutic agents. In this study, we investigated the molecular mechanism of HDAC inhibitor induction of P-gp expression. HDAC inhibitor treatment causes cell type-specific induction of P-gp expression without changes in the CpG methylation status of the promoter region. In addition, our data show that HDAC inhibitor does not alter the DNA binding activity of Sp1 but facilitates both the recruitment of a coactivator complex that includes CAAT/enhancer binding protein beta and pCAF and the dissociation of the repressive complex, HDAC1, to the Sp1 binding region. Subsequently, the hyperacetylated histone H3 becomes enriched in the promoter region, leading to RNA polymerase II recruitment to activate P-gp gene transcription. Furthermore, specific down-regulation of HDAC1, but not HDAC2, by RNA silencing was enough to induce P-gp expression in HeLa cells, strongly supporting the essential role of HDAC1 in HDAC inhibitor induction of P-gp. Concomitantly, cell type-specific induction of P-gp expression seems to be dependent on phosphatidylinositol 3-kinase activity. Taken together, our findings show that HDAC inhibitor treatment leads to an increase in P-gp expression through dynamic changes in chromatin structure and transcription factor association within the promoter region.
Collapse
Affiliation(s)
- Su-Nam Kim
- KIST Gangneung Institute, Gangneung, Korea
| | | | | | | | | |
Collapse
|
33
|
Amin MR, Ghannad L, Othman A, Gill RK, Dudeja PK, Ramaswamy K, Malakooti J. Transcriptional regulation of the human Na+/H+ exchanger NHE3 by serotonin in intestinal epithelial cells. Biochem Biophys Res Commun 2009; 382:620-5. [PMID: 19303862 DOI: 10.1016/j.bbrc.2009.03.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/14/2009] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) decreases NHE2 and NHE3 activities under acute conditions in human intestinal epithelial cells. Here, we have investigated the effects of 5-HT on expression of the human NHE3 gene and the mechanisms underlying its transcriptional regulation in differentiated C2BBe1 cells. Treatment of the human intestinal epithelial cell line, C2BBe1, with 5-HT (20 microM) resulted in a significant decrease in NHE3 mRNA and protein expression. In transient transfection studies, 5-HT repressed the NHE3 promoter activity by approximately 55%. The repression of the NHE3 promoter activity in response to 5-HT was accompanied by reduced DNA-binding activity of transcription factors Sp1 and Sp3 to the NHE3 promoter without alteration in their nuclear levels. Pharmacological inhibitors of protein kinase C reversed the inhibitory effect of 5-HT on the promoter activity. Our data indicate that 5-HT suppresses the transcriptional activity of the NHE3 promoter and this effect may be mediated by PKCalpha and modulation of DNA-binding affinities of Sp1 and Sp3.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|