1
|
Garattini SK, Basile D, De Re V, Brisotto G, Miolo G, Canzonieri V, Aprile G, Corvaja C, Buriolla S, Garattini E, Puglisi F. The potential of retinoic acid receptors as prognostic biomarkers and therapeutic targets in gastric cancer. Front Oncol 2024; 14:1453934. [PMID: 39323992 PMCID: PMC11422079 DOI: 10.3389/fonc.2024.1453934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
Background Gastric cancer is a heterogeneous collection of tumors characterized by low survival rates. All-trans retinoic acid (retinoic-acid) is a clinically useful therapeutic agent belonging to the chemical family of retinoids, which consists of both natural and synthetic derivatives of vitamin-A. Retinoids are essential components of the normal diet and they regulate different physiological processes. From a therapeutic point of view, retinoic-acid is the first example of clinically useful differentiating agent. Indeed, the differentiating properties of this compound have promoted the use of retinoic-acid as a standard of care in Acute-Promyelocytic-Leukemia, a rare form of acute myeloid leukemia. In this study, we determine the RNA expression of the six isoforms of Retinoic-Acid-Receptors (RARα/RARβ/RARγ/RXRα/RXRβ/RXRγ) in view of their potential use as gastric cancer progression markers and/or therapeutic targets. In addition, we evaluate associations between the expression of these receptors and a simplified molecular classification of stomach tumors as well as the clinical characteristics of the cohort of patients analyzed. Finally, we define the prognostic value of the various Retinoic-Acid-Receptors in gastric cancer. Methods In this single institution and retrospective RAR-GASTRIC study, we consider 55 consecutive gastric cancer patients. We extract total RNA from the pathological specimens and we perform a NanoString Assay using a customized panel of genes. This allows us to determine the expression levels of the RAR and RXR mRNAs as well as other transcripts of interest. Results Our data demonstrate ubiquitous expression of the RAR and RXR mRNAs in gastric cancers. High levels of RARα, RARβ, RXRα and RXRβ show a significant association with stage IV tumors, "de novo" metastatic disease, microsatellite-stable-status, epithelial-to-mesenchymal-transition, as well as PIK3CA and TP53 expression. Finally, we observe a worse overall-survival in gastric cancer patients characterized by high RARα/RARβ/RARγ/RXRβ mRNA levels. Conclusions In gastric cancer, high expression levels of RARα/RARβ/RARγ/RXRβ transcripts are associated with poor clinical and molecular characteristics as well as with reduced overall-survival. Our data are consistent with the idea that RARα, RARβ, RARγ and RXRβ represent potential prognostic markers and therapeutic targets of gastric cancer.
Collapse
Affiliation(s)
| | - Debora Basile
- Department of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | - Valli' De Re
- Immunopathology and Cancer Biomarkers/Bio-Proteomics Facility, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers/Bio-Proteomics Facility, Centro di Riferimento Oncologico, IRCCS, Aviano, Italy
| | - Gianmaria Miolo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, IRCCS CRO National Cancer Institute, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Aprile
- Department of Oncology, University and General Hospital, Udine, Italy
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology (IEO) IRCCS, Milano, Italy
| | - Silvia Buriolla
- Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Departiment of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
2
|
Khurana D, Kumar B, Devi J, Antil N, Patil RB, Singh K, Singh Y. Unlocking the biological potential of transition metal complexes with Thiosemicarbazone ligands: Insights from computational studies. Heliyon 2024; 10:e33150. [PMID: 38994046 PMCID: PMC11238129 DOI: 10.1016/j.heliyon.2024.e33150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
In the previous study, the synthesis and characterization of 4-(3-fluorophenyl)-3-thiosemicarbazide and benzaldehyde derivatives based thiosemicarbazone ligands and their Co(II), Ni(II), Cu(II), Zn(II) complexes were carried out to evaluate their malarial and oxidant and inflammatory inhibition abilities, demonstrating that these compounds have robust efficacy for these ailments. In the present research, to find out a combating agent against breast cancer, tuberculosis, bacterial and fungal ailments, the compounds were tested through MTT, microplate alamar blue and serial dilution protocols. ADMET and DFT investigation were analyzed against highly bioactive compounds (2, 7-10) to give a new insight about compound's reactivity, stability and drug likeness properties. Furthermore, activity results shows that the ligand (2) and its complexes demonstrate greater efficacy compared to ligand (1) and its complexes. The Cu(II) (9) and Zn(II) (10) complexes were observed as highly efficient for breast cancer (MCF-7 cell line), TB (H37Rv strain), bacterial and fungal ailments in comparison of standard drugs with 0.029 ± 0.001 μM IC50 value for (9) in anticancer activity and 0.0034 ± 0.0017 μmol/mL MIC value for (10) in anti-tuberculosis activity. In the molecular docking investigation, the various kind of binding interactions and lowest binding affinity of (9) (against 4RJ3 (-10.0 kcal/mol), 2VCJ (-7.9 kcal/mol)) and (10) (-7.8 and -8.3 kcal/mol for 5V3Y and 3PTY protein) support their bioactivity. This research highlights the pharmaceutical importance of transition metal complexes having thiosemicarbazones, presenting a significant approach for the discovery of potent anti-infectious agent.
Collapse
Affiliation(s)
- Daksh Khurana
- Department of Computer Science & Engineering, Symbiosis Institute of Technology, Pune, 412115, Maharashtra, India
| | - Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Nidhi Antil
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh B Patil
- Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Off Sinhgad Road, Vadgaon (Bk), Pune, 411041, Maharashtra, India
| | - Khushwant Singh
- University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Yudhvir Singh
- University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
3
|
Lv Y, Mou Y, Su J, Liu S, Ding X, Yuan Y, Li G, Li G. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: a network pharmacology-based analysis. Sci Rep 2023; 13:3816. [PMID: 36882618 PMCID: PMC9992681 DOI: 10.1038/s41598-023-30585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Resina Draconis (RD) is known as the "holy medicine for promoting blood circulation" and possesses antitumor properties against various types of cancer, including breast cancer (BC); however, the underlying mechanism is not well understood. To explore the potential mechanism of RD against BC using network pharmacology and experimental validation, data on bioactive compounds, potential targets of RD, and related genes of BC were obtained from multiple public databases. Gene Ontology (GO) and KEGG pathway analyses were performed via the DAVID database. Protein interactions were downloaded from the STRING database. The mRNA and protein expression levels and survival analysis of the hub targets were analyzed using the UALCAN, HPA, Kaplan‒Meier mapper, and cBioPortal databases. Subsequently, molecular docking was used to verify the selected key ingredients and hub targets. Finally, the predicted results of network pharmacology methods were verified by cell experiments. In total, 160 active ingredients were obtained, and 148 RD target genes for the treatment of BC were identified. KEGG pathway analysis indicated that RD exerted its therapeutic effects on BC by regulating multiple pathways. Of these, the PI3K-AKT pathway was indicated to play an important role. In addition, RD treatment of BC seemed to involve the regulation of hub targets that were identified based on PPI interaction network analysis. Validation in different databases showed that AKT1, ESR1, HSP90AA1, CASP3, SRC and MDM2 may be involved in the carcinogenesis and progression of BC and that ESR1, IGF1 and HSP90AA1 were correlated with worse overall survival (OS) in BC patients. Molecular docking results showed that 103 active compounds have good binding activity with the hub targets, among which flavonoid compounds were the most important active components. Therefore, the sanguis draconis flavones (SDF) were selected for subsequent cell experiments. The experimental results showed that SDF significantly inhibited the cell cycle and cell proliferation of MCF-7 cells through the PI3K/AKT pathway and induced MCF-7 cell apoptosis. This study has preliminarily reported on the active ingredients, potential targets, and molecular mechanism of RD against BC, and RD was shown to exert its therapeutic effects on BC by regulating the PI3K/AKT pathway and related gene targets. Importantly, our work could provide a theoretical basis for further study of the complex anti-BC mechanism of RD.
Collapse
Affiliation(s)
- Yana Lv
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yan Mou
- Yuxi Normal University, Yuxi, 653100, China
| | - Jing Su
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Shifang Liu
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Xuan Ding
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Yin Yuan
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China.,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China
| | - Ge Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| | - Guang Li
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China. .,Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, 666100, China.
| |
Collapse
|
4
|
Melo N, Belyaeva OV, Berger WK, Halasz L, Yu J, Pilli N, Yang Z, Klyuyeva AV, Elmets CA, Atigadda V, Muccio DD, Kane MA, Nagy L, Kedishvili NY, Renfrow MB. Next-generation retinoid X receptor agonists increase ATRA signaling in organotypic epithelium cultures and have distinct effects on receptor dynamics. J Biol Chem 2023; 299:102746. [PMID: 36436565 PMCID: PMC9807999 DOI: 10.1016/j.jbc.2022.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Retinoid X receptors (RXRs) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes, in part by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in organotypic epidermis treated with UAB110/111 versus UAB30. Furthermore, at 0.2 μM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. Additionally, our hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RXR-RAR signaling pathways but accomplish activation through different molecular responses to ligand binding.
Collapse
Affiliation(s)
- Nathalia Melo
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wilhelm K Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Nagesh Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Zhengrong Yang
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alla V Klyuyeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Craig A Elmets
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Venkatram Atigadda
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald D Muccio
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Natalia Y Kedishvili
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Matthew B Renfrow
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
5
|
Elgogary SR, El‑Telbani EM, Khidre RE. Synthesis, Molecular Docking, and Antitumor Evaluation of Some New Pyrazole, Pyridine, and Thiazole Derivatives Incorporating Sulfonamide Residue. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sameh R. Elgogary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Emad M. El‑Telbani
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Rizk E. Khidre
- Chemical Industries Division, National Research Centre, Dokki, Egypt
| |
Collapse
|
6
|
Augimeri G, Montalto FI, Giordano C, Barone I, Lanzino M, Catalano S, Andò S, De Amicis F, Bonofiglio D. Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients 2021; 13:2557. [PMID: 34444715 PMCID: PMC8400469 DOI: 10.3390/nu13082557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
7
|
Hassan GS, Georgey HH, Mohammed EZ, George RF, Mahmoud WR, Omar FA. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur J Med Chem 2021; 218:113389. [PMID: 33784602 DOI: 10.1016/j.ejmech.2021.113389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
Novel series of diphenyl-1H-pyrazoles (4a-g) and pyrazolo[3,4-b]pyridines (5a-g and 7a-i) were synthesized and evaluated for their antiproliferative activity against breast cancer cell line (MCF7) and Hepatocellular carcinoma cell line (HepG2). The highest MCF7 growth inhibition activity was attained via compounds 4f and 7e (IC50 = 1.29 and 0.93 μM, respectively), while compounds 5b and 7f were the most active ones against HepG2 (IC50 = 1.57 and 1.33 μM, respectively) compared to doxorubicin (IC50 = 1.88 and 7.30 μM, respectively). Cell cycle analysis showed arrest at S and G2-M phases in MCF7 cells treated with 4f and 7e, and at G2-M and G1/S phases in HepG2 cells treated with 5b and 7f, respectively. Apoptotic effect of compounds 4f, 5b, 7e, and 7f was indicated via their pre-G1 early and late apoptotic effects and augmented levels of caspase-9/MCF7 and caspase-3/HepG2. A worthy safety profile was assessed for compounds 4f and 7e on MCF10A and compounds 5b and 7f on THLE2 treated normal cells. Furthermore, compounds 4f, 5b and 7f displayed a promising selective profile for CDK2 inhibition vs. CDK1, CDK4, and CDK7 isoforms as proved from their selectivity index. Docking in CDK2 ATP binding site, co-crystallized with R-Roscovitine, demonstrated analogous interactions and comparable binding energy with the native ligand. 2D QSAR sighted the possible structural features governing the CDK2 inhibition activity elicited by the studied pyrazolo[3,4-b]pyridines. These findings present compounds 4f, 5b, and 7f as selective CDK2 inhibitors with promising antiproliferative activity against MCF7 and HepG2 cancer cells.
Collapse
Affiliation(s)
- Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department,School of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, 11777, Egypt
| | - Esraa Z Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Farghaly A Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assuit University, 71526, Egypt
| |
Collapse
|
8
|
Yoshioka H, Ramakrishnan SS, Shim J, Suzuki A, Iwata J. Excessive All-Trans Retinoic Acid Inhibits Cell Proliferation Through Upregulated MicroRNA-4680-3p in Cultured Human Palate Cells. Front Cell Dev Biol 2021; 9:618876. [PMID: 33585479 PMCID: PMC7876327 DOI: 10.3389/fcell.2021.618876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Cleft palate is the second most common congenital birth defect, and both environmental and genetic factors are involved in the etiology of the disease. However, it remains largely unknown how environmental factors affect palate development. Our previous studies show that several microRNAs (miRs) suppress the expression of genes involved in cleft palate. Here we show that miR-4680-3p plays a crucial role in cleft palate pathogenesis. We found that all-trans retinoic acid (atRA) specifically induces miR-4680-3p in cultured human embryonic palatal mesenchymal (HEPM) cells. Overexpression of miR-4680-3p inhibited cell proliferation in a dose-dependent manner through the suppression of expression of ERBB2 and JADE1, which are known cleft palate-related genes. Importantly, a miR-4680-3p-specific inhibitor normalized cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with atRA. Taken together, our results suggest that upregulation of miR-4680-3p induced by atRA may cause cleft palate through suppression of ERBB2 and JADE1. Thus, miRs may be potential targets for the prevention and diagnosis of cleft palate.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junbo Shim
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
9
|
Al-Sanea MM, Obaidullah AJ, Shaker ME, Chilingaryan G, Alanazi MM, Alsaif NA, Alkahtani HM, Alsubaie SA, Abdelgawad MA. A New CDK2 Inhibitor with 3-Hydrazonoindolin-2-One Scaffold Endowed with Anti-Breast Cancer Activity: Design, Synthesis, Biological Evaluation, and In Silico Insights. Molecules 2021; 26:molecules26020412. [PMID: 33466812 PMCID: PMC7830330 DOI: 10.3390/molecules26020412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. Methods: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. Results: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. Discussion: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Garri Chilingaryan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Sultan A. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
10
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
11
|
Flodrova D, Toporova L, Lastovickova M, Macejova D, Hunakova L, Brtko J, Bobalova J. Consequences of the natural retinoid/retinoid X receptor ligands action in human breast cancer MDA-MB-231 cell line: Focus on functional proteomics. Toxicol Lett 2017; 281:26-34. [DOI: 10.1016/j.toxlet.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
|
12
|
Hong CM, Ahn BC. Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer for Reapplication of I-131 Therapy. Front Endocrinol (Lausanne) 2017; 8:260. [PMID: 29085335 PMCID: PMC5649198 DOI: 10.3389/fendo.2017.00260] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/20/2017] [Indexed: 01/29/2023] Open
Abstract
Although most differentiated thyroid cancers show excellent prognosis, treating radioiodine refractory differentiated thyroid cancer (RR-DTC) is challenging. Various therapies, including chemotherapy, radiotherapy, and targeted therapy, have been applied for RR-DTC but show limited effectiveness. Redifferentiation followed by radioiodine therapy is a promising alternative therapy for RR-DTC. Retinoic acids, histone deacetylase inhibitors, and peroxisome proliferator-activated receptor-gamma agonists are classically used as redifferentiation agents, and recent targeted molecules are also used for this purpose. Appropriate selection of redifferentiation agents for each patient, using current knowledge about genetic and biological characteristics of thyroid cancer, might increase the efficacy of redifferentiation treatment. In this review, we will discuss the mechanisms of these redifferentiation agents, results of recent clinical trials, and promising preclinical results.
Collapse
Affiliation(s)
- Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, South Korea
- *Correspondence: Byeong-Cheol Ahn,
| |
Collapse
|
13
|
Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One 2016; 11:e0153556. [PMID: 27078158 PMCID: PMC4831765 DOI: 10.1371/journal.pone.0153556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.
Collapse
|
14
|
Seo EJ, Efferth T. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 2016; 7:16818-39. [PMID: 26921194 PMCID: PMC4941353 DOI: 10.18632/oncotarget.7605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023] Open
Abstract
Translationally controlled tumor protein (TCTP) represents an exquisite target for cancer differentiation therapy, because it was most strikingly down-regulated in tumor reversion experiments. Since TCTP is identical with the histamine releasing factor, antihistamic drugs may inhibit TCTP. Indeed, antihistaminics, such as promethazine, thioridazine, perphemazine and chlorpromazine reveal antiproliferative effects. The aim of this investigation was to study antihistaminic drugs as new TCTP inhibitors to inhibit tumor growth. Levomepromazine and buclizine showed higher in silico binding affinities to TCTP among 12 different antihistaminic compounds including the control drugs, promethazine and hydroxyzine by using Autodock4 and AutodockTools-1.5.7.rc1. Recombinant human TCTP was codon-optimized, expressed in E. coli and purified by chitin affinity chromatography. For experimental validation of in silico data, we applied microscale thermophoresis. Levomepromazine bound with a Kd of 57.2 μM (p < 0.01) and buclizine with a Kd of 433μM (p < 0.01) to recombinant TCTP. Both drugs inhibited MCF-7 breast cancer cell growth in resazurin assays. TCTP expression was down-regulated after treatment with the two drugs. Cell cycle was arrested in the G1 phase without apoptosis as confirmed by the expression of cell cycle and apoptosis-regulating proteins. Annexin V-PI staining and Trypan blue exclusion assay supported that the two drugs are cytostatic rather than cytotoxic. Induction of differentiation with two drugs was detected by the increased appearance of lipid droplets. In conclusion, levomepromazine and buclizine inhibited cancer cell growth by binding to TCTP and induction of cell differentiation. These compounds may serve as lead compounds for cancer differentiation therapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
15
|
Zuchegna C, Aceto F, Bertoni A, Romano A, Perillo B, Laccetti P, Gottesman ME, Avvedimento EV, Porcellini A. Mechanism of retinoic acid-induced transcription: histone code, DNA oxidation and formation of chromatin loops. Nucleic Acids Res 2014; 42:11040-55. [PMID: 25217584 PMCID: PMC4176188 DOI: 10.1093/nar/gku823] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Histone methylation changes and formation of chromatin loops involving enhancers, promoters and 3′ end regions of genes have been variously associated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A receptor, at the RARE–promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA exposure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nucleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5′ transcription start site and the 3′ end of the genes. The RARE bound-receptor governs the 5′ and 3′ end selection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription.
Collapse
Affiliation(s)
- Candida Zuchegna
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy
| | - Fabiana Aceto
- Dipartimento di Medicina e di Scienze della Salute, Università del Molise, 86100 Campobasso, Italy
| | - Alessandra Bertoni
- Dipartimento di Medicina Molecolare e Biotecnologie mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, 80131 Napoli, Italy
| | - Antonella Romano
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy
| | - Bruno Perillo
- Istituto di Scienze dell'Alimentazione, C.N.R., 83100 Avellino, Italy
| | - Paolo Laccetti
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy
| | - Max E Gottesman
- Institute of Cancer Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Enrico V Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, 80131 Napoli, Italy
| | | |
Collapse
|
16
|
Oh SW, Moon SH, Park DJ, Cho BY, Jung KC, Lee DS, Chung JK. Combined therapy with 131I and retinoic acid in Korean patients with radioiodine-refractory papillary thyroid cancer. Eur J Nucl Med Mol Imaging 2011; 38:1798-805. [PMID: 21698415 DOI: 10.1007/s00259-011-1849-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim of this study was to assess the clinical outcome of redifferentiation therapy using retinoic acid (RA) in combination with 131I therapy, and to identify biological parameters that predict therapeutic response in Korean patients with radioiodine-refractory papillary thyroid carcinoma (PTC). MATERIALS AND METHODS A total of 47 patients (13 men, 34 women; age 54.2±13.6 years) with radioiodine-refractory PTC underwent therapy consisting of consecutive treatment with 131I and RA. Each 131I/RA treatment cycle involved the administration of oral isotretinoin for 6 weeks at 1-1.5 mg/kg daily followed by a single oral dose of 131I (range 5.5-16.7 GBq). Therapeutic responses were determined using serum thyroglobulin (Tg) levels and the change in tumour size 6 months after completing the 131I/RA therapy. Biological parameters and pathological parameters before and after combined therapy were compared. RESULTS After completing 131I/RA therapy, 1 patient showed a complete response, 9 partial response, 9 stable disease, and 28 progressive disease, representing an overall response rate of 21.3%. Univariate analysis revealed that an age of <45 years and a persistently high serum Tg level were related to a good response. No clinical response was achieved when metastases showing no iodine uptake were present. Multivariate regression analysis showed that an age of <45 years was significantly associated with a good response. Of the 24 patients with well-differentiated carcinoma, 5 (20.8%) responded to 131I/RA therapy, whereas all 6 patients with poorly differentiated carcinoma failed to respond. CONCLUSION 131I/RA therapy was found to elicit a response rate of 21.3% among patients with radioiodine-refractory PTC, and an age of <45 years was found to be significantly associated with a good response.
Collapse
Affiliation(s)
- So Won Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehang-Ro, Jongno-Gu, Seoul, 110-744, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Retinoic acid-induced terminal differentiation of myeloid cells involves the sequential regulation of cell cycle regulatory genes, coordinating the process of differentiation with arrest in the G0/G1 phase of the cell cycle. In this review we have summarized changes in expression and activity of cell cycle regulatory proteins associated with retinoic acid induced-growth arrest in human myeloid cell lines. These changes involve: (i) an early down-regulation of c-Myc; (ii) up-regulation of p21CIP1 and p27KIP1 and, in some cases, p15INK4b or p18INK4c; (iii) down-regulation of cyclin E and cyclin D1/D3, and, at later stages, cyclin A and cyclin B; and (iv) decreased CDK activity and dephosphorylation of pRb.
Collapse
Affiliation(s)
- Anna Dimberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | |
Collapse
|
18
|
Apoptosis of HeLa and CaSki cell lines incubated with All-trans retinoid acid. Folia Histochem Cytobiol 2010; 47:599-603. [PMID: 20430726 DOI: 10.2478/v10042-009-0113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to evaluate the concentrations of a soluble form of APO-1/Fas antigen (sFas, CD95) and a soluble Ligand for APO-1/Fas antigen (sCD95L, sFasL) in supernatants from CaSki and HeLa cell line cultures after the incubation with All-trans-retinoic acid. HPV-16 and HPV18 - positive cell lines were cultivated with All-trans-retinoic acid in concentrations of 1 x 10(-6) M/L and 1 x 10(-8) M/L. The cultures were incubated for 24 hours. Control culture with 3 microl of dimethyl-sulphoxide (DMSO) was incubated under identical conditions. The concentrations of soluble APO-1/Fas antigen and Fas Ligand in cell culture supernatants were estimated using immunoenzymatic methods. The obtained results showed significant decrease of concentrations of soluble APO-1/Fas antigen in supernatants from HeLa cell lines incubated with retinol in comparison with the control culture. Moreover, the concentrations of soluble Ligand for APO-1/Fas antigen in the supernatants of CaSki and HeLa cell lines were significantly lower in the culture incubated with All-trans retinoid acid when compared to the control culture. Higher concentrations of soluble APO-1/Fas antigen in supernatants from HeLa cell line without retinol may constitute a protective mechanism of the cells infected with the virus before undergoing Fas/FasL-dependent apoptosis. Lower concentrations of soluble APO-1/Fas antigen and soluble Ligand for APO-1/Fas in the supernatants from CaSki and HeLa cell cultures incubated with retinol suggest that retinoids can decrease the synthesis of soluble APO-1//Fas and soluble FasL in HPV-16 and HPV - 18 positive cells and that mechanisms protecting infected cells against Fas/FasL-mediated apoptosis become defective under the influence of retinol.
Collapse
|
19
|
Liu L, Derguini F, Gudas LJ. Metabolism and regulation of gene expression by 4-oxoretinol versus all-trans retinoic acid in normal human mammary epithelial cells. J Cell Physiol 2009; 220:771-9. [PMID: 19492420 PMCID: PMC3315369 DOI: 10.1002/jcp.21824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously demonstrated that 4-oxoretinol (4-oxo-ROL) activated retinoic acid receptors (RARs) in F9 stem cells. We showed that 4-oxo-ROL inhibited the proliferation of normal human mammary epithelial cells (HMECs). To understand the mechanisms by which 4-oxo-ROL regulates HMEC growth we examined gene expression profiles following 4-oxo-ROL or all-trans retinoic acid (tRA). We also compared growth inhibition by tRA, 4-oxo-ROL, or 4-oxo-RA. All three retinoids inhibited HMEC proliferation. Gene expression analyses indicated that 4-oxo-ROL and tRA modulated gene expression in closely related pathways. The expression of many genes, e.g. ATP-binding cassette G1 (ABCG1); adrenergic receptorbeta2 (ADRB2); ras-related C3 botulinum toxin substrate (RAC2); and short-chain dehydrogenase/reductase 1 gene (SDR1) was changed after 4-oxo-ROL or tRA. Metabolism of these retinoids was analyzed by high-performance liquid chromatography (HPLC). In 1 microM tRA treated HMECs all of the tRA was found intracellularly, and tRA was the predominant intracellular retinoid. In 1 microM 4-oxo-ROL treated HMECs most 4-oxo-ROL was esterified to 4-oxoretinyl esters, no tRA was detected, and 4-oxo-ROL and 4-oxo-RA were observed intracellularly. In 1 microM 4-oxoretinoic acid (4-oxo-RA) treated HMECs little intracellular 4-oxo-RA was detected; most 4-oxo-RA was in the medium. Our results indicate that: (a) 4-oxo-ROL regulates gene expression and inhibits proliferation of HMECs; (b) 4-oxo-ROL and tRA regulate some of the same genes; (c) more tRA is found in cells, as compared to 4-oxoretinoic acid, when each drug is added at the same concentration in the medium; and (d) the mechanism by which 4-oxo-ROL exerts its biological activity does not involve intracellular tRA production.
Collapse
Affiliation(s)
- Limin Liu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Fadila Derguini
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10065
| |
Collapse
|
20
|
Kogai T, Ohashi E, Jacobs MS, Sajid-Crockett S, Fisher ML, Kanamoto Y, Brent GA. Retinoic acid stimulation of the sodium/iodide symporter in MCF-7 breast cancer cells is mediated by the insulin growth factor-I/phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metab 2008; 93:1884-92. [PMID: 18319322 PMCID: PMC2386284 DOI: 10.1210/jc.2007-1627] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT All-trans retinoic acid (tRA) induces differentiation in MCF-7 breast cancer cells, stimulates sodium/iodide symporter (NIS) gene expression, and inhibits cell proliferation. Radioiodine administration after systemic tRA treatment has been proposed as an approach to image and treat some differentiated breast cancer. OBJECTIVE The objective of this work was to study the relative role of genomic and nongenomic pathways in tRA stimulation of NIS expression in MCF-7 cells. DESIGN We inspected the human NIS gene locus for retinoic acid-responsive elements and tested them for function. The effects of signal transduction pathway inhibitors were also tested in tRA-treated MCF-7 cells and TSH-stimulated FRTL-5 rat thyroid cells, followed by iodide uptake assay, quantitative RT-PCR of NIS, and cell cycle phase analysis. RESULTS Multiple retinoic acid response elements around the NIS locus were identified by sequence inspection, but none of them was a functional tRA-induced element in MCF-7 cells. Inhibitors of the IGF-I receptor, Janus kinase, and phosphatidylinositol 3-kinase (PI3K), significantly reduced NIS mRNA expression and iodide uptake in tRA-stimulated MCF-7 cells but not FRTL-5 cells. An inhibitor of p38 MAPK significantly reduced iodide uptake in both tRA-stimulated MCF-7 cells and TSH-stimulated FRTL-5 cells. IGF-I and PI3K inhibitors did not significantly reduce the basal NIS mRNA expression in MCF-7 cells. Despite the chronic inhibitory effects on cell proliferation, tRA did not reduce the S-phase distribution of MCF-7 cells during the period of NIS induction. CONCLUSION The IGF-I receptor/PI3K pathway mediates tRA-stimulated NIS expression in MCF-7 but not FRTL-5 thyroid cells.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Jia S, Liu Y, Li B, Wang Z, Lu H, Zhu C. A clinical study of all-trans-retinoid-induced differentiation therapy of advanced thyroid cancer. Nucl Med Commun 2007; 28:251-5. [PMID: 17325586 DOI: 10.1097/mnm.0b013e3280708ebf] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the changes in differentiation markers and therapeutic effects in all-trans-retinoic acid (ATRA)-treated patients with dedifferentiated thyroid cancer. METHODS Between September 2001 and July 2004 eleven patients were analysed retrospectively. They had dedifferentiated thyroid cancers (DTC) (four follicular, five papillary, two oxyphilic) and were selected for treatment with ATRA (1.00+/-0.09 mg x kg x d) for 30 or 60 days. All patients had advanced stage tumours with prior operative and radioiodine treatment. Extensive tumour invasion, distant metastatic spread, and insufficient or non-existent uptake of radioiodine precluded conventional therapeutic options. Changes in I uptake, response of target lesions, and serum thyroglobulin (Tg) levels were measured and compared in these patients before and after ATRA therapy. RESULTS In 11 patients with DTC, iodine uptake was increased in four and there was a partial response (PR) of target lesions in five patients as well as two patients with stable disease. Tg was assessed in eight patients, in whom two responders showed increased radioiodine uptake or no change and decreased Tg level, as well as PR after ATRA-induced differentiation therapy. CONCLUSIONS ATRA has an effect on the differentiation status of DTC and deserves further investigation.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Patel JB, Mehta J, Belosay A, Sabnis G, Khandelwal A, Brodie AMH, Soprano DR, Njar VCO. Novel retinoic acid metabolism blocking agents have potent inhibitory activities on human breast cancer cells and tumour growth. Br J Cancer 2007; 96:1204-15. [PMID: 17387344 PMCID: PMC2360155 DOI: 10.1038/sj.bjc.6603705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antitumour effects of retinoids are attributed to their influence on cell proliferation, differentiation, apoptosis and angiogenesis. In our effort to develop useful agents for breast cancer therapy, we evaluated the effects of four representative retinoic acid metabolism blocking agents (RAMBAs, VN/14-1, VN/50-1, VN/66-1 and VN/69-1) on growth inhibition of oestrogen receptor positive (ER +ve, MCF-7 and T-47D) and oestrogen receptor negative (ER −ve, MDA-MB-231) human breast cancer cells. Additionally, we investigated the biological effects/molecular mechanism(s) underlying their growth inhibitory properties as well as their antitumour efficacies against MCF-7 and MCF-7Ca tumour xenografts in nude mice. We also assessed the effect of combining VN/14-1 and all-trans-retinoic acid (ATRA) on MCF-7 tumuor xenografts. The ER +ve cell lines were more sensitive (IC50 values between 3.0 and 609 nM) to the RAMBAs than the ER −ve MDA-MB-231 cell line (IC50=5.6–24.0 μM). Retinoic acid metabolism blocking agents induced cell differentiation as determined by increased expression of cytokeratin 8/18 and oestrogen receptor-α (ER-α). Similar to ATRA, they also induced apoptosis via activation of caspase 9. Cell cycle analysis indicated that RAMBAs arrested cells in the G1 and G2/M phases and caused significant downregulation (>80%) of cyclin D1 protein. In vivo, the growth of MCF-7 mammary tumours was dose-dependently and significantly inhibited (92.6%, P<0.0005) by VN/14-1. The combination of VN/14-1 and ATRA also inhibited MCF-7 breast tumour growth in vivo (up to 120%) as compared with single agents (P<0.025). VN/14-1 was also very effective in preventing the formation of MCF-7Ca tumours and it significantly inhibited the growth of established MCF-7Ca tumours, being as effective as the clinically used aromatase inhibitors, anastrozole and letrozole. Decrease in cyclin D1 and upregulation of cytokeratins, Bad and Bax with VN/14-1 may be responsible for the efficacy of this compound in inhibiting breast cancer cell growth in vitro and in vivo. Our results suggest that our RAMBAs, especially VN/14-1 may be useful novel therapy for breast cancer.
Collapse
Affiliation(s)
- J B Patel
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - J Mehta
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - A Belosay
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - G Sabnis
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - A Khandelwal
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - A M H Brodie
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
- The University of Maryland Marlene and Stewart Greenebaum Cancer Center, School of Medicine, Baltimore, MD 21201-1559, USA
| | - D R Soprano
- Department of Biochemistry, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | - V C O Njar
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA
- The University of Maryland Marlene and Stewart Greenebaum Cancer Center, School of Medicine, Baltimore, MD 21201-1559, USA
- E-mail:
| |
Collapse
|
23
|
Donato LJ, Suh JH, Noy N. Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling. Cancer Res 2007; 67:609-15. [PMID: 17234770 DOI: 10.1158/0008-5472.can-06-0989] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anticarcinogenic activities of retinoic acid (RA) are believed to be mediated by the nuclear RA receptor (RAR) and by the RA-binding protein cellular RA-binding protein-II (CRABP-II). In MCF-7 mammary carcinoma cells, growth inhibition by RA entails an early cell cycle arrest followed by induction of apoptosis. Here, we aimed to obtain insights into the initial cell cycle response. We show that a 3- to 5-h RA pulse is sufficient for inducing a robust growth arrest 2 to 4 days later, demonstrating inhibition of the G1-S transition by RA is triggered by immediate-early RAR targets and does not require the continuous presence of the hormone throughout the arrest program. Expression array analyses revealed that RA induces the expression of several genes involved in cell cycle regulation, including the p53-controlled antiproliferative gene B-cell translocation gene, member 2 (Btg2) and the BTG family member Tob1. We show that induction of Btg2 by RA does not require de novo protein synthesis and is augmented by overexpression of CRABP-II. Additionally, we identify a RA response element in the Btg2 promoter and show that the element binds retinoid X receptor/RAR heterodimers in vitro, is occupied by the heterodimers in cells, and can drive RA-induced activation of a reporter gene. Hence, Btg2 is a novel direct target for RA signaling. In concert with the reports that Btg2 inhibits cell cycle progression by down-regulating cyclin D1, induction of Btg2 by RA was accompanied by a marked decrease in cyclin D1 expression. The observations thus show that the antiproliferative activity of RA in MCF-7 cells is mediated, at least in part, by Btg2.
Collapse
Affiliation(s)
- Leslie J Donato
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
24
|
Belosay A, Brodie AMH, Njar VCO. Effects of novel retinoic acid metabolism blocking agent (VN/14-1) on letrozole-insensitive breast cancer cells. Cancer Res 2007; 66:11485-93. [PMID: 17145897 DOI: 10.1158/0008-5472.can-06-2168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aromatase inhibitors are proving to be more effective than tamoxifen for postmenopausal estrogen receptor (ER)-positive breast cancer. However, the inevitable development of resistance to treatment is a concern. We investigated the effects of novel retinoic acid metabolism blocking agent, VN/14-1, in overcoming letrozole resistance in long-term letrozole cultured (LTLC) cells. Compared with MCF-7 cells stably transfected with aromatase (MCF-7Ca), LTLC cells were no longer sensitive to growth inhibition by aromatase inhibitors. The HER-2/phosphorylated mitogen-activated protein kinase (pMAPK) growth factor signaling pathways were activated, and ERalpha and coactivator amplified in breast cancer 1 (AIB1) were up-regulated approximately 3-fold in LTLC cells. VN/14-1 inhibited aromatase activity and growth values of in MCF-7Ca cells with IC(50) of 8.5 and 10.5 nmol/L, respectively. In human placental microsomes, aromatase activity was inhibited with IC(50) of 8.0 pmol/L. The IC(50) in LTLC cells was 0.83 nmol/L, similar to letrozole (IC(50), 0.3 nmol/L) in MCF-7Ca cells. LTLC cells were 10-fold more sensitive to growth inhibition by VN/14-1 than MCF-7Ca cells. VN/14-1 treatment effectively down-regulated ERalpha, AIB1, pMAPK, HER-2, cyclin D1, cyclin-dependent kinase 4 (CDK4), and Bcl2 and up-regulated cytokeratins 8/18, Bad, and Bax. Tumor growth of LTLC cells in ovariectomized nude mice was independent of estrogens but was inhibited by VN/14-1 (20 mg/kg/d; P < 0.002). Decreases in ERalpha, cyclin D1, CDK4, and pMAPK and up-regulation of cytokeratins, Bad, and Bax with VN/14-1 in tumor samples may be responsible for the efficacy of this compound in inhibiting LTLC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Aashvini Belosay
- Department of Pharmacology and Experimental Therapeutics, School of Medicine and the Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
25
|
He JC, Lu TC, Fleet M, Sunamoto M, Husain M, Fang W, Neves S, Chen Y, Shankland S, Iyengar R, Klotman PE. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J Am Soc Nephrol 2006; 18:93-102. [PMID: 17182884 PMCID: PMC3197239 DOI: 10.1681/asn.2006070727] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HIV-associated nephropathy is characterized by renal podocyte proliferation and dedifferentiation. This study found that all-trans retinoic acid (atRA) reverses the effects of HIV-1 infection in podocytes. Treatment with atRA reduced cell proliferation rate by causing G1 arrest and restored the expression of the differentiation markers (synaptopodin, nephrin, podocin, and WT-1) in HIV-1-infected podocytes. It is interesting that both atRA and 9-cis RA increased intracellular cAMP levels in podocytes. Podocytes expressed most isoforms of retinoic acid receptors (RAR) and retinoid X receptors (RXR) with the exception of RXRgamma. RARalpha antagonists blocked atRA-induced cAMP production and its antiproliferative and prodifferentiation effects on podocytes, suggesting that RARalpha is required. For determination of the effect of increased intracellular cAMP on HIV-infected podocytes, cells were stimulated with either forskolin or 8-bromo-cAMP. Both compounds inhibited cell proliferation significantly and restored synaptopodin expression in HIV-infected podocytes. The effects of atRA were abolished by Rp-cAMP, an inhibitor of the cAMP/protein kinase A pathway and were enhanced by rolipram, an inhibitor of phosphodiesterase 4, suggesting that the antiproliferative and prodifferentiation effects of atRA on HIV-infected podocytes are cAMP dependent. Furthermore, both atRA and forskolin suppressed HIV-induced mitogen-activated protein kinase 1 and 2 and Stat3 phosphorylation. In vivo, atRA reduced proteinuria, cell proliferation, and glomerulosclerosis in HIV-1-transgenic mice. These findings suggest that atRA reverses the abnormal phenotype in HIV-1-infected podocytes by stimulating RARalpha-mediated intracellular cAMP production. These results demonstrate the mechanism by which atRA reverses the proliferation of podocytes that is induced by HIV-1.
Collapse
Affiliation(s)
- John Cijiang He
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tagliati F, Zatelli MC, Bottoni A, Piccin D, Luchin A, Culler MD, Degli Uberti EC. Role of complex cyclin d1/cdk4 in somatostatin subtype 2 receptor-mediated inhibition of cell proliferation of a medullary thyroid carcinoma cell line in vitro. Endocrinology 2006; 147:3530-8. [PMID: 16601140 DOI: 10.1210/en.2005-1479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatostatin (SRIH) inhibits cell proliferation by interacting with five distinct SRIH receptor subtypes (SSTRs) activating several pathways in many tissues. We previously demonstrated that SRIH, by activating Src homology-2-containing protein, inhibits cell proliferation of the human medullary thyroid carcinoma cell line, TT, which expresses all SSTRs. However, the effects of SRIH on cell cycle proteins have not been investigated so far. We therefore evaluated the effects of SRIH and a selective SSTR2 agonist on cell cycle protein expression, mainly focusing on cyclin D1 and its associated kinases. Our data show that SRIH and the selective SSTR2 agonist, BIM-23120, reduce cell proliferation and DNA synthesis as well as induce a delay of the cell cycle in G(2)/M phase. Moreover, treatment with both SRIH and BIM-23120 decreases cyclin D1 levels, with a parallel increase in phosphocyclin D1 levels, suggesting protein degradation. Moreover, our data show an increase in glycogen synthase kinase-3beta activity, which triggers phosphorylation-dependent cyclin D1 degradation. Indeed, we observed a reduction in cyclin D1 protein half-life under treatment with SRIH or the SSTR2 selective agonist. A reduction in cdk4 protein levels is also observed with a parallel reduction in Rb phosphorylation levels at Ser-780. Our data indicate that the subtype 2 receptor-mediated antiproliferative effect of SRIH on TT cell proliferation may be exerted through a decrease in cyclin D1 levels.
Collapse
Affiliation(s)
- Federico Tagliati
- Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, Via Savonarola 9, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Pratt MAC, Niu MY, Renart LI. Regulation of survivin by retinoic acid and its role in paclitaxel-mediated cytotoxicity in MCF-7 breast cancer cells. Apoptosis 2006; 11:589-605. [PMID: 16528475 DOI: 10.1007/s10495-006-4603-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.
Collapse
Affiliation(s)
- M A Christine Pratt
- Department Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5.
| | | | | |
Collapse
|
28
|
Nahum A, Zeller L, Danilenko M, Prall OWJ, Watts CKW, Sutherland RL, Levy J, Sharoni Y. Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1. Eur J Nutr 2006; 45:275-82. [PMID: 16565789 DOI: 10.1007/s00394-006-0595-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 02/08/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND Insulin-like growth factors (IGFs) play an important role in normal and cancerous cell proliferation. Moreover, in recent studies IGF-I has been implicated as a major cancer risk factor. The tomato carotenoid lycopene and all-trans retinoic acid (atRA) have been shown to inhibit growth factor-induced proliferation of different types of cancer cells. This action is associated with inhibition of cell cycle progression in G0/G1 phase. Cyclin D1 acts as a growth factor sensor in G1 phase and is overexpressed in many breast cancer tumors. We have previously demonstrated that slowdown of serum-stimulated cell cycle progression from G1 to S phase by lycopene correlates with reduction in cyclin D1 levels, suggesting that the expression of this protein is a main target for lycopene's action. AIM OF THE STUDY To determine whether the reported reduction in cyclin D1 level is the key mechanism for lycopene and atRA inhibitory action on IGF-I-induced cell cycle progression. RESULTS Human breast (MCF-7) and endometrial (ECC-1) cancer cells were synchronized in G0/G1 phase by serum deprivation followed by stimulation with IGF-I. Cell treatment with lycopene and atRA inhibited IGF-I-stimulated cell cycle progression from G1 to S phase and decreased retinoblastoma protein (pRb) phosphorylation. These events were associated with a reduction in cyclin D1 and p21(CIP1/WAF1) level, but not that of p27(KIP1). To test the hypothesis that the decrease in cyclin D1 has a major role in the inhibitory effects of lycopene and atRA, we examined the ability of these two agents to suppress cell cycle progression in MCF-7.7D1.13 cells which are capable of expressing cyclin D1 under the control of the Zn-inducible metallothionein promoter. Our results showed that ectopic expression of cyclin D1 can overcome cell cycle inhibition caused by lycopene and atRA. CONCLUSIONS Our findings suggest that attenuation of cyclin Dl levels by lycopene and atRA is an important mechanism for the reduction of the mitogenic action of IGF-I.
Collapse
Affiliation(s)
- Amit Nahum
- Dept. of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center of Kupat Holim, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Park EY, Dillard A, Williams EA, Wilder ET, Pepper MR, Lane MA. Retinol inhibits the growth of all-trans-retinoic acid-sensitive and all-trans-retinoic acid-resistant colon cancer cells through a retinoic acid receptor-independent mechanism. Cancer Res 2005; 65:9923-33. [PMID: 16267017 DOI: 10.1158/0008-5472.can-05-1604] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Retinol (vitamin A) is thought to exert its effects through the actions of its metabolite, all-trans-retinoic acid (ATRA), on gene transcription mediated by retinoic acid receptors (RAR) and retinoic acid response elements (RARE). However, retinoic acid resistance limits the chemotherapeutic potential of ATRA. We examined the ability of retinol to inhibit the growth of ATRA-sensitive (HCT-15) and ATRA-resistant (HCT-116, SW620, and WiDR) human colon cancer cell lines. Retinol inhibited cell growth in a dose-responsive manner. Retinol was not metabolized to ATRA or any bioactive retinoid in two of the cell lines examined. HCT-116 and WiDR cells converted a small amount of retinol to ATRA; however, this amount of ATRA was unable to inhibit cell growth. To show that retinol was not inducing RARE-mediated transcription, each cell line was transfected with pRARE-chloramphenicol acetyltransferase (CAT) and treated with ATRA and retinol. Although treatment with ATRA increased CAT activity 5-fold in ATRA-sensitive cells, retinol treatment did not increase CAT activity in any cell line examined. To show that growth inhibition due to retinol was ATRA, RAR, and RARE independent, a pan-RAR antagonist was used to block RAR signaling. Retinol-induced growth inhibition was not alleviated by the RAR antagonist in any cell line, but the antagonist alleviated ATRA-induced growth inhibition of HCT-15 cells. Retinol did not induce apoptosis, differentiation or necrosis, but affected cell cycle progression. Our data show that retinol acts through a novel, RAR-independent mechanism to inhibit colon cancer cell growth.
Collapse
Affiliation(s)
- Eun Young Park
- Institute for Cell and Molecular Biology and Division of Nutritional Sciences, Department of Human Ecology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wu K, DuPré E, Kim H, Tin-U CK, Bissonnette RP, Lamph WW, Brown PH. Receptor-selective retinoids inhibit the growth of normal and malignant breast cells by inducing G1 cell cycle blockade. Breast Cancer Res Treat 2005; 96:147-57. [PMID: 16273314 DOI: 10.1007/s10549-005-9071-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/13/2005] [Indexed: 11/25/2022]
Abstract
Despite advances in treatment, breast cancer continues to be the second leading cause of cancer mortality in women. Statistics suggest that while focus on treatment should continue, chemopreventive approaches should also be pursued. Previous studies have demonstrated that naturally occurring retinoids such as 9-cis retinoic acid (9cRA) can prevent breast cancer in animal models. However, these studies have also shown that these compounds are too toxic for general use. Work from our laboratory showed that an RXR-selective retinoid LGD1069 prevented tumor development in animal models of cancer with reduced toxicity as compared to an RAR-selective retinoid TTNPB. In the present study, we investigated the mechanisms by which receptor-selective retinoids inhibit the growth of normal and malignant breast cells. Our results demonstrate that the synthetic retinoids tested are as effective as 9cRA in suppressing the growth of normal human mammary epithelial cells (HMECs) and estrogen receptor-positive (ER-positive) breast cancer cells. Although the receptor-selective retinoids induce minimal amounts of apoptosis in T47D breast cancer cells, the predominant factor that leads to growth arrest is G1 cell cycle blockade. Our data indicate that this blockade results from the downregulation of Cyclin D1 and Cyclin D3, which in turn causes Rb hypophosphorylation. Non-toxic retinoids that are potent inducers of cell cycle arrest may be particularly useful for the prevention of breast cancer.
Collapse
Affiliation(s)
- Kendall Wu
- Department of Medicine and Molecular and Cellular Biology, Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abu J, Batuwangala M, Herbert K, Symonds P. Retinoic acid and retinoid receptors: potential chemopreventive and therapeutic role in cervical cancer. Lancet Oncol 2005; 6:712-20. [PMID: 16129372 DOI: 10.1016/s1470-2045(05)70319-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoids are natural and synthetic derivatives of vitamin A, which can be obtained from animal products (milk, liver, beef, fish oils, and eggs) and vegetables (carrots, mangos, sweet potatoes, and spinach). Retinoids regulate various important cellular functions in the body through specific nuclear retinoic-acid receptors and retinoid-X receptors, which are encoded by separate genes. Retinoic-acid receptors specifically bind tretinoin and alitretinoin, whereas retinoid-X receptors bind only alitretinoin. Retinoids have long been established as crucial for several essential life processes-healthy growth, vision, maintenance of tissues, reproduction, metabolism, tissue differentiation (normal, premalignant cells, and malignant cells), haemopoiesis, bone development, spermatogenesis, embryogenesis, and overall survival. Therefore, deficiency of vitamin A can lead to various unwanted biological effects. Several experimental and epidemiological studies have shown the antiproliferative activity of retinoids and their potential use in cancer treatment and chemoprevention. Emerging clinical trials have shown the chemotherapeutic and chemopreventive potential of retinoids in cancerous and precancerous conditions of the uterine cervix. In this review, we explore the potential chemopreventive and therapeutic roles of retinoids in preinvasive and invasive cervical neoplasia.
Collapse
Affiliation(s)
- Jafaru Abu
- Department of Obstetrics and Gynaecology, Radiation and Oxidative Stress Group, Cancer Studies and Molecular Medicine, University Hospitals of Leicester, UK.
| | | | | | | |
Collapse
|
32
|
Tighe AP, Talmage DA. Retinoids arrest breast cancer cell proliferation: retinoic acid selectively reduces the duration of receptor tyrosine kinase signaling. Exp Cell Res 2005; 301:147-57. [PMID: 15530851 PMCID: PMC2742418 DOI: 10.1016/j.yexcr.2004.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 07/08/2004] [Indexed: 01/12/2023]
Abstract
Retinoic acid (RA) induces cell cycle arrest of hormone-dependent human breast cancer (HBC) cells. Previously, we demonstrated that RA-induced growth arrest of T-47D HBC cells required the activity of the RA-induced protein kinase, protein kinase Calpha (PKCalpha) [J. Cell Physiol. 172 (1997) 306]. Here, we demonstrate that RA treatment of T-47D cells interfered with growth factor signaling to downstream, cytoplasmic and nuclear targets. RA treatment did not inhibit epidermal growth factor (EGF) receptor activation but resulted in rapid inactivation. The lack of sustained EGFR activation was associated with transient rather than sustained association of the EGFR with the Shc adaptor proteins and activation of Erk 1/2 and with compromised induction of expression of immediate early response genes. Inhibiting the activity of PKCalpha, a retinoic acid-induced target gene, prevented the effects of RA on cell proliferation and EGF signaling. Constitutive expression of PKCalpha, in the absence of RA, decreased cell proliferation and decreased EGF signaling. RA treatment increased steady-state levels of the protein tyrosine phosphatase PTP-1C and all measured effects of RA on EGF receptor function were reversed by the tyrosine phosphate inhibitor orthovanadate. These results indicate that RA-induced target genes, particularly PKCalpha, prevent sustained growth factor signaling, uncoupling activated receptor tyrosine kinases and nuclear targets that are required for cell cycle progression.
Collapse
Affiliation(s)
- Ann P. Tighe
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - David A. Talmage
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
- Corresponding author. Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, HHSC5-503, New York, NY 10032. Fax: +1 212 305 3079. E-mail address: (D.A. Talmage)
| |
Collapse
|
33
|
Dentice M, Luongo C, Elefante A, Romino R, Ambrosio R, Vitale M, Rossi G, Fenzi G, Salvatore D. Transcription factor Nkx-2.5 induces sodium/iodide symporter gene expression and participates in retinoic acid- and lactation-induced transcription in mammary cells. Mol Cell Biol 2004; 24:7863-77. [PMID: 15340050 PMCID: PMC515029 DOI: 10.1128/mcb.24.18.7863-7877.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sodium/iodide symporter (NIS) is a plasma membrane protein that mediates active iodide transport in thyroid and mammary cells. It is a prerequisite for radioiodide treatment of thyroid cancer and a promising diagnostic and therapeutic tool for breast cancer. We investigated the molecular mechanisms governing NIS expression in mammary cells. Here we report that Nkx-2.5, a cardiac homeobox transcription factor that is also expressed in the thyroid primordium, is a potent inducer of the NIS promoter. By binding to two specific promoter sites (N2 and W), Nkx-2.5 induced the rNIS promoter (about 50-fold over the basal level). Interestingly, coincident with NIS expression, Nkx-2.5 mRNA and protein were present in lactating, but not virgin, mammary glands in two human breast cancer samples and in all-trans retinoic acid (tRA)-stimulated MCF-7 breast cancer cells. A cotransfected dominant-negative Nkx-2.5 mutant abolished tRA-induced endogenous NIS induction, which shows that Nkx-2.5 activity is critical for this process. Remarkably, in MCF-7 cells, Nkx-2.5 overexpression alone was sufficient to induce NIS and iodide uptake. In conclusion, Nkx-2.5 is a novel relevant transcriptional regulator of mammary NIS and could thus be exploited to manipulate NIS expression in breast cancer treatment strategies.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression
- HeLa Cells
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/metabolism
- Humans
- Lactation/genetics
- Lactation/metabolism
- Mutagenesis, Site-Directed
- Pregnancy
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Rats
- Symporters/genetics
- Thyroid Gland/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Monica Dentice
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pratt MAC, Niu M, White D. Differential regulation of protein expression, growth and apoptosis by natural and synthetic retinoids. J Cell Biochem 2003; 90:692-708. [PMID: 14587026 DOI: 10.1002/jcb.10682] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
All-trans retinoic acid (ATRA) can down regulate the anti-apoptotic protein Bcl-2 and the cell cycle proteins cyclin D1 and cdk2 in estrogen receptor-positive breast cancer cells. We show here that retinoids can also reduce expression of the inhibitor of apoptosis protein, survivin. Here we have compared the regulation of these proteins in MCF-7 and ZR-75 breast cancer cells by natural and synthetic retinoids selective for the RA receptors (RARs) alpha, beta, and gamma then correlated these with growth inhibition, induction of apoptosis and chemosensitization to Taxol. In both cell lines ATRA and 9-cis RA induced the most profound decreases in cyclin D1 and cdk2 expression and also mediated the largest growth inhibition. The RARalpha agonist, Ro 40-6055 also strongly downregulated these proteins although did not produce an equivalent decrease in S-phase cells. Only ATRA induced RARbeta expression. ATRA, 9-cis RA and 4-HPR initiated the highest level of apoptosis as determined by mitochondrial Bax translocation, while only ATRA and 9-cis RA strongly reduced Bcl-2 and survivin protein expression. Enumeration of dead cells over 96 h correlated well with downregulation of both survivin and Bcl-2. Simultaneous retinoid-mediated reduction of both these proteins also predicted optimal Taxol sensitization. 4-HPR was much weaker than the natural retinoids with respect to Taxol sensitization, consistent with the proposed requirement for reduced Bcl-2 in this synergy. Neither the extent of cell cycle protein regulation nor AP-1 inhibition fully predicted the antiproliferative effect of the synthetic retinoids suggesting that growth inhibition requires regulation of a spectrum of RAR-regulated gene products in addition even to pivotal cell cycle proteins.
Collapse
Affiliation(s)
- M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5.
| | | | | |
Collapse
|
35
|
Vuocolo S, Purev E, Zhang D, Bartek J, Hansen K, Soprano DR, Soprano KJ. Protein phosphatase 2A associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells. J Biol Chem 2003; 278:41881-9. [PMID: 12915404 DOI: 10.1074/jbc.m302715200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levels of Rb2/p130 protein are increased 5-10-fold following all-trans-retinoic acid (ATRA) treatment of the retinoid-sensitive ovarian adenocarcinoma cell line CAOV3, but not the retinoid-resistant adenocarcinoma cell line SKOV3. We found that this increase in Rb2/p130 protein levels in ATRA-treated CAOV3 cells was the result of an increased protein stability. Moreover, Rb2/p130 exhibited a decreased ubiquitination following ATRA treatment. Because phosphorylation frequently mediates ubiquitination of proteins, we examined the serine/threonine phosphatase activity in our CAOV3 cells following ATRA treatment. A significant increase in Ser/Thr phosphatase activity was found, which correlated with a rise in the level of protein phosphatase 2A (PP2A) catalytic subunit-alpha. In addition, co-immunoprecipitation and glutathione S-transferase pull-down studies demonstrated that PP2A and Rb2/p130 associate. We have made use of a battery of Rb2/p130 mutants to determine the sites dephosphorylated in response to ATRA treatment of CAOV3 cells. Obligate CDK4 phosphorylation sites seemed most important to the stability of the protein and are among the candidate sites that are dephosphorylated by PP2A following ATRA treatment. Finally, using both small interfering RNA specific to the catalytic subunit of PP2A and a variant of the SKOV3 cell line that overexpresses PP2A, we have shown that modulation of PP2A protein levels correlates with the ability of ATRA to inhibit growth of ovarian carcinoma cells. Our data suggest that ATRA mediates growth inhibition by stabilizing Rb2/p130 via a mechanism that involves induction of PP2A, an enzyme that can potentially dephosphorylate Rb2/p130, thereby protecting it from degradation by the proteasome.
Collapse
Affiliation(s)
- Scott Vuocolo
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Alisi A, Leoni S, Piacentani A, Conti Devirgiliis L. Retinoic acid modulates the cell-cycle in fetal rat hepatocytes and HepG2 cells by regulating cyclin-cdk activities. Liver Int 2003; 23:179-86. [PMID: 12955881 DOI: 10.1034/j.1600-0676.2003.00829.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinoic acid (RA), the most biologically active metabolite of vitamin A, is known to modulate cell proliferation, apoptosis and differentiation, with different effects depending on the cellular context. Retinoic acid can exert its effects by directly or indirectly influencing the expression of genes involved in the control of cell proliferation. In the present report we investigate the possible correlation between the antiproliferative, differentiative and apoptotic effects previously observed on rat hepatocytes and HepG2 cells, with a possible modulation of cell-cycle regulators. We demonstrate that RA induces growth arrest and differentiation in HepG2 cells by influencing the activities of cyclin-cdk complexes involved in the regulation of G1/S transition and S-phase progression, in particular by modifying the binding of these complexes to p21 and p27 inhibitors. In fetal cells, however, the induction of apoptosis and differentiation by RA was obtained via inhibition of cyclin D1-cdk4 activity, as result of an increased binding to the p16 inhibitor. Retinoic acid also modulates c-myc and Bcl-2 expression. In conclusion, our data suggest that RA could be useful to regulate the reversion of transformed phenotype and could also be utilized as a chemiopreventive agent in cells of hepatic origin.
Collapse
Affiliation(s)
- A Alisi
- Department of Cellular and Developmental Biology, University La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Pratt MAC, Niu MY. Bcl-2 controls caspase activation following a p53-dependent cyclin D1-induced death signal. J Biol Chem 2003; 278:14219-29. [PMID: 12480939 DOI: 10.1074/jbc.m209650200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
MCF-7 and ZR-75 breast cancer cells infected with an adenovirus constitutively expressing high levels of cyclin D1 demonstrated widespread mitochondrial translocation of Bax and cytochrome c release that was approximately doubled after the addition of all-trans retinoic acid (RA) or Bcl-2 antisense oligonucleotide. By comparison, the percentage of cells in Lac Z virus-infected cultures containing translocated Bax and cytoplasmic cytochrome c was markedly less even after RA treatment. Despite this, RA-treated Lac Z and untreated cyclin D1 virus-infected cultures contained similarly low proportions of cells with active caspase or cells that were permeable to propidium iodide. Bax activation was p53-dependent and accompanied by arrest in G(2) phase. Although constitutive Bcl-2 expression prevented Bax activation, it did not alter cyclin D1-induced cell cycle arrest, illustrating the independence of these events. Both RA and antisense Bcl-2 oligonucleotide decreased Bcl-2 protein levels and markedly increased caspase activity and apoptosis in cyclin D1-infected cells. Thus amplified cyclin D1 expression initiates an apoptotic signal inhibited by different levels of cellular Bcl-2 at two points. Whereas high cellular levels of Bcl-2 prevent mitochondrial Bax translocation, lower levels can prevent apoptosis by inhibition of caspase activation.
Collapse
Affiliation(s)
- M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, K1H 8M5, Canada.
| | | |
Collapse
|
38
|
Kogai T, Kanamoto Y, Brent GA. The modified firefly luciferase reporter gene (luc+) but not Renilla luciferase is induced by all-trans retinoic acid in MCF-7 breast cancer cells. Breast Cancer Res Treat 2003; 78:119-26. [PMID: 12611464 DOI: 10.1023/a:1022179717847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Luciferase genes are widely used as reporters to analyze promoter and regulatory elements. We found that a luciferase reporter gene vector with a modified firefly luciferase gene (luc+), but not Renilla luciferase (Rluc), was induced by all-trans retinoic acid (tRA) in the MCF-7 breast cancer cell line. tRA (5 x 10(-6) M) increased luciferase activity of the pGL3 promoter vector (containing luc+) up to approximately 3.8-fold in MCF-7 cells, but not in LNCaP prostate cancer cells or JEG-3 choriocarcinoma cells. Chimeric plasmids were constructed and showed that tRA-induction required the luc+ gene, but not any specific promoter or vector sequence. Time course and dose-response studies of tRA-induction indicated that longer treatment (> 24h) and higher tRA dose (> 10(-6) M) were required for luc+ induction compared with those for a positive retinoic acid response element (maximum induction at 6 h and 10(-8) M tRA). Studies with the translation inhibitor, cycloheximide, indicated the half-life of the luc+ protein was increased from 9.7 +/- 1.5 to 22.1 +/- 3.1 h with tRA treatment. Other retinoids, TTNPB, a retinoic acid receptor beta/gamma-specific ligand, and a retinoid X receptor ligand, did not significantly increase luc+ expression. Caution is needed in analysis of retinoid responsive gene regulation with the luciferase reporter system in MCF-7 cells, especially at high retinoid concentrations.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
39
|
Afonja O, Raaka BM, Huang A, Das S, Zhao X, Helmer E, Juste D, Samuels HH. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition. Oncogene 2002; 21:7850-60. [PMID: 12420222 DOI: 10.1038/sj.onc.1205985] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 01/12/2023]
Abstract
Retinoic acid receptors (RARs) are ligand-dependent transcription factors which are members of the steroid/thyroid hormone receptor gene family. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. PCR-amplified subtractive hybridization was used to identify candidate retinoid-regulated genes that may be involved in growth inhibition. One candidate gene identified was SOX9, a member of the high mobility group (HMG) box gene family of transcription factors. SOX9 gene expression is rapidly stimulated by RAR-agonists in T-47D cells and other retinoid-inhibited breast cancer cell lines. In support of this finding, a database search indicates that SOX9 is expressed as an EST in breast tumor cells. SOX9 is known to be expressed in chondrocytes where it regulates the transcription of type II collagen and in testes where it plays a role in male sexual differentiation. RAR pan-agonists and the RARalpha-selective agonist Am580, but not RXR agonists, stimulate the expression of SOX9 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not stimulate SOX9 in breast cancer cell lines which were not growth inhibited by retinoids. Expression of SOX9 in T-47D cells leads to cycle changes similar to those found with RAR-agonists while expression of a dominant negative form of SOX9 blocks RA-mediated cell cycle changes, suggesting a role for SOX9 in retinoid-mediated growth inhibition.
Collapse
MESH Headings
- Animals
- Benzoates/pharmacology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Cycle
- Cell Division/drug effects
- Estradiol/pharmacology
- Estrogens
- Expressed Sequence Tags
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Targeting
- Genes, Dominant
- Growth Substances/pharmacology
- High Mobility Group Proteins/biosynthesis
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/physiology
- Humans
- Kidney/metabolism
- Male
- Mammary Glands, Animal/metabolism
- Mice
- Neoplasm Proteins/agonists
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Organ Specificity
- Receptors, Estrogen/analysis
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/classification
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/physiology
- Recombinant Fusion Proteins/physiology
- Retinoic Acid Receptor alpha
- Retinoids/pharmacology
- SOX9 Transcription Factor
- Testis/metabolism
- Tetrahydronaphthalenes/pharmacology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transfection
- Tretinoin/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Olubunmi Afonja
- Department of Pediatrics, New York University School of Medicine, 550 First Avenue, New York, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu L, Gudas LJ. Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines. J Cell Physiol 2002; 193:244-52. [PMID: 12385002 DOI: 10.1002/jcp.10173] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinoic acid (RA) and its derivatives inhibit the proliferation of normal human mammary epithelial cells (HMEC) and some breast carcinoma lines by mechanisms which are not fully understood. To identify genes that mediate RA-induced cell growth arrest, an HMEC cDNA library was synthesized and subtractive screening was performed. We identified the interleukin-1beta (IL-1beta) gene as an RA induced gene in HMEC. Northern blot analyses showed that the IL-1beta gene was up-regulated as early as 2 h after RA treatment. Results from the treatment of HMEC with cycloheximide and actinomycin D indicated that the regulation of the IL-1beta gene by RA occurred at the transcriptional level and that the IL-1beta gene is a direct, downstream target gene of RA. To evaluate the effects of IL-1beta on cell proliferation, the proliferation of HMEC was measured in the presence of RA or IL-1beta, or both. Either RA or IL-1beta could significantly inhibit the proliferation of HMEC. However, the addition of soluble IL-1 receptor antagonist (sIL-1ra) to the cell culture medium did not block RA-induced HMEC growth inhibition, whereas sIL-1ra did block the growth inhibition of HMEC by IL-1beta. IL-1beta expression was not observed in the three carcinoma cell lines, MCF-7, MDA-MB-231, and MDA-MB-468, as compared to the HMEC. Growth curves of the breast carcinoma cell lines showed strong inhibitory effects of RA and IL-1beta on the growth of the estrogen receptor (ER) positive MCF-7 cell line, but only a small effect on the ER negative MDA-MB-231 cells. The expression of the IL-1beta gene was also transcriptionally activated by RA in normal epithelial cells of prostate and oral cavity. Our results suggest that: (a) the IL-1beta gene is a primary target of RA receptors in HMEC; (b) the enhanced expression of the IL-1beta gene does not mediate the RA-induced growth arrest of HMEC; and (c) the expression of the IL-1beta gene is low or absent in all three human breast carcinoma cell lines examined, but the defect in the IL-1beta signaling pathway may be different in ER positive versus ER negative carcinoma cells.
Collapse
Affiliation(s)
- Limin Liu
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
41
|
Zhang D, Vuocolo S, Masciullo V, Sava T, Giordano A, Soprano DR, Soprano KJ. Cell cycle genes as targets of retinoid induced ovarian tumor cell growth suppression. Oncogene 2001; 20:7935-44. [PMID: 11753676 DOI: 10.1038/sj.onc.1204971] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Revised: 08/29/2001] [Accepted: 09/13/2001] [Indexed: 11/09/2022]
Abstract
We have examined the effect of all-trans-retinoic acid (RA) on cell cycle gene expression in RA sensitive CA-OV3 and RA resistant SK-OV3 ovarian carcinoma cell lines. Gene expression was analysed by multiprobe RNAse protection, Western blotting and in vitro kinase assays. No differences were observed between RA sensitive and RA resistant ovarian carcinoma cells in the levels of expression of many cell cycle genes including cyclin A, B and E, cdk 2,4 and 6, E2F-1, E2F-2, E2F-3, E2F-4, E2F-5, DP-1 and DP-2. However, RA sensitive CA-OV3 cells expressed higher levels of p53, p27, p21, and p16 compared to RA resistant SK-OV3 cells. In addition, RA treatment of CA-OV3 cells resulted in a significant decrease in hyperphosphorylated RB and RB-2/p130 and corresponding significant increases in the levels of hypophosphorylated and/or partially phosphorylated RB-2/p130 protein and hypophosphorylated RB. Also, RA treatment increased expression of the cdk inhibitor p27 and decreased activity of cdk 2, cdk 4 and cdk 6. Finally, amounts of p27-cyclin E and RB-2/p130-E2F4 complexes were found to increase in CA-OV3 cells growth arrested by RA. These results suggest that the pocket protein pathways are critical targets for retinoid suppression of ovarian carcinoma cell growth.
Collapse
Affiliation(s)
- D Zhang
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Yang L, Ostrowski J, Reczek P, Brown P. The retinoic acid receptor antagonist, BMS453, inhibits normal breast cell growth by inducing active TGFbeta and causing cell cycle arrest. Oncogene 2001; 20:8025-35. [PMID: 11753686 DOI: 10.1038/sj.onc.1204911] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Revised: 06/29/2001] [Accepted: 08/14/2001] [Indexed: 11/09/2022]
Abstract
We have previously shown that a retinoic acid receptor (RAR) antagonist BMS453, which does not activate RAR-dependent gene transcription in breast cells, inhibits normal breast cell growth. In this study we have investigated the mechanisms by which this retinoid receptor antagonist inhibits cell growth. Both all trans retinoic acid (atRA) and BMS453 inhibited the proliferation of normal breast cell growth without significantly inducing apoptosis. Both retinoids caused a G1 block in the cell cycle with an increase in the proportion of cells in G0/G1 and a decrease in the proportion of cells in S phase. We then investigated the effects of the retinoids on molecules that regulate the G1 to S transition. These studies demonstrated that both atRA and BMS453 induce Rb hypophosphorylation and decrease CDK2 kinase activity. We then studied the effect of the retinoids on the expression of CDK inhibitors. atRA and BMS453 increased total p21 protein levels and CDK2-bound p21 protein, but did not change CDK4-bound p21. These results suggest that atRA and BMS453 increase p21, decrease CDK2 kinase activity, which in turn leads to hypophosphorylation of Rb and G1 arrest. Because transforming growth factor beta (TGFbeta) has been proposed as a mediator of retinoid-induced growth inhibition, we next investigated whether TGFbeta mediates the anti-proliferative effect of atRA and BMS453 in normal breast cells. These studies showed that atRA and BMS453 increased total TGFbeta activity by 3-5-fold. However, BMS453 increased active TGFbeta activity by 33-fold while atRA increased active TGFbeta activity by only threefold. These results suggest that BMS453 treatment induces conversion of latent TGFbeta to active TGFbeta. To investigate whether this increase in active TGFbeta mediates the anti-proliferative effects of these retinoids, a TGFbeta-blocking antibody was used in an attempt to prevent retinoid-induced growth inhibition. Results from these experiments showed that the anti-TGFbeta antibody prevented the inhibition of cell proliferation induced by BMS453, but did not prevent the inhibition of cell proliferation induced by atRA. These results demonstrate that BMS453 inhibits breast cell growth predominantly through the induction of active TGFbeta, while atRA inhibits growth through other mechanisms. These results suggest that retinoid analogs that increase active TGFbeta may be promising agents for the prevention of breast cancer.
Collapse
Affiliation(s)
- L Yang
- Baylor Breast Center, Baylor Medical College, One Baylor Plaza, MS600, Houston, Texas, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Ben-Dor A, Nahum A, Danilenko M, Giat Y, Stahl W, Martin HD, Emmerich T, Noy N, Levy J, Sharoni Y. Effects of acyclo-retinoic acid and lycopene on activation of the retinoic acid receptor and proliferation of mammary cancer cells. Arch Biochem Biophys 2001; 391:295-302. [PMID: 11437362 DOI: 10.1006/abbi.2001.2412] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biochemical mechanisms underlying the inhibitory effects of lycopene, the main tomato carotenoid, on the growth of cancer cells are largely unknown. It has been hypothesized that lycopene derivatives may act as ligands for a nuclear receptor in analogy to retinoic acid, the hormone derived from beta-carotene. The inhibition of human mammary cancer (MCF-7) cell growth and the transactivation of the retinoic acid receptor (RAR) reporter gene by synthetic acyclo-retinoic acid, the open chain analog of retinoic acid, was compared to the effects of lycopene and retinoic acid in the same systems. Acyclo-retinoic acid activated the DR-5 retinoic acid response element with a approximately 100-fold lower potency than retinoic acid. This effect was independent of cotransfection with the RARalpha receptor. Lycopene exhibited only very modest activity in this system. In contrast to the results from the transactivation studies, acyclo-retinoic acid, retinoic acid, and lycopene inhibited cell growth with a similar potency. Preincubation with each of the three compounds slowed down cell cycle progression from G1 to S phase. In summary, acyclo-retinoic acid inhibited cancer cell growth and interacted with RAR. However, it exhibited low affinity for RAR and a correspondingly low efficacy in activating this receptor, indicating that RAR does not mediate the growth inhibitory effect of the compound. In addition, the concentrations of acyclo-retinoic acid and of lycopene required for inducing inhibition of cell growth were similar, suggesting that acyclo-retinoic acid is unlikely to be the active metabolite of lycopene.
Collapse
Affiliation(s)
- A Ben-Dor
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Niu MY, Ménard M, Reed JC, Krajewski S, Pratt MA. Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells. Oncogene 2001; 20:3506-18. [PMID: 11429697 DOI: 10.1038/sj.onc.1204453] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Revised: 03/05/2001] [Accepted: 03/07/2001] [Indexed: 01/13/2023]
Abstract
All-trans retinoic acid inhibits growth associated with downregulation of cyclin D1 and can cause low level apoptosis in estrogen receptor positive breast cancer cell lines. The cyclin D1 gene is amplified and/or the protein overexpressed in about one-third of breast cancers. Constitutive expression of cyclin D1 in estrogen receptor positive MCF-7 and ZR-75 breast cancer cells (MCF-7(cycD1) and ZR-75(cycD1)) Increased the fraction of cells in S phase and reduced the G1 accumulation following retinoic acid treatment compared with control cells. However, culture of MCF-7(cycD1) with 1 microM all-trans retinoic acid resulted in about threefold greater growth inhibition compared with vector-transfected cells. Hoechst staining of DNA and in situ DNA end-labeling analysis indicated that MCF-7(cycD1) and ZR-75(cycD1) cultures contained 4-6-fold more retinoic acid-induced apoptotic nuclei as vector-transfected cells. Retinoic acid treatment of vector-transfected clones resulted in Bax protein activation as assessed by exposure of the NH(2)-terminus of Bax but the proportion of cells containing activated Bax was increased in cyclin D-expressing cells treated with retinoic acid. The latter cells also displayed both immunocytochemical and biochemical evidence of translocation of cytochrome c into the cytosol following RA-treatment. Retinoic acid markedly decreased the Bcl-2 levels in MCF-7 and ZR-75 cells. Accordingly, coexpression of Bcl-2 and cyclin D1 rendered the cells resistant to retinoic acid-induced apoptosis. We conclude that constitutive expression of cyclin D1 sensitizes ER-positive breast cancer cells to a retinoic acid-induced mitochondrial death pathway involving Bax activation, cytochrome c release and caspase-9 cleavage.
Collapse
Affiliation(s)
- M Y Niu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
45
|
Nahum A, Hirsch K, Danilenko M, Watts CK, Prall OW, Levy J, Sharoni Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27(Kip1) in the cyclin E-cdk2 complexes. Oncogene 2001; 20:3428-36. [PMID: 11423993 DOI: 10.1038/sj.onc.1204452] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2000] [Revised: 02/26/2001] [Accepted: 03/07/2001] [Indexed: 01/04/2023]
Abstract
Numerous studies have demonstrated the anticancer activity of the tomato carotenoid, lycopene. However, the molecular mechanism of this action remains unknown. Lycopene inhibition of human breast and endometrial cancer cell growth is associated with inhibition of cell cycle progression at the G(1) phase. In this study we determined the lycopene-mediated changes in the cell cycle machinery. Cells synchronized in the G(1) phase by serum deprivation were treated with lycopene or vehicle and restimulated with 5% serum. Lycopene treatment decreased serum-induced phosphorylation of the retinoblastoma protein and related pocket proteins. This effect was associated with reduced cyclin-dependent kinase (cdk4 and cdk2) activities with no alterations in CDK protein levels. Lycopene caused a decrease in cyclin D1 and D3 levels whereas cyclin E levels did not change. The CDK inhibitor p21(Cip1/Waf1) abundance was reduced while p27(Kip1) levels were unaltered in comparison to control cells. Serum stimulation of control cells resulted in reduction in the p27 content in the cyclin E--cdk2 complex and its accumulation in the cyclin D1--cdk4 complex. This change in distribution was largely prevented by lycopene treatment. These results suggest that lycopene inhibits cell cycle progression via reduction of the cyclin D level and retention of p27 in cyclin E--cdk2, thus leading to inhibition of G(1) CDK activities.
Collapse
Affiliation(s)
- A Nahum
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001; 20:2927-36. [PMID: 11420705 DOI: 10.1038/sj.onc.1204365] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 02/07/2001] [Accepted: 02/12/2001] [Indexed: 12/22/2022]
Abstract
Prostate cancer is one of the most common cancers in men and it is the second leading cause of cancer related death in men in the United States. Recent dietary and epidemiological studies have suggested the benefit of dietary intake of fruits and vegetables in lowering the incidence of prostate cancer. A diet rich in fruits and vegetables provides phytochemicals, particularly indole-3-carbinol (I3C), which may be responsible for the prevention of many types of cancer, including hormone-related cancers such as prostate. Studies to elucidate the role and the molecular mechanism(s) of action of I3C in prostate cancer, however, have not been conducted. In the current study, we investigated whether I3C had any effect against prostate cancer cells and, if so, attempts were made to identify the potential molecular mechanism(s) by which I3C elicits its biological effects on prostate cancer cells. Here we report for the first time that I3C inhibits the growth of PC-3 prostate cancer cells. Induction of G1 cell cycle arrest was also observed in PC-3 cells treated with I3C, which may be due to the observed effects of I3C in the up-regulation of p21(WAF1) and p27(Kip1) CDK inhibitors, followed by their association with cyclin D1 and E and down-regulation of CDK6 protein kinase levels and activity. The induction of p21(WAF1) appears to be transcriptionally upregulated and independent of the p53 responsive element. In addition, I3C inhibited the hyperpohosphorylation of the Retinoblastoma (Rb) protein in PC-3 cells. Induction of apoptosis was also observed in this cell line when treated with I3C, as measured by DNA laddering and poly (ADP-ribose) polymersae (PARP) cleavage. We also found an up-regulation of Bax, and down-regulation of Bcl-2 in I3C-treated cells. These effects may also be mediated by the down-regulation of NF-kappaB observed in I3C treated PC-3 cells. From these results, we conclude that I3C inhibits the growth of PC-3 prostate cancer cells by inducing G1 cell cycle arrest leading to apoptosis, and regulates the expression of apoptosis-related genes. These findings suggest that I3C may be an effective chemopreventive or therapeutic agent against prostate cancer.
Collapse
Affiliation(s)
- S R Chinni
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, MI, USA
| | | | | | | | | |
Collapse
|
47
|
Tsutusmi A, Shiota G, Yamazaki H, Kunisada T, Terada T, Kawasaki H. Accelerated growth of hepatocytes in association with Up-regulation of cyclin E in transgenic mice expressing the dominant negative form of retinoic acid receptor. Biochem Biophys Res Commun 2000; 278:229-35. [PMID: 11071877 DOI: 10.1006/bbrc.2000.3786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoids play an important role in pathogenesis of liver diseases. To clarify the functional role of retinoic acid (RA) in liver, we developed transgenic mice (Tg) which express the dominant negative form of retinoic acid receptor (RARE) in liver. Here, we report that proliferation of hepatocytes in RARE Tg is greatly enhanced and that cyclin E is up-regulated in RARE Tg. Liver weight, liver/body weight, and proliferating cell nuclear antigen (PCNA) labeling index in RARE Tg were significantly increased, compared to those in wild-type mice (P < 0.01, each). Cell cycle analysis showed that 2N DNA content cells and aneuploid area between 2N and 4N DNA, reflecting S phase cells, were significantly increased in RARE Tg, compared to wild-type mice (P < 0.01, each). Of G1 phase-related proteins including cyclins, cyclin-dependent protein kinases (CDKs) and cyclin-dependent protein kinase inhibitors (CKIs), cyclin E mRNA and protein was up-regulated in liver from RARE Tg by reverse transcription polymerase chain reaction and Western blot analysis. Furthermore, the immunoprecipitation with anti-cdk2 antibody, followed by Western blot analysis with anti-cyclin E antibody indicated that cyclin E/cdk2 complex is increased in liver of RARE Tg. The results of the present study suggest that cyclin E in association with cdk2 governs cell cycle progression through G1 in hepatocytes where function of RA is inhibited.
Collapse
Affiliation(s)
- A Tsutusmi
- Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Each year, an estimated 26,000 women in the United States are diagnosed with ovarian cancer. During any given year, approximately 14,500 women die from this disease. Ovarian cancer is the seventh most common cancer in women worldwide, after breast, cervix, colon/rectum, stomach, corpus uteri, and lung cancers. In the U.S., ovarian cancer is the second most common gynecologic cancer, and is the fourth leading cause of solid tumor cancer deaths among women. Currently, postoperative chemotherapy of ovarian cancer is still suboptimal. Drug resistance is a common problem resulting in only 20 approximately 30% overall 5-year survival rates. Clearly, continued development of alternative therapeutic strategies is essential for the management of this fatal disease. A number of recent studies have suggested that retinoids may play a potential role as an ovarian cancer chemotherapeutic agent. Retinoids, the natural and synthetic derivatives of vitamin A, have been shown to inhibit the growth of human ovarian cancer cells both in vivo and in culture. This review will initially summarize what is known about the pathological and molecular characteristics of ovarian carcinoma. It will then describe retinoid metabolism and the role of the cellular and nuclear retinoid binding proteins in mediating retinoid action. Following this general review of retinoids and their function, data supporting the role of retinoic acid as a suppresser of ovarian carcinoma cell growth will be presented. Particular attention will be paid to studies suggesting that members of the RB family of proteins and RB2/p130, in particular, are the molecular targets responsible for retinoid mediated inhibition of ovarian carcinoma cell growth. This review will then conclude with a brief discussion of two synthetic retinoids, 4 HPR R(fenretinide) and AHPN/CD437, which have been shown to induce apoptosis in ovarian tumor cells. It will be clear from the studies summarized in this review that retinoids represent a potentially powerful alternative to present chemotherapeutic approaches to the treatment of late stage ovarian cancer.
Collapse
Affiliation(s)
- D Zhang
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
49
|
Kogai T, Schultz JJ, Johnson LS, Huang M, Brent GA. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line. Proc Natl Acad Sci U S A 2000; 97:8519-24. [PMID: 10890895 PMCID: PMC26980 DOI: 10.1073/pnas.140217197] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to approximately 9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein ( approximately 68 kDa). tRA stimulated NIS gene transcription approximately 4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t(1/2) = 24 min), compared with that in FRTL-5 thyroid cells (t(1/2) = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with (131)I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers.
Collapse
Affiliation(s)
- T Kogai
- Molecular Endocrinology Laboratory, West Los Angeles Veterans Affairs Medical Center, Departments of Medicine and Physiology, University of California School of Medicine, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|
50
|
Nabeyrat E, Corroyer S, Epaud R, Besnard V, Cazals V, Clement A. Retinoic acid-induced proliferation of lung alveolar epithelial cells is linked to p21(CIP1) downregulation. Am J Physiol Lung Cell Mol Physiol 2000; 278:L42-50. [PMID: 10645889 DOI: 10.1152/ajplung.2000.278.1.l42] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoids, including retinol and retinoic acid (RA) derivatives, have been shown to be involved in the processes of lung development as well as of lung repair after injury. Recently, we have provided evidence that RA could stimulate proliferation of lung alveolar type 2 epithelial cells (E. Nabeyrat, V. Besnard, S. Corroyer, V. Cazals, and A. Clement. Am. J. Physiol. Lung Cell. Mol. Physiol. 275: L71-L79, 1998). To gain some insight into the mechanisms involved in the mitogenic action of RA, we focused in the present study on the effects of RA on the expression of G(1) phase cyclins and their cell cycle-dependent kinases (Cdks). Experiments were performed with serum-deprived cells cultured in the absence and presence of RA. The results showed no effects of RA on the expression of either cyclins or Cdks. In contrast, RA treatment was found to prevent the decrease in cyclin E-Cdk2 activity observed when cells were growth arrested by serum deprivation. The observation that changes in cyclin E-Cdk2 activity were not associated with modifications in the amount of complexes formed led to the suggestion that the Cdk inhibitory protein (CKI) was involved. Study of the CKI p21(CIP1) revealed marked differences in its expression in the absence and presence of RA, with a dramatic downregulation observed in RA-treated cells. Interestingly, immunoprecipitation experiments provided evidence that the decreased levels of p21(CIP1) were associated with a reduced interaction of this CKI with cyclin E-Cdk2 complexes. These data together with previous results obtained in various situations of type 2 cell growth arrest emphasize the role of p21(CIP1) in the control of lung alveolar epithelial cell proliferation.
Collapse
Affiliation(s)
- E Nabeyrat
- Departement de Pneumologie Pediatrique, Institut National de la Santé et de la Recherche Médicale Unité 515, Hôpital Trousseau Assistance Publique-Hôpitaux de Paris, Université Paris VI, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|