1
|
Lang H, Lin N, Chen X, Xiang J, Zhang X, Kang C. Repressing miR-23a promotes the transdifferentiation of pancreatic α cells to β cells via negatively regulating the expression of SDF-1α. PLoS One 2024; 19:e0299821. [PMID: 38517864 PMCID: PMC10959391 DOI: 10.1371/journal.pone.0299821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
Pancreatic β-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-β like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from β cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-β like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-β like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic β cells from α cells.
Collapse
Affiliation(s)
- Hongmei Lang
- Department of General Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, China
| | - Ning Lin
- Department of Clinical Nutrition, the General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Xiaorong Chen
- Department of General Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, China
- College of Medicine of Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Jie Xiang
- Department of General Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, China
- College of Medicine of Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xingping Zhang
- Department of General Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, China
| | - Chao Kang
- Department of Clinical Nutrition, the General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Nigam S, Moore A, Wang P. miRNA Theranostic Nanoparticles Promote Pancreatic Beta Cell Proliferation in Type 1 Diabetes Model. Methods Mol Biol 2022; 2592:207-218. [PMID: 36507996 DOI: 10.1007/978-1-0716-2807-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder which affects the insulin-producing beta cells in the pancreas. A variety of strategies, namely, insulin replacement therapy, engineered vaccines, immunomodulators, etc., have been explored to correct this condition. Recent studies have attributed the development of T1D to the anomalous expression of microRNAs in the pancreatic islets. Here, we describe the protocol for the development of a theranostic approach to modify the expression of aberrant miRNAs. The MRI-based nanodrug consists of superparamagnetic iron oxide nanoparticles conjugated to microRNA-targeting oligonucleotides that can promote proliferation of pancreatic beta cells in a mouse model of T1D. This theranostic approach can successfully serve as a potential therapeutic approach for the targeted treatment of T1D with minimal side effects.
Collapse
Affiliation(s)
- Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, MI, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, USA. .,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, USA. .,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Wang J, Wang J, Wang Y, Ma R, Zhang S, Zheng J, Xue W, Ding X. Bone Marrow Mesenchymal Stem Cells-Derived miR-21-5p Protects Grafted Islets Against Apoptosis by Targeting PDCD4. Stem Cells 2022; 41:169-183. [PMID: 36512434 PMCID: PMC9982070 DOI: 10.1093/stmcls/sxac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The apoptosis of grafted islets is an urgent problem due to the high rate of islet loss soon after transplantation. MicroRNA-21-5p (miR-21-5p) is an essential mediator of bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exo) during anti-apoptosis, but its effect and the underlying molecular mechanism in islet transplantation remain partially understood. Here, we found that miR-21-5p could be delivered to islet cells via BMSCs-Exo. Subsequently, we demonstrated that miR-21-5p overexpression reduced apoptosis in islets and INS-1 cells, whereas miR-21-5p inhibition enhanced apoptosis. A mechanistic analysis involving RNA sequencing and bioinformatic analysis was performed to determine the interaction between miR-21-5p and its target gene programmed cell death 4 (PDCD4), which was further verified by a dual luciferase assay. In vivo, the grafted islets overexpressing miR-21-5p showed a higher survival rate, better insulin secretion function, and a lower apoptosis rate. In conclusion, these results demonstrated that miR‑21‑5p from BMSCs-Exo protects against the apoptosis of grafted islets by inhibiting PDCD4 expression. Hence, miR-21-5p can be used as a cell-free therapeutic agent to minimize β-cell apoptosis at the early stage of islet transplantation.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Ruiyang Ma
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Shucong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Wujun Xue
- Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China
| | - Xiaoming Ding
- Corresponding author: Xiaoming Ding, Department of Renal Transplantation, Hospital of Nephrology, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Western Rd, Xi’an 710061, Shaanxi Province, People’s Republic of China. Tel: +8613991238632; E-mail:
| |
Collapse
|
6
|
Bhushan R, Rani A, Gupta D, Ali A, Dubey PK. MicroRNA-7 regulates insulin signaling pathway by targeting IRS1, IRS2, and RAF1 genes in gestational diabetes mellitus. Microrna 2022; 11:57-72. [PMID: 35422233 DOI: 10.2174/2211536611666220413100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Small non-coding micro RNAs (miRNAs) are indicated in various metabolic processes and play a critical role in disease pathology, including gestational diabetes mellitus (GDM). OBJECTIVE The purpose of this study was to examine the altered expression of miRNAs and their target genes in placental tissue (PL), cord blood (CB), and maternal blood (MB) of matched non-glucose tolerant (NGT) and GDM mother. METHODS In a case-control study, micro-RNA was quantified from forty-five serum (MB n = 15, CB n = 15, and PL n = 15) and matched placental tissue using stem-loop RT-qPCR followed by target prediction, network construction and functional and pathways enrichment analysis. Further, target genes were verified in-vitro through transfection and RT-qPCR. RESULTS Five miRNAs, namely hsa-let 7a-5P, hsa-miR7-5P, hsa-miR9-5P, hsa-miR18a-5P, and hsa-miR23a-3P were significantly over-expressed (p < 0.05) in all three samples namely PL, CB, and MB of GDM patients. However, the sample-wise comparison reveals higher expression of miRNA 7 in MB while lowest in CB than control. Furthermore, a comparison of fold change expression of target genes discloses a lower expression of IRS1, IRS2, and RAF1 in MB while comparatively higher expression of NRAS in MB and CB. In-vitro validation reveals lower expression of IRS1/2 and RAF1 in response to overexpression of miR-7 and vice-versa. Thus it is evident that increased miRNA7 expression causes down-regulation of its target genes IRS1, IRS2, and RAF1 in GDM mother compared to control. Further, target prediction, pathway enrichment, and hormone analysis (significantly higher FSH & LH in MB of GDM compared to NGT) revealed the insulin signaling, inflammatory and GnRH signaling as major pathways regulated by miRNA7. CONCLUSIONS Thus, an elevated level of miRNA7 may be associated with the progression of GDM by altering the multiple pathways like insulin, GnRH, and inflammatory signaling pathways via targeting IRS1, IRS2, and RAF1, implicating a new therapeutic target for GDM.
Collapse
Affiliation(s)
- Ravi Bhushan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Deepali Gupta
- Department of Obstetrics and Gynecology, Ashirwad Hospital, Varanasi 221005, Uttar Pradesh, India
| | - Akhtar Ali
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Ashjari D, Karamali N, Rajabinejad M, Hassani SS, Afshar Hezarkhani L, Afshari D, Gorgin Karaji A, Salari F, Rezaiemanesh A. The axis of long non-coding RNA MALAT1/miR-1-3p/CXCR4 is dysregulated in patients with diabetic neuropathy. Heliyon 2022; 8:e09178. [PMID: 35368523 PMCID: PMC8969120 DOI: 10.1016/j.heliyon.2022.e09178] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 01/02/2023] Open
Abstract
Background Diabetic neuropathy (DN) is a prevalent complication of diabetes mellitus characterized by pain and inflammation. Long non-coding RNAs (lncRNAs) have been associated with DN. This study aimed to investigate transcript levels of Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), microRNA (miR)-1-3p, and C-X-C motif chemokine receptor 4 (CXCR4) in the DN patients and type 2 diabetes mellitus (T2DM) cases without neuropathy. Methods Here, 20 cases with DN and 20 T2DM subjects without neuropathy (as the control group) were included. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of all participants. The expression levels of targets were evaluated by Real-time-PCR. Results Results showed that MALAT1 (Fold change = 2.47, P = 0.03) and CXCR4 (Fold change = 1.65, P = 0.023) were significantly upregulated, while miR-1-3p was downregulated (Fold change = 0.9, P = 0.028) in whole blood samples from DN patients compared to the control group. A significant correlation was found between transcript levels of MALAT1 and CXCR4 (rho = 0.84; P < 0.0001). Conclusions This study suggests a possible involvement of the MALAT1/miR-1-3p/CXCR4 axis in the pathogenesis of DN.
Collapse
Affiliation(s)
- Donya Ashjari
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Sara Hassani
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daryoush Afshari
- Department of Neurology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Li Y. Gypenoside A attenuates dysfunction of pancreatic β cells by activating PDX1 signal transduction via the inhibition of miR-150-3p both in vivo and in vitro. J Biochem Mol Toxicol 2022; 36:e23004. [PMID: 35191145 DOI: 10.1002/jbt.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Saponin gypenoside A (GP) has shown its potential to handle diabetes mellitus. MicroRNA-150-3p (miR-150-3p) is closely related to the dysfunction of pancreatic β cells by targeting PDX1. Given the function of GP is related to its regulation on different miRs, the current study assessed the role of miR-150-3p as a therapeutic target for the hypoglycemic effects of GP. Pancreatic β cell dysfunction was induced in mice using the high-fatty diet (HFD) method and then handled with GP. Changes in insulin release and resistance and the activity of the miR-150-3p/PDX1 axis were detected. The expression of miR-150-3p was induced to confirm its central in the effects of GP. The results of in vivo tests were then validated with in vitro assays. HFD administration suppressed glucose tolerance, delayed insulin release, and induced insulin resistance and pancreas apoptosis in mice, which was indicative of the dysfunction of β pancreatic cells. Changes in pancreatic β function were associated with the increased expression of miR-150-3p and suppressed expression of PDX1. After the administration of GP, the impairments of the pancreas were alleviated and the expression of miR-150-3p was inhibited, contributing to the restored level of PDX1. The injection of miR-150-3p agomir counteracted the protective effects of GP. In in vitro assays, the pretransfection of miR-150-3p mimetics also counteracted the protective effects of GP on pancreatic β cells against palmitic acid. Collectively, miR-150-3p played a key role in the protective effects of GP against pancreatic β cell dysfunction by inhibiting PDX1 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Liu S, Tang G, Duan F, Zeng C, Gong J, Chen Y, Tan H. MiR-17-5p Inhibits TXNIP/NLRP3 Inflammasome Pathway and Suppresses Pancreatic β-Cell Pyroptosis in Diabetic Mice. Front Cardiovasc Med 2021; 8:768029. [PMID: 34881312 PMCID: PMC8645844 DOI: 10.3389/fcvm.2021.768029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 01/19/2023] Open
Abstract
Objective: Diabetes mellitus is a chronic progressive inflammatory metabolic disease with pancreatic β-cells dysfunction. The present study aimed to investigate whether miR-17-5p plays a protective effect on pancreatic β-cells function in diabetes mellitus (DM) mice and dissect the underlying mechanism. Methods: C57BL/6J mice were randomly divided into control, DM, DM + Lentivirus negative control (LV-NC), and DM + Lenti-OE™ miR-17-5p (LV-miR-17-5) groups. DM was established by feeding a high-fat diet and intraperitoneal injection with streptozotocin (STZ) in mice. Blood glucose and glucose tolerance in circulation were measured. Meanwhile, the activation of nod-like receptor protein 3 (NLRP3) inflammasome, pancreas pyroptosis, and the expression of miR-17-5p and thioredoxin-interacting protein (TXNIP) were detected in the pancreas of DM mice. Pancreatic β-cell line INS-1 subjected to different concentrations of glucose was used in in vitro experiments. Results: Compared with control mice, glucose tolerance deficit, elevated blood glucose level, and decreased pancreatic islet size, were presented in DM mice, which was associated with a downregulation of miR-17-5p. Importantly, exogenous miR-17-5p alleviated pancreas injury, and consequently improved glucose tolerance and decreased blood glucose in DM mice. In vitro experiments showed that high glucose decreased miR-17-5p expression and impaired insulin secretion in INS-1 cells. Mechanistically, miR-17-5p inhibited the expression of TXNIP and NLRP3 inflammasome activation, and thus decreased pancreatic β-cell pyroptosis. Conclusion: Our results demonstrated that miR-17-5p improves glucose tolerance, and pancreatic β-cell function and inhibits TXNIP/NLRP3 inflammasome pathway-related pyroptosis in DM mice.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ge Tang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Gong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Xu F, Liu J, Na L, Chen L. Roles of Epigenetic Modifications in the Differentiation and Function of Pancreatic β-Cells. Front Cell Dev Biol 2020; 8:748. [PMID: 32984307 PMCID: PMC7484512 DOI: 10.3389/fcell.2020.00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes, a metabolic disease with multiple causes characterized by high blood sugar, has become a public health problem. Hyperglycaemia is caused by deficiencies in insulin secretion, impairment of insulin function, or both. The insulin secreted by pancreatic β cells is the only hormone in the body that lowers blood glucose levels and plays vital roles in maintaining glucose homeostasis. Therefore, investigation of the molecular mechanisms of pancreatic β cell differentiation and function is necessary to elucidate the processes involved in the onset of diabetes. Although numerous studies have shown that transcriptional regulation is essential for the differentiation and function of pancreatic β cells, increasing evidence indicates that epigenetic mechanisms participate in controlling the fate and regulation of these cells. Epigenetics involves heritable alterations in gene expression caused by DNA methylation, histone modification and non-coding RNA activity that does not result in DNA nucleotide sequence alterations. Recent research has revealed that a variety of epigenetic modifications play an important role in the development of diabetes. Here, we review the mechanisms by which epigenetic regulation affects β cell differentiation and function.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Liu
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
11
|
Han N, Fang HY, Jiang JX, Xu Q. Downregulation of microRNA-873 attenuates insulin resistance and myocardial injury in rats with gestational diabetes mellitus by upregulating IGFBP2. Am J Physiol Endocrinol Metab 2020; 318:E723-E735. [PMID: 31910027 DOI: 10.1152/ajpendo.00555.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder characterized by insulin resistance, and patients with GDM have a higher risk of cardiovascular disease. Multiple microRNAs (miRNAs) are reported to be involved in the regulation of myocardial injury. Moreover, miR-873 was predicted to target insulin-like growth factor binding protein 2 (IGFBP2) through bioinformatic analysis, which was further confirmed using a luciferase assay. Thus, our objective was to assess whether microRNA-873 (miR-873) affects insulin resistance and myocardial injury in an established GDM rat model. The GDM rats were treated with miR-875 mimic or inhibitor or IGFBP2 siRNA. The effects of miR-875 and IGFBP2 on the cardiac function, insulin resistance, and myocardial injury were evaluated by hemodynamic measurements, determination of biochemical indices of myocardium and serum, and insulin homeostatic model assessment. The results indicated that downregulation of miR-873 upregulated the expression of IGFBP2 and promoted the activation of phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis. With downregulation of miR-873 in GDM rats, the cardiac function was improved and the myocardial apoptosis was inhibited, coupled with elevated activity of superoxide dismutase, carbon monoxide synthase, and the nitric oxide content. In addition, the inhibition of miR-873 in GDM rats modulated the insulin resistance and reduced myocardial apoptosis. Overall, the data showed that inhibition of miR-873 by targeting IGFBP2 may regulate the insulin resistance and curtail myocardial injury in GDM rats through activating the PI3K/AKT/mTOR axis, thus providing a potential means of impeding the progression of GDM.
Collapse
Affiliation(s)
- Na Han
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Hai-Yan Fang
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Jie-Xuan Jiang
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Qian Xu
- Department of Obstetrics, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| |
Collapse
|
12
|
Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, Moore A. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 2020; 10:5302. [PMID: 32210316 PMCID: PMC7093482 DOI: 10.1038/s41598-020-62269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022] Open
Abstract
Aberrant expression of miRNAs in pancreatic islets is closely related to the development of type 1 diabetes (T1D). The aim of this study was to identify key miRNAs dysregulated in pancreatic islets during T1D progression and to develop a theranostic approach to modify their expression using an MRI-based nanodrug consisting of iron oxide nanoparticles conjugated to miRNA-targeting oligonucleotides in a mouse model of T1D. Isolated pancreatic islets were derived from NOD mice of three distinct age groups (3, 8 and 18-week-old). Total RNA collected from cultured islets was purified and global miRNA profiling was performed with 3D-Gene global miRNA microarray mouse chips encompassing all mouse miRNAs available on the Sanger miRBase V16. Of the miRNAs that were found to be differentially expressed across three age groups, we identified one candidate (miR-216a) implicated in beta cell proliferation for subsequent validation by RT-PCR. Alterations in miR-216a expression within pancreatic beta cells were also examined using in situ hybridization on the frozen pancreatic sections. For in vitro studies, miR-216a mimics/inhibitors were conjugated to iron oxide nanoparticles and incubated with beta cell line, βTC-6. Cell proliferation marker Ki67 was evaluated. Expression of the phosphatase and tensin homolog (PTEN), which is one of the direct targets of miR-216a, was analyzed using western blot. For in vivo study, the miR-216a mimics/inhibitors conjugated to the nanoparticles were injected into 12-week-old female diabetic Balb/c mice via pancreatic duct. The delivery of the nanodrug was monitored by in vivo MRI. Blood glucose of the treated mice was monitored post injection. Ex vivo histological analysis of the pancreatic sections included staining for insulin, PTEN and Ki67. miRNA microarray demonstrated that the expression of miR-216a in the islets from NOD mice significantly changed during T1D progression. In vitro studies showed that treatment with a miR-216a inhibitor nanodrug suppressed proliferation of beta cells and increased the expression of PTEN, a miR-216a target. In contrast, introduction of a mimic nanodrug decreased PTEN expression and increased beta cell proliferation. Animals treated in vivo with a mimic nanodrug had higher insulin-producing functionality compared to controls. These observations were in line with downregulation of PTEN and increase in beta cell proliferation in that group. Our studies demonstrated that miR-216a could serve as a potential therapeutic target for the treatment of diabetes. miR-216a-targeting theranostic nanodrugs served as exploratory tools to define functionality of this miRNA in conjunction with in vivo MR imaging.
Collapse
Affiliation(s)
- Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Hongwei Zhao
- Shanxi Medical University, Taiyuan, Shanxi, 030001, China.,Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Jack Owen Bishop
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.,Department of Neuroscience, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical & Translational Sciences Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| | - L Karl Olson
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| |
Collapse
|
13
|
MicroRNA-181c Inhibits Interleukin-6-mediated Beta Cell Apoptosis by Targeting TNF-α Expression. Molecules 2019; 24:molecules24071410. [PMID: 30974824 PMCID: PMC6480349 DOI: 10.3390/molecules24071410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
We have previously reported that long-term treatment of beta cells with interleukin-6 (IL-6) is pro-apoptotic. However, little is known about the regulatory mechanisms that are involved. Therefore, we investigated pro-apoptotic changes in mRNA expression in beta cells in response to IL-6 treatment. We analyzed a microarray with RNA from INS-1 beta cells treated with IL-6, and found that TNF-α mRNA was significantly upregulated. Inhibition of TNF-α expression by neutralizing antibodies significantly decreased annexin V staining in cells compared with those treated with a control antibody. We identified three microRNAs that were differentially expressed in INS-1 cells incubated with IL-6. In particular, miR-181c was significantly downregulated in IL-6-treated cells compared with control cells and the decrease of miR-181c was attenuated by STAT-3 signaling inhibition. TNF-α mRNA was a direct target of miR-181c and upregulation of miR-181c by mimics, inhibited IL-6-induced increase in TNF-α mRNA expression. Consequently, reduction of TNF-α mRNA caused by miR-181c mimics enhanced cell viability in IL-6 treated INS-1 cells. These results demonstrated that miR-181c regulation of TNF-α expression plays a role in IL-6-induced beta cell apoptosis.
Collapse
|
14
|
Srivastava RAK. Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity. J Diabetes Metab Disord 2018; 17:381-391. [PMID: 30918873 DOI: 10.1007/s40200-018-0378-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Energy imbalance resulting from high calorie food intake and insufficient metabolic activity leads to increased body mass index (BMI) and sets the stage for metabolic derangement influencing lipid and carbohydrate metabolism and ultimately leading to insulin resistance, dyslipidemia, and type 2 diabetes. 70% of cardiovascular disease (CVD) deaths occur in patients with diabetes. Environment-induced physiological perturbations trigger epigenetic changes through chromatin modification and leads to type 2 diabetes and progression of nonalcoholic fatty liver disease (NAFLD) and CVD. Thus, in terms of disease progression and pathogenesis, energy homeostasis, metabolic dysregulation, diabetes, fatty liver, and CVD are interlinked. Since advanced glycation end products (AGEs) and low-grade inflammation in type 2 diabetes play definitive roles in the pathogenesis of liver and vascular diseases, a natural checkpoint to prevent diabetes and associated complications appears to be the identification and management of prediabetes together with weight management, since 70% of prediabetic individuals develop diabetes during their life time, and every kg of weight increase is associated with up to 9% increase in diabetes risk. A good proportion of diabetes and obesity population have fatty liver that progresses to non-alcoholic steatohepatitis (NASH) and cirrhosis, and increased risk of hepatocellular carcinoma. Diabetes and NASH both have elevated oxidative stress, impaired cholesterol elimination, and increased inflammation that leads to CVD risk. This review addresses life-style-induced metabolic pathway derangement and how it contributes to epigenetic changes, type 2 diabetes and NASH progression, which collectively lead to increased risk of CVD.
Collapse
Affiliation(s)
- Rai Ajit K Srivastava
- Integrated Pharma Solutions, Philadelphia, PA USA.,2Department of Nutrition, Wayne State University, Detroit, MI USA
| |
Collapse
|
15
|
Li L, Wang S, Li H, Wan J, Zhou Q, Zhou Y, Zhang C. microRNA-96 protects pancreatic β-cell function by targeting PAK1 in gestational diabetes mellitus. Biofactors 2018; 44:539-547. [PMID: 30536654 DOI: 10.1002/biof.1461] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease condition in which a woman develops high blood sugar levels during pregnancy, which might be induced by multiple factors. Among those relative factors, microRNA (miRNA) is well-known to be involved in GDM development. In this study, we investigated the role of miRNA in GDM by analyzing miRNA expression profiling in placenta tissues from healthy or GDM pregnancies. We found that miR-96 was the most down-regulated miRNA in GDM samples. Furthermore, miRNA target gene prediction revealed that p21-activated kinase 1 (PAK1) is a potential target of miR-96. Functional assays showed that miR-96 enhanced β-cell function, whereas PAK1 inhibited β-cell function and cell viability. Our findings demonstrate that miR-96 plays a critical role in GDM development by regulating PAK1 expression, insulin secretion, and β-cell function. © 2018 BioFactors, 44(6):539-547, 2018.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shan Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongyan Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jipeng Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yu Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
16
|
Stoll L, Sobel J, Rodriguez-Trejo A, Guay C, Lee K, Venø MT, Kjems J, Laybutt DR, Regazzi R. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab 2018; 9:69-83. [PMID: 29396373 PMCID: PMC5870096 DOI: 10.1016/j.molmet.2018.01.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE There is strong evidence for an involvement of different classes of non-coding RNAs, including microRNAs and long non-coding RNAs, in the regulation of β-cell activities and in diabetes development. Circular RNAs were recently discovered to constitute a substantial fraction of the mammalian transcriptome but the contribution of these non-coding RNAs in physiological and disease processes remains largely unknown. The goal of this study was to identify the circular RNAs expressed in pancreatic islets and to elucidate their possible role in the control of β-cells functions. METHODS We used a microarray approach to identify circular RNAs expressed in human islets and searched their orthologues in RNA sequencing data from mouse islets. We then measured the level of four selected circular RNAs in the islets of different Type 1 and Type 2 diabetes models and analyzed the role of these circular transcripts in the regulation of insulin secretion, β-cell proliferation, and apoptosis. RESULTS We identified thousands of circular RNAs expressed in human pancreatic islets, 497 of which were conserved in mouse islets. The level of two of these circular transcripts, circHIPK3 and ciRS-7/CDR1as, was found to be reduced in the islets of diabetic db/db mice. Mimicking this decrease in the islets of wild type animals resulted in impaired insulin secretion, reduced β-cell proliferation, and survival. ciRS-7/CDR1as has been previously proposed to function by blocking miR-7. Transcriptomic analysis revealed that circHIPK3 acts by sequestering a group of microRNAs, including miR-124-3p and miR-338-3p, and by regulating the expression of key β-cell genes, such as Slc2a2, Akt1, and Mtpn. CONCLUSIONS Our findings point to circular RNAs as novel regulators of β-cell activities and suggest an involvement of this novel class of non-coding RNAs in β-cell dysfunction under diabetic conditions.
Collapse
Affiliation(s)
- Lisa Stoll
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | | | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | - Kailun Lee
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Morten Trillingsgaard Venø
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - D Ross Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland.
| |
Collapse
|
17
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. GENES AND NUTRITION 2017; 12:23. [PMID: 28974990 PMCID: PMC5613467 DOI: 10.1186/s12263-017-0577-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
In recent years, the link between regulatory microRNAs (miRNAs) and diseases has been the object of intensive research. miRNAs have emerged as key mediators of metabolic processes, playing crucial roles in maintaining/altering physiological processes, including energy balance and metabolic homeostasis. Altered miRNAs expression has been reported in association with obesity, both in animal and human studies. Dysregulation of miRNAs may affect the status and functions of different tissues and organs, including the adipose tissue, pancreas, liver, and muscle, possibly contributing to metabolic abnormalities associated with obesity and obesity-related diseases. More recently, the discovery of circulating miRNAs easily detectable in plasma and other body fluids has emphasized their potential as both endocrine signaling molecules and disease indicators. In this review, the status of current research on the role of miRNAs in obesity and related metabolic abnormalities is summarized and discussed.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Alfonso Siani
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
19
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Investigation of miRNA-binding site variants and risk of gestational diabetes mellitus in Chinese pregnant women. Acta Diabetol 2017; 54:309-316. [PMID: 28190110 DOI: 10.1007/s00592-017-0969-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/27/2017] [Indexed: 11/27/2022]
Abstract
AIMS Emerging evidence suggested genetic factor attributed as a major determinant for the complex pathogenic mechanism of gestational diabetes mellitus (GDM), but the related genetic study was limited. We aimed to investigate the impact of polymorphisms in miRNA-binding sites (miR-binding SNPs) on the risk of GDM in Chinese Han pregnant women. METHODS We screened GDM susceptibility genes extensively and selected miR-binding SNPs using four bioinformatics software. TaqMan allelic discrimination assays were applied to miR-binding SNPs genotyping in 839 GDM patients and 900 controls. RESULTS In total five potential miR-binding SNPs (SLC30A8 rs2466293, INSR rs1366600, INSR rs3745550, KCNJ11 rs5210 and KCNQ1 rs8234) were selected. Our results showed that SLC30A8 rs2466293 [OR 95% CI = 1.455 (1.077, 1.966); P = 0.014] and INSR rs1366600 [OR 95% CI = 2.191 (1.077, 4.455); P = 0.029] increased the risk of GDM after adjusting age in additive model. Furthermore, rs2466293 was found to significantly associate with higher levels of fasting plasma glucose (b dom = 0.054, P dom = 0.032), 2-h OGTT plasma glucose (b dom = 0.069, P dom = 0.007), lower fasting insulin concentrations (b rec = -0.082, P rec = 0.003) and decreased HOMA-B (b rec = -0.067, P rec = 0.015). Additionally, the correlation between rs1366600 and 2-h OGTT plasma glucose (b dom = 0.078, P dom = 0.001) was observed. CONCLUSIONS Two miR-binding SNPs SLC30A8 rs2466293 and INSR rs1366600 increased GDM susceptibility. Functional studies were required to confirm the underlying mechanism. Our study provided additional insights into the genetic pathogenesis of GDM.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Wei Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Juntao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Jiangfeng Mao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Xi Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Min Nie
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuai fu Yuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
20
|
Størling J, Pociot F. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis. Genes (Basel) 2017; 8:genes8020072. [PMID: 28212332 PMCID: PMC5333061 DOI: 10.3390/genes8020072] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis.
Collapse
Affiliation(s)
- Joachim Størling
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, University Hospital Herlev and Gentofte, Herlev 2730, Denmark.
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, University Hospital Herlev and Gentofte, Herlev 2730, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
21
|
Shantikumar S, Rovira-Llopis S, Spinetti G, Emanueli C. MicroRNAs in Diabetes and Its Vascular Complications. CARDIAC AND VASCULAR BIOLOGY 2017:39-59. [DOI: 10.1007/978-3-319-52945-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
22
|
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 2016; 62:141-150. [PMID: 27928162 DOI: 10.1038/jhg.2016.150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/23/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tomoaki Tanaka
- Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
23
|
Yoshimatsu G, Takita M, Kanak MA, Haque WZ, Chang C, Saravanan PB, Lawrence MC, Levy MF, Naziruddin B. MiR-375 and miR-200c as predictive biomarkers of islet isolation and transplantation in total pancreatectomy with islet autotransplantation. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:585-94. [PMID: 27429015 DOI: 10.1002/jhbp.377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Total pancreatectomy with islet autotransplantation (TPIAT) is a promising treatment for refractory chronic pancreatitis. Predictable biomarkers for the endocrine function after transplantation would be helpful in selecting patients for TPIAT. This study aims to identify novel biomarkers for predicting the outcome of islet isolation and transplantation in TPIAT patients. METHODS This paper studied microRNA of 31 TPIAT patients and 11 deceased donors from plasma samples before TPIAT. MiR-7, miR-200a, miR-200c, miR-320, and miR-375 were analyzed along with patient characteristics and the outcomes of islet isolation and transplantation via univariate and multivariate regression analysis. RESULTS MiR-375 before TPIAT showed a significant correlation with ∆C-peptide (r = -0.396, P = 0.03) and post-digestion islet count (r = -0.372, P = 0.04). And also miR-200c was significantly correlated with insulin requirement, C-peptide, and SUITO index at 1 year after transplantation. Moreover it was confirmed that miR-200c was a predictable factor of endocrine outcome in multi regression analysis (coefficient = -7.081, P = 0.001). CONCLUSIONS We concluded that miR-375 and miR-200c could potentially serve as novel biomarkers in predicting the islet yield in islet isolation and the metabolic function after transplantation for chronic pancreatitis patients.
Collapse
Affiliation(s)
- Gumpei Yoshimatsu
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Morihito Takita
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Mazhar A Kanak
- Transplant Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Waqas Z Haque
- Islet Cell Laboratory, Baylor Research Institute, Dallas, Texas, USA
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | | | - Marlon F Levy
- Transplant Division, Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, Texas, USA. .,Islet Cell Laboratory, Baylor Simmons Transplant Institute, 3410 Worth Street, Suite 950, Dallas, TX, 75246, USA.
| |
Collapse
|
24
|
Osmai M, Osmai Y, Bang-Berthelsen CH, Pallesen EMH, Vestergaard AL, Novotny GW, Pociot F, Mandrup-Poulsen T. MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 2016; 32:334-49. [PMID: 26418758 DOI: 10.1002/dmrr.2719] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease.
Collapse
Affiliation(s)
- Mirwais Osmai
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yama Osmai
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claus H Bang-Berthelsen
- Department of Pediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Diabetes NBEs and Obesity Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Emil M H Pallesen
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anna L Vestergaard
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guy W Novotny
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Department of Pediatrics and Center for Non-Coding RNA in Technology and Health, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-endocrinology Lab, Section of Endocrinological Research, Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Abstract
During the past one to two decades, substantial progress has been made in our understanding of the immunopathology of type 1 diabetes (T1D) and the potential for immune interventions that can alter the natural history of the disease. This progress has resulted from the use of standardized study designs, endpoints, and, to a certain extent, mechanistic analyses in intervention trials in the setting of new-onset T1D. To date, most of these trials have involved single-agent interventions but, increasingly, future trials will test therapeutic combinations that are based on a compelling scientific rationale and testable mechanistic hypotheses. These increasingly complex trials will benefit from novel trial designs (such as factorial or adaptive designs), enhanced clinical endpoints that more directly assess islet pathology (such as β-cell death assays and islet or pancreatic imaging), improved responder analyses, and sophisticated mechanistic assays that provide deep phenotyping of lymphocyte subsets, gene expression profiling, in vitro T cell functional assessments, and antigen-specific responses. With this developing armamentarium of enhanced trial designs, endpoints, and clinical and mechanistic response analyses, we can expect substantial progress in better understanding the breakdown in immunologic tolerance in T1D and how to restore it to achieve significant and long-lasting preservation of islet function.
Collapse
|
26
|
Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:280-93. [DOI: 10.1016/j.bbagrm.2015.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
|
27
|
Kim JW, Luo JZ, Luo L. The Biochemical Cascades of the Human Pancreatic β-Cells: The Role of MicroRNAs. JOURNAL OF BIOANALYSIS & BIOMEDICINE 2015; 7:e133. [PMID: 28503255 PMCID: PMC5426857 DOI: 10.4172/1948-593x.1000e133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a disease that poses a burden to the health care system due to its prevalence and chronic nature. Understanding β cell pathophysiology may lead to future therapeutic options for diabetes mellitus type 1 and 2. MicroRNAs (MiR) fine-tune β cell biochemical cascades through specific protein targets. This review argues that miRs may play a critical role in human islet β cell biology and are potential candidates for a new pharmacological strategy. We have reviewed and presented how miRs fine tune four biochemical cascades in islet β cells: glucose stimulated insulin secretion, β cell replication, apoptosis, and development. Only studies that examine human pancreatic islets either in vitro or in vivo are included. The unveiling role of miR pathways in regulating human islet β cell biology could open the door for diagnostic and therapeutic methods for diabetes mellitus prevention and therapy.
Collapse
Affiliation(s)
- Joseph W Kim
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| | - John Z Luo
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
- Doctor’s Choice LLC, Warwick, RI, USA
| | - Luguang Luo
- Department of Internal Medicine, Roger Williams Hospital, Boston University School of Medicine, Providence, RI, USA
| |
Collapse
|
28
|
Abstract
Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene regulators will also be addressed.
Collapse
Affiliation(s)
- Tina Fløyel
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Simranjeet Kaur
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Flemming Pociot
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| |
Collapse
|
29
|
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1:15019. [PMID: 27189025 DOI: 10.1038/nrdp.2015.19] [Citation(s) in RCA: 1118] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and genetic factors contribute to the multiple pathophysiological disturbances that are responsible for impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must not only be effective and safe but also improve the quality of life. Several novel medications are in development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- Diabetes Division, Department of Medicine, University of Texas Health Science Center, South Texas Veterans Health Care System and Texas Diabetes Institute, 701 S. Zarzamoro, San Antonio, Texas 78207, USA
| | | | - Leif Groop
- Department of Clinical Science Malmoe, Diabetes &Endocrinology, Lund University Diabetes Centre, Lund, Sweden
| | - Robert R Henry
- University of California, San Diego, Section of Diabetes, Endocrinology &Metabolism, Center for Metabolic Research, VA San Diego Healthcare System, San Diego, California, USA
| | | | | | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health and Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - C Ronald Kahn
- Harvard Medical School and Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Itamar Raz
- Diabetes Unit, Division of Internal Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Gerald I Shulman
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular &Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Donald C Simonson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia A Testa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ram Weiss
- Department of Human Metabolism and Nutrition, Braun School of Public Health, Hebrew University, Jerusalem, Israel
| |
Collapse
|
30
|
Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S, Toyoda T, Kotaka M, Takaki T, Umeda M, Okubo C, Nishikawa M, Oishi A, Narita M, Miyashita I, Asano K, Hayashi K, Osafune K, Yamanaka S, Saito H, Yoshida Y. Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell 2015; 16:699-711. [PMID: 26004781 DOI: 10.1016/j.stem.2015.04.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/26/2015] [Accepted: 04/13/2015] [Indexed: 11/15/2022]
Abstract
Isolation of specific cell types, including pluripotent stem cell (PSC)-derived populations, is frequently accomplished using cell surface antigens expressed by the cells of interest. However, specific antigens for many cell types have not been identified, making their isolation difficult. Here, we describe an efficient method for purifying cells based on endogenous miRNA activity. We designed synthetic mRNAs encoding a fluorescent protein tagged with sequences targeted by miRNAs expressed by the cells of interest. These miRNA switches control their translation levels by sensing miRNA activities. Several miRNA switches (miR-1-, miR-208a-, and miR-499a-5p-switches) efficiently purified cardiomyocytes differentiated from human PSCs, and switches encoding the apoptosis inducer Bim enriched for cardiomyocytes without cell sorting. This approach is generally applicable, as miR-126-, miR-122-5p-, and miR-375-switches purified endothelial cells, hepatocytes, and insulin-producing cells differentiated from hPSCs, respectively. Thus, miRNA switches can purify cell populations for which other isolation strategies are unavailable.
Collapse
Affiliation(s)
- Kenji Miki
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Kei Endo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Seiya Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shunsuke Funakoshi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Ikue Takei
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shota Katayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Maki Kotaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Tadashi Takaki
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masayuki Umeda
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Chikako Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Misato Nishikawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Akiko Oishi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Ito Miyashita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kanako Asano
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Karin Hayashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The identification and characterization of essential islet transcription factors have improved our understanding of β cell development, provided insights into many of the cellular dysfunctions related to diabetes, and facilitated the successful generation of β cells from alternative cell sources. Recently, noncoding RNAs have emerged as a novel set of molecules that may represent missing components of the known islet regulatory pathways. The purpose of this article is to highlight studies that have implicated noncoding RNAs as important regulators of pancreas cell development and β cell function. RECENT FINDINGS Disruption of essential components of the microRNA processing machinery, in addition to misregulation of individual microRNAs, has revealed the importance of microRNAs in pancreas development and β cell function. Furthermore, over 1000 islet-specific long noncoding RNAs have been identified in mouse and human islets, suggesting that this class of noncoding molecules will also play important functional roles in the β cell. SUMMARY The analysis of noncoding RNAs in the pancreas will provide important new insights into pancreatic regulatory processes that will improve our ability to understand and treat diabetes, and may facilitate the generation of replacement β cells from alternative cell sources.
Collapse
Affiliation(s)
- Ruth A Singer
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
32
|
Abstract
The β-cells within the pancreas are responsible for production and secretion of insulin. Insulin is released from pancreatic β-cells in response to increasing blood glucose levels and acts on insulin-sensitive tissues such as skeletal muscle and liver in order to maintain normal glucose homeostasis. Therefore, defects in pancreatic β-cell function lead to hyperglycemia and diabetes mellitus. A new class of molecules called microRNAs has been recently demonstrated to play a crucial role in regulation of pancreatic β-cell function under normal and pathophysiological conditions. miRNAs have been shown to regulate endocrine pancreas development, insulin biosynthesis, insulin exocytosis, and β-cell expansion. Many of the β-cell enriched miRNAs have multiple functions and regulate pancreas development as well as insulin biosynthesis and exocytosis. Furthermore, several of the β-cell specific miRNAs have been shown to accumulate in the circulation before the onset of diabetes and may serve as potential biomarkers for prediabetes. This chapter will focus on miRNAs that are enriched in pancreatic β-cells and play a critical role in modulation of β-cell physiology and may have clinical significance in the treatment of diabetes.
Collapse
|
33
|
Melnik BC. The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev 2015; 11:46-62. [PMID: 25587719 PMCID: PMC4428476 DOI: 10.2174/1573399811666150114100653] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
Milk, the secretory product of the lactation genome, promotes growth of the newborn mammal. Milk delivers insulinotropic amino acids, thus maintains a molecular crosstalk with the pancreatic β-cell of the milk recipient. Homeostasis of β-cells and insulin production depend on the appropriate magnitude of mTORC1 signaling. mTORC1 is activated by branched-chain amino acids (BCAAs), glutamine, and palmitic acid, abundant nutrient signals of cow´s milk. Furthermore, milk delivers bioactive exosomal microRNAs. After milk consumption, bovine microRNA-29b, a member of the diabetogenic microRNA-29- family, reaches the systemic circulation and the cells of the milk consumer. MicroRNA-29b downregulates branchedchain α-ketoacid dehydrogenase, a potential explanation for increased BCAA serum levels, the metabolic signature of insulin resistance and type 2 diabetes mellitus (T2DM). In non-obese diabetic mice, microRNA-29b downregulates the antiapoptotic protein Mcl-1, which leads to early β-cell death. In all mammals except Neolithic humans, milk-driven mTORC1 signaling is physiologically restricted to the postnatal period. In contrast, chronic hyperactivated mTORC1 signaling has been associated with the development of age-related diseases of civilization including T2DM. Notably, chronic hyperactivation of mTORC1 enhances endoplasmic reticulum stress that promotes apoptosis. In fact, hyperactivated β-cell mTORC1 signaling induced early β-cell apoptosis in a mouse model. The EPIC-InterAct Study demonstrated an association between milk consumption and T2DM in France, Italy, United Kingdom, Germany, and Sweden. In contrast, fermented milk products and cheese exhibit an inverse correlation. Since the early 1950´s, refrigeration technology allowed widespread consumption of fresh pasteurized milk, which facilitates daily intake of bioactive bovine microRNAs. Persistent uptake of cow´s milk-derived microRNAs apparently transfers an overlooked epigenetic diabetogenic program that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabruck, Sedanstraße 115, D-49090 Osnabrück, Germany.
| |
Collapse
|