1
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
2
|
Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management. Int J Mol Sci 2023; 24:ijms24021145. [PMID: 36674656 PMCID: PMC9863308 DOI: 10.3390/ijms24021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy.
Collapse
|
3
|
Construction and analysis of mRNA, lncRNA, and transcription factor regulatory networks after retinal ganglion cell injury. Exp Eye Res 2021; 215:108915. [PMID: 34971620 DOI: 10.1016/j.exer.2021.108915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Retinal ganglion cell (RGC) injury is a critical pathological feature of several optic neurodegenerative diseases. The regulatory mechanisms underlying RGC injury remain poorly understood. Recent evidence has highlighted the important roles of long noncoding RNAs (lncRNAs) in degenerative neuropathy but few studies have focused on lncRNAs associated with RGC injury. In this study, we analyzed dysregulated lncRNAs associated with RGC injury, their potential regulatory functions, and the molecular mechanisms underlying the regulation of lncRNAs and transcription factors (TFs). We analyzed lncRNA and mRNA profiles in the GSE142881 dataset associated with RGC injury and identified 1049 differentially expressed genes (DEGs), with 18 differentially expressed (DE) TFs among 883 DE mRNAs and 312 DE lncRNAs. The predicted DE lncRNAs and DE mRNAs were used to construct a lncRNA-mRNA co-expression network. Functional enrichment analysis was performed to explore the functions of the lncRNAs and mRNAs. The co-expression network between DE lncRNAs and DE mRNAs was highly enriched in inflammatory and immune-related pathways, indicating that they play role in the process of RGC injury. Among the DE mRNAs, we screened 18 DE TFs, including activating transcription factor 3 (ATF3), associated with RGC injury. Co-expression analysis predicted that 13 lncRNAs were potential binding targets of ATF3. The screening of the potential targets of these 13 lncRNAs showed that they were also significantly enriched in functional pathways associated with inflammation and apoptosis. After analysis, we constructed the mRNA-ATF3-lncRNA regulatory network after RGCs injury. In summary, we identified the gene module associated with immune and inflammatory responses after optic nerve injury and constructed a regulatory network of lncRNA-TF-mRNA. The results indicate that lncRNAs, by binding to TFs, can regulate downstream genes and function during RGC injury. The results provide a foundation for further studies of the mechanism of RGC injury and provide insight into the clinical diagnosis and investigation direction of neurodegenerative diseases such as traumatic optic neuropathy and glaucoma.
Collapse
|
4
|
Van der Mude A. A proposed Information-Based modality for the treatment of cancer. Biosystems 2021; 211:104587. [PMID: 34915101 DOI: 10.1016/j.biosystems.2021.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Treatment modalities for cancer involve physical manipulations such as surgery, immunology, radiation, chemotherapy or gene editing. This is a proposal for an information-based modality. This modality does not change the internal state of the cancer cell directly - instead, the cancer cell is manipulated by giving it information to instruct the cell to perform an action. This modality is based on a theory of Structure Encoding in DNA, where information about body part structure controls the epigenetic state of cells in the process of development from pluripotent cells to fully differentiated cells. It has been noted that cancer is often due to errors in morphogenetic differentiation accompanied by associated epigenetic processes. This implies a model of cancer called the Epigenetic Differentiation Model. A major feature of the Structure Encoding Theory is that the characteristics of the differentiated cell are affected by inter-cellular information passed in the tissue microenvironment, which specifies the exact location of a cell in a body part structure. This is done by exosomes that carry fragments of long non-coding RNA and transposons, which convey structure information. In the normal process of epigenetic differentiation, the information passed may lead to apoptosis due to the constraints of a particular body part structure. The proposed treatment involves determining what structure information is being passed in a particular tumor, then adding artificial exosomes that overwhelm the current information with commands for the cells to go into apoptosis.
Collapse
|
5
|
Zhao X, Ji J, Wang S, Wang R, Yu Q, Li D. The regulatory pattern of target gene expression by aberrant enhancer methylation in glioblastoma. BMC Bioinformatics 2021; 22:420. [PMID: 34482818 PMCID: PMC8420065 DOI: 10.1186/s12859-021-04345-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumor with grim prognosis. Aberrant DNA methylation is an epigenetic mechanism that promotes GBM carcinogenesis, while the function of DNA methylation at enhancer regions in GBM remains poorly described. Results We integrated multi-omics data to identify differential methylation enhancer region (DMER)-genes and revealed global enhancer hypomethylation in GBM. In addition, a DMER-mediated target genes regulatory network and functional enrichment analysis of target genes that might be regulated by hypomethylation enhancer regions showed that aberrant enhancer regions could contribute to tumorigenesis and progression in GBM. Further, we identified 22 modules in which lncRNAs and mRNAs synergistically competed with each other. Finally, through the construction of drug-target association networks, our study identified potential small-molecule drugs for GBM treatment. Conclusions Our study provides novel insights for understanding the regulation of aberrant enhancer region methylation and developing methylation-based biomarkers for the diagnosis and treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04345-8.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jianghuai Ji
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China.,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310022, People's Republic of China
| | - Shijia Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rendong Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qiuhong Yu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan Xi Lu, Fengtai District, Beijing, 100070, People's Republic of China.
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
6
|
Dieter C, Lemos NE, Corrêa NRDF, Assmann TS, Crispim D. The Impact of lncRNAs in Diabetes Mellitus: A Systematic Review and In Silico Analyses. Front Endocrinol (Lausanne) 2021; 12:602597. [PMID: 33815273 PMCID: PMC8018579 DOI: 10.3389/fendo.2021.602597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding transcripts that have emerged as one of the largest and diverse RNA families that regulate gene expression. Accumulating evidence has suggested a number of lncRNAs are involved in diabetes mellitus (DM) pathogenesis. However, results about lncRNA expressions in DM patients are still inconclusive. Thus, we performed a systematic review of the literature on the subject followed by bioinformatics analyses to better understand which lncRNAs are dysregulated in DM and in which pathways they act. Pubmed, Embase, and Gene Expression Omnibus (GEO) repositories were searched to identify studies that investigated lncRNA expression in cases with DM and non-diabetic controls. LncRNAs consistently dysregulated in DM patients were submitted to bioinformatics analysis to retrieve their target genes and identify potentially affected signaling pathways under their regulation. Fifty-three eligible articles were included in this review after the application of the inclusion and exclusion criteria. Six hundred and thirty-eight lncRNAs were differentially expressed between cases and controls in at least one study. Among them, six lncRNAs were consistently dysregulated in patients with DM (Anril, Hotair, Malat1, Miat, Kcnq1ot1, and Meg3) compared to controls. Moreover, these six lncRNAs participate in several metabolism-related pathways, evidencing their importance in DM. This systematic review suggests six lncRNAs are dysregulated in DM, constituting potential biomarkers of this disease.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Taís Silveira Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Daisy Crispim,
| |
Collapse
|
7
|
Wang JJ, Niu MH, Zhang T, Shen W, Cao HG. Genome-Wide Network of lncRNA-mRNA During Ovine Oocyte Development From Germinal Vesicle to Metaphase II in vitro. Front Physiol 2020; 11:1019. [PMID: 32973554 PMCID: PMC7461901 DOI: 10.3389/fphys.2020.01019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is involved in many biological processes, and it has been closely investigated. However, research into the role of lncRNA in ovine ovarian development is scant and poorly understood, particularly in relation to the molecular mechanisms of ovine oocyte maturation. In the current study, RNA sequencing was performed with germinal vesicle (GV) and in vitro matured metaphase II (MII) stage oocytes, isolated from ewes. Through the use of bioinformatic analysis, abundant candidate lncRNAs in stage-specific ovine oocytes were identified, and their trans- and cis-regulatory effects were deeply dissected using computational prediction software. Functional enrichment analysis of these lncRNAs revealed that they were involved in the regulation of many key signaling pathways during ovine oocyte development, which was reflected by their targeted genes. From this study, multiple lncRNA-mRNA networks were presumed to be involved in key signaling pathways regarding ovine oocyte maturation and meiotic resumption. In particular, one novel lncRNA (MSTRG.17927) appeared to mediate the regulation of phosphatidylinositol 3-kinase signaling (PI3K) signaling during ovine oocyte maturation. Therefore, this research offers novel insights into the molecular mechanisms underlying ovine oocyte meiotic maturation regulated by lncRNA-mRNA networks from a genome-wide perspective.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Meng-Han Niu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong-Guo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Van der Mude A. Structure encoding in DNA. J Theor Biol 2020; 492:110205. [PMID: 32070719 DOI: 10.1016/j.jtbi.2020.110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/29/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
It is proposed that transposons and related long non-coding RNA define the fine structure of body parts. Although morphogens have long been known to direct the formation of many gross structures in early embryonic development, they do not have the necessary precision to define a structure down to the individual cellular level. Using the distinction between procedural and declarative knowledge in information processing as an analogy, it is hypothesized that DNA encodes fine structure in a manner that is different from the genetic code for proteins. The hypothesis states that repeated or near-repeated sequences that are in transposons and non-coding RNA define body part structures. As the cells in a body part go through the epigenetic process of differentiation, the action of methylation serves to inactivate all but the relevant structure definitions and some associated cell type genes. The transposons left active will then physically modify the DNA sequence in the heterochromatin to establish the local context in the three-dimensional body part structure. This brings the encoded definition of the cell type to the histone. The histone code for that cell type starts the regulatory cascade that turns on the genes associated with that particular type of cell, transforming it from a multipotent cell to a fully differentiated cell. This mechanism creates structures in the musculoskeletal system, the organs of the body, the major parts of the brain, and other systems.
Collapse
|
9
|
Liu X, Xie S, Zhang J, Kang Y. Long Noncoding RNA XIST Contributes to Cervical Cancer Development Through Targeting miR-889-3p/SIX1 Axis. Cancer Biother Radiopharm 2020; 35:640-649. [PMID: 32191528 DOI: 10.1089/cbr.2019.3318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Cervical cancer (CC) is one of the most common cancers among women in the world. Long noncoding RNAs and microRNAs were identified as important regulators in many physiological processes. The objective of this study was to illuminate the mechanism of X-inactive-specific transcript (XIST)/miR-889-3p/Sine oculis homeobox 1 (SIX1) axis in CC. Methods: The expression levels of XIST, miR-889-3p, and SIX1 were detected by quantitative real-time polymerase chain reaction. Cell proliferation was assessed by cell counting Kit 8 assay. Cell migration and invasion were evaluated by transwell assay. Cell apoptosis was detected by flow cytometry assay. Murine model was established using transfected Me180 cell. The interaction among XIST, miR-889-3p, and SIX1 was tested by dual-luciferase reporter and RNA immunoprecipitation assays. Protein level of SIX1 was measured by Western blot. Results: XIST was highly expressed in CC tissues and cells. Silenced XIST inhibited proliferation, migration, and invasion and induced apoptosis. Moreover, XIST silencing blocked tumor growth in vivo. XIST directly bound to miR-889-3p, and XIST promoted proliferation, migration, and invasion and hindered apoptosis by suppressing miR-889-3p expression. MiR-889-3p targeted SIX1 and negatively regulated SIX1 expression. Furthermore, miR-889-3p had a low expression and SIX1 had a high expression in CC tissues and cells. XIST knockdown reduced SIX1 level by targeting miR-889-3p. In addition, miR-889-3p inhibition abolished the effects of SIX silencing on proliferation, migration, invasion, and apoptosis. Conclusion: XIST knockdown restrained cell proliferation, migration, and invasion and promoted apoptosis by regulating miR-889-3p/SIX1 axis.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shuangshuang Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yanhua Kang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
10
|
Li Y, Ma Q, Li P, Wang J, Wang M, Fan Y, Wang T, Wang C, Wang T, Zhao B. Proteomics reveals different pathological processes of adipose tissue, liver, and skeletal muscle under insulin resistance. J Cell Physiol 2020; 235:6441-6461. [PMID: 32115712 DOI: 10.1002/jcp.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.
Collapse
Affiliation(s)
- Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Ling YH, Zheng Q, Li YS, Sui MH, Wu H, Zhang YH, Chu MX, Ma YH, Fang FG, Xu LN. Identification of lncRNAs by RNA Sequencing Analysis During in Vivo Pre-Implantation Developmental Transformation in the Goat. Front Genet 2019; 10:1040. [PMID: 31708972 PMCID: PMC6823246 DOI: 10.3389/fgene.2019.01040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022] Open
Abstract
Pre-implantation development is a dynamic, complex and precisely regulated process that is critical for mammalian development. There is currently no description of the role of the long noncoding RNAs (lncRNAs) during the pre-implantation stages in the goat. The in vivo transcriptomes of oocytes (n = 3) and pre-implantation stages (n=19) at seven developmental stages in the goat were analyzed by RNA sequencing (RNA-Seq). The major zygotic gene activation (ZGA) event was found to occur between the 8- and 16-cell stages in the pre-implantation stages. We identified 5,160 differentially expressed lncRNAs (DELs) in developmental stage comparisons and functional analyses of the major and minor ZGAs. Fourteen lncRNA modules were found corresponding to specific pre-implantation developmental stages by weighted gene co-expression network analysis (WGCNA). A comprehensive analysis of the lncRNAs at each developmental transition of high correlation modules was done. We also identified lncRNA-mRNA networks and hub-lncRNAs for the high correlation modules at each stage. The extensive association of lncRNA target genes with other embryonic genes suggests an important regulatory role for lncRNAs in embryonic development. These data will facilitate further exploration of the role of lncRNAs in the developmental transformation in the pre-implantation stage.
Collapse
Affiliation(s)
- Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yun-Sheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Meng-Hua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yun-Hai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Ming-Xing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue-Hui Ma
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fu-Gui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Li-Na Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
12
|
Maternal energy insufficiency affects testicular development of the offspring in a swine model. Sci Rep 2019; 9:14533. [PMID: 31601864 PMCID: PMC6787339 DOI: 10.1038/s41598-019-51041-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
We determined the effects of insufficient maternal energy on testicular development in offspring in a swine model. Thirty-six sows were divided into control (CON) and low-energy diet (LE) groups during gestation. We observed that the number of Sertoli, germ, and Leydig cells in the offspring of the CON group were significantly higher than those in the LE group at 28 and 120 d after birth. Furthermore, the percentage of apoptotic testis cells was significantly higher in the offspring of the LE group than in the CON group. Transcriptome analysis of differentially expressed mRNAs and long noncoding RNAs in offspring testes indicated that these RNAs were mainly involved in lipid metabolism, apoptosis, cell proliferation, and some pivotal regulatory pathways. Results revealed that AMPK-PI3K-mTOR, MAPK, and oxidative phosphorylation signaling pathways play an important role in mediating the programming effect of insufficient maternal energy on testicular development, and that this effect occurs mainly at an early stage in life. mRNA and protein expression analyses confirmed the importance of certain signaling pathways in the regulation of testicular development. This study provides insights into the influence and possible mechanism underlying the effect of inadequate maternal energy intake on testicular development in the offspring.
Collapse
|
13
|
Suwal A, Hao JL, Liu XF, Zhou DD, Pant OP, Gao Y, Hui P, Dai XX, Lu CW. NONRATT021972 long-noncoding RNA: A promising lncRNA in diabetes-related diseases. Int J Med Sci 2019; 16:902-908. [PMID: 31337964 PMCID: PMC6643109 DOI: 10.7150/ijms.34200] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a principal health problem with increasing incidence worldwide. It can be associated with various systemic diseases. Long non-coding RNA (lncRNA), a member of non-coding RNA has been newly linked with various human diseases. Recent evidence from animal experiments has shown that the incidence and development of type 2 diabetes are contributed by the atypical expression of lncRNA in which the biomarker with capable clinical potential was lncRNA NONRATT021972. In this review, we demonstrated the numerous functions of NONRATT021972 in different diabetes-related diseases including diabetic neuropathy, diabetic cardiac autonomic neuropathy, myocardial ischemia, and hepatic glucokinase dysfunction. The emerging evidence shows that the role of NONRATT021972 in diabetic-related disease is novel and therapeutic. These results direct us to conclude that NONRATT021972 is a potential diagnostic and future targeted therapy for diabetes-associated diseases.
Collapse
Affiliation(s)
- Abhishek Suwal
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Ying Gao
- Department of Endocrinology, The First Hospital of Jilin University, No. 71 of xinmin St., Changchun, Jilin Province, 130021, China
| | - Peng Hui
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Xin-Xuan Dai
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, No. 71 of Xinmin St., Changchun, Jilin Province, 130021, China
| |
Collapse
|
14
|
Xu Z, Che T, Li F, Tian K, Zhu Q, Mishra SK, Dai Y, Li M, Li D. The temporal expression patterns of brain transcriptome during chicken development and ageing. BMC Genomics 2018; 19:917. [PMID: 30545297 PMCID: PMC6293534 DOI: 10.1186/s12864-018-5301-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background The transcriptional profiles of mammals during brain development and ageing have been characterized. However the global expression patterns of transcriptome in the chicken brain have not been explored. Here, we systematically investigated the temporal expression profiles of lncRNAs and mRNAs across 8 stages (including 3 embryonic stages, 2 growth stages and 3 adult stages) in the female chicken cerebrum. Results We identified 39,907 putative lncRNAs and 14,558 mRNAs, investigated the temporal expression patterns by tracking a set of age-dependent genes and predicted potential biological functions of lncRNAs based on co-expression network. The results showed that genes with functions in development, synapses and axons exhibited a progressive decay; genes related to immune response were up-regulated with age. Conclusions These results may reflect changes in the regulation of transcriptional networks and provide non-coding RNA gene candidates for further studies and would contribute to a comprehensive understanding of the molecular mechanisms of chicken development and may provide insights or deeper understanding regarding the regulatory mechanisms of age-dependent protein coding and non-protein coding genes in chicken. In addition, as the chicken is an important model organism bridging the evolutionary gap between mammals and other vertebrates, these high resolution data may provide a novel evidence to improve our comprehensive understanding of the brain transcriptome during vertebrate evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-5301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongxian Xu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Kai Tian
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shailendra Kumar Mishra
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifei Dai
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
15
|
Zeng H, Wang J, Chen T, Zhang K, Chen J, Wang L, Li H, Tuluhong D, Li J, Wang S. Downregulation of long non-coding RNA Opa interacting protein 5-antisense RNA 1 inhibits breast cancer progression by targeting sex-determining region Y-box 2 by microRNA-129-5p upregulation. Cancer Sci 2018; 110:289-302. [PMID: 30443959 PMCID: PMC6317922 DOI: 10.1111/cas.13879] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Several studies have shown an important role for long non‐coding RNA (lncRNA) in breast cancer progression. The present study investigated the role of lncRNA Opa interacting protein 5‐antisense RNA 1 (OIP5‐AS1) in the progression of breast cancer. OIP5‐AS1 was significantly upregulated in breast cancer tissues and in breast cancer cell lines, and OIP5‐AS1 downregulation inhibited the malignant behavior of breast cancer in vitro and in vivo. For in‐depth exploration of the mechanism of OIP5‐AS1 in breast cancer, we found that expression of microRNA‐129‐5p(miR‐129‐5p), which was found to bind sites in the sequence of OIP5‐AS1, in breast cancer tissues was negatively correlated with OIP5‐AS1. Also, luciferase assays indicated that OIP5‐AS1 acted as a miR‐129‐5p sponge, resulting in upregulated expression of the sex‐determining region Y‐box 2 (SOX2) transcription factor. Our study showed that OIP5‐AS1 plays a critical role in promoting breast cancer progression and that OIP5‐AS1 downregulation targets SOX2 by miR‐129‐5p upregulation.
Collapse
Affiliation(s)
- Huijuan Zeng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lulu Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Shen C, Kong B, Liu Y, Xiong L, Shuai W, Wang G, Quan D, Huang H. YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis. Biochem Biophys Res Commun 2018; 505:134-140. [DOI: 10.1016/j.bbrc.2018.09.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
|
17
|
Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New Insights Into the Long Non-coding RNA SRA: Physiological Functions and Mechanisms of Action. Front Med (Lausanne) 2018; 5:244. [PMID: 30238005 PMCID: PMC6135885 DOI: 10.3389/fmed.2018.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are emerging as new genetic/epigenetic regulators that can impact almost all physiological functions. Here, we focus on the long non-coding steroid receptor RNA activator (SRA), including new insights into its effects on gene expression, the cell cycle, and differentiation; how these relate to physiology and disease; and the mechanisms underlying these effects. We discuss how SRA acts as an RNA coactivator in nuclear receptor signaling; its effects on steroidogenesis, adipogenesis, and myocyte differentiation; the impact on breast and prostate cancer tumorigenesis; and, finally, its ability to modulate hepatic steatosis through several signaling pathways. Genome-wide analysis reveals that SRA regulates hundreds of target genes in adipocytes and breast cancer cells and binds to thousands of genomic sites in human pluripotent stem cells. Recent studies indicate that SRA acts as a molecular scaffold and forms networks with numerous coregulators and chromatin-modifying regulators in both activating and repressive complexes. We discuss how modifications to SRA's unique stem-loop secondary structure are important for SRA function, and highlight the various SRA isoforms and mutations that have clinical implications. Finally, we discuss the future directions for better understanding the molecular mechanisms of SRA action and how this might lead to new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - William P Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center Ann Arbor, MI, United States
| |
Collapse
|
18
|
Lingadahalli S, Jadhao S, Sung YY, Chen M, Hu L, Chen X, Cheung E. Novel lncRNA LINC00844 Regulates Prostate Cancer Cell Migration and Invasion through AR Signaling. Mol Cancer Res 2018; 16:1865-1878. [DOI: 10.1158/1541-7786.mcr-18-0087] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/22/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022]
|
19
|
Camacho CV, Choudhari R, Gadad SS. Long noncoding RNAs and cancer, an overview. Steroids 2018; 133:93-95. [PMID: 29317255 DOI: 10.1016/j.steroids.2017.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in several biological processes, including but not limited to cardiovascular physiology, reproduction, differentiation, metabolism, DNA repair, and inflammation. Under normal physiological conditions, expression of lncRNAs is tissue-specific and tightly regulated. In contrast, prevalent cancer types exhibit aberrant expression of lncRNAs. In this context, lncRNAs can drive cancer cell characteristics by controlling gene expression programs related to tumor suppressive and oncogenic functions. Hence, they can be excellent biomarkers and targets for therapeutic intervention in cancers. Understanding the molecular mechanisms by which lncRNAs drive cancer progression will improve our understanding of the etiology of cancer and suggest new ways to treat this disease. This review will provide a perspective on the role of lncRNAs in cancer initiation and progression.
Collapse
Affiliation(s)
- Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States; Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
20
|
Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J, Wang L. Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget 2018; 8:5508-5522. [PMID: 27732939 PMCID: PMC5354927 DOI: 10.18632/oncotarget.12537] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/03/2016] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), which occupy nearly 98% of genome, have crucial roles in cancer development, including breast cancer. Breast cancer is a disease with high incidence. Despite of recent progress in understanding the molecular mechanisms and combined therapy strategies, the functions and mechanisms of lncRNAs in breast cancer remains unclear. This review presents the currently basic knowledge and research approaches of lncRNAs. We also highlight the latest advances of seven classic lncRNAs and three novel lncRNAs in breast cancer, elucidating their mechanisms and possible therapeutic targets. Additionally, association between lncRNA and specific molecular subtype of breast cancer is reported. Lastly, we briefly delineate the potential roles of lncRNAs in clinical applications as biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yong Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Lu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Lo Piccolo L. Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:119-146. [PMID: 29951818 DOI: 10.1007/978-981-13-0529-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Zhang C, Wang X, Li X, Zhao N, Wang Y, Han X, Ci C, Zhang J, Li M, Zhang Y. The landscape of DNA methylation-mediated regulation of long non-coding RNAs in breast cancer. Oncotarget 2017; 8:51134-51150. [PMID: 28881636 PMCID: PMC5584237 DOI: 10.18632/oncotarget.17705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Although systematic studies have identified a host of long non-coding RNAs (lncRNAs) which are involved in breast cancer, the knowledge about the methyla-tion-mediated dysregulation of those lncRNAs remains limited. Here, we integrated multi-omics data to analyze the methylated alteration of lncRNAs in breast invasive carcinoma (BRCA). We found that lncRNAs showed diverse methylation patterns on promoter regions in BRCA. LncRNAs were divided into two categories and four subcategories based on their promoter methylation patterns and expression levels be-tween tumor and normal samples. Through cis-regulatory analysis and gene ontology network, abnormally methylated lncRNAs were identified to be associated with can-cer regulation, proliferation or expression of transcription factors. Competing endog-enous RNA network and functional enrichment analysis of abnormally methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in several hallmarks and KEGG pathways of cancers significantly. Finally, survival analysis based on mRNA modules in networks revealed that lncRNAs silenced by high methylation were associated with prognosis significantly in BRCA. This study enhances the understanding of aberrantly methylated patterns of lncRNAs and pro-vides a novel insight for identifying cancer biomarkers and potential therapeutic tar-gets in breast cancer.
Collapse
Affiliation(s)
- Chunlong Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Xinyu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuecang Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150081, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaole Han
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ce Ci
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jian Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Meng Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
23
|
Song M, Zou L, Peng L, Liu S, Wu B, Yi Z, Gao Y, Zhang C, Xu H, Xu Y, Tang M, Wang S, Xue Y, Jia T, Zhao S, Liang S, Li G. LncRNA NONRATT021972 siRNA normalized the dysfunction of hepatic glucokinase through AKT signaling in T2DM rats. Endocr Res 2017; 42:180-190. [PMID: 28281841 DOI: 10.1080/07435800.2017.1292522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatic glucokinase (GK) expression and activity are decreased in type 2 diabetes mellitus (T2DM), and glycogen synthase kinase-3 (GSK-3) inhibits the synthesis of GK. In hepatocytes, the activation of the protein kinase B (PKB/AKT) signaling pathway enhances GK expression and inhibits the phosphorylation of GSK-3β. The dysfunction of certain long noncoding RNAs (lncRNAs) has been associated with a variety of diseases. AIMS This study explored the effects of the lncRNA NONRATT021972 small interfering RNA (siRNA) on the dysfunction of hepatic GK through AKT signaling in T2DM rats. METHODS Livers from type 2 diabetic rats and hepatocytes cultured in high glucose and high fatty acid media were studied. The changes in expression of AKT, GK and GSK 3β were detected by western blotting or RT-PCR. The application of bioinformatics technology (CatRAPID) was used to identify the targets of NONRATT021972 RNA. RESULTS We found that lncRNA NONRATT021972 levels in the liver were increased in type 2 diabetic rats, and the increase was associated with an increase in the blood glucose levels. The NONRATT021972 siRNA enhanced phospho-AKT (p-AKT) levels, GK expression and hepatic glycogen synthesis. This siRNA also reduced phospho-glycogen synthase kinase-3β (p-GSK-3β) levels and hyperglycemia in T2DM rats, as well as in hepatocytes cultured in high glucose media with fatty acids. CatRAPID predicted that there was the interaction between NONRATT021972 and p-AKT. CONCLUSIONS LncRNA NONRATT021972 siRNA may have beneficial effects on T2DM.
Collapse
Affiliation(s)
- Miaomiao Song
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Lifang Zou
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Lichao Peng
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shuangmei Liu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Bing Wu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Zhihua Yi
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yun Gao
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Chunping Zhang
- b Department of Cell Biology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Hong Xu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yurong Xu
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Mengxia Tang
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shouyu Wang
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Yun Xue
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Tianyu Jia
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shanhong Zhao
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Shangdong Liang
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| | - Guilin Li
- a Department of Physiology , Basic Medical College of Nanchang University , Nanchang , Jiangxi , People's Republic of China
| |
Collapse
|
24
|
Liu S, Wang Z, Chen D, Zhang B, Tian RR, Wu J, Zhang Y, Xu K, Yang LM, Cheng C, Ma J, Lv L, Zheng YT, Hu X, Zhang Y, Wang X, Li J. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res 2017; 27:1608-1620. [PMID: 28687705 PMCID: PMC5580719 DOI: 10.1101/gr.217463.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) mediate important epigenetic regulation in a wide range of biological processes and diseases. We applied comprehensive analyses of RNA-seq and CAGE-seq (cap analysis of gene expression and sequencing) to characterize the dynamic changes in lncRNA expression in rhesus macaque (Macaca mulatta) brain in four representative age groups. We identified 18 anatomically diverse lncRNA modules and 14 mRNA modules representing spatial, age, and sex specificities. Spatiotemporal- and sex-biased changes in lncRNA expression were generally higher than those observed in mRNA expression. A negative correlation between lncRNA and mRNA expression in cerebral cortex was observed and functionally validated. Our findings offer a fresh insight into spatial-, age-, and sex-biased changes in lncRNA expression in macaque brain and suggest that the changes represent a previously unappreciated regulatory system that potentially contributes to brain development and aging.
Collapse
Affiliation(s)
- Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Zhengbo Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Incorporated, Wuhan 430075, China
| | - Bowen Zhang
- School of Life Science, CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ying Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Incorporated, Wuhan 430075, China
| | - Jian Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Longbao Lv
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Hefei, Anhui 230027, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Incorporated, Wuhan 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Incorporated, Wuhan 430075, China
| | - Xiangting Wang
- School of Life Science, CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Center for Excellence in Molecular Cell Science, Hefei, Anhui 230027, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
25
|
Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications. Oncotarget 2017; 8:81538-81557. [PMID: 29113413 PMCID: PMC5655308 DOI: 10.18632/oncotarget.18432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far.
Collapse
|
26
|
Wu CH, Hsu CL, Lu PC, Lin WC, Juan HF, Huang HC. Identification of lncRNA functions in lung cancer based on associated protein-protein interaction modules. Sci Rep 2016; 6:35939. [PMID: 27786280 PMCID: PMC5081511 DOI: 10.1038/srep35939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/07/2016] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to play important roles in various biological processes; however, many of their functions remain unclear. In this study, we present a novel approach to identify the lncRNA-associated protein-protein interaction (PPI) modules and ascertain their functions in human lung squamous cell carcinoma. We collected lncRNA and mRNA expression profiles of lung squamous cell carcinoma from The Cancer Genome Atlas. To identify the lncRNA-associated PPI modules, lncRNA-mRNA co-expression networks were first constructed based on the mutual ranks of expression correlations. Next, we examined whether the co-expressed mRNAs of a specific lncRNA were closely connected by PPIs. For this, a significantly connected mRNA set was considered to be the lncRNA-associated PPI module. Finally, the prospective functions of a lncRNA was inferred using Gene Ontology enrichment analysis on the associated module. We found that lncRNA-associated PPI modules were subtype-dependent and each subtype had unique molecular mechanisms. In addition, antisense lncRNAs and sense genes tended to be functionally associated. Our results might provide new directions for understanding lncRNA regulations in lung cancer. The analysis pipeline was implemented in a web tool, available at http://lncin.ym.edu.tw/.
Collapse
Affiliation(s)
- Chih-Hsun Wu
- Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan.,Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Chun Lu
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Wen-Chang Lin
- Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
27
|
Chen G, Guo H, Song Y, Chang H, Wang S, Zhang M, Liu C. Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes. Mol Med Rep 2016; 14:5311-5317. [DOI: 10.3892/mmr.2016.5893] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2016] [Indexed: 11/05/2022] Open
|
28
|
Foulds CE, Panigrahi AK, Coarfa C, Lanz RB, O'Malley BW. Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Curr Top Microbiol Immunol 2016; 394:143-76. [PMID: 26362934 DOI: 10.1007/82_2015_465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intensive research has been directed at the discovery, biogenesis, and expression patterns of long noncoding RNAs , yet their biochemical functions have remained elusive for the most part. Nuclear receptors that interpret signaling mediated by small molecule hormones play a role in regulating the expression of some long noncoding RNAs. More importantly, these RNAs have also been shown to effect hormone-affected gene transcription regulated by the nuclear receptors. In this chapter, we summarize the current knowledge that has been acquired on hormonal signaling inducing expression of long noncoding RNAs and how they then may act in trans or in cis to modulate gene transcription. We highlight a few of these noncoding RNA molecules in terms of how they may impact hormone-driven cancers. Future directions critical for moving this field forward are presented, with a clear emphasis on the need for better biochemical approaches to address the mechanism of action of these exciting RNAs.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
LncRNAs: key players and novel insights into cervical cancer. Tumour Biol 2015; 37:2779-88. [PMID: 26715267 DOI: 10.1007/s13277-015-4663-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
Cervical cancer contributed the second highest number of deaths in female cancers, exceeded only by breast cancer, carrying high risks of morbidity and mortality. There was a great need and urgency in searching novel treatment targets and prognosis biomarkers to improve the survival rate of cervical cancer patients. Many long non-coding RNAs (lncRNAs) were emerging as pivotal regulators in various biological processes and took vitally an effect on the oncogenesis and progression of cervical cancer. In this review, we summarized the origin and overview function of lncRNAs; highlighted the roles of lncRNAs in cervical cancer in terms of prognosis and tumor progression, invasion and metastasis, apoptosis, and radio-resistance; and outlined the molecular mechanisms of lncRNAs in cervical cancer from the aspects of the interaction of lncRNAs with proteins/mRNAs (especially in HPV protein) and miRNAs, as well as RNA N-methyladenosine (m6A) methylation of lncRNAs. Meanwhile, the application of lncRNAs as biomarkers in cervical cancer prognosis and predictors for metastasis was also discussed. An overview of these researches will be valuable for broadening horizons into mechanisms, selection of meritorious biomarkers for diagnosis as well as prognosis, and future targeted therapy of cervical cancer.
Collapse
|
30
|
Huang X, Hao C, Bao H, Wang M, Dai H. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients. J Assist Reprod Genet 2015; 33:111-21. [PMID: 26650608 DOI: 10.1007/s10815-015-0630-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/29/2015] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. METHODS In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). RESULTS We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. CONCLUSIONS Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed that lncRNAs differentially expressed in PCOS and normal women may contribute to the occurrence of PCOS and affect oocyte development.
Collapse
Affiliation(s)
- Xin Huang
- Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University, Yuhuangding Hospital of Yantai, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People's Republic of China.
| | - Cuifang Hao
- Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University, Yuhuangding Hospital of Yantai, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People's Republic of China.
| | - Hongchu Bao
- Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University, Yuhuangding Hospital of Yantai, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People's Republic of China.
| | - Meimei Wang
- Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University, Yuhuangding Hospital of Yantai, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People's Republic of China.
| | - Huangguan Dai
- Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University, Yuhuangding Hospital of Yantai, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People's Republic of China.
| |
Collapse
|
31
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
32
|
Sun M, Gadad SS, Kim DS, Kraus WL. Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells. Mol Cell 2015; 59:698-711. [PMID: 26236012 DOI: 10.1016/j.molcel.2015.06.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 01/30/2023]
Abstract
We describe a computational approach that integrates GRO-seq and RNA-seq data to annotate long noncoding RNAs (lncRNAs), with increased sensitivity for low-abundance lncRNAs. We used this approach to characterize the lncRNA transcriptome in MCF-7 human breast cancer cells, including >700 previously unannotated lncRNAs. We then used information about the (1) transcription of lncRNA genes from GRO-seq, (2) steady-state levels of lncRNA transcripts in cell lines and patient samples from RNA-seq, and (3) histone modifications and factor binding at lncRNA gene promoters from ChIP-seq to explore lncRNA gene structure and regulation, as well as lncRNA transcript stability, regulation, and function. Functional analysis of selected lncRNAs with altered expression in breast cancers revealed roles in cell proliferation, regulation of an E2F-dependent cell-cycle gene expression program, and estrogen-dependent mitogenic growth. Collectively, our studies demonstrate the use of an integrated genomic and molecular approach to identify and characterize growth-regulating lncRNAs in cancers.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shrikanth S Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Long Noncoding RNAs in Digestive System Malignancies: A Novel Class of Cancer Biomarkers and Therapeutic Targets? Gastroenterol Res Pract 2015; 2015:319861. [PMID: 26064090 PMCID: PMC4429197 DOI: 10.1155/2015/319861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
High throughput methodologies have revealed the existence of an unexpectedly large number of long noncoding RNAs (lncRNAs). The unconventional role of lncRNAs in gene expression regulation and their broad implication in oncogenic and tumor suppressive pathways have introduced lncRNAs as novel biological tumor markers. The most prominent example of lncRNAs application in routine clinical practice is PCA3, a FDA-approved biomarker for prostate cancer. Regarding digestive system malignancies, the oncogenic HOTAIR is one of the most widely studied lncRNAs in the preclinical level and has already been identified as a potent prognostic marker for major malignancies of the gastrointestinal tract. Here, we provide an overview of recent findings regarding the emerging role of lncRNAs not only as key regulators of cancer initiation and progression in colon, stomach, pancreatic, liver, and esophageal cancers, but also as reliable tumor markers and therapeutic tools. lncRNAs can be easily, rapidly, and cost-effectively determined in tissues, serum, and gastric juice, making them highly versatile analytes. Taking also into consideration the largely unmet clinical need for early diagnosis and more accurate prognostic/predictive markers for gastrointestinal cancer patients, we comment upon the perspectives of lncRNAs as efficient molecular tools that could aid in the clinical management.
Collapse
|
34
|
Yuan S, Oliver D, Schuster A, Zheng H, Yan W. Breeding scheme and maternal small RNAs affect the efficiency of transgenerational inheritance of a paramutation in mice. Sci Rep 2015; 5:9266. [PMID: 25783852 PMCID: PMC4363887 DOI: 10.1038/srep09266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/20/2015] [Indexed: 01/03/2023] Open
Abstract
Paramutations result from interactions between two alleles at a single locus, whereby one induces a heritable change in the other. Although common in plants, paramutations are rarely studied in animals. Here, we report a new paramutation mouse model, in which the paramutant allele was induced by an insertional mutation and displayed the "white-tail-tip" (WTT) phenotype. The paramutation phenotype could be transmitted across multiple generations, and the breeding scheme (intercrossing vs. outcrossing) drastically affected the transmission efficiency. Paternal (i.e., sperm-borne) RNAs isolated from paramutant mice could induce the paramutation phenotype, which, however, failed to be transmitted to subsequent generations. Maternal miRNAs and piRNAs appeared to have an inhibitory effect on the efficiency of germline transmission of the paramutation. This paramutation mouse model represents an important tool for dissecting the underlying mechanism, which should be applicable to the phenomenon of epigenetic transgenerational inheritance (ETI) in general. Mechanistic insights of ETI will help us understand how organisms establish new heritable epigenetic states during development, or in times of environmental or nutritional stress.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
35
|
Sun M, Kraus WL. From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36:25-64. [PMID: 25426780 PMCID: PMC4309736 DOI: 10.1210/er.2014-1034] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a relatively poorly understood class of RNAs with little or no coding capacity transcribed from a set of incompletely annotated genes. They have received considerable attention in the past few years and are emerging as potentially important players in biological regulation. Here we discuss the evolving understanding of this new class of molecular regulators that has emerged from ongoing research, which continues to expand our databases of annotated lncRNAs and provide new insights into their physical properties, molecular mechanisms of action, and biological functions. We outline the current strategies and approaches that have been employed to identify and characterize lncRNAs, which have been instrumental in revealing their multifaceted roles ranging from cis- to trans-regulation of gene expression and from epigenetic modulation in the nucleus to posttranscriptional control in the cytoplasm. In addition, we highlight the molecular and biological functions of some of the best characterized lncRNAs in physiology and disease, especially those relevant to endocrinology, reproduction, metabolism, immunology, neurobiology, muscle biology, and cancer. Finally, we discuss the tremendous diagnostic and therapeutic potential of lncRNAs in cancer and other diseases.
Collapse
Affiliation(s)
- Miao Sun
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
36
|
Murakami K. Non-coding RNAs and hypertension-unveiling unexpected mechanisms of hypertension by the dark matter of the genome. Curr Hypertens Rev 2015; 11:80-90. [PMID: 25828869 PMCID: PMC5384352 DOI: 10.2174/1573402111666150401105317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Hypertension is a major risk factor of cardiovascular diseases and a most important health problem in developed countries. Investigations on pathophysiology of hypertension have been based on gene products from coding region that occupies only about 1% of total genome region. On the other hand, non-coding region that occupies almost 99% of human genome has been regarded as "junk" for a long time and went unnoticed until these days. But recently, it turned out that noncoding region is extensively transcribed to non-coding RNAs and has various functions. This review highlights recent updates on the significance of non-coding RNAs such as micro RNAs and long non-coding RNAs (lncRNAs) on the pathogenesis of hypertension, also providing an introduction to basic biology of noncoding RNAs. For example, microRNAs are associated with hypertension via neuro-fumoral factor, sympathetic nerve activity, ion transporters in kidneys, endothelial function, vascular smooth muscle phenotype transformation, or communication between cells. Although reports of lncRNAs on pathogenesis of hypertension are scarce at the moment, new lncRNAs in relation to hypertension are being discovered at a rapid pace owing to novel techniques such as microarray or next-generation sequencing. In the clinical settings, clinical use of non-coding RNAs in identifying cardiovascular risks or developing novel tools for treating hypertension such as molecular decoy or mimicks is promising, although improvement in chemical modification or drug delivery system is necessary.
Collapse
Affiliation(s)
- Kazuo Murakami
- Department of Health Care and Preventive Medicine, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama, Ehime, 790-8524, Japan.
| |
Collapse
|
37
|
Vikram R, Ramachandran R, Abdul KSM. Functional significance of long non-coding RNAs in breast cancer. Breast Cancer 2014; 21:515-21. [PMID: 25038622 DOI: 10.1007/s12282-014-0554-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/30/2014] [Indexed: 01/26/2023]
Abstract
Most of the genome is transcribed to transcripts of no protein-coding potential. However, these transcripts do not represent transcriptional 'noise', rather they play an important role in cellular metabolism and development. Non-coding transcripts of 200 bases to 100 kb length are termed as long non-coding RNAs, majority of which are yet to be characterised thoroughly. Long non-coding RNAs (lncRNAs) play a significant role in cellular process ranging from transcriptional to post-transcriptional regulation. In this review, we highlight the recent efforts to characterise the major functions of lncRNAs in breast cancer. lncRNA expression is altered in several cancer types. Further, the aberrant regulation of lncRNAs promotes tumour development as they are involved in several cancer-associated pathways.
Collapse
Affiliation(s)
- Rajeev Vikram
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK,
| | | | | |
Collapse
|