1
|
Lattanzi R, Fullone MR, De Biase A, Maftei D, Vincenzi M, Miele R. Biochemical characterization of Prokineticin 2 binding to Prokineticin receptor 1 in zebrafish. Neuropeptides 2024; 107:102456. [PMID: 39089191 DOI: 10.1016/j.npep.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Prokineticin 2 (PK2) binds to prokineticin receptor 1 and prokineticin receptor 2 (PKR1 and PKR2, respectively), two G protein-coupled receptors (GPCRs) that can mediate multiple signalling pathways by promoting the elevation of intracellular calcium and cAMP levels, phosphorylation of Akt and activation of ERK and STAT3. This work aims to evidence the conservation of protein sequence and the mechanism of PK2 binding to PKR1 to use the zebrafish model for the identification of new drugs as targets of prokineticin receptors. To this end, we first demonstrated that the zebrafish genes pk2 and pkr1 are phylogenetically related to orthologous mammalian genes by constructing evolutionary trees and performing syntenic analyses. Subsequently, by comparing the amino acid sequences, we showed that the interaction sites with PK2 are conserved in the zPKR1. Using GST pull-down and cross-linking experiments, we demonstrated the crucial role of the N-terminal region of zPKR1 for binding to the PK2. Finally, by expressing zPKR1 in CHO cells, we demonstrated the ability of zPKR1 to induce the activation of ERK and STAT3.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Alessio De Biase
- Department of Biology and Biotechnologies "Charles Darwin" Sapienza University of Rome, Viale dell'Università 32, I-00185 Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
2
|
Lattanzi R, Miele R. Genetic Polymorphisms of Prokineticins and Prokineticin Receptors Associated with Human Disease. Life (Basel) 2024; 14:1254. [PMID: 39459554 PMCID: PMC11509077 DOI: 10.3390/life14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Prokineticins (PKs) are low molecular weight proteins that exert their effects by binding to two seven-transmembrane G-protein-coupled receptors (prokineticin receptors, PKRs). The prokineticin system is an important player in the development of various diseases. Several polymorphisms that are associated with infertility, neuroendocrine disorders, Hirschsprung's syndrome (HSCR), idiopathic central precocious puberty (CPP) and congenital disorders such as Kallmann syndrome (KS) have been described for both the PKs and PKR genes. The aim of this study is to summarize and describe the impact of PK/PKR polymorphisms on the pathogenesis and outcome of the above diseases, highlighting the PK system as a therapeutic target and diagnostic biomarker in pathological conditions.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
3
|
Yu S, Liu D, Yan C, Yuan C, Zhang C, Zheng S. A novel mutation in GPR68 causes hypomaturation amelogenesis imperfecta. Arch Oral Biol 2024; 164:105991. [PMID: 38761453 DOI: 10.1016/j.archoralbio.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVES To identify the genetic cause of a Chinese family with hypomaturation amelogenesis imperfecta (AI) and to characterize the structure of GPR68 mutated enamel in order to develop a deeper understanding of the role of the GPR68 protein during the intricate process of amelogenesis. DESIGN One Chinese family with generalized hypomaturation AI was recruited. Two of the third molars from the proband were subjected to scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Whole exome sequencing (WES) was performed, and the identified mutation was confirmed by Sanger sequencing. Bioinformatics studies were further conducted to analyze the potential deleterious effects of the mutation. RESULTS The proband presented with a hypomaturation AI phenotype, characterized by fragile and discolored enamel surface. The AI enamel showed prismatic structure, which was sporadically obscured by areas of amorphous material and porous structure. EDX analysis showed the proband's enamel demonstrated a significant decrease in calcium and phosphorus content and a significant increase in oxygen compared with normal enamel. A novel homozygous mutation of G protein-coupled receptor 68 (GPR68) (c .149 T > A, p.Ile50Asn) was identified in the proband. Bioinformatics analysis indicated that the mutation site displayed a high level of evolutionary conservation among species, and the mutation might impact the stability and conformation of the protein. CONCLUSION The novel homozygous GPR68 mutation resulted in hypomaturation AI. We first described the effect of GPR68 mutation on enamel structure. Our results provide new genetic evidence that mutations involved in GPR68 contribute to hypomaturation AI.
Collapse
Affiliation(s)
- Shunlan Yu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Dandan Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Changqing Yan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China.
| |
Collapse
|
4
|
Ichioka K, Yoshikawa T, Kimura H, Saito R. Additional mutation in PROKR2 and phenotypic differences in a Kallmann syndrome/normosmic congenital hypogonadotropic hypogonadism family carrying FGFR1 missense mutation. BMJ Case Rep 2024; 17:e258042. [PMID: 38272512 PMCID: PMC10826480 DOI: 10.1136/bcr-2023-258042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a genetically and clinically diverse disorder encompassing Kallmann syndrome (KS) and normosmic CHH (nCHH). Although mutations in numerous genes account for nearly 50% of CHH cases, a significant portion remains genetically uncharacterized. While most mutations follow the traditional Mendelian inheritance patterns, evidence suggests oligogenic interactions between CHH genes, acting as modifier genes to explain variable expressivity and incomplete penetrance associated with certain mutations.In this study, the proband presented with nCHH, while his son exhibited KS. We employed whole-exome sequencing (WES) to investigate the genetic differences between the two, and Sanger sequencing was used to validate the results obtained from WES.Genetic analysis revealed that both the proband and his son harboured a mutation in FGFR1 gene. Notably, an additional rare mutation in PROKR2 gene was exclusively identified in the son, which suggests the cause of the phenotypic difference between KS and nCHH.
Collapse
Affiliation(s)
- Kentaro Ichioka
- Karasumaoike Branch, Ichioka Urological Clinic, Kyoto, Japan
| | | | - Hiroko Kimura
- Mens Fertility Clinic Tokyo, Ichioka Urological Clinic Tokyo Branch, Tokyo, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto-shi, Japan
| |
Collapse
|
5
|
Martinez-Mayer J, Perez-Millan MI. Phenotypic and genotypic landscape of PROKR2 in neuroendocrine disorders. Front Endocrinol (Lausanne) 2023; 14:1132787. [PMID: 36843573 PMCID: PMC9945519 DOI: 10.3389/fendo.2023.1132787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Prokineticin receptor 2 (PROKR2) encodes for a G-protein-coupled receptor that can bind PROK1 and PROK2. Mice lacking Prokr2 have been shown to present abnormal olfactory bulb formation as well as defects in GnRH neuron migration. Patients carrying mutations in PROKR2 typically present hypogonadotropic hypogonadism, anosmia/hyposmia or Kallmann Syndrome. More recently variants in PROKR2 have been linked to several other endocrine disorders. In particular, several patients with pituitary disorders have been reported, ranging from mild phenotypes, such as isolated growth hormone deficiency, to more severe ones, such as septo-optic dysplasia. Here we summarize the changing landscape of PROKR2-related disease, the variants reported to date, and discuss their origin, classification and functional assessment.
Collapse
|
6
|
The Clinical and Genetic Characteristics in Children with Idiopathic Hypogonadotropin Hypogonadism. JOURNAL OF ONCOLOGY 2022; 2022:7973726. [PMID: 36245975 PMCID: PMC9553531 DOI: 10.1155/2022/7973726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Background. Idiopathic hypogonadotropin hypogonadism (IHH) is caused by hypothalamic-pituitary-gonadal axis dysfunction. This is divided into Kallmann syndrome which has an impaired sense of smell and hypogonadotropin hypogonadism with normal olfactory (nIHH sense. Approximately 60% of patients are associated with Kallmann syndrome, whereas there are approximately 40% with hypogonadotropin hypogonadism (nIHH). This disease is associated with various variants in genes along with different phenotypic characteristics, and even those gene variations could also lead to the cancer formation in patients. So, current study has been designed to investigate and to better understand the characteristics of various IHH-associated genes and the correlation between IHH genes and phenotype. Methods. The cohort included 14 children with IHH (6 patients of KS and 8 patients of IHH), including 13 boys and 1 girl. Exclusion criteria are as follows: diagnosis of secondary hypogonadotropin hypogonadism due to tumor, trauma, drugs, or other systemic diseases. Clinical data and genetic results were analyzed. Results. Almost all male patients showed micropenis (12/13, 92.3%), and few of them had cryptorchidism (5/13, 41.7%). A total of 6 genes, CHD7, PROKR2, ANOS1, FGFR1, SEMA3A, and NDNF, were detected. CHD7 was the most common (11/17, 64.7%), and the main mutation type was missense mutation (14/16, 87.5%). Six reported variants and 10 new variants (5 genes, including entire ANSO1 duplicates) were found. Neonatal variation was detected in 3 patients with IHH. Eight patients inherited the variation from their father, while five patients inherited it from their mother. One patient had both FGFR1 and SEMA3A gene variants, while the other had two different CHD7 gene variants and entire ANSO1 repeats. According to ACMG criteria, 4 variants were pathogenic (P), 2 were possibly pathogenic (LP), and 8 had uncertain significance (US). In patients with P or LP (5/6, 83.3%), we found that extragonadal symptoms were more common. Conclusions. It was concluded that variations in the studied genes could lead to the IHH. Ten new variants have been reported which may lead to different symptoms of IHH. For CHD7 variants, the rare sequencing variants (RSVs) of P or LP showed commonly associated with CHARGE syndrome. Findings of the current study may help for the better diagnosis and treatment of IHH.
Collapse
|
7
|
Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses. Nat Commun 2022; 13:4728. [PMID: 35970889 PMCID: PMC9378622 DOI: 10.1038/s41467-022-32390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate processes ranging from immune responses to neuronal signaling. However, ligands for many GPCRs remain unknown, suffer from off-target effects or have poor bioavailability. Additionally, dissecting cell type-specific responses is challenging when the same GPCR is expressed on different cells within a tissue. Here, we overcome these limitations by engineering DREADD-based GPCR chimeras that bind clozapine-N-oxide and mimic a GPCR-of-interest. We show that chimeric DREADD-β2AR triggers responses comparable to β2AR on second messenger and kinase activity, post-translational modifications, and protein-protein interactions. Moreover, we successfully recapitulate β2AR-mediated filopodia formation in microglia, an immune cell capable of driving central nervous system inflammation. When dissecting microglial inflammation, we included two additional DREADD-based chimeras mimicking microglia-enriched GPR65 and GPR109A. DREADD-β2AR and DREADD-GPR65 modulate the inflammatory response with high similarity to endogenous β2AR, while DREADD-GPR109A shows no impact. Our DREADD-based approach allows investigation of cell type-dependent pathways without known endogenous ligands. Understanding the function of GPCRs requires stimulation with their specific ligands. Here, the authors design chemogenetic G-protein coupled receptors that allows for the study of receptors without knowing the immediate ligand, and demonstrate its use for the β2-adrenergic receptor in microglia.
Collapse
|
8
|
Trafficking-defective mutant PROKR2 cycles between endoplasmic reticulum and Golgi to attenuate endoplasmic reticulum stress. Proc Natl Acad Sci U S A 2022; 119:2102248119. [PMID: 35173048 PMCID: PMC8872787 DOI: 10.1073/pnas.2102248119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
The endoplasmic reticulum (ER) possesses a quality control system that prevents misfolded proteins from leaving the ER for routing to the ER-associated degradation pathway. Some misfolded proteins can escape the ER to reach the Golgi, where they are then retrieved from the Golgi back to the ER for degradation, but why this occurs needs to be clarified. Studying a mutant prokineticin receptor 2 identified in patients with hypogonadotropic hypogonadism as a model, we find that the post-ER retrieval system provides another layer of quality control and also lowers the load of misfolded proteins in the ER to reduce ER stress. Our findings reveal the importance of a post-ER quality control mechanism in contributing to cellular homeostasis. G protein–coupled receptors (GPCRs) play crucial roles in numerous physiological and pathological processes. Mutations in GPCRs that result in loss of function or alterations in signaling can lead to inherited or acquired diseases. Herein, studying prokineticin receptor 2 (PROKR2), we initially identify distinct interactomes for wild-type (WT) versus a mutant (P290S) PROKR2 that causes hypogonadotropic hypogonadism. We then find that both the WT and mutant PROKR2 are targeted for endoplasmic reticulum (ER)-associated degradation, but the mutant is degraded to a greater extent. Further analysis revealed that both forms can also leave the ER to reach the Golgi. However, whereas most of the WT is further transported to the cell surface, most of the mutant is retrieved to the ER. Thus, the post-ER itinerary plays an important role in distinguishing the ultimate fate of the WT versus the mutant. We have further discovered that this post-ER itinerary reduces ER stress induced by the mutant PROKR2. Moreover, we extend the core findings to another model GPCR. Our findings advance the understanding of disease pathogenesis induced by a mutation at a key residue that is conserved across many GPCRs and thus contributes to a fundamental understanding of the diverse mechanisms used by cellular quality control to accommodate misfolded proteins.
Collapse
|
9
|
Lattanzi R, Miele R. Prokineticin-Receptor Network: Mechanisms of Regulation. Life (Basel) 2022; 12:172. [PMID: 35207461 PMCID: PMC8877203 DOI: 10.3390/life12020172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Prokineticins are a new class of chemokine-like peptides that bind their G protein-coupled receptors, PKR1 and PKR2, and promote chemotaxis and the production of pro-inflammatory cytokines following tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms of prokineticins pathway regulation that, like other chemokines, include: genetic polymorphisms; mRNA splice modulation; expression regulation at transcriptional and post-transcriptional levels; prokineticins interactions with cell-surface glycosaminoglycans; PKRs degradation, localization, post-translational modifications and oligomerization; alternative signaling responses; binding to pharmacological inhibitors. Understanding these mechanisms, which together exert substantial biochemical control and greatly enhance the complexity of the prokineticin-receptor network, leads to novel opportunities for therapeutic intervention. In this way, besides targeting prokineticins or their receptors directly, it could be possible to indirectly influence their activity by modulating their expression and localization or blocking the downstream signaling pathways.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
10
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
11
|
Zhou S, Li P. The novel function of miR-3195 for mutant PROK2 (c.223-4C>A) degradation. Cell Biol Int 2020; 45:404-410. [PMID: 33140874 DOI: 10.1002/cbin.11496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/31/2020] [Indexed: 11/07/2022]
Abstract
Kallmann syndrome (KS) is a rare human genetic disorder characterized by hypogonadotropic hypogonadism with the reduction or absence of olfactory sense. Mutations in multiple genes, including chemokine prokineticin-2 (PROK2), are considered to contribute to the abnormal migration of gonadotropin-releasing hormone neurons in the embryonic stage. However, the mechanisms of the different inheritance modes of KS have not been comprehensively determined. In this article, we present the case of one KS patient with the same mutation in PROK2 (c.223-4C>A) as his mother. RNA sequencing analysis of his leukocytes showed a new transcript of PROK2, which contained a partial intron (192 bp) compared to those of his parents. Furthermore, we observed that hsa-miR-3195 was expressed at low levels in his and his father's sera compared to his mother's. Unexpectedly, hsa-miR-3195 was also identified to specifically target the 192 bp intron of the aberrant PROK2 transcript of this patient. We determined that high expression of hsa-miR-3195 could efficiently target aberrant PROK2 and stabilize the normal function of PROK2 in vitro, which provided a probable explanation for the different phenotypes of the patient and his mother with the same genotype.
Collapse
Affiliation(s)
- Shasha Zhou
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Pin Li
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
13
|
Cangiano B, Duminuco P, Vezzoli V, Guizzardi F, Chiodini I, Corona G, Maggi M, Persani L, Bonomi M. Evidence for a Common Genetic Origin of Classic and Milder Adult-Onset Forms of Isolated Hypogonadotropic Hypogonadism. J Clin Med 2019; 8:jcm8010126. [PMID: 30669598 PMCID: PMC6352096 DOI: 10.3390/jcm8010126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
Multiple metabolic and inflammatory mechanisms are considered the determinants of acquired functional isolated hypogonadotropic hypogonadism (IHH) in males, whereas classic IHH is a rare congenital condition with a strong genetic background. Since we recently uncovered a frequent familiarity for classic IHH among patients with mild adult-onset hypogonadism (AO-IHH), here we performed a genetic characterization by next generation sequencing of 160 males with classic or “functional” forms. The prevalence of rare variants in 28 candidate genes was significantly higher than in controls in all IHH patients, independently of the age of IHH onset, degree of hypogonadism or presence of obesity. In fact, it did not differ among patients with classic or milder forms of IHH, however particular genes appear to be more specifically associated with one or the other category of IHH. ROC curves showed that Total Testosterone <6.05 nmol/L and an age of onset <41 years are sensitive cutoffs to identify patients with significantly higher chances of harboring rare IHH gene variants. In conclusion, rare IHH genes variants can frequently predispose to AO-IHH with acquired mild hormonal deficiencies. The identification of a genetic predisposition can improve the familial and individual management of AO-IHH and explain the heritability of congenital IHH.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy.
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| | - Paolo Duminuco
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| | - Valeria Vezzoli
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| | - Fabiana Guizzardi
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| | - Iacopo Chiodini
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy.
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| | - Giovanni Corona
- Endocrinology Unit, Medical Department, Azienda USL, Maggiore-Bellaria Hospital, 40133 Bologna, Italy.
| | - Mario Maggi
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, 50139 Florence, Italy.
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy.
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy.
- IRCCS Istituto Auxologico Italiano, Division of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, 20149 Milan, Italy.
| |
Collapse
|
14
|
Cox KH, Oliveira LMB, Plummer L, Corbin B, Gardella T, Balasubramanian R, Crowley WF. Modeling mutant/wild-type interactions to ascertain pathogenicity of PROKR2 missense variants in patients with isolated GnRH deficiency. Hum Mol Genet 2019; 27:338-350. [PMID: 29161432 DOI: 10.1093/hmg/ddx404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
A major challenge in human genetics is the validation of pathogenicity of heterozygous missense variants. This problem is well-illustrated by PROKR2 variants associated with Isolated GnRH Deficiency (IGD). Homozygous, loss of function variants in PROKR2 was initially implicated in autosomal recessive IGD; however, most IGD-associated PROKR2 variants are heterozygous. Moreover, while IGD patient cohorts are enriched for PROKR2 missense variants similar rare variants are also found in normal individuals. To elucidate the pathogenic mechanisms distinguishing IGD-associated PROKR2 variants from rare variants in controls, we assessed 59 variants using three approaches: (i) in silico prediction, (ii) traditional in vitro functional assays across three signaling pathways with mutant-alone transfections, and (iii) modified in vitro assays with mutant and wild-type expression constructs co-transfected to model in vivo heterozygosity. We found that neither in silico analyses nor traditional in vitro assessments of mutants transfected alone could distinguish IGD variants from control variants. However, in vitro co-transfections revealed that 15/34 IGD variants caused loss-of-function (LoF), including 3 novel dominant-negatives, while only 4/25 control variants caused LoF. Surprisingly, 19 IGD-associated variants were benign or exhibited LoF that could be rescued by WT co-transfection. Overall, variants that were LoF in ≥ 2 signaling assays under co-transfection conditions were more likely to be disease-associated than benign or 'rescuable' variants. Our findings suggest that in vitro modeling of WT/Mutant interactions increases the resolution for identifying causal variants, uncovers novel dominant negative mutations, and provides new insights into the pathogenic mechanisms underlying heterozygous PROKR2 variants.
Collapse
Affiliation(s)
- Kimberly H Cox
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luciana M B Oliveira
- Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Lacey Plummer
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Braden Corbin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas Gardella
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William F Crowley
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
15
|
Negri L, Ferrara N. The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 2018. [PMID: 29537336 DOI: 10.1152/physrev.00012.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mammalian prokineticins family comprises two conserved proteins, EG-VEGF/PROK1 and Bv8/PROK2, and their two highly related G protein-coupled receptors, PKR1 and PKR2. This signaling system has been linked to several important biological functions, including gastrointestinal tract motility, regulation of circadian rhythms, neurogenesis, angiogenesis and cancer progression, hematopoiesis, and nociception. Mutations in PKR2 or Bv8/PROK2 have been associated with Kallmann syndrome, a developmental disorder characterized by defective olfactory bulb neurogenesis, impaired development of gonadotropin-releasing hormone neurons, and infertility. Also, Bv8/PROK2 is strongly upregulated in neutrophils and other inflammatory cells in response to granulocyte-colony stimulating factor or other myeloid growth factors and functions as a pronociceptive mediator in inflamed tissues as well as a regulator of myeloid cell-dependent tumor angiogenesis. Bv8/PROK2 has been also implicated in neuropathic pain. Anti-Bv8/PROK2 antibodies or small molecule PKR inhibitors ameliorate pain arising from tissue injury and inhibit angiogenesis and inflammation associated with tumors or some autoimmune disorders.
Collapse
Affiliation(s)
- Lucia Negri
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| | - Napoleone Ferrara
- Sapienza University of Rome, Rome, Italy ; and University of California, San Diego, La Jolla, California
| |
Collapse
|
16
|
Gonçalves CI, Aragüés JM, Bastos M, Barros L, Vicente N, Carvalho D, Lemos MC. GNRHR biallelic and digenic mutations in patients with normosmic congenital hypogonadotropic hypogonadism. Endocr Connect 2017; 6:360-366. [PMID: 28611058 PMCID: PMC5527354 DOI: 10.1530/ec-17-0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare disorder characterised by lack of pubertal development and infertility, due to deficient production, secretion or action of gonadotropin-releasing hormone (GnRH) and, unlike Kallmann syndrome, is associated with a normal sense of smell. Mutations in the GNRHR gene cause autosomal recessive nCHH. The aim of this study was to determine the prevalence of GNRHR mutations in a group of 40 patients with nCHH. DESIGN Cross-sectional study of 40 unrelated patients with nCHH. METHODS Patients were screened for mutations in the GNRHR gene by DNA sequencing. RESULTS GNRHR mutations were identified in five of 40 patients studied. Four patients had biallelic mutations (including a novel frameshift deletion p.Phe313Metfs*3, in two families) in agreement with autosomal recessive inheritance. One patient had a heterozygous GNRHR mutation associated with a heterozygous PROKR2 mutation, thus suggesting a possible role of synergistic heterozygosity in the pathogenesis of the disorder. CONCLUSIONS This study further expands the spectrum of known genetic defects associated with nCHH. Although GNRHR mutations are usually biallelic and inherited in an autosomal recessive manner, the presence of a monoallelic mutation in a patient should raise the possibility of a digenic/oligogenic cause of nCHH.
Collapse
Affiliation(s)
- Catarina I Gonçalves
- CICS-UBIHealth Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José M Aragüés
- Serviço de EndocrinologiaDiabetes e Metabolismo, Hospital de Santa Maria, Lisboa, Portugal
| | - Margarida Bastos
- Serviço de EndocrinologiaDiabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Luísa Barros
- Serviço de EndocrinologiaDiabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Nuno Vicente
- Serviço de EndocrinologiaDiabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Davide Carvalho
- Serviço de EndocrinologiaDiabetes e Metabolismo, Hospital de São João e Faculdade de Medicina do Porto, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| | - Manuel C Lemos
- CICS-UBIHealth Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
17
|
Maguire CA, Song YB, Wu M, León S, Carroll RS, Alreja M, Kaiser UB, Navarro VM. Tac1 Signaling Is Required for Sexual Maturation and Responsiveness of GnRH Neurons to Kisspeptin in the Male Mouse. Endocrinology 2017; 158:2319-2329. [PMID: 28444173 PMCID: PMC5505212 DOI: 10.1210/en.2016-1807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Abstract
The tachykinins substance P (SP) and neurokinin A (Tac1) have emerged as novel regulators of kisspeptin/GnRH release. Recently, we documented that SP modulates reproductive function in the female mouse. Here, we extended this characterization to the male mouse. Tac1-/- male mice showed delayed puberty onset. They also presented significantly decreased expression levels of Pdyn (dynorphin) and Nos1 (nitric oxide synthase) in the mediobasal hypothalamus and elevated Gnrh1 levels. Unexpectedly, the response of Tac1-/- mice to central kisspeptin or senktide (neurokinin B receptor-agonist) administration was significantly decreased compared with controls, despite the preserved ability of GnRH neurons to stimulate luteinizing hormone release as demonstrated by central N-methyl-D-aspartate receptor administration, suggesting a deficit at the GnRH neuron level. Importantly, we demonstrated that kisspeptin receptor and SP receptor (NK1R) heterodimerize, indicating that changes in the SP tone could alter the responsiveness of GnRH neurons to kisspeptin. Finally, electrophysiological recordings from arcuate Kiss1 neurons showed that, although virtually all Kiss1 neurons responded to NKB and senktide, only half responded to an NK1R agonist and none to the neurokinin A receptor agonist at a 1-μM dose. In summary, we provide compelling evidence for a role of Tac1 in the control of reproductive function in the male mouse, suggesting a predominant central action that may involve a change in the balance of neural factors that control GnRH expression.
Collapse
Affiliation(s)
- Caroline A. Maguire
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Min Wu
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Silvia León
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Meenakshi Alreja
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Víctor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
18
|
McCormack SE, Li D, Kim YJ, Lee JY, Kim SH, Rapaport R, Levine MA. Digenic Inheritance of PROKR2 and WDR11 Mutations in Pituitary Stalk Interruption Syndrome. J Clin Endocrinol Metab 2017; 102:2501-2507. [PMID: 28453858 PMCID: PMC5505202 DOI: 10.1210/jc.2017-00332] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023]
Abstract
CONTEXT Pituitary stalk interruption syndrome (PSIS, ORPHA95496) is a congenital defect of the pituitary gland characterized by the triad of a very thin/interrupted pituitary stalk, an ectopic (or absent) posterior pituitary gland, and hypoplasia or aplasia of the anterior pituitary gland. Complex genetic patterns of inheritance of this disorder are increasingly recognized. OBJECTIVE The objective of this study was to identify a genetic cause of PSIS in an affected child. METHODS Whole exome sequencing (WES) was performed by using standard techniques, with prioritized genetic variants confirmed via Sanger sequencing. To investigate the effects of one candidate variant on mutant WDR11 function, Western blotting and coimmunofluorescence were used to assess binding capacity, and leptomycin B exposure along with immunofluorescence was used to assess nuclear localization. RESULTS We describe a child who presented in infancy with combined pituitary hormone deficiencies and whose brain imaging demonstrated a small anterior pituitary, ectopic posterior pituitary, and a thin, interrupted stalk. WES demonstrated heterozygous missense mutations in two genes required for pituitary development, a known loss-of-function mutation in PROKR2 (c.253C>T;p.R85C) inherited from an unaffected mother, and a WDR11 (c.1306A>G;p.I436V) mutation inherited from an unaffected father. Mutant WDR11 loses its capacity to bind to its functional partner, EMX1, and to localize to the nucleus. CONCLUSIONS WES in a child with PSIS and his unaffected family implicates a digenic mechanism of inheritance. In cases of hypopituitarism in which there is incomplete segregation of a monogenic genotype with the phenotype, the possibility that a second genetic locus is involved should be considered.
Collapse
Affiliation(s)
- Shana E. McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Dong Li
- Center for Applied Genomics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Yeon Joo Kim
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Ji Young Lee
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Robert Rapaport
- Division of Pediatric Endocrinology and Diabetes, Kravis Children’s Hospital at Mount Sinai, New York, New York 10029
| | - Michael A. Levine
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
19
|
Mohsen Z, Sim H, Garcia-Galiano D, Han X, Bellefontaine N, Saunders TL, Elias CF. Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model. Brain Struct Funct 2017; 222:4111-4129. [PMID: 28616754 DOI: 10.1007/s00429-017-1456-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/05/2017] [Indexed: 01/18/2023]
Abstract
Prokineticin receptor 2 (PROKR2) is predominantly expressed in the mammalian central nervous system. Loss-of-function mutations of PROKR2 in humans are associated with Kallmann syndrome due to the disruption of gonadotropin releasing hormone neuronal migration and deficient olfactory bulb morphogenesis. PROKR2 has been also implicated in the neuroendocrine control of GnRH neurons post-migration and other physiological systems. However, the brain circuitry and mechanisms associated with these actions have been difficult to investigate mainly due to the widespread distribution of Prokr2-expressing cells, and the lack of animal models and molecular tools. Here, we describe the generation, validation and characterization of a new mouse model that expresses Cre recombinase driven by the Prokr2 promoter, using CRISPR-Cas9 technology. Cre expression was visualized using reporter genes, tdTomato and GFP, in males and females. Expression of Cre-induced reporter genes was found in brain sites previously described to express Prokr2, e.g., the paraventricular and the suprachiasmatic nuclei, and the area postrema. The Prokr2-Cre mouse model was further validated by colocalization of Cre-induced GFP and Prokr2 mRNA. No disruption of Prokr2 expression, GnRH neuronal migration or fertility was observed. Comparative analysis of Prokr2-Cre expression in male and female brains revealed a sexually dimorphic distribution confirmed by in situ hybridization. In females, higher Cre activity was found in the medial preoptic area, ventromedial nucleus of the hypothalamus, arcuate nucleus, medial amygdala and lateral parabrachial nucleus. In males, Cre was higher in the amygdalo-hippocampal area. The sexually dimorphic pattern of Prokr2 expression indicates differential roles in reproductive function and, potentially, in other physiological systems.
Collapse
Affiliation(s)
- Zaid Mohsen
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - Hosung Sim
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - David Garcia-Galiano
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - Xingfa Han
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA.,Isotope Research Lab, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Nicole Bellefontaine
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA
| | - Thomas L Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Transgenic Animal Model Core, Ann Arbor, MI, USA
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, 1137 E. Catherine St., 7732B Med Sci II, Ann Arbor, MI, 48109-5622, USA. .,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Min L, Nie M, Zhang A, Wen J, Noel SD, Lee V, Carroll RS, Kaiser UB. Computational Analysis of Missense Variants of G Protein-Coupled Receptors Involved in the Neuroendocrine Regulation of Reproduction. Neuroendocrinology 2016; 103:230-9. [PMID: 26088945 PMCID: PMC4684493 DOI: 10.1159/000435884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/10/2015] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Many missense variants in G protein-coupled receptors (GPCRs) involved in the neuroendocrine regulation of reproduction have been identified by phenotype-driven or large-scale exome sequencing. Computational functional prediction analysis is commonly performed to evaluate their impact on receptor function. METHODS To assess the performance and outcome of functional prediction analyses for these GPCRs, we performed a statistical analysis of the prediction performance of SIFT and PolyPhen-2 for variants with documented biological function as well as variants retrieved from Ensembl. We obtained missense variants with documented biological function testing from patients with reproductive disorders from a comprehensive literature search. Missense variants from individuals with known reproductive disorders were retrieved from the Human Gene Mutation Database. Missense variants from the general population were retrieved from the Ensembl genome database. RESULTS The accuracies of SIFT and PolyPhen-2 were 83 and 85%, respectively. The performance of both prediction tools was greater in predicting loss-of-function variants (SIFT: 92%; PolyPhen-2: 95%) than in predicting variants that did not affect function (SIFT: 54%; PolyPhen-2: 57%). Concordance between SIFT and PolyPhen-2 did not improve accuracy. Surprisingly, approximately half of the variants retrieved from Ensembl were predicted as loss-of-function variants by SIFT (47%) and PolyPhen-2 (54%). CONCLUSION Our findings provide new guidance for interpreting the results and limitations of computational functional prediction analyses for GPCRs and will help to determine which variants require biological function testing. In addition, our findings raise important questions regarding the link between genotype and phenotype in the general population.
Collapse
Affiliation(s)
- Le Min
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
- To whom correspondence and reprint requests should be addressed: Le Min, M.D., Ph.D., Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston, Massachusetts 02115.
| | - Min Nie
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| | - Anna Zhang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| | - Junping Wen
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| | - Sekoni D. Noel
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| | - Vivian Lee
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| | - Rona S. Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115 USA
| |
Collapse
|
22
|
Correa FA, Trarbach EB, Tusset C, Latronico AC, Montenegro LR, Carvalho LR, Franca MM, Otto AP, Costalonga EF, Brito VN, Abreu AP, Nishi MY, Jorge AAL, Arnhold IJP, Sidis Y, Pitteloud N, Mendonca BB. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr Connect 2015; 4:100-7. [PMID: 25759380 PMCID: PMC4401104 DOI: 10.1530/ec-15-0015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
The genetic aetiology of congenital hypopituitarism (CH) is not entirely elucidated. FGFR1 and PROKR2 loss-of-function mutations are classically involved in hypogonadotrophic hypogonadism (HH), however, due to the clinical and genetic overlap of HH and CH; these genes may also be involved in the pathogenesis of CH. Using a candidate gene approach, we screened 156 Brazilian patients with combined pituitary hormone deficiencies (CPHD) for loss-of-function mutations in FGFR1 and PROKR2. We identified three FGFR1 variants (p.Arg448Trp, p.Ser107Leu and p.Pro772Ser) in four unrelated patients (two males) and two PROKR2 variants (p.Arg85Cys and p.Arg248Glu) in two unrelated female patients. Five of the six patients harbouring the variants had a first-degree relative that was an unaffected carrier of it. Results of functional studies indicated that the new FGFR1 variant p.Arg448Trp is a loss-of-function variant, while p.Ser107Leu and p.Pro772Ser present signalling activity similar to the wild-type form. Regarding PROKR2 variants, results from previous functional studies indicated that p.Arg85Cys moderately compromises receptor signalling through both MAPK and Ca(2) (+) pathways while p.Arg248Glu decreases calcium mobilization but has normal MAPK activity. The presence of loss-of-function variants of FGFR1 and PROKR2 in our patients with CPHD is indicative of an adjuvant and/or modifier effect of these rare variants on the phenotype. The presence of the same variants in unaffected relatives implies that they cannot solely cause the phenotype. Other associated genetic and/or environmental modifiers may play a role in the aetiology of this condition.
Collapse
Affiliation(s)
- Fernanda A Correa
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ericka B Trarbach
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cintia Tusset
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Claudia Latronico
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Luciana R Montenegro
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Luciani R Carvalho
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcela M Franca
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aline P Otto
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Everlayny F Costalonga
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Vinicius N Brito
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Paula Abreu
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mirian Y Nishi
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yisrael Sidis
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nelly Pitteloud
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Berenice B Mendonca
- Unidade de Endocrinologia do DesenvolvimentoLaboratório de Hormônios e Genética Molecular LIM42Unidade de Endocrinologia GenéticaLaboratório de Endocrinologia Celular e Molecular LIM25, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 255, 05403-000 São Paulo, BrazilCentre Hospitalier Universitaire Vaudois (CHUV)Faculté de Biologie et Médecine de l'Univesité de Lausanne, Lausanne, SwitzerlandDivision of EndocrinologyDiabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Abstract
Kallmann syndrome is an inherited deficiency of gonadotropin-releasing hormone (GnRH) that is characterized by hypogonadism with delayed or absent puberty and dysfunctional olfaction. While Kallmann syndrome-associated mutations have been identified in some sets of patients, for many of these individuals, the underlying cause remains unknown. In this issue of the JCI, Cariboni and colleagues identify mutations in semaphorin 3E (SEMA3E) in two brothers with Kallmann syndrome. In animal models, loss of SEMA3E signaling recapitulated phenotypes of the probands and resulted in enhanced GnRH neuron death during development. The results of this study offer important insight into the development of Kallmann syndrome and provide tools for elucidating mutations that underlie complex hormonal phenotypes.
Collapse
|
24
|
Brogi S, Tafi A, Désaubry L, Nebigil CG. Discovery of GPCR ligands for probing signal transduction pathways. Front Pharmacol 2014; 5:255. [PMID: 25506327 PMCID: PMC4246677 DOI: 10.3389/fphar.2014.00255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure–selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena Siena, Italy ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Laurent Désaubry
- Therapeutic Innovation Laboratory, UMR7200, CNRS/University of Strasbourg Illkirch, France
| | - Canan G Nebigil
- Receptor Signaling and Therapeutic Innovations, GPCR and Cardiovascular and Metabolic Regulations, Biotechnology and Cell Signaling Laboratory, UMR 7242, CNRS/University of Strasbourg - LabEx Medalis Illkirch, France
| |
Collapse
|
25
|
Khusal KG, Tonelli RR, Mattos EC, Soares CO, Di Genova BM, Juliano MA, Urias U, Colli W, Alves MJM. Prokineticin receptor identified by phage display is an entry receptor for Trypanosoma cruzi into mammalian cells. Parasitol Res 2014; 114:155-65. [DOI: 10.1007/s00436-014-4172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/06/2014] [Indexed: 01/06/2023]
|
26
|
Delhanty PJD, Bouw E, Huisman M, Vervenne RML, Themmen APN, van der Lely AJ, van den Akker ELT. Functional characterization of a new human melanocortin-4 receptor homozygous mutation (N72K) that is associated with early-onset obesity. Mol Biol Rep 2014; 41:7967-72. [PMID: 25163632 DOI: 10.1007/s11033-014-3691-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/21/2014] [Indexed: 01/31/2023]
Abstract
The melanocortin 4 receptor (MC4R) is expressed in the hypothalamus and is essential for regulation of appetite and energy expenditure. MC4R dysfunction in humans causes hyperphagia, impaired satiety and obesity. We have identified a novel c.216C>A (N72 K) homozygous mutation in MC4R in a girl with severe obesity. The patient presented with early-onset obesity and hyperphagia indicating an effect of the homozygous mutation on her phenotype. In silico analyses indicate a damaging effect on receptor function, and the mutation is unusual in occurring in the first intra-cellular loop of the receptor. Site-directed mutagenesis was used to generate plasmid constructs expressing wild-type and mutant MC4R. These were transfected into HEK293 cells and assessed for cAMP responsiveness to α-MSH. Cells expressing N-terminal HA and C-terminal GFP-tagged MC4R were assessed by immunofluorescence confocal microscopy and flow cytometry for correct cell-surface localization. The maximal response of the mutant MC4R to α-MSH was decreased to 20 ± 1 % of the wild type receptor response, and the EC50 was increased from 16.5 ± 5.4 nM to 37.0 ± 8.3 nM. Localization of N- and C-terminally tagged MC4R by confocal microscopy and flow cytometry showed aberrant retention of the mutant receptor in the cytoplasm. Our data describe a rare homozygous inactivating mutation in the first intra-cellular loop of MC4R that markedly impairs its function and is associated with early-onset obesity and hyperphagia.
Collapse
Affiliation(s)
- Patric J D Delhanty
- Departments of Internal Medicine and Pediatric Endocrinology, Erasmus MC, Rotterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
27
|
Sbai O, Monnier C, Dodé C, Pin JP, Hardelin JP, Rondard P. Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations. FASEB J 2014; 28:3734-44. [PMID: 24830383 DOI: 10.1096/fj.13-243402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit β-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit β-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit β-arrestins. Finally, the R268C receptor could recruit β-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects.
Collapse
Affiliation(s)
- Oualid Sbai
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France
| | - Carine Monnier
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France
| | - Catherine Dodé
- EA7331, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris-Descartes, Paris, France; and
| | - Jean-Philippe Pin
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France
| | - Jean-Pierre Hardelin
- INSERM Unité Mixte de Recherche en Santé (UMRS) 1120, Département Neuroscience, Institut Pasteur, Paris, France
| | - Philippe Rondard
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U661, Montpellier, France; Université Montpellier 1 and 2, Montpellier, France;
| |
Collapse
|
28
|
Zhou XT, Chen DN, Xie ZQ, Peng Z, Xia KD, Liu HD, Liu W, Su B, Li JD. Functional analysis of the distal region of the third intracellular loop of PROKR2. Biochem Biophys Res Commun 2013; 439:12-7. [PMID: 23969157 DOI: 10.1016/j.bbrc.2013.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 01/09/2023]
Abstract
Mutations in the G-protein-coupled receptor PROKR2 have been identified in patients with idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS) manifesting with delayed puberty and infertility. Recently, the homozygous mutation V274D was identified in a man displaying KS with an apparent reversal of hypogonadism. The affected amino acid, valine 274, is located at the junction region of the third intracellular loop (IL3) and the sixth transmembrane domain (TM6). In this study, we first studied the effect of V274D and related mutations (V274A, V274T, and V274R) on the signaling activity and cell surface expression of PROKR2. Our data indicate that a charged amino acid substitution at residue 274 of PROKR2 results in low cell surface expression and loss-of-function. Furthermore, we studied the effects of two clusters of basic amino acids located at the proximal region of Val274 on the cell surface expression and function of PROKR2. The deletion of RRK (270-272) resulted in undetectable cell surface expression, whereas RKR (264-266)-deleted PROKR2 was expressed normally on the cell surface but showed loss-of-function due to a deficiency in G-protein coupling. Our data indicate that the distal region of the IL3 of PROKR2 may differentially influence receptor trafficking and G-protein coupling.
Collapse
Affiliation(s)
- Xiao-Tao Zhou
- Xiangya Hospital, State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan Province 410078, PR China; Department of Immunology, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Costa-Barbosa FA, Balasubramanian R, Keefe KW, Shaw ND, Al-Tassan N, Plummer L, Dwyer AA, Buck CL, Choi JH, Seminara SB, Quinton R, Monies D, Meyer B, Hall JE, Pitteloud N, Crowley WF. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab 2013; 98:E943-53. [PMID: 23533228 PMCID: PMC3644607 DOI: 10.1210/jc.2012-4116] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The complexity of genetic testing in Kallmann syndrome (KS) is growing and costly. Thus, it is important to leverage the clinical evaluations of KS patients to prioritize genetic screening. OBJECTIVE The objective of the study was to determine which reproductive and nonreproductive phenotypes of KS subjects have implications for specific gene mutations. SUBJECTS Two hundred nineteen KS patients were studied: 151 with identified rare sequence variants (RSVs) in 8 genes known to cause KS (KAL1, NELF, CHD7, HS6ST1, FGF8/FGFR1, or PROK2/PROKR2) and 68 KS subjects who remain RSV negative for all 8 genes. MAIN OUTCOME MEASURES Reproductive and nonreproductive phenotypes within each genetic group were measured. RESULTS Male KS subjects with KAL1 RSVs displayed the most severe reproductive phenotype with testicular volumes (TVs) at presentation of 1.5 ± 0.1 mL vs 3.7 ± 0.3 mL, P < .05 vs all non-KAL1 probands. In both sexes, synkinesia was enriched but not unique to patients with KAL1 RSVs compared with KAL1-negative probands (43% vs 12%; P < .05). Similarly, dental agenesis and digital bone abnormalities were enriched in patients with RSVs in the FGF8/FGFR1 signaling pathway compared with all other gene groups combined (39% vs 4% and 23% vs 0%; P < .05, respectively). Hearing loss marked the probands with CHD7 RSVs (40% vs 13% in non-CHD7 probands; P < .05). Renal agenesis and cleft lip/palate did not emerge as statistically significant phenotypic predictors. CONCLUSIONS Certain clinical features in men and women are highly associated with genetic causes of KS. Synkinesia (KAL1), dental agenesis (FGF8/FGFR1), digital bony abnormalities (FGF8/FGFR1), and hearing loss (CHD7) can be useful for prioritizing genetic screening.
Collapse
Affiliation(s)
- Flavia Amanda Costa-Barbosa
- Harvard Reproductive Endocrine Sciences Center and the Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Larco DO, Semsarzadeh NN, Cho-Clark M, Mani SK, John Wu T. The Novel Actions of the Metabolite GnRH-(1-5) are Mediated by a G Protein-Coupled Receptor. Front Endocrinol (Lausanne) 2013; 4:83. [PMID: 23847594 PMCID: PMC3703583 DOI: 10.3389/fendo.2013.00083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) was originally isolated from the mammalian hypothalamus for its role as the primary regulator of reproductive function. Since its discovery, GnRH has also been shown to be located in non-hypothalamic tissues and is known to have diverse functions. Although the regulation of GnRH synthesis and release has been extensively studied, there is additional evidence to suggest that the processing of GnRH to the metabolite GnRH-(1-5) represents another layer of regulation. The focus of this review will be on the current evidence for the action of the pentapeptide metabolite GnRH-(1-5) in regulating cellular migration. We discuss the potential role of GnRH-(1-5) in regulating GnRH neuronal migration during development. Furthermore, we demonstrate these actions are mediated by the activation of a G protein-coupled receptor. Our findings suggest that GnRH-(1-5) may play a developmental function in addition to regulating developing cells.
Collapse
Affiliation(s)
- Darwin Omar Larco
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nina Nashat Semsarzadeh
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shaila K. Mani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - T. John Wu
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- *Correspondence: T. John Wu, Department of Obstetrics and Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA e-mail:
| |
Collapse
|
31
|
Kaur KK, Allahbadia G, Singh M. An update on the role of prokineticins in human reproduction-potential therapeutic implications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Dodé C, Rondard P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front Endocrinol (Lausanne) 2013; 4:19. [PMID: 23596439 PMCID: PMC3624607 DOI: 10.3389/fendo.2013.00019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/14/2013] [Indexed: 01/04/2023] Open
Abstract
Kallmann syndrome (KS) is a developmental disease that associates hypogonadism and a deficiency of the sense of smell. The reproductive phenotype of KS results from the primary interruption of the olfactory, vomeronasal, and terminal nerve fibers in the frontonasal region, which in turn disrupts the embryonic migration of neuroendocrine gonadotropin-releasing hormone (GnRH) synthesizing cells from the nose to the brain. This is a highly heterogeneous genetic disease, and mutations in any of the nine genes identified so far have been found in approximately 30% of the KS patients. PROKR2 and PROK2, which encode the G protein-coupled prokineticin receptor-2 and its ligand prokineticin-2, respectively, are two of these genes. Homozygous knockout mice for the orthologous genes exhibit a phenotype reminiscent of the KS features, but biallelic mutations in PROKR2 or PROK2 (autosomal recessive mode of disease transmission) have been found only in a minority of the patients, whereas most patients carrying mutations in these genes are heterozygotes. The mutations, mainly missense mutations, have deleterious effects on PROKR2 signaling in transfected cells, ranging from defective cell surface-targeting of the receptor to defective coupling to G proteins or impaired receptor-ligand interaction, but the same mutations have also been found in apparently unaffected individuals, which suggests a digenic/oligogenic mode of inheritance of the disease in heterozygous patients. This non-Mendelian mode of inheritance has so far been confirmed only in a few patients. However, it may account for the unusually high proportion of KS sporadic cases compared to familial cases.
Collapse
Affiliation(s)
- Catherine Dodé
- INSERM U1016, Institut Cochin, Université Paris-DescartesParis, France
- *Correspondence: Catherine Dodé, INSERM U1016, Institut Cochin, Département de génétique et développement, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France. e-mail:
| | - Philippe Rondard
- CNRS UMR5203, INSERM U661, Institut de Génomique Fonctionnelle, Université Montpellier 1, 2Montpellier, France
| |
Collapse
|