1
|
Wijayarathna R, Hedger MP. New aspects of activin biology in epididymal function and immunopathology. Andrology 2024; 12:964-972. [PMID: 37644728 DOI: 10.1111/andr.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The activins (A and B) and their binding protein, follistatin, play crucial roles in development, immunoregulation and inflammation throughout the body. In the male reproductive tract of the mouse, activin A and B production is largely confined to the initial segment and proximal caput of the epididymis and the efferent ducts, under normal conditions, with very low expression in the corpus, cauda and vas deferens. However, activin A protein is present throughout the epididymis and vas deferens and is largely associated with the epithelium and interstitial macrophages. Conversely, the activin-binding protein follistatin is produced in the distal epididymis, with very high expression in the vas deferens. Activin activity in the distal tract is inhibited by follistatin, and the activin-follistatin balance is important for regulating coiling of the duct during epididymal development. In further experiments, as described in this report, in situ hybridisation was used to localise activin A mRNA principally to cells in the periductal zone and interstitium in the efferent ducts and proximal caput. Activin B mRNA, on the other hand, was localised to periductal cells in the efferent ducts and proximal epididymis and, most notably, to epithelial cells in the initial segment. Activin A is implicated in the regulation of mononuclear phagocyte function and immune responses in the caput and stimulates the expression of the key immunoregulatory protein, indoleamine 2,3-dioxygenase in this region. Activin A production in the corpus and cauda increases dramatically during bacterial epididymitis in mice, promoting inflammation and fibrosis and causing damage to the epithelium and obstruction of the epididymal duct. Consequently, it appears that the activin-follistatin axis is crucial for maintaining normal epididymal structure and function, but disruption of this balance during inflammation has deleterious effects on male fertility. Follistatin has therapeutic potential in ameliorating the proinflammatory and profibrotic effects of activins.
Collapse
Affiliation(s)
- Rukmali Wijayarathna
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| | - Mark P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
2
|
Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. SCIENCE CHINA. LIFE SCIENCES 2023; 66:324-339. [PMID: 36125668 DOI: 10.1007/s11427-022-2151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 10/14/2022]
Abstract
Functional telomeres protect chromosome ends and play important roles in stem cell maintenance and differentiation. Short telomeres negatively impact germ cell development and can contribute to age-associated infertility. Moreover, telomere syndrome resulting from mutations of telomerase or telomere-associated genes exhibits short telomeres and reduced fertility. It remains elusive whether and how telomere lengths affect germ cell specification. We report that functional telomere is required for the coordinated germ cell and somatic cell fate decisions. Using telomerase gene Terc deficient mice as a model, we show that short telomeres restrain germ cell specification of epiblast cells but promote differentiation towards somatic lineage. Short telomeres increase chromatin accessibility to elevate TGFβ and MAPK/ERK signaling for somatic cell differentiation. Notably, elevated Fst expression in TGFβ pathway represses the BMP4-pSmad signaling pathway, thus reducing germ cell formation. Re-elongation of telomeres by targeted knock-in of Terc restores normal chromatin accessibility to suppress TGFβ and MAPK signaling, thereby facilitating germ cell formation. Taken together, our data reveal that functional telomeres are required for germ cell specification by repressing TGFβ and MAPK signaling.
Collapse
|
3
|
Li J, Qi Y, Yang K, Zhu L, Cui X, Liu Z. Follistatin Is a Novel Chemoattractant for Migration and Invasion of Placental Trophoblasts of Mice. Cells 2022; 11:cells11233816. [PMID: 36497076 PMCID: PMC9741044 DOI: 10.3390/cells11233816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Follistatin (FST) as a gonadal protein is central to the establishment and maintenance of pregnancy. Trophoblasts' migration and invasion into the endometrium are critical events in placental development. This study aimed to elucidate the role of FST in the migration and invasion of placental trophoblasts of mice. We found that FST increased the vitality and proliferation of primary cultured trophoblasts of embryonic day 8.5 (E8.5) mice and promoted wound healing of trophoblasts. Moreover, FST significantly induced migration of trophoblasts in a microfluidic device and increased the number of invasive trophoblasts by Matrigel-coated transwell invasion assay. Being treated with FST, the adhesion of trophoblasts was inhibited, but intracellular calcium flux of trophoblasts was increased. Western blotting results showed that FST had no significant effects on the level of p-Smad3 or the ratio of p-Smad3/Smad3 in trophoblasts. Interestingly, FST elevated the level of p-JNK; the ratio of p-JNK/JNK; and expression of migration-related proteins N-cadherin, vimentin, ezrin and MMP2 in trophoblasts. Additionally, the migration of trophoblasts and expression of N-cadherin, vimentin, and MMP2 in trophoblasts induced by FST were attenuated by JNK inhibitor AS601245. These findings suggest that the elevated FST in pregnancy may act as a chemokine to induce trophoblast migration and invasion through the enhanced JNK signaling to maintain trophoblast function and promote placental development.
Collapse
Affiliation(s)
- Jing Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
| | - Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Linjing Zhu
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xueling Cui
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Key Laboratory of Neuroimmunology and Clinical Immunology, Changchun 130021, China
- Correspondence: ; Tel.: +86-431-8561-9476
| |
Collapse
|
4
|
Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet 2022; 39:2439-2473. [PMID: 36190593 PMCID: PMC9723082 DOI: 10.1007/s10815-022-02625-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 10/10/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a prevailing endocrine and metabolic disorder occurring in about 6-20% of females in reproductive age. Most symptoms of PCOS arise early during puberty. Since PCOS involves a combination of signs and symptoms, thus it is considered as a heterogeneous disorderliness. The most accepted diagnostic criteria is Rotterdam criteria which involves two of the latter three features: (a) hyperandrogenism, (b) oligo- or an-ovulation, and (c) polycystic ovaries. The persistent hormonal imbalance leads to multiple small antral follicles formation and irregular menstrual cycle, ultimately causing infertility among females. Insulin resistance, cardiovascular diseases, abdominal obesity, psychological disorders, infertility, and cancer are also related to PCOS. These pathophysiologies associated with PCOS are interrelated with each other. Hyperandrogenism causes insulin resistance and hyperglycemia, leading to ROS formation, oxidative stress, and abdominal adiposity. In consequence, inflammation, ROS production, insulin resistance, and hyperandrogenemia also increase. Elevation of AGEs in the body either produced endogenously or consumed from diet exaggerates PCOS symptoms and is also related to ovarian dysfunction. This review summarizes how AGE formation, inflammation, and oxidative stress are significantly essential in PCOS progression. Alterations during prenatal development like exposure to excess AMH, androgens, or toxins (bisphenol-A, endocrine disruptors, etc.) may also be the etiologic mechanism behind PCOS. Although the etiology of this disorder is unclear, environmental and genetic factors are primarily involved. Physical inactivity, as well as unhealthy eating habits, has a vital role in the progression of PCOS. This review outlines a collection of specific genes phenotypically linked with PCOS. Furthermore, beneficial effect of metformin in maintaining endocrine abnormalities and ovarian function is also mentioned. Kisspeptin is a protein which helps in onset of puberty and increases GnRH pulsatile release during ovulation as well as role of KNDy neurons in GnRH pulsatile signal required for reproduction are also elaborated. This review also focuses on the immunology related to PCOS involving chronic low-grade inflammation, and how the alterations within the follicular microenvironment are intricated in the development of infertility in PCOS patients. How PCOS develops following antiepileptic and psychiatric medication is also expanded in this review. Initiation of antiandrogen treatment in early age (≤ 25 years) might be helpful in spontaneous conception in PCOS women. The role of BMP (bone morphogenetic proteins) in folliculogenesis and their expression in oocytes and granulosa cells are also explained. GDF8 and SERPINE1 expression in PCOS is given in detail.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar, Pradesh -202002, India.
| |
Collapse
|
5
|
Immuno-Neutralization of Follistatin Bioactivity Enhances the Developmental Potential of Ovarian Pre-hierarchical Follicles in Yangzhou Geese. Animals (Basel) 2022; 12:ani12172275. [PMID: 36077995 PMCID: PMC9454918 DOI: 10.3390/ani12172275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Follistatin involves in the regulation of ovarian follicular development in mammals; however, the role of follistatin in goose ovarian follicular development has not been investigated. In this study, following immuno-neutralization of follistatin bioactivity in geese, the number of ovarian pre-ovulatory follicles significantly increased, and mRNA levels of genes involved in ovarian steroidogenesis and yolk deposition were upregulated in the granulosa layer of pre-hierarchical follicles. These results suggest that follistatin plays a limiting role in the development of ovarian pre-hierarchical follicles into pre-ovulatory follicles. These results also expand our understanding of the mechanism of follistatin on ovarian follicular development in geese. Abstract In order to explore the role of follistatin (FST) in ovarian follicular development and egg production in Yangzhou geese, sixty-four egg laying geese of the same genetic origin were selected and divided into two groups with equal numbers. One group was immunized against the recombinant goose FST protein by intramuscular injection, whereas the control group received bovine serum albumin (BSA) injection. Immunization against FST significantly increased the number of pre-ovulatory follicles. Furthermore, immunization against FST upregulated Lhr, Star, Vldlr, Smad3, and Smad4 mRNA levels in the granulosa layer of pre-hierarchical follicles. The results suggest that FST plays a limiting role in the development of ovarian pre-hierarchical follicles into pre-ovulatory follicles by decreasing follicular sensitivity to activin in geese. The mechanism may be achieved by regulating the SMAD3 signaling pathway, which affects progesterone synthesis and yolk deposition in pre-hierarchical follicles.
Collapse
|
6
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Xu H, Ma G, Mu F, Ning B, Li H, Wang N. STAT3 Partly Inhibits Cell Proliferation via Direct Negative Regulation of FST Gene Expression. Front Genet 2021; 12:678667. [PMID: 34239543 PMCID: PMC8259742 DOI: 10.3389/fgene.2021.678667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Follistatin (FST) is a secretory glycoprotein and belongs to the TGF-β superfamily. Previously, we found that two single nucleotide polymorphisms (SNPs) of sheep FST gene were significantly associated with wool quality traits in Chinese Merino sheep (Junken type), indicating that FST is involved in the regulation of hair follicle development and hair trait formation. The transcription regulation of human and mouse FST genes has been widely investigated, and many transcription factors have been identified to regulate FST gene. However, to date, the transcriptional regulation of sheep FST is largely unknown. In the present study, genome walking was used to close the genomic gap upstream of the sheep genomic FST gene and to obtain the FST gene promoter sequence. Transcription factor binding site analysis showed sheep FST promoter region contained a conserved putative binding site for signal transducer and activator of transcription 3 (STAT3), located at nucleotides -423 to -416 relative to the first nucleotide (A, +1) of the initiation codon (ATG) of sheep FST gene. The dual-luciferase reporter assay demonstrated that STAT3 inhibited the FST promoter activity and that the mutation of the putative STAT3 binding site attenuated the inhibitory effect of STAT3 on the FST promoter activity. Additionally, chromatin immunoprecipitation assay (ChIP) exhibited that STAT3 is directly bound to the FST promoter. Cell proliferation assay displayed that FST and STAT3 played opposite roles in cell proliferation. Overexpression of sheep FST significantly promoted the proliferation of sheep fetal fibroblasts (SFFs) and human keratinocyte (HaCaT) cells, and overexpression of sheep STAT3 displayed opposite results, which was accompanied by a significantly reduced expression of FST gene (P < 0.05). Taken together, STAT3 directly negatively regulates sheep FST gene and depresses cell proliferation. Our findings may contribute to understanding molecular mechanisms that underlie hair follicle development and morphogenesis.
Collapse
Affiliation(s)
- Haidong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Ajayi AF, Akhigbe RE. The physiology of male reproduction: Impact of drugs and their abuse on male fertility. Andrologia 2020; 52:e13672. [PMID: 32542870 DOI: 10.1111/and.13672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Male factor accounts for about 30-50% of infertility. A common cause of male infertility is drug abuse; either illicit or prolonged use of prescribed drugs. This study provides a review of the physiology of the hypothalamic-pituitary-gonadal axis and recent literature on drugs that have been linked to male infertility and the associated mechanisms. Relevant peer-reviewed papers were assessed online using PubMed/PubMed Central, Scopus, AJOL, Google Scholar and DOAJ databases using Medical Subjects Headings (MeSH) indexes and relevant key word searches. Although drugs are beneficial when used at therapeutic levels, the abuse leads to impairment of hypothalamic-pituitary-gonadal functions, increased sperm DNA fragmentation and apoptosis, and reduced sperm quality. A good knowledge of the physiology of the hypothalamic-pituitary-gonadal axis and the influence of drugs on male fertility will guide healthcare providers in managing cases of infertility.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Nigeria
| |
Collapse
|
9
|
Rotgers E, Cisneros-Montalvo S, Nurmio M, Toppari J. Retinoblastoma protein represses E2F3 to maintain Sertoli cell quiescence in mouse testis. J Cell Sci 2019; 132:132/14/jcs229849. [PMID: 31308245 DOI: 10.1242/jcs.229849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023] Open
Abstract
Maintenance of the differentiated state and cell cycle exit in adult Sertoli cells depends on tumor suppressor retinoblastoma protein (RB, also known as RB1). We have previously shown that RB interacts with transcription factor E2F3 in the mouse testis. Here, we investigated how E2f3 contributes to adult Sertoli cell proliferation in a mouse model of Sertoli cell-specific knockout of Rb by crossing these mice with an E2f3 knockout mouse line. In the presence of intact RB, E2f3 was redundant in Sertoli cells. However, in the absence of RB, E2f3 is a key driver for cell cycle re-entry and loss of function in adult Sertoli cells. Knockout of E2f3 in Sertoli cells rescued the breakdown of Sertoli cell function associated with Rb loss, prevented proliferation of adult Sertoli cells and restored fertility of the mice. In summary, our results show that RB-mediated repression of E2F3 is critical for the maintenance of cell cycle exit and terminal differentiation in adult mouse Sertoli cells.
Collapse
Affiliation(s)
- Emmi Rotgers
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| | - Sheyla Cisneros-Montalvo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| | - Mirja Nurmio
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku 20520, Finland .,Department of Pediatrics, Turku University Hospital, Turku 20520, Finland
| |
Collapse
|
10
|
Sun S, Liu S, Luo J, Chen Z, Li C, Loor JJ, Cao Y. Repeated pregnant mare serum gonadotropin-mediated oestrous synchronization alters gene expression in the ovaries and reduces reproductive performance in dairy goats. Reprod Domest Anim 2019; 54:873-881. [PMID: 30972833 DOI: 10.1111/rda.13439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/28/2019] [Indexed: 11/29/2022]
Abstract
This study aimed to elucidate the effects of repeated pregnant mare serum gonadotropin (PMSG) treatment for oestrous synchronization (ES) on ovarian gene expression and reproductive parameters in Xinong Saanen dairy goats, the dominant breed of dairy goat in China. The experiment was carried out at the Research Station of Northwest A&F University (NWAFU), China (34°16'N, 108°4'E). Forty-one does were randomly assigned to groups receiving ES treatments thrice every fortnight (3-PMSG group; n = 19), or ES treatment only once simultaneously with the third ES treatment in the 3-PMSG group (1-PMSG group; n = 22) during middle of the breeding season from late July (14 hr light) until late September (12 hr light). ES treatment was performed via intravaginal insertion of a controlled internal drug release (CIDR) device impregnated with 300 mg progesterone (P4), followed by 300 IU PMSG injections 48 hr before CIDR withdrawal. Oestrus was monitored using vasectomized bucks. Ovaries of three goats in oestrus from both groups were harvested for morphological examination and RNA sequencing (RNA-Seq). Then, all the oestrous goats in the 1-PMSG (n = 21) and 3-PMSG (n = 11) groups were artificially inseminated twice. The 3-PMSG group showed reduced oestrous rate (57.89%), pregnancy rate (31.58%) and litter size (1.17) compared, respectively, with 95.45%, 68.18% and 1.67 for 1-PMSG group (p < 0.05). However, no differences were found in the ovarian morphology between the 1-PMSG and 3-PMSG groups (p > 0.05). RNA-Seq revealed 114 differentially expressed genes (DEGs) in the ovaries of the 3-PMSG group, among which GCG, FSTL3, TET3 and AQP3 were deemed novel and promising candidate genes for regulating fertility. The present study indicates that the three-time PMSG treatment dysregulated several ovarian genes, thereby reducing reproductive performance.
Collapse
Affiliation(s)
- Shuang Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shimin Liu
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhi Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Yanhong Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Tanaka Y, Matsuzaki T, Tanaka N, Iwasa T, Kuwahara A, Irahara M. Activin effects on follicular growth in in vitro preantral follicle culture. THE JOURNAL OF MEDICAL INVESTIGATION 2019; 66:165-171. [DOI: 10.2152/jmi.66.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yu Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Naoko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Köninger A, Kampmeier A, Schmidt B, Frank M, Strowitzki T, Kimmig R, Gellhaus A, Mach P. Trends in anti-Müllerian hormone concentrations across different stages of pregnancy in women with polycystic ovary syndrome. Reprod Biomed Online 2018; 37:367-374. [DOI: 10.1016/j.rbmo.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/05/2023]
|
13
|
Gilbert SB, Roof AK, Rajendra Kumar T. Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 2018; 32:219-239. [PMID: 29779578 PMCID: PMC5973545 DOI: 10.1016/j.beem.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gonadotropins are pituitary gonadotrope-derived glycoprotein hormones. They act by binding to G-protein coupled receptors on gonads. Gonadotropins play critical roles in reproduction by regulating both gametogenesis and steroidogenesis. Although biochemical and physiological studies provided a wealth of knowledge, gene manipulation techniques using novel mouse models gave new insights into gonadotropin synthesis, secretion and action. Both gain of function and loss of function mouse models for understanding gonadotropin action in a whole animal context have already been generated. Moreover, recent studies on gonadotropin actions in non-gonadal tissues challenged the central dogma of classical gonadotropin actions in gonads and revealed new signaling pathways in these non-gonadal tissues. In this Chapter, we have discussed our current understanding of gonadotropin synthesis, secretion and action using a variety of genetically engineered mouse models.
Collapse
Affiliation(s)
- Sara Babcock Gilbert
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Allyson K Roof
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T Rajendra Kumar
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|
15
|
Köninger A, Kampmeier A, Mach P, Schmidt B, Strowitzki T, Kimmig R, Gellhaus A. Tight interplay in early pregnancy between follistatin and anti-mullerian hormone in women with polycystic ovarian syndrome (PCOS). Arch Gynecol Obstet 2018; 297:1307-1316. [PMID: 29453653 DOI: 10.1007/s00404-018-4718-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE Follistatin levels increase during the course of pregnancy and may play a role in ovarian arrest, reflected by the simultaneous decrease of anti-mullerian-hormone (AMH) levels. The aim of the study was to investigate AMH and follistatin levels during the hormonal window at the beginning of pregnancy. Since both parameters are described as deregulated in polycystic ovarian syndrome (PCOS), subgroup analysis of PCOS patients may additionally elucidate their interplay and effects on ovarian activity. METHODS Serum samples were retrospectively analyzed using the AMH Gen II ELISA and the Human Follistatin Quantikine ELISA Kit. Samples were collected longitudinally from 57 patients (32 with PCOS and 25 controls) before conception and during the first trimester. In 18 patients, measurements from the early and the late first trimester were available. Potential associations of AMH and follistatin levels with PCOS-related parameters were compared between the subgroups as well as longitudinally before and in the first trimester of pregnancy. For statistical analysis, the Spearman's correlation, Wilcoxon test, t test, Friedman test and multiple linear regression analysis was performed. RESULTS In contrast to AMH, follistatin levels differed not between controls and PCOS patients before and in pregnancy. In both subgroups, AMH levels significantly decreased and follistatin levels significantly increased in longitudinally performed measurements before conceiving and in the first trimester of pregnancy. CONCLUSION Follistatin levels are not suited as a biomarker for PCOS, but could be involved in suppressing ovarian activity, as reflected by AMH levels at the beginning of pregnancy.
Collapse
Affiliation(s)
- Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| | - Antje Kampmeier
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Boerge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology and Reproductive Medicine, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| |
Collapse
|
16
|
Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A 2017; 114:E4772-E4781. [PMID: 28559342 PMCID: PMC5474784 DOI: 10.1073/pnas.1620903114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Embryo implantation remains a significant challenge for assisted reproductive technology, with implantation failure occurring in ∼50% of in vitro fertilization attempts. Understanding the molecular mechanisms underlying uterine receptivity will enable the development of new interventions and biomarkers. TGFβ family signaling in the uterus is critical for establishing and maintaining pregnancy. Follistatin (FST) regulates TGFβ family signaling by selectively binding TGFβ family ligands and sequestering them. In humans, FST is up-regulated in the decidua during early pregnancy, and women with recurrent miscarriage have lower endometrial expression of FST during the luteal phase. Because global knockout of Fst is perinatal lethal in mice, we generated a conditional knockout (cKO) of Fst in the uterus using progesterone receptor-cre to study the roles of uterine Fst during pregnancy. Uterine Fst-cKO mice demonstrate severe fertility defects and deliver only 2% of the number of pups delivered by control females. In Fst-cKO mice, the uterine luminal epithelium does not respond properly to estrogen and progesterone signals and remains unreceptive to embryo attachment by continuing to proliferate and failing to differentiate. The uterine stroma of Fst-cKO mice also responds poorly to artificial decidualization, with lower levels of proliferation and differentiation. In the absence of uterine FST, activin B expression and signaling are up-regulated, and bone morphogenetic protein (BMP) signals are impaired. Our findings support a model in which repression of activin signaling by FST enables uterine receptivity by preserving critical BMP signaling.
Collapse
Affiliation(s)
- Paul T Fullerton
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
17
|
Köninger A, Schmidt B, Damaske D, Birdir C, Enekwe A, Kimmig R, Strowitzki T, Gellhaus A. Follistatin during pregnancy and its potential role as an ovarian suppressing agent. Eur J Obstet Gynecol Reprod Biol 2017; 212:150-154. [DOI: 10.1016/j.ejogrb.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 11/24/2022]
|
18
|
Ma GW, Chu YK, Zhang WJ, Qin FY, Xu SS, Yang H, Rong EG, Du ZQ, Wang SZ, Li H, Wang N. Polymorphisms of FST gene and their association with wool quality traits in Chinese Merino sheep. PLoS One 2017; 12:e0174868. [PMID: 28384189 PMCID: PMC5383234 DOI: 10.1371/journal.pone.0174868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/16/2017] [Indexed: 11/19/2022] Open
Abstract
Follistatin (FST) is involved in hair follicle morphogenesis. However, its effects on hair traits are not clear. This study was designed to investigate the effects of FST gene single nucleotide polymorphisms (SNP) on wool quality traits in Chinese Merino sheep (Junken Type). We performed gene expression analysis, SNP detection, and association analysis of FST gene with sheep wool quality traits. The real-time RT-PCR analysis showed that FST gene was differentially expressed in adult skin between Chinese Merino sheep (Junken Type) and Suffolk sheep. Immunostaining showed that FST was localized in inner root sheath (IRS) and matrix of hair follicle (HF) in both SF and Suffolk sheep. Sequencing analysis identified a total of seven SNPs (termed SNPs 1-7) in the FST gene in Chinese Merino sheep (Junken Type). Association analysis showed that SNP2 (Chr 16. 25,633,662 G>A) was significantly associated with average wool fiber diameter, wool fineness SD, and wool crimp (P < 0.05). SNP4 (Chr 16. 25,633,569 C>T) was significantly associated with wool fineness SD and CV of fiber diameter (P < 0.05). Similarly, the haplotypes derived from these seven identified SNPs were also significantly associated with average wool fiber diameter, wool fineness SD, CV of fiber diameter, and wool crimp (P < 0.05). Our results suggest that FST influences wool quality traits and its SNPs 2 and 4 might be useful markers for marker-assisted selection and sheep breeding.
Collapse
Affiliation(s)
- Guang-Wei Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Yan-Kai Chu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Wen-Jian Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Fei-Yue Qin
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Song-Song Xu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, P. R. China
| | - En-Guang Rong
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Shou-Zhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, P. R. China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
- * E-mail:
| |
Collapse
|
19
|
Zhou Q, Wan M, Wei Q, Song Q, Xiong L, Huo J, Huang J. Expression, Regulation, and Functional Characterization of FST Gene in Porcine Granulosa Cells. Anim Biotechnol 2017; 27:295-302. [PMID: 27565874 DOI: 10.1080/10495398.2016.1184675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Proliferation, differentiation, and estrogen secretion of granulosa cells are the key factors affecting the estrous after weaning in sows. The objective of this study was to evaluate the expression of Follistatin (FST) in the ovary of Xiushui Hang and Duroc sows at weaning and estrus, the effect of FSH on transcript abundance of FST gene in granulosa cells and the role of FST gene in the weaning to estrus using siRNAs targeted to FST gene. In the present study, expression of the FST mRNA was evaluated by real time PCR. The FST mRNA levels showed a reduction from weaning to the estrus in both Xiushui Hang and Duroc sows, and the mRNA levels in Duroc ovary was higher than in Xiushui Hang sows at the beginning of estrus. Granulosa cells were obtained from the two largest follicles around follicular deviation, FST expression was decreased sharply after treatment with FSH (250 ng/ml). Knockdown of FST by siRNA in porcine granulosa cells significantly increased cell proliferation and estrogen secretion. These results indicate that FST gene is a negative regulator of follicle growth and function during the weaning-estrus interval.
Collapse
Affiliation(s)
- QuanYong Zhou
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - MingChun Wan
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - QiPeng Wei
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - QiongLi Song
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - LiGen Xiong
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - JunHong Huo
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| | - JiangNan Huang
- a Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science , Nanchang , P. R. China
| |
Collapse
|
20
|
Shi L, Resaul J, Owen S, Ye L, Jiang WG. Clinical and Therapeutic Implications of Follistatin in Solid Tumours. Cancer Genomics Proteomics 2017; 13:425-435. [PMID: 27807065 DOI: 10.21873/cgp.20005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Follistatin (FST), as a single-chain glycosylated protein, has two major isoforms, FST288 and FST315. The FST315 isoform is the predominant form whilst the FST288 variant accounts for less than 5% of the encoded mRNA. FST is differentially expressed in human tissues and aberrant expression has been observed in a variety of solid tumours, including gonadal, gastric and lung cancer, hepatocellular carcinoma, basal cell carcinoma and melanoma. Based on the current evidence, FST is an antagonist of transforming growth factor beta family members, such as activin and bone morphogenetic proteins (BMPs). FST plays a role in tumourigenesis, metastasis and angiogenesis of solid tumours through its interaction with activin and BMPs, thus resulting in pathophysiological function. In terms of diagnosis, prognosis and therapy, FST has shown strong promise. Through a better understanding of its biological functions, potential clinical applications may yet emerge.
Collapse
Affiliation(s)
- Lei Shi
- Urology Department, Yantai Yu Huang Ding Hospital, Yantai, Shandong Province, P.R. China.,Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
21
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
22
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
23
|
Wang Z, Niu W, Wang Y, Teng Z, Wen J, Xia G, Wang C. Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary. PLoS One 2015; 10:e0129643. [PMID: 26076381 PMCID: PMC4468113 DOI: 10.1371/journal.pone.0129643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.
Collapse
Affiliation(s)
- Zhengpin Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Wanbao Niu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Yijing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Zhen Teng
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Jia Wen
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Guoliang Xia
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Chao Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
- * E-mail:
| |
Collapse
|
24
|
Itman C, Bielanowicz A, Goh H, Lee Q, Fulcher AJ, Moody SC, Doery JCG, Martin J, Eyre S, Hedger MP, Loveland KL. Murine Inhibin α-Subunit Haploinsufficiency Causes Transient Abnormalities in Prepubertal Testis Development Followed by Adult Testicular Decline. Endocrinology 2015; 156:2254-68. [PMID: 25781564 DOI: 10.1210/en.2014-1555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activin production and signaling must be strictly regulated for normal testis development and function. Inhibins are potent activin inhibitors; mice lacking the inhibin-α gene (Inha-/- mice) cannot make inhibin and consequently have highly elevated activin and FSH serum concentrations and excessive activin signaling, resulting in somatic gonadal tumors and infertility. Dose-dependent effects of activin in testicular biology have been widely reported; hence, we hypothesized that male mice lacking one copy of the Inha gene would produce less inhibin and have an abnormal reproductive phenotype. To test this, we compared hormone concentrations, testis development, and sperm production in Inha+/+ and Inha+/- mice. Serum and testicular inhibin-α concentrations in adult Inha+/- mice were approximately 33% lower than wild type, whereas activin A, activin B, FSH, LH, and T were normal. Sixteen-day-old Inha+/- mice had a mixed phenotype, with tubules containing extensive germ cell depletion juxtaposed to tubules with advanced Sertoli and germ cell development. This abnormal phenotype resolved by day 28. By 8 weeks, Inha+/- testes were 11% larger than wild type and supported 44% greater daily sperm production. By 26 weeks of age, Inha+/- testes had distinct abnormalities. Although still fertile, Inha+/- mice had a 27% reduction in spermatogenic efficiency, a greater proportion of S-phase Sertoli cells and lower Leydig cell CYP11A1 expression. This study is the first to identify an intratesticular role for inhibin/inhibin-α subunit, demonstrating that a threshold level of this protein is required for normal testis development and to sustain adult somatic testicular cell function.
Collapse
Affiliation(s)
- Catherine Itman
- Priority Research Centres for Reproductive Science (C.I., A.B., J.M., S.E.) and Chemical Biology (C.I.), School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; Departments of Anatomy and Developmental Biology (H.G., Q.L., K.L.L.) and Biochemistry and Molecular Biology (S.C.M., K.L.L.) and Monash Micro Imaging (A.J.F.), Monash University, Clayton, Victoria 3800, Australia; and Faculty of Medicine, Nursing, and Health Sciences (J.C.G.D.), Department of Medicine, Monash Medical Centre, and Monash Institute of Medical Research-Prince Henry's Institute of Medical Research (M.P.H.), Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Das UN. Molecular, Biochemical, and Physiological Basis of Beneficial Actions of Exercise. DIET AND EXERCISE IN COGNITIVE FUNCTION AND NEUROLOGICAL DISEASES 2015:183-204. [DOI: 10.1002/9781118840634.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Chong Z, Dong P, Riaz H, Shi L, Yu X, Cheng Y, Yang L. Disruption of follistatin by RNAi increases apoptosis, arrests S-phase of cell cycle and decreases estradiol production in bovine granulosa cells. Anim Reprod Sci 2015; 155:80-8. [PMID: 25728901 DOI: 10.1016/j.anireprosci.2015.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 01/24/2023]
Abstract
Follistatin (FST), a local regulator of gonadal functions is a powerful inhibitor of follicle stimulating hormone (FSH) secretion. In the present study, the expression of FST was partially silenced at both transcriptional and translational levels by RNAi-Ready pSIREN-RetroQ-ZsGreen Vector mediated recombinant pshRNA vectors in bovine granulosa cells (bGCs). The results showed that transfection with FST-1 and FST-2 vectors significantly down-regulated mRNA and protein expressions of follistatin by 51% (P = 0.0093) and 72% (P = 0.0078) respectively. After down-regulation of FST in bGCs, cell cycle was arrested at S-phase (9.2 ± 0.6 vs 12.5 ± 0.2, P = 0.0055), and apoptosis was significantly (21.3 ± 2.7 vs 13.9 ± 2.5, P = 0.0051) increased. These findings were further verified by down-regulation of protein level of B-cell leukemia/lymphoma 2 (Bcl2, P = 0.0423), and up-regulation of caspase-3 (P = 0.0362), p21 (P = 0.0067) and mRNA levels of Bcl2-associated X protein (Bax, P = 0.041). Knockdown of FST in bGCs significantly increased activin A concentration in culture medium, while level of estradiol (E2) was suppressed without affecting progesterone production. In addition, mRNA levels of all activin receptor subtypes [activin receptor types I (ACRI) and II (ACRIIA and ACRIIB)] and inhibin α-subunit were augmented (P < 0.05) without altering both inhibin β-subunits. These findings suggest that follistatin may participate in caspase3-dependent apoptosis through Bcl2/Bax gene family in bovine GCs, whereas, activin and its receptors are associated with its regulation. Activin-induced up-regulation of inhibin-α subunit in bGCs seems to be involved in the regulation of steroidogenesis.
Collapse
Affiliation(s)
- Zhenlu Chong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ping Dong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hasan Riaz
- Department of Bio sciences, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
| | - Lei Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Xue Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ying Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
27
|
O'Shaughnessy PJ. Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 2014; 29:55-65. [DOI: 10.1016/j.semcdb.2014.02.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023]
|
28
|
Killeen AP, Morris DG, Kenny DA, Mullen MP, Diskin MG, Waters SM. Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle. BMC Genomics 2014; 15:234. [PMID: 24669966 PMCID: PMC3986929 DOI: 10.1186/1471-2164-15-234] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/14/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In both beef and dairy cattle, the majority of early embryo loss occurs within the first 14 days following insemination. During this time-period, embryos are completely dependent on their maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to their survival. The objective of this study was to investigate whether differences in endometrial gene expression during the mid-luteal phase of the estrous cycle exist between crossbred beef heifers ranked as either high (HF) or low fertility (LF) (following four rounds of artificial insemination (AI)) using the Affymetrix® 23 K Bovine Gene Chip. RESULTS Conception rates for each of the four rounds of AI were within a normal range: 70-73.3%. Microarray analysis of endometrial tissue collected on day 7 of the estrous cycle detected 419 differentially expressed genes (DEG) between HF (n = 6) and LF (n = 6) animals. The main gene pathways affected were, cellular growth and proliferation, angiogenesis, lipid metabolism, cellular and tissue morphology and development, inflammation and metabolic exchange. DEG included, FST, SLC45A2, MMP19, FADS1 and GALNT6. CONCLUSIONS This study highlights, some of the molecular mechanisms potentially controlling uterine endometrial function during the mid-luteal phase of the estrous cycle, which may contribute to uterine endometrial mediated impaired fertility in cattle. Differentially expressed genes are potential candidate genes for the identification of genetic variation influencing cow fertility, which may be incorporated into future breeding programmes.
Collapse
Affiliation(s)
| | | | | | | | | | - Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County Meath, Ireland.
| |
Collapse
|
29
|
Bellingham M, Amezaga MR, Mandon-Pepin B, Speers CJ, Kyle CE, Evans NP, Sharpe RM, Cotinot C, Rhind SM, Fowler PA. Exposure to chemical cocktails before or after conception--- the effect of timing on ovarian development. Mol Cell Endocrinol 2013; 376:156-72. [PMID: 23791816 PMCID: PMC3731555 DOI: 10.1016/j.mce.2013.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022]
Abstract
Exposure of female fetuses to environmental chemicals (ECs) during pregnancy results in a disturbed ovarian adult phenotype. We investigated the influence of pre- and/or post-conception exposure to low-level mixtures of ECs on the structure and function of the fetal ovine ovary. We examined ovarian morphology, expression of oocyte and granulosa cell-specific genes and proteome. Female fetuses were collected at day 110 of gestation, from dams exposed continuously until, and after mating, by grazing in pastures treated with sewage sludge as a fertiliser (TT) or in control fields treated with inorganic fertiliser (CC). In addition, in a cross-over design, fetal ovaries were collected from dams maintained on sludge pastures up to the time of mating but then transferred to control pastures (TC) and, reciprocally, those transferred from control to treated pastures at mating (CT). On examination, the proportion of type 1a follicles (activating primordial follicles) was significantly lower in animals from the CT groups compared with CC and TT groups (P<0.05). Of the 23 ovarian gene transcripts studied, 14 were altered in the ovaries of exposed fetuses (CT, TC, and TT) relative to controls, with the largest number of changes observed in cross-exposure pattern groups (CT or TC). Continuous EC exposure (TT) produced fewer transcript alterations and only two genes (INHBA and GSN) presented differential profiles between CC and TT. Fetal ovarian proteome analysis (2-DE gels) showed, across all exposure groups, 86 differentially expressed protein spots compared to controls. Animals in the CT group exhibited the highest number (53) while TC and TT presented the same number of affected protein spots (42). Fetal ovarian proteins with altered expression included MVP (major vault protein) and several members of the heat-shock family (HSPA4L, HSP90AA1 and HSF1). The present findings indicate that continuous maternal EC exposure before and during gestation, are less deleterious for fetal ovarian development than a change in maternal EC exposure between pre and post-conception. The pathways by which the ovary responds to this chemical stress were common in TT, CT, TC exposed foetuses. In addition to the period of pregnancy, the pre-conception period appears also as crucial for conditioning long-term effects of EC exposure on ovarian development and primordial follicle reserve and hence future fertility.
Collapse
Affiliation(s)
- Michelle Bellingham
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Maria R. Amezaga
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Beatrice Mandon-Pepin
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - Christopher J.B. Speers
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carol E. Kyle
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Neil P. Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Richard M. Sharpe
- MRC Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- INRA, UMR 1198, Biologie du Développement et Reproduction F-78350, Jouy-en-Josas, France
| | - Stewart M. Rhind
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Paul A. Fowler
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
30
|
Liu H, Zhang R, Li X, Sun L, Wang H, Yang C, Li L, Wang J, Xu F. Influence of recombinant duck follistatin protein on embryonic muscle development and gene expressions. J Anim Physiol Anim Nutr (Berl) 2013; 98:522-9. [PMID: 23957442 DOI: 10.1111/jpn.12104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
Abstract
Follistatin (FST) acts as a positive regulator of muscle development by inhibiting the activities and expression of myostatin. The recombinant duck FST protein was injected into hatching eggs and was also added to the medium of duck myoblast to study its role on duck embryonic muscle development and gene expressions. Duck embryo weight increased 3.49% (p > 0.05) in FST treatment group as compared with control group, but minor effects were found on leg or breast muscle weights of ducklings at 2 days post-hatching (p > 0.05). Relative expression of Pax7 was upregulated in both leg and breast muscle tissues (p < 0.05), while MyoD was only upregulated in leg muscle (p < 0.05), and Myf5 was only upregulated in breast muscle (p < 0.05). Relative expression of myostatin was downregulated in both muscle tissues researched (p < 0.05). In vitro studies also showed some maker genes relevant to protein synthesis and degradation, cells' proliferation and differentiation had significant changes in myoblasts after treated with FST. These results suggested that in ovo feeding of recombinant FST protein to duck hatching eggs had an effect on duck embryo development but have less roles on the duck embryonic muscle development.
Collapse
Affiliation(s)
- H Liu
- Institute of Animal Breeding & Genetic, Sichuan Agricultural University, Ya'an, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33:981-1030. [PMID: 23065822 PMCID: PMC5393155 DOI: 10.1210/er.2011-1034] [Citation(s) in RCA: 1146] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.
Collapse
|
32
|
Seachrist DD, Johnson E, Magee C, Clay CM, Graham JK, Veeramachaneni DNR, Keri RA. Overexpression of follistatin in the mouse epididymis disrupts fluid resorption and sperm transit in testicular excurrent ducts. Biol Reprod 2012; 87:41. [PMID: 22649074 DOI: 10.1095/biolreprod.111.097527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activin is a well-established modulator of male and female reproduction that stimulates the synthesis and secretion of follicle-stimulating hormone. Nonpituitary effects of activin have also been reported, although the paracrine actions of this growth factor in several reproductive tissues are not well understood. To identify the paracrine functions of activin during mammary gland morphogenesis and tumor progression, we produced transgenic mice that overexpress follistatin (FST), an intrinsic inhibitor of activin, under control of the mouse mammary tumor virus (MMTV) promoter. Although the MMTV-Fst mice were constructed to assess the role of activin in females, expression of the transgene was also observed in the testes and epididymides of males. While all 17 transgenic founder males exhibited copulatory behavior and produced vaginal plugs in females, only one produced live offspring. In contrast, transgenic females were fertile, permitting expansion of transgenic mouse lines. Light and transmission electron microscopic examination of the transgenic testes and epididymides revealed impairment of fluid resorption and sperm transit in the efferent ducts and initial segment of the epididymis, as indicated by accumulation of fluid and sperm stasis. Consequently, a variety of degenerative lesions were observed in the seminiferous epithelium, such as vacuolation and early stages of mineralization and fibrosis. Sperm collected from the caudae epididymidis of MMTV-Fst males had detached heads and were immotile. Together, these data reveal that activin signaling is essential for normal testicular excurrent duct function and that its blockade impairs fertility. These results also suggest that selective inhibitors of activin signaling may provide a useful approach for the development of male contraceptives without compromising androgen synthesis and actions.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ottley E, Gold E. Insensitivity to the growth inhibitory effects of activin A: An acquired capability in prostate cancer progression. Cytokine Growth Factor Rev 2012; 23:119-25. [DOI: 10.1016/j.cytogfr.2012.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
34
|
Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Karni A. Low and dysregulated production of follistatin in immune cells of relapsing-remitting multiple sclerosis patients. J Neuroimmunol 2011; 238:96-103. [PMID: 21880375 DOI: 10.1016/j.jneuroim.2011.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/29/2022]
Abstract
One of the mechanisms known to play a key role in neuronal and oligodendroglial fate specification of neural stem cells (NSCs) is restriction of bone morphogenic proteins (BMP) signaling by BMP antagonists. Here, we demonstrate that follistatin mRNA and protein secreted levels in peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RR-MS) patients are significantly reduced compared to healthy controls (HC). We also observed a different profile of regulation mechanisms. Follistatin was similarly expressed and secreted by T lymphocytes and monocytes among the PBMCs of HC, and follistatin upregulation of HC was subjected to stimulation with both LPS and TNF-α. Among PBMCs of RR-MS patients, however, follistatin was found to be downregulated in their monocytes and unresponsive to stimulation with either LPS or TNF-α. Our results may shed some light on the mechanisms involved in remyelination failure in MS, which may be related to the inability of RR-MS patients' immune cells to provide a sufficient pro-neurogenic and oligodendrogenic niche, by expressing and secreting follistatin, in addition to the previously described noggin reduced expression. Our results indicate that the low expression of follistatin in immune cells of patients with RR-MS is a result of the altered immunoregulation of monocytes in these patients.
Collapse
Affiliation(s)
- Nataly Urshansky
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | |
Collapse
|
35
|
Shi FT, Cheung AP, Huang HF, Leung PCK. Growth differentiation factor 9 (GDF9) suppresses follistatin and follistatin-like 3 production in human granulosa-lutein cells. PLoS One 2011; 6:e22866. [PMID: 21829661 PMCID: PMC3148233 DOI: 10.1371/journal.pone.0022866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/04/2011] [Indexed: 12/03/2022] Open
Abstract
Background We have demonstrated that growth differentiation factor 9 (GDF9) enhances activin A-induced inhibin βB-subunit mRNA levels in human granulosa-lutein (hGL) cells by regulating receptors and key intracellular components of the activin signaling pathway. However, we could not exclude its effects on follistatin (FST) and follistatin-like 3 (FSTL3), well recognized extracellular inhibitors of activin A. Methodology hGL cells from women undergoing in vitro fertilization (IVF) treatment were cultured with and without siRNA transfection of FST, FSTL3 or GDF9 and then treated with GDF9, activin A, FST, FSTL3 or combinations. FST, FSTL3 and inhibin βB-subunit mRNA, and FST, FSTL3 and inhibin B protein levels were assessed with real-time RT-PCR and ELISA, respectively. Data were log transformed before ANOVA followed by Tukey's test. Principal Findings GDF9 suppressed basal FST and FSTL3 mRNA and protein levels in a time- and dose-dependent manner and inhibited activin A-induced FST and FSTL3 mRNA and protein expression, effects attenuated by BMPR2 extracellular domain (BMPR2 ECD), a GDF9 antagonist. After GDF9 siRNA transfection, basal and activin A-induced FST and FSTL3 mRNA and protein levels increased, but changes were reversed by adding GDF9. Reduced endogenous FST or FSTL3 expression with corresponding siRNA transfection augmented activin A-induced inhibin βB-subunit mRNA levels as well as inhibin B levels (P values all <0.05). Furthermore, the enhancing effects of GDF9 in activin A-induced inhibin βB-subunit mRNA and inhibin B production were attenuated by adding FST. Conclusion GDF9 decreases basal and activin A-induced FST and FSTL3 expression, and this explains, in part, its enhancing effects on activin A-induced inhibin βB-subunit mRNA expression and inhibin B production in hGL cells.
Collapse
Affiliation(s)
- Feng-Tao Shi
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony P. Cheung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - He-Feng Huang
- Department of Obstetrics and Gynecology, Zhejiang University School of Medicine, Zhejiang, China
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
36
|
Unluturk U, Harmanci A, Kocaefe C, Yildiz BO. The Genetic Basis of the Polycystic Ovary Syndrome: A Literature Review Including Discussion of PPAR-gamma. PPAR Res 2011; 2007:49109. [PMID: 17389770 PMCID: PMC1820621 DOI: 10.1155/2007/49109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/24/2006] [Accepted: 12/03/2006] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of the women of reproductive age. Familial clustering of PCOS has been consistently reported suggesting that genetic factors play a role in the development of the syndrome although PCOS cases do not exhibit a clear pattern of Mendelian inheritance. It is now well established that PCOS represents a complex trait similar to type-2 diabetes and obesity, and that both inherited and environmental factors contribute to the PCOS pathogenesis. A large number of functional candidate genes have been tested for association or linkage with PCOS phenotypes with more negative than positive findings. Lack of universally accepted diagnostic criteria, difficulties in the assignment of male phenotype, obscurity in the mode of inheritance, and particularly small sample size of the study populations appear to be major limitations for the genetic studies of PCOS. In the near future, utilizing the genome-wide scan approach and the HapMap project will provide a stronger potential for the genetic analysis of the syndrome.
Collapse
Affiliation(s)
- Ugur Unluturk
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
| | - Ayla Harmanci
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
- Endocrinology and Metabolism Unit, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
| | - Cetin Kocaefe
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
| | - Bulent O. Yildiz
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
- Endocrinology and Metabolism Unit, Faculty of Medicine, Hacettepe University, Hacettepe, 06100 Ankara, Turkey
- *Bulent O. Yildiz:
| |
Collapse
|
37
|
Enhanced hyperplasia in muscles of transgenic zebrafish expressing Follistatin1. SCIENCE CHINA-LIFE SCIENCES 2011; 54:159-65. [DOI: 10.1007/s11427-010-4121-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/22/2010] [Indexed: 01/18/2023]
|
38
|
Bilezikjian LM, Vale WW. The Local Control of the Pituitary by Activin Signaling and Modulation. OPEN NEUROENDOCRINOLOGY JOURNAL (ONLINE) 2011; 4:90-101. [PMID: 21927629 PMCID: PMC3173763 DOI: 10.2174/1876528901104010090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pituitary gland plays a prominent role in the control of many physiological processes. This control is achieved through the actions and interactions of hormones and growth factors that are produced and secreted by the endocrine cell types and the non-endocrine constituents that collectively and functionally define this complex organ. The five endocrine cell types of the anterior lobe of the pituitary, somatotropes, lactotropes, corticotropes, thyrotropes and gonadotropes, are defined by their primary product, growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH) and follicle stimulating hormone (FSH)/luteinizing hormone (LH). They are further distinguishable by the presence of cell surface receptors that display high affinity and selectivity for specific hypothalamic hormones and couple to appropriate downstream signaling pathways involved in the control of cell type specific responses, including the release and/or synthesis of pituitary hormones. Central control of the pituitary via the hypothalamus is further fine-tuned by the positive or negative actions of peripheral feedback signals and of a variety of factors that originate from sources within the pituitary. The focus of this review is the latter category of intrinsic factors that exert local control. Special emphasis is given to the TGF-β family of growth factors, in particular activin effects on the gonadotrope population, because a considerable body of evidence supports their contribution to the local modulation of the embryonic and postnatal pituitary as well as pituitary pathogenesis. A number of other substances, including members of the cytokine and FGF families, VEGF, IGF1, PACAP, Ghrelin, adenosine and nitric oxide have also been shown or implicated to function as autocrine/paracrine factors, though, definitive proof remains lacking in some cases. The ever-growing list of putative autocrine/paracrine factors of the pituitary nevertheless has highlighted the complexity of the local network and its impact on pituitary functions.
Collapse
Affiliation(s)
- Louise M Bilezikjian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| | | |
Collapse
|
39
|
Itman C, Whiley PAF, Zhou W, Meistrich M, Sahin Z, Loveland KL. Regulated production of SnoN2 is a feature of testicular differentiation. Microsc Res Tech 2010; 72:833-44. [PMID: 19526521 DOI: 10.1002/jemt.20739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor betas (TGF beta s) and activins are key regulators of male fertility, affecting somatic and germ cell proliferation and differentiation in the developing and adult testis. Several studies have shown that these ligands influence discrete developmental stages, suggesting that temporal expression of modifying factors may determine their specific signaling outcomes. Upon binding to cell surface receptors, TGFbeta and activin signals are transduced intracellularly by the phosphorylation and nuclear accumulation of SMAD2 and SMAD3 transcription factors. The objective of this study was to determine the cellular localization of phosphorylated SMAD2/3 and the transcriptional repressor SnoN (Ski-like), a modifier of SMAD2/3 transcriptional activity, in mouse testes. Western blot established that only the smaller SnoN isoform, SnoN2, is produced in the testis. By immunohistochemistry, widespread phospho-SMAD2/3 distribution was observed in somatic and germ cells at all ages. In contrast, SnoN2 production was highly regulated, being detected only in gonocytes and interstitial cells at birth and in pachytene spermatocytes at puberty. In the adult, SnoN2 expression differed to that during the first wave, being ubiquitously expressed but exhibiting regulated nuclear localization. In another model of spermatogenic differentiation, the irradiated rat testis, widespread phospho-SMAD2/3 contrasted with restricted SnoN2 expression. SnoN2 was limited to interstitial cells, with reduced staining intensity observed associated with the timing of spermatogenesis resumption. We conclude that somatic and germ cells at all differentiation stages are actively transducing TGFbeta superfamily signals but that responses to these ligands may be selectively modulated by controlled production and nuclear localization of SnoN2.
Collapse
Affiliation(s)
- Catherine Itman
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3168, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Mithraprabhu S, Mendis S, Meachem SJ, Tubino L, Matzuk MM, Brown CW, Loveland KL. Activin bioactivity affects germ cell differentiation in the postnatal mouse testis in vivo. Biol Reprod 2010; 82:980-90. [PMID: 20130270 DOI: 10.1095/biolreprod.109.079855] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The transforming growth factor beta superfamily ligand activin A controls juvenile testis growth by stimulating Sertoli cell proliferation. Testicular levels are highest in the first postnatal week, when Sertoli cells are proliferating and spermatogonial stem cells first form. Levels decrease sharply as Sertoli cell proliferation ceases and spermatogenic differentiation begins. We hypothesized that changing activin levels also affect germ cell maturation. We detected an acute and developmentally regulated impact of activin on Kit mRNA in cocultures of Sertoli cells and germ cells from Day 8, but not Day 4, mice. Both stereological and flow cytometry analyses identified an elevated spermatogonium:Sertoli cell ratio in Day 7 testes from Inhba(BK/BK) mice, which have decreased bioactive activin, and the germ cell markers Sycp3, Dazl, and Ccnd3 were significantly elevated in Inhba(BK/BK) mice. The flow cytometry measurements demonstrated that surface KIT protein is significantly higher in Day 7 Inhba(BK/BK) germ cells than in wild-type littermates. By Day 14, the germ cell:Sertoli cell ratio did not differ between genotypes, but the transition of type A spermatogonia into spermatocytes was altered in Inhba(BK/BK) testes. We conclude that regulated activin signaling not only controls Sertoli cell proliferation, as previously described, but also influences the in vivo progression of germ cell maturation in the juvenile testis at the onset of spermatogenesis.
Collapse
Affiliation(s)
- Sridurga Mithraprabhu
- Department of Biochemistry and Molecular Biology, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Moore BC, Hamlin HJ, Botteri NL, Guillette LJ. Gonadal mRNA expression levels of TGFbeta superfamily signaling factors correspond with post-hatching morphological development in American alligators. Sex Dev 2010; 4:62-72. [PMID: 20110644 DOI: 10.1159/000277934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/13/2009] [Indexed: 11/19/2022] Open
Abstract
Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin beta A subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin alpha and beta B subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility.
Collapse
Affiliation(s)
- B C Moore
- Department of Biology, Bartram Hall, University of Florida, Gainesville, FL, USA. bmoore2 @ tulane.edu
| | | | | | | |
Collapse
|
42
|
Chen MJ, Chen HF, Chen SU, Ho HN, Yang YS, Yang WS. The relationship between follistatin and chronic low-grade inflammation in women with polycystic ovary syndrome. Fertil Steril 2009; 92:2041-4. [PMID: 19591997 DOI: 10.1016/j.fertnstert.2009.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/25/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
Abstract
The circulating follistatin and high-sensitivity C-reactive protein (hsCRP) concentrations were significantly higher in 155 Taiwanese women with polycystic ovary syndrome (PCOS) than in 37 healthy controls. Follistatin and hsCRP levels in both the PCOS and control groups were significantly correlated with each other independent of obesity and insulin resistance.
Collapse
Affiliation(s)
- Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Activin was discovered in the 1980s as a gonadal protein that stimulated FSH release from pituitary gonadotropes and was thought of as a reproductive hormone. In the ensuing decades, many additional activities of activin were described and it was found to be produced in a wide variety of cell types at nearly all stages of development. Its signaling and actions are regulated intracellularly and by extracellular antagonists. Over the past 5 years, a number of important advances have been made that clarify our understanding of the structural basis for signaling and regulation, as well as the biological roles of activin in stem cells, embryonic development and in adults. These include the crystallization of activin in complex with the activin type II receptor ActRIIB, or with the binding proteins follistatin and follistatin-like 3, as well as identification of activin's roles in gonadal sex development, follicle development, luteolysis, beta-cell proliferation and function in the islet, stem cell pluripotency and differentiation into different cell types and in immune cells. These advances are reviewed to provide perspective for future studies.
Collapse
Affiliation(s)
- Yin Xia
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
44
|
Weinbauer GF, Wessels J. ‘Paracrine’ control of spermatogenesis. Andrologia 2009. [DOI: 10.1111/j.1439-0272.1999.tb01421.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Neuronal phenotype in the mature nervous system is maintained by persistent retrograde bone morphogenetic protein signaling. J Neurosci 2009; 29:3852-64. [PMID: 19321782 DOI: 10.1523/jneurosci.0213-09.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The terminal differentiation of many developing neurons occurs after they innervate their target cells and is triggered by secreted target-derived signals that are transduced by presynaptic cognate receptors. Such retrograde signaling induces the expression of genes that are often distinctive markers of neuronal phenotype and function. However, whether long-term maintenance of neuronal phenotype requires persistent retrograde signaling remains poorly understood. Previously, we demonstrated that retrograde bone morphogenetic protein (BMP) signaling induces expression of a phenotypic marker of Drosophila Tv neurons, the neuropeptide FMRFamide (FMRFa). Here, we used a genetic technique that spatiotemporally targets transgene expression in Drosophila to test the role of persistent BMP signaling in the maintenance of Tv phenotype. We show that expression of dominant blockers of BMP signaling selectively in adult Tv neurons dramatically downregulated FMRFa expression. Moreover, adult-onset expression of mutant Glued, which blocks dynein/dynactin-mediated retrograde axonal transport, eliminated retrograde BMP signaling and dramatically downregulated FMRFa expression. Finally, we found that BMP deprivation did not affect Tv neuron survival and that FMRFa expression fully recovered to control levels after the termination of BMP blockade or Glued expression. Our results show that persistent retrograde BMP signaling is required to induce and to subsequently maintain the expression of a stably expressed phenotypic marker in a subset of mature Drosophila neurons. We postulate that retrograde maintenance of neuronal phenotype is conserved in vertebrates, and as a consequence, neuronal phenotype is likely vulnerable to neurodegenerative disease pathologies that disrupt neuronal connectivity or axonal transport.
Collapse
|
46
|
Inagaki K, Otsuka F, Miyoshi T, Yamashita M, Takahashi M, Goto J, Suzuki J, Makino H. p38-Mitogen-activated protein kinase stimulated steroidogenesis in granulosa cell-oocyte cocultures: role of bone morphogenetic proteins 2 and 4. Endocrinology 2009; 150:1921-30. [PMID: 19022884 DOI: 10.1210/en.2008-0851] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Roles of the p38-MAPK pathway in steroidogenesis were investigated using coculture of rat granulosa cells with oocytes. Activin and FSH readily phosphorylated p38 in granulosa cells. Activin effect on p38 phosphorylation was abolished by a selective activin receptor-like kinase-4, -5, and -7 inhibitor, SB431542. SB431542 decreased FSH-induced estradiol but had no effect on progesterone production with a marginal cAMP reduction, suggesting that endogenous activin is primarily involved in estradiol synthesis. FSH-induced p38 activation was not affected either by SB431542 or follistatin, suggesting that FSH activates p38 not through the endogenous activin. Bone morphogenetic protein (BMP)-2 and BMP-4 also enhanced FSH-induced p38 phosphorylation, which was augmented by oocyte action. A specific p38 inhibitor, SB203580, decreased FSH-induced estradiol production. However, FSH-induced cAMP accumulation was not changed by SB203580, suggesting that p38 activation is linked to estradiol synthesis independently of cAMP. BMP-2 and BMP-4 inhibited FSH- and forskolin (FSK)-induced progesterone and cAMP synthesis regardless of oocyte action. BMP-2, BMP-4, and activin increased FSH-induced estradiol production, which was enhanced in the presence of oocytes. In contrast to activin that enhanced FSK-induced estradiol, BMP-2 and BMP-4 had no effects on FSK-induced estradiol production, suggesting that BMP-2 and BMP-4 directly activate FSH-receptor signaling. Given that activin increased, but BMP-2 and BMP-4 decreased, FSH-induced cAMP, the effects of BMP-2 and BMP-4 on estradiol enhancement appeared to be diverged from the cAMP-protein kinase A pathway. Thus, BMP-2 and BMP-4 differentially regulate steroidogenesis by stimulating FSH-induced p38 and suppressing cAMP. The former is involved in estradiol production and enhanced by oocyte action, whereas the latter leads to reduction of progesterone synthesis.
Collapse
Affiliation(s)
- Kenichi Inagaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Okayama City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Blount AL, Schmidt K, Justice NJ, Vale WW, Fischer WH, Bilezikjian LM. FoxL2 and Smad3 coordinately regulate follistatin gene transcription. J Biol Chem 2009; 284:7631-45. [PMID: 19106105 PMCID: PMC2658057 DOI: 10.1074/jbc.m806676200] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/10/2008] [Indexed: 12/19/2022] Open
Abstract
Follistatin is a transcriptional target and a modulator of activin action. Through an autocrine/paracrine loop, activin controls follistatin levels and thus regulates its own bioavailability. In gonadotropic alphaT3-1 cells, activin induces follistatin transcription primarily through the action of Smad3 at an intronic Smad-binding element (SBE1). Using a proteomics approach, we searched for endogenous alphaT3-1 proteins that participate in SBE1-mediated transcription. We identified FoxL2, a member of the forkhead family, as a candidate modulator of SBE1 function. Mutations of FoxL2 are associated with the blepharophimosis/ptosis/epicanthus inversus syndrome characterized with craniofacial defects and premature ovarian failure. FoxL2 localizes to alpha-glycoprotein subunit- and follicle-stimulating hormone beta-positive cells of the adult mouse pituitary and is present in alphaT3-1 and LbetaT2 cells, but its pituitary actions remain largely unknown. We have determined that FoxL2 binds to a forkhead-binding element (FKHB) located just downstream of the SBE1 site of the follistatin gene and functions as a Smad3 partner to drive SBE1-mediated transcription in alphaT3-1 cells treated with activin. Chromatin immunoprecipitation assays confirm that endogenous FoxL2 and Smad3 are recruited to the intronic enhancer of the follistatin gene where the SBE1 and FKHB sites are located. Exogenous FoxL2 enhances SBE1-mediated transcription, and short hairpin RNA-mediated knockdown of endogenous FoxL2 protein compromises this effect in alphaT3-1 cells. FoxL2 directly associates with Smad3 but not Smad2 or Smad4. This association between Smad3 and FoxL2 is mediated by the MH2 domain of Smad3 and is dependent on an intact forkhead domain in FoxL2. Altogether, these observations highlight a novel role for FoxL2 and suggest that it may function as a transcriptional regulator and a coordinator of Smad3 targets.
Collapse
Affiliation(s)
- Amy L Blount
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 2009; 39:283-96. [PMID: 19208403 PMCID: PMC2717722 DOI: 10.1002/mus.21244] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In most cases, pharmacologic strategies to treat genetic muscle disorders and certain acquired disorders, such as sporadic inclusion body myositis, have produced modest clinical benefits. In these conditions, inhibition of the myostatin pathway represents an alternative strategy to improve functional outcomes. Preclinical data that support this approach clearly demonstrate the potential for blocking the myostatin pathway. Follistatin has emerged as a powerful antagonist of myostatin that can increase muscle mass and strength. Follistatin was first isolated from the ovary and is known to suppress follicle-stimulating hormone. This raises concerns for potential adverse effects on the hypothalamic-pituitary-gonadal axis and possible reproductive capabilities. In this review we demonstrate a strategy to bypass off-target effects using an alternatively spliced cDNA of follistatin (FS344) delivered by adeno-associated virus (AAV) to muscle. The transgene product is a peptide of 315 amino acids that is secreted from the muscle and circulates in the serum, thus avoiding cell-surface binding sites. Using this approach our translational studies show increased muscle size and strength in species ranging from mice to monkeys. Adverse effects are avoided, and no organ system pathology or change in reproductive capabilities has been seen. These findings provide the impetus to move toward gene therapy clinical trials with delivery of AAV-FS344 to increase size and function of muscle in patients with neuromuscular disease.
Collapse
Affiliation(s)
- Louise R Rodino-Klapac
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio 43205 USA
| | | | | | | | | | | |
Collapse
|
49
|
Trombly DJ, Woodruff TK, Mayo KE. Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med 2009; 27:14-23. [PMID: 19197801 PMCID: PMC2947191 DOI: 10.1055/s-0028-1108006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor beta (TGF-beta) superfamily of proteins in the ovary. This article reviews these roles for TGF-beta family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis.
Collapse
Affiliation(s)
- Daniel J Trombly
- Department of Biochemistry, Molecular Biology & Cell Biology and Center for Reproductive Science, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
50
|
Kumar TR, Larson M, Wang H, McDermott J, Bronshteyn I. Transgenic mouse technology: principles and methods. Methods Mol Biol 2009; 590:335-62. [PMID: 19763515 DOI: 10.1007/978-1-60327-378-7_22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the "Cre-lox" technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our institute.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | |
Collapse
|