1
|
Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers (Basel) 2022; 15:cancers15010110. [PMID: 36612109 PMCID: PMC9817686 DOI: 10.3390/cancers15010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pituitary gland is one of the most cellularly diverse regions of the brain. Recent advancements in transcriptomic biology, such as single-cell RNA sequencing, bring an unprecedented glimpse into the molecular composition of the pituitary, both in its normal physiological state and in disease. Deciphering the normal pituitary transcriptomic signatures provides a better insight into the ontological origin and development of five types of endocrine cells, a process involving complex cascades of transcription factors that are still being established. In parallel with these observations about normal pituitary development, recent transcriptomic findings on pituitary neuroendocrine tumors (PitNETs) demonstrate both preservations and changes in transcription factor expression patterns compared to those seen during gland development. Furthermore, recent studies also identify differentially expressed genes that drive various tumor behaviors, including hormone hypersecretion and tumor aggression. Understanding the comprehensive multiomic profiles of PitNETs is essential in developing molecular profile-based therapies for PitNETs not curable with current treatment modalities and could eventually help align PitNETs with the breakthroughs being made in applying precision medicine to other tumors.
Collapse
|
2
|
TRH Regulates the Synthesis and Secretion of Prolactin in Rats with Adenohypophysis through the Differential Expression of miR-126a-5p. Int J Mol Sci 2022; 23:ijms232415914. [PMID: 36555554 PMCID: PMC9781503 DOI: 10.3390/ijms232415914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Prolactin (PRL) is an important hormone that is secreted by the pituitary gland and plays an important role in the growth, development and reproduction of organisms. Thyrotropin-releasing hormone (TRH) is a common prolactin-releasing factor that regulates the synthesis and secretion of prolactin. In recent studies, microRNAs (miRNAs) have been found to play a key role in the regulation of pituitary hormones. However, there is a lack of systematic studies on the regulatory role that TRH plays on the pituitary transcriptome, and the role of miRNAs in the regulation of PRL synthesis and secretion by TRH lacks experimental evidence. In this study, we first investigated the changes in PRL synthesis and secretion in the rat pituitary gland after TRH administration. The results of transcriptomic analysis after TRH treatment showed that 102 genes, including those that encode Nppc, Fgf1, PRL, Cd63, Npw, and Il23a, were upregulated, and 488 genes, including those that encode Lats1, Cacna2d1, Top2a, and Tfap2a, were downregulated. These genes are all involved in the regulation of prolactin expression. The gene expression of miR-126a-5p, which regulates the level of PRL in the pituitary gland, was screened by analysis prediction software and by a dual luciferase reporter system. The data presented in this study demonstrate that TRH can regulate prolactin synthesis and secretion through miR-126a-5p, thereby improving our understanding of the molecular mechanism of TRH-mediated PRL secretion and providing a theoretical basis for the role of miRNAs in regulating the secretion of pituitary hormones.
Collapse
|
3
|
Hou H, Chan C, Yuki KE, Sokolowski D, Roy A, Qu R, Uusküla-Reimand L, Faykoo-Martinez M, Hudson M, Corre C, Goldenberg A, Zhang Z, Palmert MR, Wilson MD. Postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary gland. Biol Sex Differ 2022; 13:57. [PMID: 36221127 PMCID: PMC9552479 DOI: 10.1186/s13293-022-00467-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pituitary gland regulates essential physiological processes such as growth, pubertal onset, stress response, metabolism, reproduction, and lactation. While sex biases in these functions and hormone production have been described, the underlying identity, temporal deployment, and cell-type specificity of sex-biased pituitary gene regulatory networks are not fully understood. METHODS To capture sex differences in pituitary gene regulation dynamics during postnatal development, we performed 3' untranslated region sequencing and small RNA sequencing to ascertain gene and microRNA expression, respectively, across five postnatal ages (postnatal days 12, 22, 27, 32, 37) that span the pubertal transition in female and male C57BL/6J mouse pituitaries (n = 5-6 biological replicates for each sex at each age). RESULTS We observed over 900 instances of sex-biased gene expression and 17 sex-biased microRNAs, with the majority of sex differences occurring with puberty. Using miRNA-gene target interaction databases, we identified 18 sex-biased genes that were putative targets of 5 sex-biased microRNAs. In addition, by combining our bulk RNA-seq with publicly available male and female mouse pituitary single-nuclei RNA-seq data, we obtained evidence that cell-type proportion sex differences exist prior to puberty and persist post-puberty for three major hormone-producing cell types: somatotropes, lactotropes, and gonadotropes. Finally, we identified sex-biased genes in these three pituitary cell types after accounting for cell-type proportion differences between sexes. CONCLUSION Our study reveals the identity and postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary. This work also highlights the importance of considering sex biases in cell-type composition when understanding sex differences in the processes regulated by the pituitary gland.
Collapse
Affiliation(s)
- Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Dustin Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anna Roy
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Rihao Qu
- Interdepartmental Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mariela Faykoo-Martinez
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Matt Hudson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christina Corre
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada
| | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Mark R Palmert
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada. .,Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada.
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Liu L, Zhong J, Chen B, Wang W, Xi H, Su X. CCAAT/enhancer binding protein (C/EBP) delta promotes the expression of PTX3 and macrophage phagocytosis during A. fumigatus infection. J Leukoc Biol 2021; 111:1225-1234. [PMID: 34939225 DOI: 10.1002/jlb.4ma1121-451rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Given the increasing incidence of pulmonary aspergillosis, it is important to understand the natural defense mechanisms by which the body can kill Aspergillus fumigatus conidia. Pentraxin 3 (PTX3) plays a nonredundant role in resistance to A. fumigatus. Here, we found that the key predicted PTX3 transcription factor, CCAAT/enhancer-binding protein δ (CEBPD), was up-regulated during A. fumigatus conidia infection. Functionally, CEBPD significantly promoted the expression of PTX3 and the phagocytic ability of macrophages. Mechanistically, CEBPD activated the PTX3 by directly binding to the promoter region of the PTX3 gene. We also showed that the RNA-binding protein human antigen R promoted CEBPD expression. These findings provide new insights into the crucial role of CEBPD in the phagocytosis of A. fumigatus conidia by macrophages and highlight this protein as a potential therapeutic target for invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinjin Zhong
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bilin Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing, China
| | - Haiyan Xi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Clinical Laboratory, Jinling Hospital, Nanjing, China
| |
Collapse
|
5
|
Li Q, Lai Y, Gao X, Li X, Deng CY, Guo H, Zhao J, Yang H, Xu Y, Wu S, Xue Y, Rao F. Involvement of plasminogen activator inhibitor-1 and its related molecules in atrial fibrosis in patients with atrial fibrillation. PeerJ 2021; 9:e11488. [PMID: 34141473 PMCID: PMC8179226 DOI: 10.7717/peerj.11488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/27/2021] [Indexed: 12/01/2022] Open
Abstract
Atrial fibrillation is the most common form of cardiac arrhythmia. Atrial fibrosis is a significant feature of atrial fibrillation though its mechanism is not well understood. We searched the Gene Expression Omnibus database to compare mRNA expression patterns between atrial fibrillation and sinus rhythm samples; one hundred and forty eight differentially expressed genes were identified. Most of these genes were significantly enriched in the extracellular matrix organization process and collagen-activated tyrosine kinase receptor signaling pathway. To screen hub genes involved in atrial fibrosis, we constructed a protein-protein interaction network and found that three hub genes (SERPINE1/plasminogen activator inhibitor-1/PAI-1, TIMP Metallopeptidase Inhibitor 3/TIMP3 and decorin/DCN) play vital roles in atrial fibrosis, especially plasminogen activator inhibitor-1. Elevated plasminogen activator inhibitor-1 expression was positively correlated with the p53 signaling pathway. Plasminogen activator inhibitor-1 and p53 protein expression levels were verified in patients with sinus rhythm and atrial fibrillation by Western blot analysis. Compared with the sinus rhythm controls, p53 and plasminogen activator inhibitor-1 protein expressions were upregulated in the atrial tissues of patients with atrial fibrillation. p53 was also found to regulate plasminogen activator inhibitor-1 based on the results of cellular and molecular experiments. Thus, the p53/plasminogen activator inhibitor-1 signaling axis may participate in the pathophysiological processes of atrial fibrillation, and plasminogen activator inhibitor-1 may serve as a new therapeutic biomarker in atrial fibrillation.
Collapse
Affiliation(s)
- Qiaoqiao Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingyu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xin Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junfei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yuwen Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Fang Rao
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
6
|
Satou M, Wang J, Nakano-Tateno T, Teramachi M, Suzuki T, Hayashi K, Lamothe S, Hao Y, Kurata H, Sugimoto H, Chik C, Tateno T. L-type amino acid transporter 1, LAT1, in growth hormone-producing pituitary tumor cells. Mol Cell Endocrinol 2020; 515:110868. [PMID: 32579901 DOI: 10.1016/j.mce.2020.110868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
Pituitary tumors (PTs) can cause significant mortality and morbidity due to limited therapeutic options. L-type amino acid transporters (LATs), in particular, the LAT1 isoform, is expressed in a variety of tumor cells. Pharmacological inhibition or genetic ablation of LAT1 can suppress leucine transport into cancer cells, resulting in suppression of cancer cell growth. However, roles of LAT1 in PTs have not been elucidated. Therefore, we assessed LAT1 expression in PTs and evaluated a LAT1-specific inhibitor, JPH203, on rat somatomammotroph tumor cells, GH4 cells. GH4 cells dominantly express LAT1 mRNA rather than other LAT isoforms, whereas LAT2 transcripts were most abundant in normal rat pituitary tissues. JPH203 inhibited leucine uptake and cell growth in GH4 cells in a concentration-dependent manner, and appeared to be independent of the mechanistic target, the rapamycin pathway. Although JPH203 did not induce apoptosis, it suppressed growth hormone production in GH4 cells. Also, genetic downregulation of LAT1 showed similar effects on cell growth and hormone production. These results indicated that restriction of LAT1 substrates by JPH203 modulated both cell growth and hormone production. In conclusion, LAT1 may be a new therapeutic target for PTs because its inhibition leads to suppression of cell growth as well as hormone production. JPH203 may represent a promising drug for clinical use in patients with PTs, with the potential of hormonal control and tumor suppression.
Collapse
Affiliation(s)
- Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jason Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mariko Teramachi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Shawn Lamothe
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yubin Hao
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Harley Kurata
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
CCAAT/enhancer binding protein δ is a transcriptional repressor of α-synuclein. Cell Death Differ 2019; 27:509-524. [PMID: 31209363 DOI: 10.1038/s41418-019-0368-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
α-Synuclein is the main component of Lewy bodies, the intracellular protein aggregates representing the histological hallmark of Parkinson's disease. Elevated α-synuclein levels and mutations in SNCA gene are associated with increased risk for Parkinson's disease. Despite this, little is known about the molecular mechanisms regulating SNCA transcription. CCAAT/enhancer binding protein (C/EBP) β and δ are b-zip transcription factors that play distinct roles in neurons and glial cells. C/EBPβ overexpression increases SNCA expression in neuroblastoma cells and putative C/EBPβ and δ binding sites are present in the SNCA genomic region suggesting that these proteins could regulate SNCA transcription. Based on these premises, the goal of this study was to determine if C/EBPβ and δ regulate the expression of SNCA. We first observed that α-synuclein CNS expression was not affected by C/EBPβ deficiency but it was markedly increased in C/EBPδ-deficient mice. This prompted us to characterize further the role of C/EBPδ in SNCA transcription. C/EBPδ absence led to the in vivo increase of α-synuclein in all brain regions analyzed, both at mRNA and protein level, and in primary neuronal cultures. In agreement with this, CEBPD overexpression in neuroblastoma cells and in primary neuronal cultures markedly reduced SNCA expression. ChIP experiments demonstrated C/EBPδ binding to the SNCA genomic region of mice and humans and luciferase experiments showed decreased expression of a reporter gene attributable to C/EBPδ binding to the SNCA promoter. Finally, decreased CEBPD expression was observed in the substantia nigra and in iPSC-derived dopaminergic neurons from Parkinson patients resulting in a significant negative correlation between SNCA and CEBPD levels. This study points to C/EBPδ as an important repressor of SNCA transcription and suggests that reduced C/EBPδ neuronal levels could be a pathogenic factor in Parkinson's disease and other synucleinopathies and C/EBPδ activity a potential pharmacological target for these neurological disorders.
Collapse
|
8
|
Ellsworth BS, Stallings CE. Molecular Mechanisms Governing Embryonic Differentiation of Pituitary Somatotropes. Trends Endocrinol Metab 2018; 29:510-523. [PMID: 29759686 DOI: 10.1016/j.tem.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
Pituitary somatotropes secrete growth hormone (GH), which is essential for normal growth and metabolism. Somatotrope defects result in GH deficiency (GHD), leading to short stature in childhood and increased cardiovascular morbidity and mortality in adulthood. Current hormone replacement therapies fail to recapitulate normal pulsatile GH secretion. Stem cell therapies could overcome this problem but are dependent on a thorough understanding of somatotrope differentiation. Although several transcription factors, signaling pathways, and hormones that regulate this process have been identified, the mechanisms of action are not well understood. The purpose of this review is to highlight the known players in somatotrope differentiation while emphasizing the need to better understand these pathways to serve patients with GHD.
Collapse
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-6523, USA.
| | - Caitlin E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901-6523, USA
| |
Collapse
|
9
|
Bernard V, Villa C, Auguste A, Lamothe S, Guillou A, Martin A, Caburet S, Young J, Veitia RA, Binart N. Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model. Oncotarget 2017; 9:6144-6155. [PMID: 29464061 PMCID: PMC5814201 DOI: 10.18632/oncotarget.23713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
Lactotroph adenoma, also called prolactinoma, is the most common pituitary tumor but little is known about its pathogenesis. Mouse models of prolactinoma can be useful to better understand molecular mechanisms involved in abnormal lactotroph cell proliferation and secretion. We have previously developed a prolactin receptor deficient (Prlr–/–) mouse, which develops prolactinoma. The present study aims to explore the natural history of prolactinoma formation in Prlr–/– mice, using hormonal, radiological, histological and molecular analyses to uncover mechanisms involved in lactotroph adenoma development. Prlr–/– females develop large secreting prolactinomas from 12 months of age, with a penetrance of 100%, mimicking human aggressive densely granulated macroprolactinoma, which is a highly secreting subtype. Mean blood PRL measurements reach 14 902 ng/mL at 24 months in Prlr–/– females while PRL levels were below 15 ng/mL in control mice (p < 0.01). By comparing pituitary microarray data of Prlr–/– mice and an estrogen-induced prolactinoma model in ACI rats, we pinpointed 218 concordantly differentially expressed (DE) genes involved in cell cycle, mitosis, cell adhesion molecules, dopaminergic synapse and estrogen signaling. Pathway/gene-set enrichment analyses suggest that the transcriptomic dysregulation in both models of prolactinoma might be mediated by a limited set of transcription factors (i.e., STAT5, STAT3, AhR, ESR1, BRD4, CEBPD, YAP, FOXO1) and kinases (i.e., JAK2, AKT1, BRAF, BMPR1A, CDK8, HUNK, ALK, FGFR1, ILK). Our experimental results and their bioinformatic analysis provide insights into early genomic changes in murine models of the most frequent human pituitary tumor.
Collapse
Affiliation(s)
- Valérie Bernard
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France
| | - Chiara Villa
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Foch, Suresnes, France.,Institut Cochin, Unité INSERM 1016, CNRS UMR 8104, Université Paris Diderot, Paris, France
| | - Aurélie Auguste
- Unité INSERM 981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sophie Lamothe
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France
| | - Anne Guillou
- Unité INSERM 1191, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Agnès Martin
- Unité INSERM 1191, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Jacques Young
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France.,APHP, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, le Kremlin-Bicêtre, France
| | - Reiner A Veitia
- Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - Nadine Binart
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Wang J, Liu Y, Su Z, Pan L, Lu F, Qu J, Hou L. The T-Box Transcription Factor TBX2 Regulates Cell Proliferation in the Retinal Pigment Epithelium. Curr Eye Res 2017; 42:1537-1544. [PMID: 28910203 DOI: 10.1080/02713683.2017.1338351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Vertebrate eye development and function critically depend on the regulation of proliferation of retinal pigment epithelium (RPE) cells. Hence, a thorough analysis of the molecular parameters controlling RPE cell proliferation is crucial for our understanding of the physiology of this cell type both in health and in disease. The T-box transcription factor TBX2 is an important cell cycle regulator in development and oncogenesis, but its specific role in RPE cell proliferation is far from clear. The purpose of the present study is to investigate whether TBX2 plays any role in regulating RPE cell proliferation. MATERIALS AND METHODS The expression of TBX2 in RPE cells was analyzed in wildtype mice and ARPE-19 cells by co-staining for RPE-specific markers and cell proliferation. In vitro, the role of TBX2 was studied by manipulating its levels using RNAi and analyzing the effects on DNA synthesis and cell growth and on gene expression at the RNA and protein levels. RESULTS Here, we find that TBX2 is expressed in RPE cells both in vivo and in vitro. Specific knockdown of TBX2 in the human RPE cell line ARPE-19 leads to an accumulation of cells at G1. This cell cycle arrest is accompanied by changes in the levels of known cell cycle regulators and, in particular, by an increase in the levels of the tumor-suppressor gene CCAAT/enhancer-binding protein delta (CEBPD). In fact, simultaneous knockdown of both TBX2 and CEBPD interferes with the reduction in cell proliferation brought about by TBX2 reduction alone. CONCLUSIONS Our results provide novel insights into the regulatory mechanisms of cell proliferation in the RPE and may contribute to our understanding of normal RPE maintenance and its pathology in degenerative and proliferative disorders of the eye.
Collapse
Affiliation(s)
- Jing Wang
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yin Liu
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongyuan Su
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Li Pan
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Fan Lu
- b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jia Qu
- b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Ling Hou
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
11
|
Fan J, Zhang C, Chen Q, Zhou J, Franc JL, Chen Q, Tong Y. Genomic analyses identify agents regulating somatotroph and lactotroph functions. Funct Integr Genomics 2016; 16:693-704. [PMID: 27709372 DOI: 10.1007/s10142-016-0518-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
Isolated hormone deficiency might be caused by loss of a specific type of endocrine cells, and regenerating these missing cells may provide a new option for future treatment. It is known that POU1F1 lineage cells can differentiate into thyrotroph, somatotroph, and lactotroph. However, there is no effective way of controlling pituitary stem/progenitor cells to differentiate into a specific type of endocrine cell. We thereby analyzed multiple genomic publications related to POU1F1 and pituitary development in this study to identify genes and agents regulating POU1F1 lineage cell differentiation. ANOVA analyses were performed to obtain differentially expressed genes. Ingenuity pathway analyses were performed to obtain signaling pathways, interaction networks, and upstream regulators. Venn diagram was used to determine the overlapping information between studies. Summary statistics was performed to rank genes according to their frequency of occurrence in these studies. The results from upstream analyses indicated that 326 agents may regulate pituitary cell differentiation. These agents can be categorized into 12 groups, including hormones and related pathways, PKA-cAMP pathways, p53/DNA damaging/cell cycle pathways, immune/inflammation regulators, growth factor and downstream pathways, retinoic/RAR pathways, ROS pathways, histone modifications, CCAAT/enhancer binding protein family, neuron development/degeneration pathways, calcium related and fat acid, and glucose pathways. Additional experiments demonstrated that H2O2 and catalase differentially regulate growth hormone and prolactin expression in somatolactotroph cells, confirming potential roles of ROS pathway on regulating somatotroph and lactotroph functions.
Collapse
Affiliation(s)
- Jun Fan
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Cui Zhang
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Qi Chen
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Jin Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jean-Louis Franc
- Aix-Marseille Université, CNRS, UMR7286, CRN2M, Faculté de Médecine Nord, Marseille, France
| | - Qing Chen
- School of Pharmaceutical Science, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Chenggong New City, Kunming, China
| | - Yunguang Tong
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
12
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
13
|
Diaz-Rodriguez E, Garcia-Rendueles AR, Ibáñez-Costa A, Gutierrez-Pascual E, Garcia-Lavandeira M, Leal A, Japon MA, Soto A, Venegas E, Tinahones FJ, Garcia-Arnes JA, Benito P, Angeles Galvez M, Jimenez-Reina L, Bernabeu I, Dieguez C, Luque RM, Castaño JP, Alvarez CV. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF. Endocrinology 2014; 155:4329-40. [PMID: 25137025 DOI: 10.1210/en.2014-1034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in acromegaly.
Collapse
Affiliation(s)
- Esther Diaz-Rodriguez
- Centre for Investigations in Medicine of the USC (E.D.-R., A.R.G.-G., M.G.-L., C.D., C.V.A.), University of Santiago de Compostela, Santiago de Compostela, Spain 15782; Department of Endocrinology (I.B.), University Hospital (University Hospital of Santiago de Compostela), Instituto de Investigación Sanitaria, Santiago de Compostela, Spain 15706; Departments of Cell Biology, Physiology, and Immunology (A.I.-C., E.G.-P., R.M.L., J.P.C.), and Morphological Sciences (L.J.-R.), University of Cordoba, and Reina Sofia University Hospital (P.B., M.A.G.), Maimonides Institute for Research in Biomedicine of Cordoba, Córdoba, Spain 14014; Departments of Endocrinology and Pathology (A.L., M.A.J., A.S., E.V.), Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, University of Sevilla, Sevilla, Spain 41013; Department of Endocrinology (F.J.T.), Hospital Virgen de la Victoria, and Department of Endocrinology (J.A.G.-A.), Hospital Carlos Haya, Malaga, Spain 29010; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, spain (A.I.-C., F.J.T., P.B., I.B., C.D., R.M.L., J.P.C., C.V.A.), Spain 15706
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng Y, Zhou J, Tong Y. Gene signatures of drug resistance predict patient survival in colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2014; 15:135-43. [PMID: 25179828 PMCID: PMC4381104 DOI: 10.1038/tpj.2014.45] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/12/2014] [Accepted: 06/25/2014] [Indexed: 01/05/2023]
Abstract
Different combinations of 5-fluorouracil (5-FU), oxaliplatin, irinotecan and other newly developed agents have been used to treat colorectal cancer. Despite the advent of new treatment regimens, the 5-year survival rate for metastatic colorectal cancer remains low (~10%). Knowing the drug sensitivity of a given tumor for a particular agent could significantly impact decision making and treatment planning. Biomarkers are proven to be successful in characterizing patients into different response groups. Using survival prediction analysis, we have identified three independent gene signatures, which are associated with sensitivity of colorectal cancer cells to 5-FU, oxaliplatin or irinotecan. On the basis of the three gene signatures, three score systems were developed to stratify patients from sensitive to resistance. These score systems exhibited robustness in stratify patients in two independent clinical studies. Patients with high scores in all three drugs exhibited the lowest survival.
Collapse
Affiliation(s)
- Y Zheng
- 1] Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA [2] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - J Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Y Tong
- 1] Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, USA [2] Department of Pathology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Adipose tissue macrophages (ATM) of obese patients are releasing increased levels of prolactin during an inflammatory challenge: a role for prolactin in diabesity? Biochim Biophys Acta Mol Basis Dis 2013; 1842:584-93. [PMID: 24361460 DOI: 10.1016/j.bbadis.2013.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/02/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023]
Abstract
BACKGROUND Obesity, characterized by low grade inflammation, induces adipose tissue macrophage (ATM) infiltration in white adipose tissue (AT) in both humans and rodents, thus contributing to insulin resistance. Previous studies have shown altered prolactin secretion in obesity, however, studies linking ATM infiltration and prolactin (PRL) secretion to the pathogenesis of the metabolic syndrome, obesity and diabetes are lacking. METHODS/RESULTS In vivo, qPCR and Western blot analysis demonstrated that prolactin expression was increased in AT of obese rats and also in human AT from obese, obese pre-diabetic and obese diabetic compared to lean counterparts. Immunohistochemistry of obese rat and human AT sections demonstrated a specific expression of prolactin in macrophages. In vitro, we demonstrated that hyperglycemia and inflammation stimulated macrophages (human THP-1 cell line and sorted rat ATM) to express PRL, when challenged with different glucose concentrations with or without IL1β. In in vivo and in vitro experiments, we assessed the expression of Pit-1 (PRL-specific transcription factor) and found that its expression was parallel to PRL expression. CONCLUSIONS In this study, we show that rodent and human macrophages synthesize prolactin in response to inflammation and high glucose concentrations. GENERAL SIGNIFICANCE Our data shed new light on the potential role of macrophages in the physiopathology of diabesity via the PRL expression and on its expression mechanism and regulation.
Collapse
|
16
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
17
|
Tong Y, Zheng Y, Zhou J, Oyesiku NM, Koeffler HP, Melmed S. Genomic characterization of human and rat prolactinomas. Endocrinology 2012; 153:3679-91. [PMID: 22635680 PMCID: PMC3404356 DOI: 10.1210/en.2012-1056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although prolactinomas can be effectively treated with dopamine agonists, about 20% of patients develop dopamine resistance or tumor recurrence after surgery, indicating a need for better understanding of underlying disease mechanisms. Although estrogen-induced rat prolactinomas have been widely used to investigate the development of this tumor, the extent that the model recapitulates features of human prolactinomas is unclear. To prioritize candidate genes and gene sets regulating human and rat prolactinomas, microarray results derived from human prolactinomas and pituitaries of estrogen-treated ACI rats were integrated and analyzed. A total of 4545 differentially expressed pituitary genes were identified in estrogen-treated ACI rats [false discovery rate (FDR) < 0.01]. By comparing pituitary microarray results derived from estrogen-treated Brown Norway rats (a strain not sensitive to estrogen), 4073 genes were shown specific to estrogen-treated ACI rats. Human prolactinomas exhibited 1177 differentially expressed genes (FDR < 0.05). Combining microarray data derived from human prolactinoma and pituitaries of estrogen-treated ACI rat, 145 concordantly expressed genes, including E2F1, Myc, Igf1, and CEBPD, were identified. Gene set enrichment analysis revealed that 278 curated pathways and 59 gene sets of transcription factors were enriched (FDR < 25%) in estrogen-treated ACI rats, suggesting a critical role for Myc, E2F1, CEBPD, and Sp1 in this rat prolactinoma. Similarly increased Myc, E2F1, and Sp1 expression was validated using real-time PCR and Western blot in estrogen-treated Fischer rat pituitary glands. In summary, characterization of individual genes and gene sets in human and in estrogen-induced rat prolactinomas validates the model and provides insights into genomic changes associated with this commonly encountered pituitary tumor.
Collapse
Affiliation(s)
- Yunguang Tong
- Department of Medicine, Cedars-Sinai Medical Center, Academic Affairs, Room 2015, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|