1
|
Datta RR, Rister J. The power of the (imperfect) palindrome: Sequence-specific roles of palindromic motifs in gene regulation. Bioessays 2022; 44:e2100191. [PMID: 35195290 PMCID: PMC8957550 DOI: 10.1002/bies.202100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Abstract
In human languages, a palindrome reads the same forward as backward (e.g., 'madam'). In regulatory DNA, a palindrome is an inverted sequence repeat that allows a transcription factor to bind as a homodimer or as a heterodimer with another type of transcription factor. Regulatory palindromes are typically imperfect, that is, the repeated sequences differ in at least one base pair, but the functional significance of this asymmetry remains poorly understood. Here, we review the use of imperfect palindromes in Drosophila photoreceptor differentiation and mammalian steroid receptor signaling. Moreover, we discuss mechanistic explanations for the predominance of imperfect palindromes over perfect palindromes in these two gene regulatory contexts. Lastly, we propose to elucidate whether specific imperfectly palindromic variants have specific regulatory functions in steroid receptor signaling and whether such variants can help predict transcriptional outcomes as well as the response of individual patients to drug treatments.
Collapse
Affiliation(s)
- Rhea R Datta
- Department of Biology, Hamilton College, Clinton, New York, USA
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Kang SH, Seok YM, Song MJ, Lee HA, Kurz T, Kim I. Histone deacetylase inhibition attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor in spontaneously hypertensive rats. Mol Pharmacol 2015; 87:782-91. [PMID: 25667225 DOI: 10.1124/mol.114.096974] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhibition of histone deacetylases (HDACs) by valproic acid (VPA) attenuates inflammatory, hypertrophic, and fibrotic responses in the hearts of spontaneously hypertensive rats (SHRs); however, the molecular mechanism is still unclear. We hypothesized that HDAC inhibition (HDACi) attenuates cardiac hypertrophy and fibrosis through acetylation of mineralocorticoid receptor (MR) in SHRs. Seven-week-old SHRs and Wistar-Kyoto rats were treated with an HDAC class I inhibitor (0.71% w/v in drinking water; VPA) for 11 weeks. Sections of heart were visualized after trichrome stain as well as H&E stain. Histone modifications, such as acetylation (H3Ac [acetylated histone 3]) and fourth lysine trimethylation (H3K4me3) of histone 3, and recruitment of MR and RNA polymerase II (Pol II) into promoters of target genes were measured by quantitative real-time polymerase chain reaction after chromatin immunoprecipitation assay. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Treatment with VPA attenuated cardiac hypertrophy and fibrosis. Although treatment with VPA increased H3Ac and H3K4me3 on promoter regions of MR target genes, expression of MR target genes as well as recruitment of MR and Pol II on promoters of target genes were decreased. Although HDACi did not affect MR expression, it increased MR acetylation. These results indicate that HDACi attenuates cardiac hypertrophy and fibrosis through acetylation of MR in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Seol-Hee Kang
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Young Mi Seok
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Min-ji Song
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Hae-Ahm Lee
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - Thomas Kurz
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| | - InKyeom Kim
- Department of Pharmacology (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Cardiovascular Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Cell and Matrix Research Institute (S.-H.K., Y.M.S., H.-A.L., I.K.), Brain Korea 21 Plus Kyungpook National University Biomedical Convergence Program (S.-H.K., I.K.), Department of Biomedical Science, Kyungpook National University School of Medicine (S.-H.K., Y.M.S., M.S., H.-A.L., I.K.), Daegu, Republic of Korea; and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany (T.K.)
| |
Collapse
|
4
|
Zarzer CA, Puchinger MG, Köhler G, Kügler P. Differentiation between genomic and non-genomic feedback controls yields an HPA axis model featuring hypercortisolism as an irreversible bistable switch. Theor Biol Med Model 2013; 10:65. [PMID: 24209391 PMCID: PMC3879227 DOI: 10.1186/1742-4682-10-65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/29/2013] [Indexed: 01/30/2023] Open
Abstract
Background The hypothalamic-pituitary-adrenal axis (HPA axis) is a major part of the neuroendocrine system responsible for the regulation of the response to physical or mental stress and for the control of the synthesis of the stress hormone cortisol. Dysfunctions of the HPA axis characterized by either low (hypocortisolism) or increased (hypercortisolism) cortisol levels are implicated in various pathological conditions. Their understanding and therapeutic correction may be supported by mathematical modeling and simulation of the HPA axis. Methods Mass action and Michaelis Menten enzyme kinetics were used to provide a mechanistic description of the feedback mechanisms within the pituitary gland cells by which cortisol inhibits its own production. A separation of the nucleus from the cytoplasm by compartments enabled a differentiation between slow genomic and fast non-genomic processes. The model in parts was trained against time resolved ACTH stress response data from an in vitro cell culture of murine AtT-20 pituitary tumor cells and analyzed by bifurcation discovery tools. Results A recently found pituitary gland cell membrane receptor that mediates rapid non-genomic actions of glucocorticoids has been incorporated into our model of the HPA axis. As a consequence of the distinction between genomic and non-genomic feedback processes our model possesses an extended dynamic repertoire in comparison to existing HPA models. In particular, our model exhibits limit cycle oscillations and bistable behavior associated to hypocortisolism but also features a (second) bistable switch which captures irreversible transitions in hypercortisolism to elevated cortisol levels. Conclusions Model predictive control and inverse bifurcation analysis have been previously applied in the simulation-based design of therapeutic strategies for the correction of hypocortisolism. Given the HPA model extension presented in this paper, these techniques may also be used in the study of hypercortisolism. As an example, we show how sparsity enforcing penalization may suggest network interventions that allow the return from elevated cortisol levels back to nominal ones.
Collapse
Affiliation(s)
| | | | | | - Philipp Kügler
- Institute for Applied Mathematics and Statistics, University of Hohenheim, Schloss, 70599 Stuttgart, Germany.
| |
Collapse
|
5
|
|
6
|
The mechanism of mimecan transcription induced by glucocorticoid in pituitary corticotroph cells. Mol Cell Biochem 2011; 360:321-8. [DOI: 10.1007/s11010-011-1071-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
7
|
Design principles of nuclear receptor signaling: how complex networking improves signal transduction. Mol Syst Biol 2011; 6:446. [PMID: 21179018 PMCID: PMC3018161 DOI: 10.1038/msb.2010.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/21/2010] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptors often function in the cytoplasm. A triple conveyor belt pumps ligand (signal) into the nucleus and onto the DNA. The active export of importins enhances signaling to the nucleus. Sharing a single nuclear pore may reduce rather than increase crosstalk.
Nuclear receptors (NRs) derive their family name from the early observation that they are located in the nucleus, despite responding to extracellular signals such as hormones (e.g., cortisol) (Fanestil and Edelman, 1966). According to the ‘classical' paradigm of NR signaling, the NR resides in the nucleus, attached to a DNA response element, waiting for its ligand to bind. The actual systems have multiple additional features (reviewed in Cutress et al, 2008; Cao et al, 2009; Levin, 2009a; Bunce and Campbell, 2010), such as that NRs shuttle between the nucleus and the cytoplasm (Von Knethen et al, 2010) and ligand addition changes receptor location dynamically (Pratt et al, 1989; Liu and DeFranco, 2000; Kumar et al, 2004, 2006; Tanaka et al, 2005; Heitzer et al, 2007; Prüfer and Boudreaux, 2007; Ricketson et al, 2007; Cutress et al, 2008): Figure 1 summarizes the current understanding of the topology of the reaction networks involved in NR signaling, in systems biological graphical notation (SBGN), with NR activation, importin-α and -β binding, nuclear pore complex (NPC)-mediated import, recycling of importins, NR binding to target promoter sequences, exportin-mediated nuclear export of the NR, exportin cycling and free energy-driven Ran recycling. This topology is surprisingly complex when compared with the ‘classical' paradigm. To address to what extent this extra complexity is just detail or contributes essential functionality, we have simulated the dynamics of the NR transcriptional response in maximally realistic mathematical models of increasingly complex designs. The calculations revealed significant disadvantages of the classical and simplest mechanism for endocrine NR-mediated signaling, i.e., the one with localization of the NR exclusively on the DNA (design 1 in Figure 2A): the transcriptional response was very low (Figure 2B). A high concentration of free NR in the nucleus (design 2) improved sensitivity, but made the responsiveness much slower (Figure 2B). If the NR was equally distributed between the nucleus and the cytoplasm without the NR being able to traverse the nucleocytoplasmic membrane (design 3), then, although the NR diffuses more slowly than the much smaller ligand molecule, the higher concentration of the NR increased flux from the plasma membrane to the nuclear membrane; the steady state was reached faster (Figure 2B and C; compare design 3 relative to design 2). Enabling the NR to traverse the nucleocytoplasmic membrane (design 4), further accelerated the response (Figure 2B and C). Designs 1–4 considered the permeation of the NR through the nuclear membrane to be passive, implying an import/export activity ratio of 1. When varying the import to export activity ratio (design 5), a trade-off between the fast responsiveness of design 4 and the high sensitivity of design 2 was calculated (Figure 2B). In order to maximize responsiveness, core-NR should be concentrated in the cytoplasm, whereas to gain sensitivity, liganded NR should be concentrated in the nucleus. This suggested that performance could be improved by making nuclear import and export selective for liganded over unliganded NR (design 6; Figure 2A). Indeed, retention of core-NR in the cytoplasm provided high influx of ligand into the nucleus (Figure 2D), and also the highest concentration of ligand in the nucleus (Figure 2C): Apart from its classical receptor role in transcription regulation, the NR may function as (part of) an active pump for its ligand, resembling a triple conveyor belt: importins and exportins cycle as conveyor belts and drive the cycling of the third conveyor belt consisting of the NR that pumps ligand into the nucleus. Two other striking features of the NR signaling network (Figure 1) are related to the facts that the energy of GTP hydrolysis is coupled to an active export of importins rather than to direct active import of NR and that the same NPC is used for all transport processes. At first sight, the former may waste free energy and the latter might cause fragility due to interferences between different NRs and other signaling pathways. However, our models show that active nuclear export of importins is a design preventing NR sequestration in the nucleus by nuclear importins and, equally paradoxically, the transport of all cargo through the same NPC makes the transport of any particular cargo robust with respect to perturbations in the availability of any other cargo. Our calculations also predict that there is an optimal ratio of nuclear to cytoplasmic fractions of the NR (Figure 2G) that depends on the specific properties of the ligand and on the transcription activation requirements. This may help to explain the observation that different NRs have different predominant intracellular localizations. Our model calculations are thereby in line with many experimental observations, but specific cases of NR signaling may only exhibit a subset of all features. Our models can aid in identifying which subsets are important in any particular case of NR signaling, as we demonstrate for an example. In this study, we have shown that complex networks of biochemical and signaling reactions can harbor subtle design principles that can be understood rationally in terms of simplified but not simple models (which are available to the reader). The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands.
Collapse
|
8
|
Boldizsar F, Talaber G, Szabo M, Bartis D, Palinkas L, Nemeth P, Berki T. Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 2009; 215:521-6. [PMID: 19906460 DOI: 10.1016/j.imbio.2009.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 01/03/2023]
Abstract
In the last decade new glucocorticoid (GC)-signalling mechanisms have emerged. The evolving field of non-genomic GC actions was precipitated from two major directions: (i) some rapid/acute clinical GC applications could not be explained based on the relatively slowly appearing genomic GC action and (ii) accumulating evidence came to light about the discrepancy in the apoptosis sensitivity and GR expression of thymocytes and other lymphoid cell types. Herein, we attempt to sample the latest information in the field of non-genomic GC signalling in T cells, and correlate it with results from our laboratory. We discuss some aspects of the regulation of thymocyte apoptosis by GCs, paying special interest to the potential role(s) of mitochondrial GR signalling. The interplay between the T cell receptor (TcR) and glucocorticoid receptor (GR) signalling pathways is described in more detail, focusing on ZAP-70, which is a novel target of rapid GC action.
Collapse
Affiliation(s)
- Ferenc Boldizsar
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, Pecs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
9
|
Merkulov VM, Merkulova TI. Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: Analysis of GR-TRRD database. J Steroid Biochem Mol Biol 2009; 115:1-8. [PMID: 19429454 DOI: 10.1016/j.jsbmb.2009.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
The GR-TRRD section of the TRRD database contains the presently largest sample of published nucleotide sequences with experimentally confirmed binding to the glucocorticoid hormone receptor (GR). This sample comprises 160 glucocorticoid receptor binding sites (GRbs) from 77 vertebrate glucocorticoid-regulated genes. Analysis of this sample has demonstrated that the structure of only half GRbs (54%) corresponds to the generally accepted organization of glucocorticoid response element (GRE) as an inverted repeat of the TGTTCT hexanucleotide. As many as 40% of GRbs contain only the hexanucleotide, and the majority of such "half-sites" belong to the glucocorticoid-inducible genes. An expansion of the sample allowed the consensus of GRbs organized as an inverted repeat to be determined more precisely. Several possible mechanisms underlying the role of the noncanonical receptor binding sites (hexanucleotide half-sites) in the glucocorticoid induction are proposed based on analysis of the literature data.
Collapse
Affiliation(s)
- Vasily M Merkulov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
10
|
Fecko CJ, Munson KM, Saunders A, Sun G, Begley TP, Lis JT, Webb WW. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking. Photochem Photobiol 2008; 83:1394-404. [PMID: 18028214 DOI: 10.1111/j.1751-1097.2007.00179.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.
Collapse
Affiliation(s)
- Christopher J Fecko
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Gupta S, Aslakson E, Gurbaxani BM, Vernon SD. Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability. Theor Biol Med Model 2007; 4:8. [PMID: 17300722 PMCID: PMC1804264 DOI: 10.1186/1742-4682-4-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 02/14/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The body's primary stress management system is the hypothalamic pituitary adrenal (HPA) axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases. RESULTS We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR). This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high) and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS). CONCLUSION Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis.
Collapse
Affiliation(s)
- Shakti Gupta
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, 600 Clifton Rd, MS-A15, Atlanta, Georgia 30333, USA
| | - Eric Aslakson
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, 600 Clifton Rd, MS-A15, Atlanta, Georgia 30333, USA
| | - Brian M Gurbaxani
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, 600 Clifton Rd, MS-A15, Atlanta, Georgia 30333, USA
| | - Suzanne D Vernon
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, 600 Clifton Rd, MS-A15, Atlanta, Georgia 30333, USA
| |
Collapse
|
12
|
Lee HC, Shibata H, Ogawa S, Maki K, Ikuta K. Transcriptional regulation of the mouse IL-7 receptor alpha promoter by glucocorticoid receptor. THE JOURNAL OF IMMUNOLOGY 2005; 174:7800-6. [PMID: 15944284 DOI: 10.4049/jimmunol.174.12.7800] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the IL-7R alpha-chain (IL-7Ralpha) is strictly regulated during the development and maturation of lymphocytes. Glucocorticoids (GC) have pleiotypic effects on the growth and function of lymphocytes. Although GC have been reported to induce the transcription of IL-7Ralpha gene in human T cells, its molecular mechanism is largely unknown. In this study, we show that GC up-regulate the levels of IL-7Ralpha mRNA and protein in mouse T cells. This effect does not require protein synthesis de novo, because protein synthesis inhibitors do not block the process. Mouse IL-7Ralpha promoter has striking homology with human and rat, containing consensus motifs of Ikaros, PU.1, and Runx1 transcription factors. In addition, a conserved noncoding sequence (CNS) of approximately 270 bp was found 3.6-kb upstream of the promoter, which was designated as CNS-1. A GC receptor (GR) motif is present in the CNS-1 region. Importantly, we show by reporter assay that the IL-7Ralpha promoter has specific transcription activity in T cells. This activity highly depends on the PU.1 motif. Furthermore, GC treatment augments the transcriptional activity through the GR motif in the CNS-1 region. We also demonstrate that GR binds to the GR motif by EMSA. In addition, by chromatin immunoprecipitation assay, we show that GR is rapidly recruited to endogenous CNS-1 chromatin after GC stimulation. These results demonstrate that GR binds to the GR motif in the CNS-1 region after GC stimulation and then activates the transcription of the IL-7Ralpha promoter. Thus, this study identifies the IL-7Ralpha CNS-1 region as a GC-responsive element.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- Conserved Sequence
- Dexamethasone/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genetic Markers
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Binding
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Protein Transport
- Proto-Oncogene Proteins/chemistry
- RNA, Messenger/biosynthesis
- Rats
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- Receptors, Interleukin-7/biosynthesis
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Trans-Activators/chemistry
Collapse
Affiliation(s)
- Hai-Chon Lee
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
13
|
Analysis of nuclear glucocorticoid receptor-DNA interaction in aged rat liver. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2005. [DOI: 10.2298/jsc0505705v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract: In order to contribute to the understanding of mechanisms by which regulatory proteins recognize genetic information stored in DNA, analyses of their interaction with specific nucleotides are usually performed. In this study, the electrophoretic mobility shift assay (EMSA) was applied to analyze the interaction of nuclear proteins from the liver of rats of different age i.e., young (3-month-old), middle- aged (12-month-old) and aged (24-month-old), with radioactively labelled synthetic oligonucleotide analogues, corresponding to GRE. The levels of GRE binding activity were assessed by quantitative densitometric scanning of the autoradiograms. The results showed statistically significant decreasing values of up to 78% and 49% in middle aged and old animals, respectively, compared to young animals (p < 0.05). The specificity of the nuclear proteins-GRE interaction was demonstrated by competition experiments with unlabelled GRE. In a supershift assay, using the antibody BuGR2, it was shown that the GR proteins present in nuclear extracts have a high affinity for the GRE probe. The stabilities of the protein-DNA complexes were analysed and it was concluded that they changed during ageing. .
Collapse
|
14
|
Affiliation(s)
- Jianren Mao
- Pain Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Mandrekar P, Bellerose G, Szabo G. Inhibition of NF-kappaB Binding Correlates With Increased Nuclear Glucocorticoid Receptor Levels in Acute Alcohol-Treated Human Monocytes. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02495.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Porter NM, Herman JP, Landfield PW. Mechanisms of Glucocorticoid Actions in Stress and Brain Aging. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Yoneda Y, Kuramoto N, Kitayama T, Hinoi E. Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain. Prog Neurobiol 2001; 63:697-719. [PMID: 11165002 DOI: 10.1016/s0301-0082(00)00036-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long-lasting alterations of neuronal functions could involve mechanisms associated with consolidation of transient extracellular signals through modulation of de novo synthesis of particular functional proteins in the brain. In eukaryotes, protein de novo synthesis is mainly under the control at the level of gene transcription by transcription factors in the cell nucleus. Transcription factors are nuclear proteins with an ability to recognize particular core nucleotides at the upstream and/or downstream of target genes, and thereby to modulate the activity of RNA polymerase II that is responsible for the formation of mRNA from double stranded DNA. Gel retardation electrophoresis is widely employed for conventional detection of DNA binding activities of a variety of transcription factors with different protein motifs. Extracellular ionotropic glutamate (Glu) signals lead to rapid and selective potentiation of DNA binding of the nuclear transcription factor activator protein-1 (AP1) that is a homo- and heterodimeric complex between Jun and Fos family members, in addition to inducing expression of the corresponding proteins, in a manner unique to each Glu signal in murine hippocampus. Therefore, extracellular Glu signals may be differentially transduced into the nucleus to express AP1 with different assemblies between Jun and Fos family members, and thereby to modulate de novo synthesis of the individual target proteins at the level of gene transcription in the hippocampus. Such mechanisms may be operative on synaptic plasticity as well as delayed neuronal death through consolidation of alterations of a variety of cellular functions induced by transient extracellular signals in the brain.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Molecular Pharmacology, Kanazawa University Faculty of Pharmaceutical Sciences, 13-1 Takara-machi, Kanazawa, 920-0934, Ishikawa, Japan.
| | | | | | | |
Collapse
|
18
|
Medh RD, Lay RH, Schmidt TJ. Agonist-specific modulation of glucocorticoid receptor-mediated transcription by immunosuppressants. Mol Cell Endocrinol 1998; 138:11-23. [PMID: 9685211 DOI: 10.1016/s0303-7207(98)00055-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although the immunosuppressive drugs FK506, rapamycin and cyclosporin A have been reported to potentiate transcriptional activation mediated by a non-saturating concentration of the glucocorticoid receptor agonist dexamethasone, the precise mechanism(s) underlying these responses remains unclear. The murine L-929-derived LMCAT cell line stably transfected with the mouse mammary tumor virus promoter-chloramphenicol acetyl transferase reporter gene construct was utilized in the present study to further investigate the mechanism(s) underlying this dexamethasone potentiation as well as the possible agonist specificity of this potentiation. The present data demonstrate that pretreatment (2 h) of LMCAT cells with 10 microM FK506, rapamycin or cyclosporin A results in the potentiation of reporter gene transcription mediated not only by dexamethasone (approximately 12-fold), but also by hydrocortisone (approximately 6-fold) and triamcinolone acetonide (approximately 2.5-fold). In sharp contrast, the data show for the first time that pretreatment with any one of these immunosuppressive drugs suppresses (approximately 2-8-fold) the transcriptional responses mediated by corticosterone, deoxycorticosterone, and cortexolone. Pretreatment of intact LMCAT cells with FK506 increases the subsequent whole cell specific binding of [3H]dexamethasone, but does not increase specific cytoplasmic binding when the tritiated agonist is added directly to cytosolic extracts prepared from the pretreated cells. These data suggest that the FK506-mediated potentiation of the transcriptional responses induced by some agonists, like dexamethasone, may be related to the ability of this immunosuppressant to inhibit the membrane-associated multidrug resistance (MDR) P-glycoprotein, which actively extrudes some steroids from cells. Identical pretreatment with FK506 has no detectable effect on the subsequent whole cell specific binding of [3H]corticosterone, a steroid which is not effectively extruded by the MDR pump. Two additional MDR pump inhibitors, verapamil and quinidine, potentiate (30-fold) the dexamethasone-mediated transcriptional response as expected, but have no detectable effects on a corticosterone-mediated transcriptional response. Unlike immunosuppressive drugs, these ion channel blockers do not bind to receptor-associated immunophilins (FK506-binding proteins or cyclophilins). Collectively, these results suggest that immunosuppressants potentiate a dexamethasone-mediated transcriptional response in LMCAT cells by inhibiting efflux of this steroid. In contrast, these drugs appear to suppress a corticosterone-mediated transcriptional response by a different mechanism, perhaps one involving their binding to glucocorticoid receptor-associated immunophilins.
Collapse
Affiliation(s)
- R D Medh
- Department of Physiology and Biophysics, College of Medicine, The University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
19
|
Lechner J, Welte T, Doppler W. Mechanism of interaction between the glucocorticoid receptor and Stat5: role of DNA-binding. Immunobiology 1997; 198:112-23. [PMID: 9442383 DOI: 10.1016/s0171-2985(97)80032-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional interaction between the glucocorticoid receptor (GR) and the signal transducer and activator of transcription-5 (Stat5) was investigated by studying the synergistic activation of beta-cascin gene transcription by prolactin and glucocorticoids. The synergism was shown to be mediated by a complex hormone response region with multiple binding sites for Stat5, the glucocorticoid receptor, and CCAAT/enhancer binding proteins (C/EBP). HC11 mammary epithelial cells, which contain physiological levels of GR and Stat5, and COS-7 cells overexpressing GR and Stat5 were employed. In both cell types intact binding sites for Stat5 and the GR were a prerequisite for the synergism, whereas C/EBP sites were only required in HC11 cells. Interestingly, the GR sites employed for the synergism were nonclassical, half palindromic sites, which did not function in the absence of activated Stat5 to mediate the action of the GR on transcription. The interaction of GR and Stat5 triggered by the unusual configuration of binding sites appears to represent a novel mechanism by which these two distinct types of transcription factors cooperate. The mode of interaction provides an efficient means to restrict gene expression to conditions where both Stat5 and the GR are activated.
Collapse
Affiliation(s)
- J Lechner
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Austria
| | | | | |
Collapse
|
20
|
O'Mahoney JV, Brandon MR, Adams TE. Identification of a liver-specific promoter for the ovine growth hormone receptor. Mol Cell Endocrinol 1994; 101:129-39. [PMID: 9397945 DOI: 10.1016/0303-7207(94)90227-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growth hormone (GH) receptor cDNA clones from several species are characterized by heterogeneity in the 5' untranslated region (5'UT). This has been attributed to different promoters directing the expression of the gene from exons encoding 5'UT's which are alternatively spliced onto a common splice acceptor 11 basepairs (bp) upstream of the initiating AUG on exon 2. The following study identifies exon 1A of the ovine (o) GH receptor gene, corresponding to the 5'UT of a developmentally regulated, liver-specific transcript. Exon 1A spans 206 bp at a position 17 kilobases (kb) upstream of exon 2. Sequencing of the 669 bp region 5' to the transcription initiation site (+1) reveals a TATA box at -31, a CCAAT box at -88, and putative binding sites for several transcription factors involved in liver-specific gene expression. Two repetitive sequence elements are located in the 5' and 3' flanking regions of exon 1A. Functional analysis of the 4.5 kb region upstream of exon 1A was performed by transfecting the human hepatoma cell line HuH7 with luciferase reporter gene constructs. Positive and negative regulatory regions are identified, with basal promoter activity within 473 bp of the transcription initiation site. A 47 bp region containing putative binding sites for the activated glucocorticoid receptor and C/EBP-like proteins, between -180 and -133, is essential for transcriptional activation.
Collapse
Affiliation(s)
- J V O'Mahoney
- Centre for Animal Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
21
|
Arai K, Chrousos GP. Hormone-nuclear receptor interactions in health and disease. Glucocorticoid resistance. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1994; 8:317-31. [PMID: 7980839 DOI: 10.1016/s0950-351x(05)80255-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Familial glucocorticoid resistance results from the partial inability of glucocorticoids to exert their effects on their target tissues throughout the organism. The condition is associated with compensatory elevations of circulating ACTH and cortisol, with the former causing excess abnormal secretion of steroids with mineralocorticoid and androgen activity. The manifestations of glucocorticoid resistance vary from asymptomatic to chronic fatigue, to varying degrees of hypertension and/or hypokalaemic alkalosis and hyperandrogenism. The latter can be manifest in women as acne, hirsutism, menstrual irregularity, oligoanovulation and infertility, in men as infertility, and in children as precocious puberty. Different molecular defects of the highly conserved glucocorticoid receptor gene, altering its concentration and functional characteristics, appear to cause the syndrome of familial glucocorticoid resistance. Depending on the molecular defect, this syndrome is transmitted by an autosomal dominant or recessive trait. There are recent suggestions that non-generalized forms of glucocorticoid resistance may exist, resulting in autoimmune-inflammatory phenomena or psychiatric manifestations.
Collapse
Affiliation(s)
- K Arai
- Pediatric Endocrinology Section, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | | |
Collapse
|