1
|
Lin YL, Wei CW, Lerdall TA, Nhieu J, Wei LN. Crabp1 Modulates HPA Axis Homeostasis and Anxiety-like Behaviors by Altering FKBP5 Expression. Int J Mol Sci 2021; 22:12240. [PMID: 34830120 PMCID: PMC8619219 DOI: 10.3390/ijms222212240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA), the principal active metabolite of vitamin A, is known to be involved in stress-related disorders. However, its mechanism of action in this regard remains unclear. This study reports that, in mice, endogenous cellular RA binding protein 1 (Crabp1) is highly expressed in the hypothalamus and pituitary glands. Crabp1 knockout (CKO) mice exhibit reduced anxiety-like behaviors accompanied by a lowered stress induced-corticosterone level. Furthermore, CRH/DEX tests show an increased sensitivity (hypersensitivity) of their feedback inhibition in the hypothalamic-pituitary-adrenal (HPA) axis. Gene expression studies show reduced FKBP5 expression in CKO mice; this would decrease the suppression of glucocorticoid receptor (GR) signaling thereby enhancing their feedback inhibition, consistent with their dampened corticosterone level and anxiety-like behaviors upon stress induction. In AtT20, a pituitary gland adenoma cell line elevating or reducing Crabp1 level correspondingly increases or decreases FKBP5 expression, and its endogenous Crabp1 level is elevated by GR agonist dexamethasone or RA treatment. This study shows, for the first time, that Crabp1 regulates feedback inhibition of the the HPA axis by modulating FKBP5 expression. Furthermore, RA and stress can increase Crabp1 level, which would up-regulate FKBP5 thereby de-sensitizing feedback inhibition of HPA axis (by decreasing GR signaling) and increasing the risk of stress-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (Y.-L.L.); (C.-W.W.); (T.A.L.); (J.N.)
| |
Collapse
|
2
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
3
|
Nautiyal J. Transcriptional coregulator RIP140: an essential regulator of physiology. J Mol Endocrinol 2017; 58:R147-R158. [PMID: 28073818 DOI: 10.1530/jme-16-0156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
Transcriptional coregulators drive gene regulatory decisions in the transcriptional space. Although transcription factors including all nuclear receptors provide a docking platform for coregulators to bind, these proteins bring enzymatic capabilities to the gene regulatory sites. RIP140 is a transcriptional coregulator essential for several physiological processes, and aberrations in its function may lead to diseased states. Unlike several other coregulators that are known either for their coactivating or corepressing roles, in gene regulation, RIP140 is capable of acting both as a coactivator and a corepressor. The role of RIP140 in female reproductive axis and recent findings of its role in carcinogenesis and adipose biology have been summarised.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental BiologyFaculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
4
|
Wu CY, Persaud SD, Wei LN. Retinoic Acid Induces Ubiquitination-Resistant RIP140/LSD1 Complex to Fine-Tune Pax6 Gene in Neuronal Differentiation. Stem Cells 2015; 34:114-23. [PMID: 26372689 DOI: 10.1002/stem.2190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
Receptor-interacting protein 140 (RIP140) is a wide-spectrum coregulator for hormonal regulation of gene expression, but its activity in development/stem cell differentiation is unknown. Here, we identify RIP140 as an immediate retinoic acid (RA)-induced dual-function chaperone for LSD1 (lysine-specific demethylase 1). RIP140 protects LSD1's catalytic domain and antagonizes its Jade-2-mediated ubiquitination and degradation. In RA-induced neuronal differentiation, the increased RIP140/LSD1 complex is recruited by RA-elevated Pit-1 to specifically reduce H3K4me2 modification on the Pax6 promoter, thereby repressing RA-induction of Pax6. This study reveals a new RA-induced gene repressive mechanism that modulates the abundance, enzyme quality, and recruitment of histone modifier LSD1 to neuronal regulator Pax6, which provides a homeostatic control for RA induction of neuronal differentiation.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shawna D Persaud
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Feng X, Krogh KA, Wu CY, Lin YW, Tsai HC, Thayer SA, Wei LN. Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun 2014; 5:4487. [PMID: 25066731 PMCID: PMC4200015 DOI: 10.1038/ncomms5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022] Open
Abstract
Inositol 1, 4, 5-trisphosphate receptor (IP3R)-mediated Ca(2+) release from the endoplasmic reticulum (ER) triggers many physiological responses in neurons, and when uncontrolled can cause ER stress that contributes to neurological disease. Here we show that the unfolded protein response (UPR) in neurons induces rapid translocation of nuclear receptor-interacting protein 140 (RIP140) to the cytoplasm. In the cytoplasm, RIP140 localizes to the ER by binding to the IP3R. The carboxyl-terminal RD4 domain of RIP140 interacts with the carboxyl-terminal gate-keeping domain of the IP3R. This molecular interaction disrupts the IP3R's 'head-tail' interaction, thereby suppressing channel opening and attenuating IP3R-mediated Ca(2+) release. This contributes to a rapid suppression of the ER stress response and provides protection from apoptosis in both hippocampal neurons in vitro and in an animal model of ER stress. Thus, RIP140 translocation to the cytoplasm is an early response to ER stress and provides protection against neuronal death.
Collapse
Affiliation(s)
- Xudong Feng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly A. Krogh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, R.O.C
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Wu CY, Feng X, Wei LN. Coordinated repressive chromatin-remodeling of Oct4 and Nanog genes in RA-induced differentiation of embryonic stem cells involves RIP140. Nucleic Acids Res 2014; 42:4306-17. [PMID: 24489122 PMCID: PMC3985664 DOI: 10.1093/nar/gku092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintaining pluripotency and indefinite self-renewal of embryonic stem cells requires a tight control of the expression of several key stemness factors, particularly Nanog and Oct4 transcription factors. The mammalian SWItch/Sucrose NonFermentable (SWI/SNF) complex contains Brg1 or Brm as its core subunit, along with Brg1-associated factors. Our previous studies have addressed chromatin-remodeling of the Oct4 gene locus in retinoic acid (RA)-treated embryonal carcinoma cell line P19, which involves receptor-interacting protein 140 (RIP140) for heterochromatinization on the proximal promoter region of this gene locus. However, the mechanism of RIP140 action in RA-triggered repressive chromatin-remodeling is unclear. The current study examines RA repression of the Nanog gene and compares the results with RA repression of the Oct4 gene on the chromatin level. The results show a loose nucleosome array on the Nanog gene promoter in undifferentiated embryonic stem cells. On RA treatment, the Nanog gene locus remodels specifically in the CR1 region of its proximal promoter, with the insertion of a nucleosome and compaction of this region. Further, RA induces coordinated chromatin-remodeling of both Nanog and Oct4 gene loci, which requires RA receptor-α, RIP140 and Brm. Finally, in these RA-triggered repressive chromatin-remodeling processes, lysine acetylation of RIP140 is critical for its recruiting Brm.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
7
|
Nautiyal J, Christian M, Parker MG. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends Endocrinol Metab 2013; 24:451-9. [PMID: 23742741 DOI: 10.1016/j.tem.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) regulate tissue development and function by controlling transcription from distinct sets of genes in response to fluctuating levels of hormones or cues that modulate receptor activity. Such target gene activation or repression depends on the recruitment of coactivators or corepressors that lead to chromatin remodelling in the vicinity of target genes. Similarly to receptors, coactivators and corepressors often serve pleiotropic functions, and Nrip1 (RIP140) is no exception, playing roles in animal development and physiology. At first sight, however, RIP140 is unusual in its ability to function either as a coactivator or as a corepressor, and also serve a cytoplasmic role. The functions of RIP140 in different tissues will be summarised together with its potential contribution to disease.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
8
|
Grueter CE. Mediator complex dependent regulation of cardiac development and disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:151-7. [PMID: 23727265 PMCID: PMC4357813 DOI: 10.1016/j.gpb.2013.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD.
Collapse
Affiliation(s)
- Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Ho PC, Wei LN. Biological activities of receptor-interacting protein 140 in adipocytes and metabolic diseases. Curr Diabetes Rev 2012; 8:452-7. [PMID: 22934550 PMCID: PMC5560868 DOI: 10.2174/157339912803529922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
Abstract
Receptor-interacting protein 140 (RIP140) is best known for its functional role as a wide-spectrum transcriptional co-regulator. It is highly expressed in metabolic tissues including mature adipocyte. In the past decade, molecular biological and biochemical studies revealed extensive and sequential post-translational modifications (PTMs) of RIP140. Some of these PTMs affect RIP140's sub-cellular distribution and biological activities that contribute to the development and progression of metabolic diseases. The biological activity of RIP140 that translocates to the cytoplasm in adipocytes is to regulate glucose uptake, adiponectin secretion and lipolysis. Accumulation of RIP140 in the cytoplasm promotes adipocyte dysfunctions, and provides a biomarker of early stages of metabolic diseases. Administering compounds that reduce cytoplasmic accumulation of RIP140 in high fat diet-fed animals can ameliorate metabolic dysfunctions, manifested in improving insulin sensitivity and adiponectin secretion, and reducing incidences of hepatic steatosis. This review summarizes studies demonstrating RIP140's PTMs and biological activities in the cytoplasm of adipocyte, signaling pathways stimulating these PTMs, and a proof-of-concept that targeting cytoplasmic RIP140 can be an effective strategy in managing metabolic diseases.
Collapse
Affiliation(s)
| | - Li-Na Wei
- Address correspondence to this author at the Department of Pharmacology, University of Minnesota Medical School 6-120 Jackson Hall 321 Church Street SE Minneapolis, MN 55455-0217, USA; Tel: 612-625-9402; Fax: 612-625-8408;
| |
Collapse
|