1
|
Le Ciclé C, Cohen-Tannoudji J, L'Hôte D. Recent Advances in the Understanding of Gonadotrope Lineage Differentiation in the Developing Pituitary. Neuroendocrinology 2024; 115:195-210. [PMID: 39527929 PMCID: PMC11924211 DOI: 10.1159/000542513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The pituitary gland is a vital endocrine organ regulating body homoeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialised endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies. SUMMARY This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment, and finally, the mechanisms driving the formation of physical and functional gonadotrope networks. KEY MESSAGES Overall, this review aimed to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity. BACKGROUND The pituitary gland is a vital endocrine organ regulating body homoeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialised endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies. SUMMARY This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment, and finally, the mechanisms driving the formation of physical and functional gonadotrope networks. KEY MESSAGES Overall, this review aimed to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L'Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
2
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
3
|
Liu SM, Ifebi B, Johnson F, Xu A, Ho J, Yang Y, Schwartz G, Jo YH, Chua S. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J Clin Invest 2023; 133:e164185. [PMID: 36787185 PMCID: PMC10065075 DOI: 10.1172/jci164185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlei Yang
- Department of Medicine
- Department of Neuroscience, and
| | - Gary Schwartz
- Department of Medicine
- Department of Neuroscience, and
| | - Young Hwan Jo
- Department of Medicine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | |
Collapse
|
4
|
Willis TL, Lodge EJ, Andoniadou CL, Yianni V. Cellular interactions in the pituitary stem cell niche. Cell Mol Life Sci 2022; 79:612. [PMID: 36451046 PMCID: PMC9712314 DOI: 10.1007/s00018-022-04612-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.
Collapse
Affiliation(s)
- Thea L Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Giannakopoulos A, Sertedaki A, Chrysis D. A human paradigm of LHX4 and NR5A1 developmental gene interaction in the pituitary gland and ovary? Eur J Hum Genet 2022; 30:1191-1194. [PMID: 35277652 PMCID: PMC9553932 DOI: 10.1038/s41431-022-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
The pituitary gland, as a nodal component of the endocrine system, is responsible for the regulation of growth, reproduction, metabolism, and homeostasis. Although pituitary formation though the hierarchical action of different transcription factors is well studied in mouse models, there is little evidence of the analogous developmental processes in humans. Herein, we present a female patient with a phenotype that includes blepharoptosis-ptosis-epicanthus syndrome and premature ovarian failure. Clinical exome sequencing revealed two heterozygous variants in two genes, LHX4 (pathogenic) and NR5A1 (VUS) genes and no mutation in FOXL2 gene. We propose a model of genetic interaction between LHX4 and NR5A1 during pituitary and ovarian development that may lead to a similar phenotype mediated by reduced FOXL2 expression.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece.
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, Greece
| |
Collapse
|
6
|
Kato Y, Yoshida S, Kato T. New insights into the role and origin of pituitary S100β-positive cells. Cell Tissue Res 2021; 386:227-237. [PMID: 34550453 DOI: 10.1007/s00441-021-03523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
In the anterior pituitary, S100β protein (S100β) has been assumed to be a marker of folliculo-stellate cells, which are one of the non-hormone-producing cells existing in the parenchyma of the adult anterior lobe and are composed of subpopulations with various functions. However, recent accumulating studies on S100β-positive cells, including non-folliculo-stellate cells lining the marginal cell layer (MCL), have shown the novel aspect that most S100β-positive cells in the MCL and parenchyma of the adult anterior lobe are positive for sex determining region Y-box 2 (SOX2), a marker of pituitary stem/progenitor cells. From the viewpoint of SOX2-positive cells, the majority of these cells in the MCL and in the parenchyma are positive for S100β, suggesting that S100β plays a role in the large population of stem/progenitor cells in the anterior lobe of the adult pituitary. Reportedly, S100β/SOX2-double positive cells are able to differentiate into hormone-producing cells and various types of non-hormone-producing cells. Intriguingly, it has been demonstrated that extra-pituitary lineage cells invade the pituitary gland during prenatal pituitary organogenesis. Among them, two S100β-positive populations have been identified: one is SOX2-positive population which invades at the late embryonic period through the pituitary stalk and another is a SOX2-negative population that invades at the middle embryonic period through Atwell's recess. These two populations are likely the substantive origin of S100β-positive cells in the postnatal anterior pituitary, while S100β-positive cells emerging from oral ectoderm-derived cells remain unclear.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
7
|
Abellán-Álvaro M, Ayala G, Barneo-Muñoz M, Martínez-García F, Agustín-Pavón C, Lanuza E. Motherhood-induced gene expression in the mouse medial amygdala: Changes induced by pregnancy and lactation but not by pup stimuli. FASEB J 2021; 35:e21806. [PMID: 34369605 DOI: 10.1096/fj.202100163rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
During lactation, adult female mice display aggressive responses toward male intruders, triggered by male-derived chemosensory signals. This aggressive behavior is not shown by pup-sensitized virgin females sharing pup care with dams. The genetic mechanisms underlying the switch from attraction to aggression are unknown. In this work, we investigate the differential gene expression in lactating females expressing maternal aggression compared to pup-sensitized virgin females in the medial amygdala (Me), a key neural structure integrating chemosensory and hormonal information. The results showed 197 genes upregulated in dams, including genes encoding hormones such as prolactin, growth hormone, or follicle-stimulating hormone, neuropeptides such as galanin, oxytocin, and pro-opiomelanocortin, and genes related to catecholaminergic and cholinergic neurotransmission. In contrast, 99 genes were downregulated in dams, among which we find those encoding for inhibins and transcription factors of the Fos and early growth response families. The gene set analysis revealed numerous Gene Ontology functional groups with higher expression in dams than in pup-sensitized virgin females, including those related with the regulation of the Jak/Stat cascade. Of note, a number of olfactory and vomeronasal receptor genes was expressed in the Me, although without differences between dams and virgins. For prolactin and growth hormone, a qPCR experiment comparing dams, pup-sensitized, and pup-naïve virgin females showed that dams expressed higher levels of both hormones than pup-naïve virgins, with pup-sensitized virgins showing intermediate levels. Altogether, the results show important gene expression changes in the Me, which may underlie some of the behavioral responses characterizing maternal behavior.
Collapse
Affiliation(s)
- María Abellán-Álvaro
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Guillermo Ayala
- Department d'Estadística i Investigació Operativa, Facultat de Matemàtiques, Universitat de València, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fernando Martínez-García
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Enrique Lanuza
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| |
Collapse
|
8
|
Xing C, Pan R, Hu G, Liu X, Wang Y, Li G. Pitx controls amphioxus asymmetric morphogenesis by promoting left-side development and repressing right-side formation. BMC Biol 2021; 19:166. [PMID: 34416880 PMCID: PMC8377849 DOI: 10.1186/s12915-021-01095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background Left-right (LR) asymmetry is an essential feature of bilateral animals. Studies in vertebrates show that LR asymmetry formation comprises three major steps: symmetry breaking, asymmetric gene expression, and LR morphogenesis. Although much progress has been made in the first two events, mechanisms underlying asymmetric morphogenesis remain largely unknown due to the complex developmental processes deployed by vertebrate organs. Results We here addressed this question by studying Pitx gene function in the basal chordate amphioxus whose asymmetric organogenesis, unlike that in vertebrates, occurs essentially in situ and does not rely on cell migration. Pitx null mutation in amphioxus causes loss of all left-sided organs and incomplete ectopic formation of all right-sided organs on the left side, whereas Pitx partial loss-of-function leads to milder phenotypes with only some LR organs lost or ectopically formed. At the N1 to N3 stages, Pitx expression is gradually expanded from the dorsal anterior domain to surrounding regions. This leads to activation of genes like Lhx3 and/or Prop1 and Pit, which are essential for left-side organs, and downregulation of genes like Hex and/or Nkx2.1 and FoxE4, which are required for right-side organs to form ectopically on the left side. In Pitx mutants, the left-side expressed genes are not activated, while the right-side genes fail to decrease expression on the left side. In contrast, in embryos overexpressing Pitx genes, the left-side genes are induced ectopically on the right side, and the right-side genes are inhibited. Several Pitx binding sites are identified in the upstream sequences of the left-side and right-side genes which are essential for activation of the former and repression of the latter by Pitx. Conclusions Our results demonstrate that (1) Pitx is a major (although not the only) determinant of asymmetric morphogenesis in amphioxus, (2) the development of different LR organs have distinct requirements for Pitx activity, and (3) Pitx controls amphioxus LR morphogenesis probably through inducing left-side organs and inhibiting right-side organs directly. These findings show much more dependence of LR organogenesis on Pitx in amphioxus than in vertebrates. They also provide insight into the molecular developmental mechanism of some vertebrate LR organs like the lungs and atria, since they show a right-isomerism phenotype in Pitx2 knockout mice like right-sided organs in Pitx mutant amphioxus. Our results also explain why some organs like the adenohypophysis are asymmetrically located in amphioxus but symmetrically positioned in vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01095-0.
Collapse
Affiliation(s)
- Chaofan Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, 361102, Fujian, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, 361102, Fujian, China
| | - Guangwei Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, 361102, Fujian, China.,Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, 361102, Fujian, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, 361102, Fujian, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, 361102, Fujian, China.
| |
Collapse
|
9
|
Abstract
The world of long non-coding RNAs (lncRNAs) has opened up massive new prospects in understanding the regulation of gene expression. Not only are there seemingly almost infinite numbers of lncRNAs in the mammalian cell, but they have highly diverse mechanisms of action. In the nucleus, some are chromatin-associated, transcribed from transcriptional enhancers (eRNAs) and/or direct changes in the epigenetic landscape with profound effects on gene expression. The pituitary gonadotrope is responsible for activation of reproduction through production and secretion of appropriate levels of the gonadotropic hormones. As such, it exemplifies a cell whose function is defined through changes in developmental and temporal patterns of gene expression, including those that are hormonally induced. Roles for diverse distal regulatory elements and eRNAs in gonadotrope biology have only just begun to emerge. Here, we will present an overview of the different kinds of lncRNAs that alter gene expression, and what is known about their roles in regulating some of the key gonadotrope genes. We will also review various screens that have detected differentially expressed pituitary lncRNAs associated with changes in reproductive state and those whose expression is found to play a role in gonadotrope-derived nonfunctioning pituitary adenomas. We hope to shed light on this exciting new field, emphasize the open questions, and encourage research to illuminate the roles of lncRNAs in various endocrine systems.
Collapse
Affiliation(s)
- Tal Refael
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: Philippa Melamed, PhD, Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
10
|
Tsuchiya R, Kaneshima A, Kobayashi M, Yamazaki M, Takasu Y, Sezutsu H, Tanaka Y, Mizoguchi A, Shiomi K. Maternal GABAergic and GnRH/corazonin pathway modulates egg diapause phenotype of the silkworm Bombyx mori. Proc Natl Acad Sci U S A 2021; 118:e2020028118. [PMID: 33443213 PMCID: PMC7817158 DOI: 10.1073/pnas.2020028118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diapause represents a major developmental switch in insects and is a seasonal adaptation that evolved as a specific subtype of dormancy in most insect species to ensure survival under unfavorable environmental conditions and synchronize populations. However, the hierarchical relationship of the molecular mechanisms involved in the perception of environmental signals to integration in morphological, physiological, behavioral, and reproductive responses remains unclear. In the bivoltine strain of the silkworm Bombyx mori, embryonic diapause is induced transgenerationally as a maternal effect. Progeny diapause is determined by the environmental temperature during embryonic development of the mother. Here, we show that the hierarchical pathway consists of a γ-aminobutyric acid (GABA)ergic and corazonin signaling system modulating progeny diapause induction via diapause hormone release, which may be finely tuned by the temperature-dependent expression of plasma membrane GABA transporter. Furthermore, this signaling pathway possesses similar features to the gonadotropin-releasing hormone (GnRH) signaling system for seasonal reproductive plasticity in vertebrates.
Collapse
Affiliation(s)
- Ryoma Tsuchiya
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Aino Kaneshima
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yoko Takasu
- National Agriculture and Food Research Organization, 305-8634 Tsukuba, Japan
| | - Hideki Sezutsu
- National Agriculture and Food Research Organization, 305-8634 Tsukuba, Japan
| | - Yoshiaki Tanaka
- National Agriculture and Food Research Organization, 305-8634 Tsukuba, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin 470-0195, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan;
| |
Collapse
|
11
|
Bohaczuk SC, Thackray VG, Shen J, Skowronska-Krawczyk D, Mellon PL. FSHB Transcription is Regulated by a Novel 5' Distal Enhancer With a Fertility-Associated Single Nucleotide Polymorphism. Endocrinology 2021; 162:bqaa181. [PMID: 33009549 PMCID: PMC7846141 DOI: 10.1210/endocr/bqaa181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/17/2022]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone, signal the gonads to regulate male and female fertility. FSH is critical for female fertility as it regulates oocyte maturation, ovulation, and hormone synthesis. Multiple genome-wide association studies (GWAS) link a 130 Kb locus at 11p14.1, which encompasses the FSH beta-subunit (FSHB) gene, with fertility-related traits that include polycystic ovary syndrome, age of natural menopause, and dizygotic twinning. The most statistically significant single nucleotide polymorphism from several GWAS studies (rs11031006) resides within a highly conserved 450 bp region 26 Kb upstream of the human FSHB gene. Given that sequence conservation suggests an important biological function, we hypothesized that the region could regulate FSHB transcription. In luciferase assays, the conserved region enhanced FSHB transcription and gel shifts identified a binding site for Steroidogenic factor 1 (SF1) contributing to its function. Analysis of mouse pituitary single-cell ATAC-seq demonstrated open chromatin at the conserved region exclusive to a gonadotrope cell-type cluster. Additionally, enhancer-associated histone markers were identified by immunoprecipitation of chromatin from mouse whole pituitary and an immortalized mouse gonadotrope-derived LβT2 cell line at the conserved region. Furthermore, we found that the rs11031006 minor allele upregulated FSHB transcription via increased SF1 binding to the enhancer. All together, these results identify a novel upstream regulator of FSHB transcription and indicate that rs11031006 can modulate FSH levels.
Collapse
Affiliation(s)
- Stephanie C Bohaczuk
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| | - Jia Shen
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Dorota Skowronska-Krawczyk
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, School of Medicine, University of California, San Diego, California
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California Irvine, Irvine, California
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
12
|
Noy EB, Watanabe Y, Grommen SVH, De Groef B. Transcriptional regulation of the chicken CRHR2 gene by pituitary transcription factors. Gen Comp Endocrinol 2019; 284:113263. [PMID: 31454497 DOI: 10.1016/j.ygcen.2019.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing hormone (CRH) is known to act as a potent thyrotropin-releasing factor in non-mammalian species such as chicken and bullfrog. This interaction is mediated by type 2 CRH receptors (CRHR2) expressed by the thyrotropes in the pituitary gland. However, the response elements (REs) and their corresponding transcription factors (TFs) that control CRHR2 expression in thyrotropes are not known. Since thyrotrope-specific expression of the β-subunit of thyrotropin is synergistically stimulated by the co-expression of POU1F1 and GATA2, we hypothesised that in non-mammalian vertebrates like chicken, CRHR2 expression is controlled by the same TFs and that their REs are present in the chicken CRHR2 gene promoter. In situ hybridisation and immunohistochemistry suggest that chicken thyrotropes, like those of mammals, express the mRNAs for the TFs GATA2, POU1F1 and PITX1, but not NR5A1. Using luciferase reporter assays, we show that both GATA2 and PITX1 can activate the promoter of CRHR2, but PITX1 requires a functional GATA2 RE to be present. POU1F1 alone did not affect promoter activity, but synergistically increased the effect of GATA2. Promoter deletion analysis and mutagenesis showed that essential GATA2 and PITX1 REs are located between 116 and 198 bp upstream of the start codon. These REs are highly conserved in non-mammalian species. Additionally, NR5A1 (steroidogenic factor 1) suppressed both GATA2- and PITX1-induced promoter activity and may therefore play a role in restricting CRHR2 expression in gonadotropes. We conclude that the expression of CRHR2 in chicken thyrotropes is stimulated by GATA2 with interactions with POU1F1 and PITX1, in the absence of NR5A1.
Collapse
Affiliation(s)
- Ellyse B Noy
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Yugo Watanabe
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
13
|
Shi B, Lu H, Zhang L, Zhang W. Nr5a1b promotes and Nr5a2 inhibits transcription of lhb in the orange-spotted grouper, Epinephelus coioides†. Biol Reprod 2019; 101:800-812. [PMID: 31317174 DOI: 10.1093/biolre/ioz121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Nr5a1 (Sf-1) up-regulates lhb expression across vertebrates; however, its regulatory roles on fshb remain to be defined. Moreover, the involvement of Nr5a2 in the regulation of gonadotropin expression is not clear either. In the present study, the involvement of Nr5a1b (a homologue of Nr5a1) and Nr5a2 in the regulation of lhb and fshb expression in the orange-spotted grouper was examined. Dual fluorescent immunohistochemistry using homologous antisera showed that in the pituitary of orange-spotted groupers, Lh cells contain both immunoreactive Nr5a1b and Nr5a2 signals, whereas Fsh cells contain neither of them. In LβT2 cells, Nr5a1b up-regulated basal activities of lhb and fshb promoters possibly via Nr5a sites, and synergistically (on lhb promoter) or additively (on fshb promoter) with forskolin. Surprisingly, Nr5a2 inhibited basal activities of lhb promoter possibly via Nr5a sites and attenuated the stimulatory effects of both forskolin and Nr5a1b. In contrast, Nr5a2 had no effects on fshb promoter. Chromatin immunoprecipitation analysis showed that both Nr5a1b and Nr5a2 bound to lhb promoter, but not fshb promoter in the pituitary of the orange-spotted grouper. The abundance of Nr5a1b bound to lhb promoter was significantly higher at the vitellogenic stage than the pre-vitellogenic stage, whereas that of Nr5a2 exhibited an opposite trend. Taken together, data of the present study demonstrated antagonistic effects of Nr5a1b and Nr5a2 on lhb transcription in the orange-spotted grouper and revealed novel regulatory mechanisms of differential expression of lhb and fshb genes through Nr5a homologues in vertebrates.
Collapse
Affiliation(s)
- Boyang Shi
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huijie Lu
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Abstract
The circumventricular organs (CVOs) are specialised neuroepithelial structures found in the midline of the brain, grouped around the third and fourth ventricles. They mediate the communication between the brain and the periphery by performing sensory and secretory roles, facilitated by increased vascularisation and the absence of a blood-brain barrier. Surprisingly little is known about the origins of the CVOs (both developmental and evolutionary), but their functional and organisational similarities raise the question of the extent of their relationship. Here, I review our current knowledge of the embryonic development of the seven major CVOs (area postrema, median eminence, neurohypophysis, organum vasculosum of the lamina terminalis, pineal organ, subcommissural organ, subfornical organ) in embryos of different vertebrate species. Although there are conspicuous similarities between subsets of CVOs, no unifying feature characteristic of their development has been identified. Cross-species comparisons suggest that CVOs also display a high degree of evolutionary flexibility. Thus, the term 'CVO' is merely a functional definition, and features shared by multiple CVOs may be the result of homoplasy rather than ontogenetic or phylogenetic relationships.
Collapse
Affiliation(s)
- Clemens Kiecker
- Department of Developmental NeurobiologyKing's College LondonLondonUK
| |
Collapse
|
15
|
Intragenic DNA methylation of PITX1 and the adjacent long non-coding RNA C5orf66-AS1 are prognostic biomarkers in patients with head and neck squamous cell carcinomas. PLoS One 2018; 13:e0192742. [PMID: 29425237 PMCID: PMC5806891 DOI: 10.1371/journal.pone.0192742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Patients with squamous cell cancer of the head and neck region (HNSCC) are at risk for disease recurrence and metastases, even after initial successful therapy. A tissue-based biomarker could be beneficial to guide treatment as well as post-treatment surveillance. Gene methylation status has been recently identified as powerful prognostic biomarker in HNSCC. We therefore evaluated the methylation status of the homeobox gene PITX1 and the adjacent long intergenic non-coding RNA (lincRNA) C5orf66-AS1 in publicly available datasets. Methods Gene methylation and expression data from 528 patients with HNSCC included in The Cancer Genome Atlas (TCGA, there obtained by using the Infinium HumanMethylation450 BeadChip Kit) were evaluated and methylation and expression levels of PITX1 and lincRNA C5orf66-AS1 was correlated with overall survival and other parameters. Thus, ten beads targeting PITX1 exon 3 and three beads targeting lincRNA C5orf66-AS1 were identified as significant candidates. The mean methylation of these beads was used for further correlation and the median was employed for dichotomization. Results Both PITX1 exon 3 and lincRNA C5orf66-AS1 were significantly higher methylated in tumor tissue than in normal adjacent tissue (NAT) (PITX1 exon 3: tumor tissue 58.1%, NAT: 31.7%, p<0.001; lincRNA C5orf66-AS1: tumor tissue: 27.4%, NAT: 18.9%, p<0.001). In a univariate analysis, hypermethylation of both loci was significantly associated with the risk of death (univariate: exon 3: Hazard ratio (HR): 4.97 [1.78–16.71], p = 0.010, lincRNA C5orf66-AS1: Hazard ratio (HR): 12.23 [3.01–49.74], p<0.001). PITX1 exon 3 and lincRNA C5orf66-AS1 methylation was also significantly correlated with tumor localization, T category, human papilloma virus (HPV)-negative and p16-negative tumors and tumor grade. Kaplan-Meier analysis showed, that lincRNA C5orf66-AS1 hypomethylation was significantly associated with overall survival (p = 0.001) in the entire cohort as well in a subgroup of HPV-negative tumors (p = 0.003) and in patients with laryngeal tumors (p = 0.022). Conclusion Methylation status of PITX1 and even more so of lincRNA C5orf66-AS1 is a promising prognostic biomarker in HNSCC, in particular for HPV-negative patients. Further prospective evaluation is warranted.
Collapse
|
16
|
Xie H, Hoffmann HM, Iyer AK, Brayman MJ, Ngo C, Sunshine MJ, Mellon PL. Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines. Reprod Biol Endocrinol 2017; 15:86. [PMID: 29065928 PMCID: PMC5655979 DOI: 10.1186/s12958-017-0304-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Proper expression of key reproductive hormones from gonadotrope cells of the pituitary is required for pubertal onset and reproduction. To further our understanding of the molecular events taking place during embryonic development, leading to expression of the glycoproteins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), we characterized chromatin structure changes, imparted mainly by histone modifications, in model gonadotrope cell lines. METHODS We evaluated chromatin status and gene expression profiles by chromatin immunoprecipitation assays, DNase sensitivity assay, and RNA sequencing in three developmentally staged gonadotrope cell lines, αT1-1 (progenitor, expressing Cga), αT3-1 (immature, expressing Cga and Gnrhr), and LβT2 (mature, expressing Cga, Gnrhr, Lhb, and Fshb), to assess changes in chromatin status and transcription factor access of gonadotrope-specific genes. RESULTS We found the common mRNA α-subunit of LH and FSH, called Cga, to have an open chromatin conformation in all three cell lines. In contrast, chromatin status of Gnrhr is open only in αT3-1 and LβT2 cells. Lhb begins to open in LβT2 cells and was further opened by activin treatment. Histone H3 modifications associated with active chromatin were high on Gnrhr in αT3-1 and LβT2, and Lhb in LβT2 cells, while H3 modifications associated with repressed chromatin were low on Gnrhr, Lhb, and Fshb in LβT2 cells. Finally, chromatin status correlates with the progressive access of LHX3 to Cga and Gnrhr, followed by PITX1 binding to the Lhb promoter. CONCLUSION Our data show the gonadotrope-specific genes Cga, Gnrhr, Lhb, and Fshb are not only controlled by developmental transcription factors, but also by epigenetic mechanisms that include the modulation of chromatin structure, and histone modifications.
Collapse
Affiliation(s)
- Huimin Xie
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
| | - Hanne M. Hoffmann
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
| | - Anita K. Iyer
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
- 0000 0004 0507 3954grid.185669.5Illumina Inc, 5200 Illumina Way, San Diego, CA 92122 USA
| | - Melissa J. Brayman
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
- Foley and Lardner LLP, 402 West Broadway, Suite 2100, San Diego, CA 92101 USA
| | - Cindy Ngo
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
| | - Mary Jean Sunshine
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
| | - Pamela L. Mellon
- 0000 0001 2107 4242grid.266100.3Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093-0674 USA
| |
Collapse
|
17
|
Takiguchi T, Koide H, Nagano H, Nakayama A, Fujimoto M, Tamura A, Komai E, Shiga A, Kono T, Higuchi S, Sakuma I, Hashimoto N, Suzuki S, Miyabayashi Y, Ishiwatari N, Horiguchi K, Nakatani Y, Yokote K, Tanaka T. Multihormonal pituitary adenoma concomitant with Pit-1 and Tpit lineage cells causing acromegaly associated with subclinical Cushing's disease: a case report. BMC Endocr Disord 2017; 17:54. [PMID: 28865461 PMCID: PMC5581437 DOI: 10.1186/s12902-017-0203-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/21/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A functional pituitary adenoma can produce multiple anterior-pituitary hormones, such as growth hormone (GH) -producing adenomas (GHoma) with prolactin or thyrotropin stimulating hormone production in the same lineage. However, it is very rare that acromegaly shows subclinical Cushing's disease (SCD) beyond the lineage. Here we describe the involvement of intratumoral coexistence with 2 types of hormone-producing cells associated with different lineage in acromegaly concomitant with SCD. CASE PRESENTATION In our study, we performed clinical evaluation of the patient showing acromegaly with SCD. To elucidate the mechanisms of this pathology, we analyzed immunohistochemistry and gene expression of anterior-pituitary hormones and transcriptional factors in the resected pituitary tumor. On immunohistochemical staining, most of the tumor cells were strongly stained for GH antibody, while some cells were strongly positive for adrenocorticotropic hormone (ACTH). Gene expression analysis of a transsphenoidal surgery sample of the pituitary gland revealed that ACTH-related genes, such as POMC, Tpit, and NeuroD1 mRNA, had higher expression in the tumor tissue than the nonfunctional adenoma but lower expression compared to an adenoma of typical Cushing's disease. Further, double-labeling detection methods with a fluorescent stain for ACTH and GH demonstrated the coexistence of ACTH-positive cells (GH-negative) among the GH-positive cells in the tumor. Additionally, Pit-1 expression was reduced in the ACTH-positive cells from tumor tissue primary culture. CONCLUSION Here we described a case of a pituitary tumor diagnosed with acromegaly associated with SCD. We performed quantitative-expression analyses of transcriptional factors of the tumor tissue and immunohistochemistry analysis of tumor-derived primary culture cells, which suggested that the multihormonal pituitary adenoma concomitant with Pit-1 and Tpit lineage cells caused acromegaly associated with SCD.
Collapse
Affiliation(s)
- Tomoko Takiguchi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Hisashi Koide
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Hidekazu Nagano
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Akitoshi Nakayama
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| | - Masanori Fujimoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Ai Tamura
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Eri Komai
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Akina Shiga
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Takashi Kono
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Seiichiro Higuchi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Ikki Sakuma
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Naoko Hashimoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Sawako Suzuki
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Yui Miyabayashi
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| | - Norio Ishiwatari
- Department of Neurological Surgery, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Kentaro Horiguchi
- Department of Neurological Surgery, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Yukio Nakatani
- Department of Pathology, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Tomoaki Tanaka
- Department of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, 260-8670 Japan
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, 260-8670 Japan
| |
Collapse
|
18
|
Rubinstein M, Low MJ. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett 2017; 591:2593-2606. [PMID: 28771698 PMCID: PMC9975356 DOI: 10.1002/1873-3468.12776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
A specter is haunting the world, the specter of obesity. During the last decade, this pandemia has skyrocketed threatening children, adolescents and lower income families worldwide. Although driven by an increase in the consumption of ultraprocessed edibles of poor nutritional value, the obesogenic changes in contemporary human lifestyle affect people differently, revealing that some individuals are more prone to develop increased adiposity. During the last years, we performed a variety of genetic, evolutionary, biochemical and behavioral experiments that allowed us to understand how a group of neurons present in the arcuate nucleus of the hypothalamus regulate the expression of the proopiomelanocortin (Pomc) gene and induce satiety. We disentangled the neuronal transcriptional code of Pomc by identifying the cis-acting regulatory elements and primary transcription factors controlling hypothalamic Pomc expression and determined their functional importance in the regulation of food intake and adiposity. Altogether, our studies reviewed here shed light on the power and limitations of the mammalian central satiety pathways and may contribute to the development of individual and collective strategies to reduce the debilitating effects of the self-induced obesity pandemia.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Nemec S, Luxey M, Jain D, Huang Sung A, Pastinen T, Drouin J. Pitx1 directly modulates the core limb development program to implement hindlimb identity. Development 2017; 144:3325-3335. [PMID: 28807899 DOI: 10.1242/dev.154864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/04/2017] [Indexed: 01/24/2023]
Abstract
Forelimbs (FLs) and hindlimbs (HLs) develop complex musculoskeletal structures that rely on the deployment of a conserved developmental program. Pitx1, a transcription factor gene with expression restricted to HL and absent from FL, plays an important role in generating HL features. The genomic mechanisms by which Pitx1 effects HL identity remain poorly understood. Here, we use expression profiling and analysis of direct Pitx1 targets to characterize the HL- and FL-restricted genetic programs in mouse and situate the Pitx1-dependent gene network within the context of limb-specific gene regulation. We show that Pitx1 is a crucial component of a narrow network of HL-restricted regulators, acting on a developmental program that is shared between FL and HL. Pitx1 targets sites that are in a similar chromatin state in FL and HL and controls expression of patterning genes as well as the chondrogenic program, consistent with impaired chondrogenesis in Pitx1-/- HL. These findings support a model in which multifactorial actions of a limited number of HL regulators redirect the generic limb development program in order to generate the unique structural features of the limb.
Collapse
Affiliation(s)
- Stephen Nemec
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada.,Department of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1 Canada
| | - Maëva Luxey
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada
| | - Deepak Jain
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada.,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6 Canada
| | - Aurélie Huang Sung
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1 Canada
| | - Jacques Drouin
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada .,Department of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1 Canada.,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6 Canada
| |
Collapse
|
20
|
Yu G, Li C, Xie W, Wang Z, Gao H, Cao L, Hao L, Zhang Y. Long non-coding RNA C5orf66-AS1 is downregulated in pituitary null cell adenomas and is associated with their invasiveness. Oncol Rep 2017; 38:1140-1148. [PMID: 28656268 PMCID: PMC5562005 DOI: 10.3892/or.2017.5739] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Pituitary null cell adenoma is a challenging clinical condition, and its pathogenesis remains to be elucidated. We performed this study to determine the roles of C5orf66-AS1, NORAD, and TINCR in the pathogenesis and invasion of pituitary null cell adenomas. Expression of the three long non-coding RNAs in pituitary null cell adenoma tissues of 11 patients and normal pituitary tissues from four donors was examined by performing quantitative reverse transcription-polymerase chain reaction. We found that C5orf66-AS1 expression was lower in pituitary null cell adenoma tissues than in normal pituitary tissues. Moreover, C5orf66-AS1 expression level was significantly lower in invasive pituitary null cell adenomas than in non-invasive ones. After transfection of C5orf66-AS1 into pituitary adenoma cells, assessment of cell viability and invasion suggested that overexpressed C5orf66-AS1 inhibited cell viability and cell invasion. In silico algorithms predicted several cis- and trans-acting target genes of C5orf66-AS1, including PITX1 and SCGB3A1. In addition, expression of some of the predicted target genes was determined using microarray data of another cohort with pituitary null cell adenomas. It showed that some of these target genes were differentially expressed between pituitary null cell adenoma tissues and normal pituitary tissues as well as between invasive and non-invasive tumors. Co-expression analysis in RNA sequencing data showed that PAQR7 was the most correlated gene of C5orf66-AS1 and that several predicted trans-acting target genes, including SCGB3A1, were highly correlated with C5orf66-AS1. NORAD and TINCR expression was not statistically significant in the complete cohort; however, a negative correlation was observed between NORAD expression and maximum tumor diameter in some subgroups. These results indicate that C5orf66-AS1 suppresses the development and invasion of pituitary null cell adenomas. However, our results do not provide enough statistical evidence to support the roles of NORAD and TINCR in the development and invasion of pituitary null cell adenomas.
Collapse
Affiliation(s)
- Guoqiang Yu
- Medical Center, Tsinghua University, Haidian, Beijing 100084, P.R. China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Zhuang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Lihua Cao
- Genome Wisdom Inc., Haidian, Beijing 100195, P.R. China
| | - Lingtong Hao
- Genome Wisdom Inc., Haidian, Beijing 100195, P.R. China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
21
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
22
|
Norwitz ER, Jeong KH, Chin WW. Molecular Mechanisms of Gonadotropin-Releasing Hormone Receptor Gene Regulation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769900600402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Errol R. Norwitz
- Division of Maternal-Fetal Medicine, Department of Obstetries & Gynecology, and Division of Molecular Genetics. Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - William W. Chin
- Division of Maternal-Fetal Medicine, Department of Obstetries & Gynecology, and Division of Molecular Genetics. Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Nishimura N, Ueharu H, Nishihara H, Shibuya S, Yoshida S, Higuchi M, Kanno N, Horiguchi K, Kato T, Kato Y. Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene. J Reprod Dev 2015; 62:93-102. [PMID: 26640231 PMCID: PMC4768783 DOI: 10.1262/jrd.2015-092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on
rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2
throughout life. PROP1-positive cells at one point occupy all cells in Rathke’s pouch, followed by a rapid
decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study
aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of
factors selected on the basis of expression in the early pituitary gland for expression of
Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has
cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of
Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter
assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors,
MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1
expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1,
HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action.
Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1
expression.
Collapse
Affiliation(s)
- Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mudie S, Bandarra D, Batie M, Biddlestone J, Moniz S, Ortmann B, Shmakova A, Rocha S. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia. Cell Cycle 2015; 13:3878-91. [PMID: 25558831 PMCID: PMC4614811 DOI: 10.4161/15384101.2014.972889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is an important developmental cue for multicellular organisms but it is also a contributing factor for several human pathologies, such as stroke, cardiovascular diseases and cancer. In cells, hypoxia activates a major transcriptional program coordinated by the Hypoxia Inducible Factor (HIF) family. HIF can activate more than one hundred targets but not all of them are activated at the same time, and there is considerable cell type variability. In this report we identified the paired-like homeodomain pituitary transcription factor (PITX1), as a transcription factor that helps promote specificity in HIF-1α dependent target gene activation. Mechanistically, PITX1 associates with HIF-1β and it is important for the induction of certain HIF-1 dependent genes but not all. In particular, PITX1 controls the HIF-1α-dependent expression of the histone demethylases; JMJD2B, JMJD2A, JMJD2C and JMJD1B. Functionally, PITX1 is required for the survival and proliferation responses in hypoxia, as PITX1 depleted cells have higher levels of apoptotic markers and reduced proliferation. Overall, our study identified PITX1 as a key specificity factor in HIF-1α dependent responses, suggesting PITX1 as a protein to target in hypoxic cancers.
Collapse
Affiliation(s)
- Sharon Mudie
- a Centre for Gene Regulation and Expression; College of Life Sciences ; University of Dundee ; Dundee , UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie H, Hoffmann HM, Meadows JD, Mayo SL, Trang C, Leming SS, Maruggi C, Davis SW, Larder R, Mellon PL. Homeodomain Proteins SIX3 and SIX6 Regulate Gonadotrope-specific Genes During Pituitary Development. Mol Endocrinol 2015; 29:842-55. [PMID: 25915183 PMCID: PMC4447639 DOI: 10.1210/me.2014-1279] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Sine oculis-related homeobox 3 (SIX3) and SIX6, 2 closely related homeodomain transcription factors, are involved in development of the mammalian neuroendocrine system and mutations of Six6 adversely affect fertility in mice. We show that both small interfering RNA knockdown in gonadotrope cell lines and knockout of Six6 in both embryonic and adult male mice (Six6 knockout) support roles for SIX3 and SIX6 in transcriptional regulation in gonadotrope gene expression and that SIX3 and SIX6 can functionally compensate for each other. Six3 and Six6 expression patterns in gonadotrope cell lines reflect the timing of the expression of pituitary markers they regulate. Six3 is expressed in an immature gonadotrope cell line and represses transcription of the early lineage-specific pituitary genes, GnRH receptor (GnRHR) and the common α-subunit (Cga), whereas Six6 is expressed in a mature gonadotrope cell line and represses the specific β-subunits of LH and FSH (LHb and FSHb) that are expressed later in development. We show that SIX6 repression requires interaction with transducin-like enhancer of split corepressor proteins and competition for DNA-binding sites with the transcriptional activator pituitary homeobox 1. Our studies also suggest that estradiol and circadian rhythm regulate pituitary expression of Six6 and Six3 in adult females but not in males. In summary, SIX3 and SIX6 play distinct but compensatory roles in regulating transcription of gonadotrope-specific genes as gonadotrope cells differentiate.
Collapse
Affiliation(s)
- Huimin Xie
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Hanne M Hoffmann
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jason D Meadows
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Susan L Mayo
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Crystal Trang
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sunamita S Leming
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Chiara Maruggi
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Shannon W Davis
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Rachel Larder
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| | - Pamela L Mellon
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine (H.X., H.M.H., J.D.M., S.L.M., C.T., S.S.L., C.M., R.L., P.L.M.), University of California, San Diego, La Jolla, California 92093; and Department of Human Genetics (S.W.D.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Dose-dependent dual role of PIT-1 (POU1F1) in somatolactotroph cell proliferation and apoptosis. PLoS One 2015; 10:e0120010. [PMID: 25822178 PMCID: PMC4379079 DOI: 10.1371/journal.pone.0120010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/02/2015] [Indexed: 12/11/2022] Open
Abstract
To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1.
Collapse
|
27
|
RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin α-subunit gene. Proc Natl Acad Sci U S A 2015; 112:4369-74. [PMID: 25810254 DOI: 10.1073/pnas.1414841112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the discovery that many transcriptional enhancers are transcribed into long noncoding RNAs termed "enhancer RNAs" (eRNAs), their putative role in enhancer function has been debated. Very recent evidence has indicted that some eRNAs play a role in initiating or activating transcription, possibly by helping recruit and/or stabilize binding of the general transcription machinery to the proximal promoter of their target genes. The distal enhancer of the gonadotropin hormone α-subunit gene, chorionic gonadotropin alpha (Cga), is responsible for Cga cell-specific expression in gonadotropes and thyrotropes, and we show here that it encodes two bidirectional nonpolyadenylated RNAs whose levels are increased somewhat by exposure to gonadotropin-releasing hormone but are not necessarily linked to Cga transcriptional activity. Knockdown of the more distal eRNA led to a drop in Cga mRNA levels, initially without effect on the forward eRNA levels. With time, however, the repression on the Cga increased, and the forward eRNA levels were suppressed also. We demonstrate that the interaction of the enhancer with the promoter is lost after eRNA knockdown. Dramatic changes also were seen in the chromatin, with an increase in total histone H3 occupancy throughout this region and a virtual loss of histone H3 Lys 4 trimethylation at the promoter following the eRNA knockdown. Moreover, histone H3 Lys 27 (H3K27) acetylation, which was found at both enhancer and promoter in wild-type cells, appeared to have been replaced by H3K27 trimethylation at the enhancer. Thus, the Cga eRNA mediates the physical interaction between these genomic regions and determines the chromatin structure of the proximal promoter to allow gene expression.
Collapse
|
28
|
Soukup V, Yong LW, Lu TM, Huang SW, Kozmik Z, Yu JK. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo 2015; 6:5. [PMID: 25954501 PMCID: PMC4423147 DOI: 10.1186/2041-9139-6-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022] Open
Abstract
Background Nodal is an important determinant of the left-right (LR) body axis in bilaterians, specifying the right side in protostomes and non-chordate deuterostomes as opposed to the left side in chordates. Amphioxus represents an early-branching chordate group, rendering it especially useful for studying the character states that predate the origin of vertebrates. However, its anatomy, involving offset arrangement of axial structures, marked asymmetry of the oropharyngeal region, and, most notably, a mouth positioned on the left side, contrasts with the symmetric arrangement of the corresponding regions in other chordates. Results We show that the Nodal signaling pathway acts to specify the LR axis in the cephalochordate amphioxus in a similar way as in vertebrates. At early neurula stages, Nodal switches from initial bilateral to the left-sided expression and subsequently specifies the left embryonic side. Perturbation of Nodal signaling with small chemical inhibitors (SB505124 and SB431542) alters expression of other members of the pathway and of left/right-sided, organ-specific genes. Upon inhibition, larvae display loss of the innate alternation of both somites and axons of peripheral nerves and loss of left-sided pharyngeal structures, such as the mouth, the preoral pit, and the duct of the club-shaped gland. Concomitantly, the left side displays ectopic expression of otherwise right-sided genes, and the larvae exhibit bilaterally symmetrical morphology, with duplicated endostyle and club-shaped gland structures. Conclusions We demonstrate that Nodal signaling is necessary for establishing the LR embryonic axis and for developing profound asymmetry in amphioxus. Our data suggest that initial symmetry breaking in amphioxus and propagation of the pathway on the left side correspond with the situation in vertebrates. However, the organs that become targets of the pathway differ between amphioxus and vertebrates, which may explain the pronounced asymmetry of its oropharyngeal and axial structures and the left-sided position of the mouth. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-6-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14220 Czech Republic
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Song-Wei Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14220 Czech Republic
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan ; Institute of Oceanography, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617 Taiwan
| |
Collapse
|
29
|
Zheng W, Grafer CM, Kim J, Halvorson LM. Gonadotropin-Releasing Hormone and Gonadal Steroids Regulate Transcription Factor mRNA Expression in Primary Pituitary and Immortalized Gonadotrope Cells. Reprod Sci 2015; 22:285-99. [DOI: 10.1177/1933719114565031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Weiming Zheng
- Core Laboratories, St. Paul University Hospital, Dallas, TX, USA
| | - Constance M. Grafer
- Department of Obstetrics and Gynecology, Green Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
30
|
Characterization of Chicken Prolactin Regulatory Element Binding Protein and its Expression in the Anterior Pituitary Gland during Embryogenesis and Different Reproductive Stages. J Poult Sci 2015. [DOI: 10.2141/jpsa.0140036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
BMP15 c.-9C>G promoter sequence variant may contribute to the cause of non-syndromic premature ovarian failure. Reprod Biomed Online 2014; 29:627-33. [DOI: 10.1016/j.rbmo.2014.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/13/2023]
|
32
|
Yoshida S, Higuchi M, Ueharu H, Nishimura N, Tsuda M, Yako H, Chen M, Mitsuishi H, Sano Y, Kato T, Kato Y. Characterization of murine pituitary-derived cell lines Tpit/F1, Tpit/E and TtT/GF. J Reprod Dev 2014; 60:295-303. [PMID: 24881870 PMCID: PMC4139504 DOI: 10.1262/jrd.2014-031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pituitary is an important endocrine tissue of the vertebrate that produces and secretes many hormones. Accumulating data
suggest that several types of cells compose the pituitary, and there is growing interest in elucidating the origin of these cell
types and their roles in pituitary organogenesis. Therein, the histogenous cell line is an extremely valuable experimental tool
for investigating the function of derived tissue. In this study, we compared gene expression profiles by microarray analysis and
real-time PCR for murine pituitary tumor-derived non-hormone-producing cell lines TtT/GF, Tpit/F1 and Tpit/E. Several genes are
characteristically expressed in each cell line: Abcg2, Nestin, Prrx1,
Prrx2, CD34, Eng, Cspg4 (Ng2),
S100β and nNos in TtT/GF; Cxcl12, Raldh1,
Msx1 and Twist1 in Tpit/F1; and Cxadr, Sox9,
Cdh1, EpCAM and Krt8 in Tpit/E. Ultimately, we came to the following conclusions: TtT/GF cells
show the most differentiated state, and may have some properties of the pituitary vascular endothelial cell and/or pericyte.
Tpit/F1 cells show the epithelial and mesenchymal phenotypes with stemness still in a transiting state. Tpit/E cells have a
phenotype of epithelial cells and are the most immature cells in the progression of differentiation or in the initial
endothelial-mesenchymal transition (EMT). Thus, these three cell lines must be useful model cell lines for investigating pituitary
stem/progenitor cells as well as organogenesis.
Collapse
Affiliation(s)
- Saishu Yoshida
- Laboratory of Molecular Biology and Gene Regulation, Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Weltzien FA, Hildahl J, Hodne K, Okubo K, Haug TM. Embryonic development of gonadotrope cells and gonadotropic hormones--lessons from model fish. Mol Cell Endocrinol 2014; 385:18-27. [PMID: 24145126 DOI: 10.1016/j.mce.2013.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023]
Abstract
Pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are key regulators of vertebrate reproduction. The differential regulation of these hormones, however, is poorly understood and little is known about gonadotrope embryonic development. The different cell types in the vertebrate pituitary develop from common progenitor cells just after gastrulation. Proper development and merging of the anterior and posterior pituitary is dependent upon carefully regulated cell-to-cell interactions, and a suite of signaling pathways with precisely organized temporal and spatial expression patterns, which include transcription factors and their co-activators and repressors. Among the pituitary endocrine cell types, the gonadotropes are the last to develop and become functional. Although much progress has been made during the last decade regarding details of gonadotrope development, the coordinated program for their maturation is not well described. FSH and LH form an integral part of the hypothalamo-pituitary-gonad axis, the main regulator of gonad development and reproduction. Besides regulating gonad development, pre- and early post-natal activity in this axis is thought to be essential for proper development, especially of the central nervous system in mammals. As a means to investigate early functions of FSH and LH in more detail, we have developed a stable transgenic line of medaka with the LH beta subunit gene (lhb) promoter driving green fluorescent protein (Gfp) expression to characterize development of lhb-expressing gonadotropes. The lhb gene is maternally expressed early during embryogenesis. lhb-Expressing cells are initially localized outside the primordial pituitary in the developing gut tube as early as 32 hpf. At hatching, lhb-Gfp is clearly detected in the gut epithelium and in the anterior digestive tract. lhb-Gfp expression later consolidates in the developing pituitary by 2 weeks post-fertilization. This review discusses status of knowledge regarding pituitary morphology and development, with emphasis on gonadotrope cells and gonadotropins during early development, comparing main model species like mouse, zebrafish and medaka, including possible developmental functions of the observed extra pituitary expression of lhb in medaka.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jon Hildahl
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, Norwegian School of Veterinary Science, Oslo, Norway
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Wang YG, Li XD, Liu ZY, Zhang TG, Chen B, Hou GQ, Hong Q, Xie P, Du SX. All-trans-retinoid acid (ATRA) may have inhibited chondrogenesis of primary hind limb bud mesenchymal cells by downregulating Pitx1 expression. Toxicol Lett 2014; 224:282-9. [PMID: 23810783 DOI: 10.1016/j.toxlet.2013.06.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Despite frequently well-established role of all-trans-retinoid acid (ATRA) in congenital limb deformities, its mechanism of action, thus far, is still ambiguous. Pitx1, which is expressed in the hindlimb bud mesenchyme, or its pathways may be etiologically responsible for the increased incidence of clubfoot. Here, we sought to investigate the mechanisms whereby Pitx1 regulated chondrogenesis of hindlimb bud mesenchymal cells in vitro. E12.5 embryonic rat hind limb bud mesenchymal cells were treated with ATRA at appropriate concentrations. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate cell proliferation. Hematoxylin-safranin-O-fast-green staining assays were used to observe cartilage nodules, and Pitx1 expression was examined by immunofluorescent microscopy. Real-time quantitative PCR and immunoblotting assays were applied to determine the mRNA expressions of Pitx1, Sox9 and type II collagen (Col2al), respectively. The results showed that ATRA inhibited the proliferation of hind limb bud cells dose-dependently. ATRA also induced a dose-dependent reduction in the number of cartilage nodules and the area of cartilage nodules compared with controls. Our real-time quantitative RT-PCR assays revealed that the mRNA expression of Pitx1, Sox9 and Col2al were significantly downregulated by ATRA. Furthermore, our immunofluorescent microscopy and Western blotting assays indicated that Pitx1 was mainly expressed in the cartilage nodules and the levels of Pitx1, Sox9 and Col2al were also downregulated by ATRA dose-dependently. The results indicated that ATRA may decrease chondrogenesis of hind limb bud mesenchymal cells by inhibiting cartilage-specific molecules, such as Sox9 and Col2al, via downregulating Pitx1 expression.
Collapse
Affiliation(s)
- Yun-guo Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Specification of functional cranial placode derivatives from human pluripotent stem cells. Cell Rep 2013; 5:1387-402. [PMID: 24290755 DOI: 10.1016/j.celrep.2013.10.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 09/15/2013] [Accepted: 10/30/2013] [Indexed: 01/08/2023] Open
Abstract
Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease.
Collapse
|
36
|
Skarra DV, Arriola DJ, Benson CA, Thackray VG. Forkhead box O1 is a repressor of basal and GnRH-induced Fshb transcription in gonadotropes. Mol Endocrinol 2013; 27:1825-39. [PMID: 24065703 DOI: 10.1210/me.2013-1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Synthesis of the gonadotropin β-subunits is tightly controlled by a complex network of hormonal signaling pathways that may be modulated by metabolic cues. Recently, we reported that insulin regulates FOXO1 phosphorylation and cellular localization in pituitary gonadotropes and that FOXO1 overexpression inhibits Lhb transcription. In the current study, we investigated whether FOXO1 modulates Fshb synthesis. Here, we demonstrate that FOXO1 represses basal and GnRH-induced Fshb transcription in LβT2 cells. In addition, we show that PI3K inhibition, which increases FOXO1 nuclear localization, results in decreased Fshb mRNA levels in murine primary pituitary cells. FOXO1 also decreases transcription from the human FSHB promoter, suggesting that FOXO1 regulation of FSHB transcription may be conserved between rodents and humans. Although the FOXO1 DNA-binding domain is necessary for suppression of Fshb, we do not observe direct binding of FOXO1 to the Fshb promoter, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors required for Fshb synthesis. FOXO1 suppression of basal Fshb transcription may involve PITX1 because PITX1 interacts with FOXO1, FOXO1 repression maps to the proximal Fshb promoter containing a PITX1-binding site, PITX1 induction of Fshb or a PITX1 binding element in CV-1 cells is decreased by FOXO1, and FOXO1 suppresses Pitx1 mRNA and protein levels. GnRH induction of an Fshb promoter containing a deletion at -50/-41 or -30/-21 is not repressed by FOXO1, suggesting that these two regions may be involved in FOXO1 suppression of GnRH-induced Fshb synthesis. In summary, our data demonstrate that FOXO1 can negatively regulate Fshb transcription and suggest that FOXO1 may relay metabolic hormonal signals to modulate gonadotropin production.
Collapse
Affiliation(s)
- Danalea V Skarra
- PhD, Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0674, La Jolla, CA 92093.
| | | | | | | |
Collapse
|
37
|
Ibrahim DM, Hansen P, Rödelsperger C, Stiege AC, Doelken SC, Horn D, Jäger M, Janetzki C, Krawitz P, Leschik G, Wagner F, Scheuer T, Schmidt-von Kegler M, Seemann P, Timmermann B, Robinson PN, Mundlos S, Hecht J. Distinct global shifts in genomic binding profiles of limb malformation-associated HOXD13 mutations. Genome Res 2013; 23:2091-102. [PMID: 23995701 PMCID: PMC3847778 DOI: 10.1101/gr.157610.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene regulation by transcription factors (TFs) determines developmental programs and cell identity. Consequently, mutations in TFs can lead to dramatic phenotypes in humans by disrupting gene regulation. To date, the molecular mechanisms that actually cause these phenotypes have been difficult to address experimentally. ChIP-seq, which couples chromatin immunoprecipitation with high-throughput sequencing, allows TF function to be investigated on a genome-wide scale, enabling new approaches for the investigation of gene regulation. Here, we present the application of ChIP-seq to explore the effect of missense mutations in TFs on their genome-wide binding profile. Using a retroviral expression system in chicken mesenchymal stem cells, we elucidated the mechanism underlying a novel missense mutation in HOXD13 (Q317K) associated with a complex hand and foot malformation phenotype. The mutated glutamine (Q) is conserved in most homeodomains, a notable exception being bicoid-type homeodomains that have lysine (K) at this position. Our results show that the mutation results in a shift in the binding profile of the mutant toward a bicoid/PITX1 motif. Gene expression analysis and functional assays using in vivo overexpression studies confirm that the mutation results in a partial conversion of HOXD13 into a TF with bicoid/PITX1 properties. A similar shift was not observed with another mutation, Q317R, which is associated with brachysyndactyly, suggesting that the bicoid/PITX1-shift observed for Q317K might be related to the severe clinical phenotype. The methodology described can be used to investigate a wide spectrum of TFs and mutations that have not previously been amenable to ChIP-seq experiments.
Collapse
Affiliation(s)
- Daniel M Ibrahim
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fortin J, Kumar V, Zhou X, Wang Y, Auwerx J, Schoonjans K, Boehm U, Boerboom D, Bernard DJ. NR5A2 regulates Lhb and Fshb transcription in gonadotrope-like cells in vitro, but is dispensable for gonadotropin synthesis and fertility in vivo. PLoS One 2013; 8:e59058. [PMID: 23536856 PMCID: PMC3594184 DOI: 10.1371/journal.pone.0059058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Successful mammalian reproduction depends on proper synthesis of the pituitary-derived glycoprotein hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several transcription factors cooperate to activate cell-specific and hormone-regulated expression of the gonadotropin beta subunits (Lhb and Fshb). Among these, NR5A1 (steroidogenic factor 1; SF1) has been shown to directly bind to the Lhb promoter, mediate basal and gonadotropin-releasing hormone (GnRH)-stimulated Lhb transcription, and possibly directly regulate Fshb expression. Recently, the closely-related NR5A2 was shown to activate the rat Lhb promoter in vitro. Here, we further characterized the role of NR5A2 in regulating gonadotropin synthesis. Ectopically expressed NR5A2 directly activated the murine Lhb promoter in a manner identical to that of NR5A1, whereas neither factor activated the murine Fshb promoter. In LβT2 gonadotrope-like cells, depletion of endogenous NR5A1 or NR5A2 impaired basal and GnRH-stimulated Lhb and Fshb transcription. To analyze the physiological role of NR5A2 in gonadotropes in vivo, we generated mice with a gonadotrope-specific deletion of Nr5a2. In contrast with our in vitro data, these mice had normal pituitary Lhb and Fshb expression and intact fertility. Together, our data establish that NR5A2 can act in a non-redundant manner to regulate Lhb and Fshb transcription in vitro, but is dispensable in vivo.
Collapse
Affiliation(s)
- Jérôme Fortin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Vikas Kumar
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- Département de Biomédecine Vétérinaire, Université de Montréal, Ste-Hyacinthe, Québec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse
| | - Kristina Schoonjans
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Saarland, Germany
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Université de Montréal, Ste-Hyacinthe, Québec, Canada
| | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
39
|
Arriola DJ, Mayo SL, Skarra DV, Benson CA, Thackray VG. FOXO1 transcription factor inhibits luteinizing hormone β gene expression in pituitary gonadotrope cells. J Biol Chem 2012; 287:33424-35. [PMID: 22865884 DOI: 10.1074/jbc.m112.362103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of luteinizing hormone (LH) is tightly controlled by a complex network of hormonal signaling pathways that can be modulated by metabolic cues, such as insulin. One group of candidate genes that may be regulated by insulin signaling in pituitary gonadotrope cells is the FOXO subfamily of forkhead transcription factors. In this study we investigated whether FOXO1 is expressed in gonadotropes and if it can modulate LH β-subunit (Lhb) gene expression. We demonstrated that FOXO1 is expressed in murine gonadotrope cells and that insulin signaling increased FOXO1 phosphorylation and cytoplasmic localization in a PI3K-dependent manner. We also showed that FOXO1 repressed basal transcription and gonadotropin-releasing hormone (GnRH) induction of both the murine and human LHB genes in LβT2 cells, suggesting that FOXO1 regulation of LHB transcription may be conserved between rodents and humans. Although we did not detect FOXO1 binding to the proximal Lhb promoter, the FOXO1 DNA binding domain was necessary for the suppression, suggesting that FOXO1 exerts its effect through protein-protein interactions with transcription factors/cofactors required for Lhb gene expression. FOXO1 repression mapped to the proximal Lhb promoter containing steroidogenic factor 1 (SF1), pituitary homeobox 1 (PTX1), and early growth response protein 1 (EGR1) binding elements. Additionally, FOXO1 blocked induction of the Lhb promoter with overexpressed SF1, PTX1, and EGR1, indicating that FOXO1 repression occurs via these transcription factors but not through regulation of their promoters. In summary, we demonstrate that FOXO1 phosphorylation and cellular localization is regulated by insulin signaling in gonadotropes and that FOXO1 inhibits Lhb transcription. Our study also suggests that FOXO1 may play an important role in controlling LH levels in response to metabolic cues.
Collapse
Affiliation(s)
- David J Arriola
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
40
|
Breen KM, Thackray VG, Hsu T, Mak-McCully RA, Coss D, Mellon PL. Stress levels of glucocorticoids inhibit LHβ-subunit gene expression in gonadotrope cells. Mol Endocrinol 2012; 26:1716-31. [PMID: 22851703 DOI: 10.1210/me.2011-1327] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased glucocorticoid secretion is a common response to stress and has been implicated as a mediator of reproductive suppression upon the pituitary gland. We utilized complementary in vitro and in vivo approaches in the mouse to investigate the role of glucocorticoids as a stress-induced intermediate capable of gonadotrope suppression. Repeated daily restraint stress lengthened the ovulatory cycle of female mice and acutely reduced GnRH-induced LH secretion and synthesis of LH β-subunit (LHβ) mRNA, coincident with increased circulating glucocorticoids. Administration of a stress level of glucocorticoid, in the absence of stress, blunted LH secretion in ovariectomized female mice, demonstrating direct impairment of reproductive function by glucocorticoids. Supporting a pituitary action, glucocorticoid receptor (GR) is expressed in mouse gonadotropes and treatment with glucocorticoids reduces GnRH-induced LHβ expression in immortalized mouse gonadotrope cells. Analyses revealed that glucocorticoid repression localizes to a region of the LHβ proximal promoter, which contains early growth response factor 1 (Egr1) and steroidogenic factor 1 sites critical for GnRH induction. GR is recruited to this promoter region in the presence of GnRH, but not by dexamethasone alone, confirming the necessity of the GnRH response for GR repression. In lieu of GnRH, Egr1 induction is sufficient for glucocorticoid repression of LHβ expression, which occurs via GR acting in a DNA- and dimerization-independent manner. Collectively, these results expose the gonadotrope as an important neuroendocrine site impaired during stress, by revealing a molecular mechanism involving Egr1 as a critical integrator of complex formation on the LHβ promoter during GnRH induction and GR repression.
Collapse
Affiliation(s)
- Kellie M Breen
- Department of Reproductive Medicine/Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pandey SN, Cabotage J, Shi R, Dixit M, Sutherland M, Liu J, Muger S, Harper SQ, Nagaraju K, Chen YW. Conditional over-expression of PITX1 causes skeletal muscle dystrophy in mice. Biol Open 2012; 1:629-639. [PMID: 23125914 PMCID: PMC3486706 DOI: 10.1242/bio.20121305] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Paired-like homeodomain transcription factor 1 (PITX1) was specifically up-regulated in patients with facioscapulohumeral muscular dystrophy (FSHD) by comparing the genome-wide mRNA expression profiles of 12 neuromuscular disorders. In addition, it is the only known direct transcriptional target of the double homeobox protein 4 (DUX4) of which aberrant expression has been shown to be the cause of FSHD. To test the hypothesis that up-regulation of PITX1 contributes to the skeletal muscle atrophy seen in patients with FSHD, we generated a tet-repressible muscle-specific Pitx1 transgenic mouse model in which expression of PITX1 in skeletal muscle can be controlled by oral administration of doxycycline. After PITX1 was over-expressed in the skeletal muscle for 5 weeks, the mice exhibited significant loss of body weight and muscle mass, decreased muscle strength, and reduction of muscle fiber diameters. Among the muscles examined, the tibialis anterior, gastrocnemius, quadricep, bicep, tricep and deltoid showed significant reduction of muscle mass, while the soleus, masseter and diaphragm muscles were not affected. The most prominent pathological change was the development of atrophic muscle fibers with mild necrosis and inflammatory infiltration. The affected myofibers stained heavily with NADH-TR with the strongest staining in angular-shaped atrophic fibers. Some of the atrophic fibers were also positive for embryonic myosin heavy chain using immunohistochemistry. Immunoblotting showed that the p53 was up-regulated in the muscles over-expressing PITX1. The results suggest that the up-regulation of PITX1 followed by activation of p53-dependent pathways may play a major role in the muscle atrophy developed in the mouse model.
Collapse
Affiliation(s)
- Sachchida N. Pandey
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jennifer Cabotage
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Rongye Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Manjusha Dixit
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Margret Sutherland
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jian Liu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Stephanie Muger
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
- Department of Integrative Systems Biology, George Washington University, Washington, DC 48109, USA
| |
Collapse
|
42
|
Mullen RD, Park S, Rhodes SJ. A distal modular enhancer complex acts to control pituitary- and nervous system-specific expression of the LHX3 regulatory gene. Mol Endocrinol 2011; 26:308-19. [PMID: 22194342 DOI: 10.1210/me.2011-1252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Rachel D Mullen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
43
|
Jefferson WN, Padilla-Banks E, Phelps JY, Gerrish KE, Williams CJ. Permanent oviduct posteriorization after neonatal exposure to the phytoestrogen genistein. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1575-1582. [PMID: 21810550 PMCID: PMC3226509 DOI: 10.1289/ehp.1104018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Preimplantation embryo loss during oviduct transit has been observed in adult mice after a 5-day neonatal exposure to the phytoestrogen genistein (Gen; 50 mg/kg/day). OBJECTIVE We investigated the mechanisms underlying the contribution of the oviduct to infertility. METHODS Female mice were treated on postnatal days 1-5 with corn oil or Gen (50 mg/kg/day). We compared morphology, gene expression, and protein expression in different regions of the reproductive tracts of Gen-treated mice with those of control littermates at several time points. RESULTS Neonatal Gen treatment resulted in substantial changes in expression of genes that modulate neonatal oviduct morphogenesis, including Hoxa (homeobox A cluster), Wnt (wingless-related MMTV integration site), and hedgehog signaling genes. An estrogen receptor antagonist blocked these effects, indicating that they were induced by the estrogenic activity of Gen. Oviducts of adults treated neonatally with Gen had abnormal morphology and were stably "posteriorized," as indicated by altered Hoxa gene patterning during the time of treatment and dramatic, permanent up-regulation of homeobox genes (e.g., Pitx1, Six1) normally expressed only in the cervix and vagina. CONCLUSIONS Neonatal exposure to estrogenic environmental chemicals permanently disrupts oviduct morphogenesis and adult gene expression patterns, and these changes likely contribute to the infertility phenotype.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
44
|
Stender JD, Stossi F, Funk CC, Charn TH, Barnett DH, Katzenellenbogen BS. The estrogen-regulated transcription factor PITX1 coordinates gene-specific regulation by estrogen receptor-alpha in breast cancer cells. Mol Endocrinol 2011; 25:1699-709. [PMID: 21868451 DOI: 10.1210/me.2011-0102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The estrogen receptor α (ERα) is a master regulator of gene expression and works along with cooperating transcription factors in mediating the actions of the hormone estradiol (E2) in ER-positive tissues and breast tumors. Here, we report that expression of paired-like homeodomain transcription factor (PITX1), a tumor suppressor and member of the homeobox family of transcription factors, is robustly up-regulated by E2 in several ERα-positive breast cancer cell lines via ERα-dependent interaction between the proximal promoter and an enhancer region 5' upstream of the PITX1 gene. Overexpression of PITX1 selectively inhibited the transcriptional activity of ERα and ERβ, while enhancing the activities of the glucocorticoid receptor and progesterone receptor. Reduction of PITX1 by small interfering RNA enhanced ERα-dependent transcriptional regulation of a subset of ERα target genes. The consensus PITX1 binding motif was found to be present in 28% of genome-wide ERα binding sites and was in close proximity to estrogen response elements in a subset of ERα binding sites, and E2 treatment enhanced PITX1 as well as ERα recruitment to these binding sites. These studies identify PITX1 as a new ERα transcriptional target that acts as a repressor to coordinate and fine tune target-specific, ERα-mediated transcriptional activity in human breast cancer cells.
Collapse
Affiliation(s)
- Joshua D Stender
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704, USA
| | | | | | | | | | | |
Collapse
|
45
|
Budry L, Couture C, Balsalobre A, Drouin J. The Ets factor Etv1 interacts with Tpit protein for pituitary pro-opiomelanocortin (POMC) gene transcription. J Biol Chem 2011; 286:25387-96. [PMID: 21622576 DOI: 10.1074/jbc.m110.202788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is expressed in two lineages of the pituitary, the anterior lobe corticotrophs and the intermediate lobe melanotrophs. POMC expression in these two lineages is highly dependent on the cell-restricted transcription factor Tpit. As Tpit intervenes relatively late in differentiation of those lineages, we have been searching for other transcription factors that may participate in their gene expression program. On the basis of similarity with the Tpit expression profile, we identified Ets variant gene 1 (Etv1/Er81) as a putative POMC transcription factor. Using Etv1-lacZ knockin mice, we describe preferential Etv1 expression in pituitary POMC cells and also in posterior lobe pituicytes. We further show that Etv1 enhances POMC transcription on its own and in synergy with Tpit. The Ets-binding site located within the Tpit/Pitx regulatory element is necessary for Etv1 activity in POMC-expressing AtT-20 cells but dispensable for synergy with Tpit. Etv1 and Tpit interact together in coimmunoprecipitation experiments. Furthermore, Etv1 is present at the POMC promoter, and siRNA-mediated knockdown of Etv1 in AtT-20 cells produces a significant decrease in POMC expression. Etv1 knockout pituitaries show normal POMC cell distribution and normal POMC mRNA abundance, suggesting compensation by other factors. The coordinate expression of Etv1 with POMC cell differentiation and its interaction with the highly cell-restricted Tpit factor indicate that Etv1 participates in a combinatorial code for pituitary cell-specific gene expression.
Collapse
Affiliation(s)
- Lionel Budry
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
46
|
Proszkowiec-Weglarz M, Higgins SE, Porter TE. Changes in gene expression during pituitary morphogenesis and organogenesis in the chick embryo. Endocrinology 2011; 152:989-1000. [PMID: 21239434 DOI: 10.1210/en.2010-1021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anterior pituitary gland plays an important role in the regulation of many physiological processes. Formation of Rathke's pouch (RP), the precursor of the anterior pituitary, involves evagination of the oral ectoderm in a multi-step process regulated by cell interactions, signaling pathways, and transcription factors. Chickens are an excellent model to study development because of the availability of large sample sizes, accurate timing of development, and embryo accessibility. The aim of this study was to quantify mRNA expression patterns in the developing chicken anterior pituitary to evaluate the chicken embryo as a model for mammalian pituitary development. The expression profiles of 16 genes differentially expressed in RP and neuroectoderm were determined in this study. Among these, Pitx1, Pitx2, and Hesx1 mRNA levels were high on embryonic days (e) 2.5 to e3 in RP and decreased during development. Expression of Pit1 and Tbx19 mRNA in RP reached the highest levels by e7 and e6.5, respectively. Levels of glycoprotein subunit α mRNA increased beginning at e4. FGF8 mRNA showed the highest expression at e3 to e3.5 in neuroectoderm. BMP2 showed slight decreases in mRNA expression in both tissues during development, while Isl1 and Noggin mRNA expression increased in later development. Taken together, we present the first quantitative transcriptional profile of pituitary organogenesis. Our results will help further understanding of the functional development of this gland. Moreover, because of the high similarity in gene expression patterns observed between chicken and mouse, chickens could serve as an excellent model to study genetic and molecular mechanisms underlying pituitary development.
Collapse
|
47
|
Schiesari L, Kyriacou CP, Costa R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett 2011; 585:1450-60. [PMID: 21354417 DOI: 10.1016/j.febslet.2011.02.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/07/2011] [Accepted: 02/21/2011] [Indexed: 01/17/2023]
Abstract
Daylength perception in temperate zones is a critical feature of insect life histories, and leads to developmental changes for resisting unfavourable seasons. The role of the neuroendocrine axis in the photoperiodic response of insects is discussed in relation to the key organs and molecules that are involved. We also discuss the controversial issue of the possible involvement of the circadian clock in photoperiodicity. Drosophila melanogaster has a shallow photoperiodic response that leads to reproductive arrest in adults, yet the unrivalled molecular genetic toolkit available for this model insect should allow the systematic molecular and neurobiological dissection of this complex phenotype.
Collapse
|
48
|
Waite MR, Skidmore JM, Billi AC, Martin JF, Martin DM. GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons. Dev Dyn 2011; 240:333-46. [PMID: 21246650 PMCID: PMC3079949 DOI: 10.1002/dvdy.22532] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/18/2022] Open
Abstract
Pitx2, a paired-like homeodomain transcription factor, is expressed in post-mitotic neurons within highly restricted domains of the embryonic mouse brain. Previous reports identified critical roles for PITX2 in histogenesis of the hypothalamus and midbrain, but the cellular identities of PITX2-positive neurons in these regions were not fully explored. This study characterizes Pitx2 expression with respect to midbrain transcription factor and neurotransmitter phenotypes in mid-to-late mouse gestation. In the dorsal midbrain, we identified Pitx2-positive neurons in the stratum griseum intermedium (SGI) as GABAergic and observed a requirement for PITX2 in GABAergic differentiation. We also identified two Pitx2-positive neuronal populations in the ventral midbrain, the red nucleus, and a ventromedial population, both of which contain glutamatergic precursors. Our data suggest that PITX2 is present in regionally restricted subpopulations of midbrain neurons and may have unique functions that promote GABAergic and glutamatergic differentiation.
Collapse
Affiliation(s)
- MR Waite
- Cellular & Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48109
| | - JM Skidmore
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109
| | - AC Billi
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| | - JF Martin
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, TX 77030
| | - DM Martin
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
49
|
Walker C, Anand K, Plotsky PAULM. Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Langlais D, Couture C, Sylvain-Drolet G, Drouin J. A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells. Mol Endocrinol 2010; 25:348-59. [PMID: 21193556 DOI: 10.1210/me.2010-0422] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell-specific expression of the pituitary proopiomelanocortin (POMC) gene depends on the combination of tissue- and cell-restricted transcription factors such as Pitx1 and Tpit. These factors act on the proximal POMC promoter together with transcription factors that integrate inputs from signaling pathways. We now report the identification of an upstream enhancer in the POMC locus that is targeted by the same subset of transcription factors, except Pitx1. This enhancer located at -7 kb in the mouse POMC gene is highly dependent on Tpit for activity. Whereas Tpit requires Pitx1 for action on the promoter, it acts on the -7-kb enhancer as homodimers binding to a palindromic Tpit response element (TpitRE). Both half-sites of the TpitRE palindrome and Tpit homodimerization are required for activity. In vivo, the enhancer exhibits preferential activity in corticotrope cells of the anterior lobe whereas the promoter exhibits preference for intermediate lobe melanotropes. The enhancer is conserved among different species with the TpitRE palindrome localized at the center of conserved sequences. However, the mouse and human -7-kb enhancers do not exhibit conservation of hormone responsiveness and may differ in their relative importance for POMC expression. In summary, pituitary expression of the POMC gene relies on an upstream enhancer that complements the activity of the proximal promoter with Tpit as the major regulator of both regulatory regions.
Collapse
Affiliation(s)
- David Langlais
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | | | |
Collapse
|