1
|
Souali-Crespo S, Condrea D, Vernet N, Féret B, Klopfenstein M, Grandgirard E, Alunni V, Cerciat M, Jung M, Mayere C, Nef S, Mark M, Chalmel F, Ghyselinck NB. Loss of NR5A1 in mouse Sertoli cells after sex determination changes cellular identity and induces cell death by anoikis. Development 2023; 150:dev201710. [PMID: 38078651 PMCID: PMC10753587 DOI: 10.1242/dev.201710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.
Collapse
Affiliation(s)
- Sirine Souali-Crespo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Diana Condrea
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Muriel Klopfenstein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- Imaging Center, IGBMC, F-67404 Illkirch Cedex, France
| | - Violaine Alunni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- GenomEast Platform, France Génomique consortium, IGBMC, 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Marie Cerciat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- GenomEast Platform, France Génomique consortium, IGBMC, 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Matthieu Jung
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- GenomEast Platform, France Génomique consortium, IGBMC, 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Chloé Mayere
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), F-67000 Strasbourg, France
| | - Frédéric Chalmel
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Norbert B. Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
| |
Collapse
|
2
|
Viger RS, de Mattos K, Tremblay JJ. Insights Into the Roles of GATA Factors in Mammalian Testis Development and the Control of Fetal Testis Gene Expression. Front Endocrinol (Lausanne) 2022; 13:902198. [PMID: 35692407 PMCID: PMC9178088 DOI: 10.3389/fendo.2022.902198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Defining how genes get turned on and off in a correct spatiotemporal manner is integral to our understanding of the development, differentiation, and function of different cell types in both health and disease. Testis development and subsequent male sex differentiation of the XY fetus are well-orchestrated processes that require an intricate network of cell-cell communication and hormonal signals that must be properly interpreted at the genomic level. Transcription factors are at the forefront for translating these signals into a coordinated genomic response. The GATA family of transcriptional regulators were first described as essential regulators of hematopoietic cell differentiation and heart morphogenesis but are now known to impact the development and function of a multitude of tissues and cell types. The mammalian testis is no exception where GATA factors play essential roles in directing the expression of genes crucial not only for testis differentiation but also testis function in the developing male fetus and later in adulthood. This minireview provides an overview of the current state of knowledge of GATA factors in the male gonad with a particular emphasis on their mechanisms of action in the control of testis development, gene expression in the fetal testis, testicular disease, and XY sex differentiation in humans.
Collapse
Affiliation(s)
- Robert S. Viger
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Jacques J. Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
de Mattos K, Viger RS, Tremblay JJ. Transcription Factors in the Regulation of Leydig Cell Gene Expression and Function. Front Endocrinol (Lausanne) 2022; 13:881309. [PMID: 35464056 PMCID: PMC9022205 DOI: 10.3389/fendo.2022.881309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation and acquisition of specialized functions are inherent steps in events that lead to normal tissue development and function. These processes require accurate temporal, tissue, and cell-specific activation or repression of gene transcription. This is achieved by complex interactions between transcription factors that form a unique combinatorial code in each specialized cell type and in response to different physiological signals. Transcription factors typically act by binding to short, nucleotide-specific DNA sequences located in the promoter region of target genes. In males, Leydig cells play a crucial role in sex differentiation, health, and reproductive function from embryonic life to adulthood. To better understand the molecular mechanisms regulating Leydig cell differentiation and function, several transcription factors important to Leydig cells have been identified, including some previously unknown to this specialized cell type. This mini review summarizes the current knowledge on transcription factors in fetal and adult Leydig cells, describing their roles and mechanisms of action.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
| | - Robert S. Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- *Correspondence: Jacques J. Tremblay,
| |
Collapse
|
4
|
Ji X, Bu S, Zhu Y, Wang Y, Wen X, Song F, Luo J. Identification of SF-1 and FOXL2 and Their Effect on Activating P450 Aromatase Transcription via Specific Binding to the Promoter Motifs in Sex Reversing Cheilinus undulatus. Front Endocrinol (Lausanne) 2022; 13:863360. [PMID: 35620392 PMCID: PMC9127060 DOI: 10.3389/fendo.2022.863360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The giant wrasse Cheilinus undulatus is a protogynous socially hermaphroditic fish. However, the physiological basis of its sex reversal remains largely unknown. cyp19 is a key gender-related gene encoding P450 aromatase, which converts androgens to estrogens. cyp19 transcription regulation is currently unknown in socially sexually reversible fish. We identified NR5A1 by encoding SF-1, and FOXL2 from giant wrasse cDNA and cyp19a1a and cyp19a1b promoter regions were cloned from genomic DNA to determine the function of both genes in cyp19a1 regulation. Structural analysis showed that SF-1 contained a conserved DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD). FOXL2 was comprised of an evolutionarily conserved Forkhead domain. In vitro transfection assays showed that SF-1 could upregulate cyp19a1 promoter activities, but FOXL2 could only enhance cyp19a1b promoter transcriptional activity in the HEK293T cell line. Furthermore, HEK293T and COS-7 cell lines showed that co-transfecting the two transcription factors significantly increased cyp19a1 promoter activity. The -120 to -112 bp (5'-CAAGGGCAC-3') and -890 to -872 bp (5'-AGAGGAGAACAAGGGGAG-3') regions of the cyp19a1a promoter were the core regulatory elements for SF-1 and FOXL2, respectively, to regulate cyp19a1b promoter transcriptional activity. Collectively, these results suggest that both FOXL2 and SF-1 are involved in giant wrasse sex reversal.
Collapse
|
5
|
Xu H, Zhang M, Zhang H, Alpadi K, Wang L, Li R, Qiao J. Clinical Applications of Serum Anti-Müllerian Hormone Measurements in Both Males and Females: An Update. Innovation (N Y) 2021; 2:100091. [PMID: 34557745 PMCID: PMC8454570 DOI: 10.1016/j.xinn.2021.100091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/03/2021] [Indexed: 12/17/2022] Open
Abstract
Infertility is one of the most common non-communicable diseases, affecting both men and women equally. Ovarian reserve, the number of primordial follicles in the ovaries is believed to be the most important determinants for female fertility. Anti-Müllerian hormone (AMH) secreted from granulosa cells of growing follicles is recognized as the most important biomarker for ovarian reserve. Ovarian reserve models have been developed using AMH and other hormonal indicators, thus childbearing plans and reproductive choices could be arranged by women. In assisted reproductive technology cycles, measurement of AMH helps to predict ovarian response and guide recombinant follicle-stimulating hormone dosing in women. Serum AMH level is increasingly being recognized as a potential surrogate marker for polycystic ovarian morphology, one of the criteria for diagnosis of polycystic ovarian syndrome. AMH is also secreted by Sertoli cells of testes in men, and AMH measurements in the prediction of surgical sperm recovery rate in men have also been investigated. AMH levels are significantly higher in boys than in girls before puberty. Therefore, serum levels of AMH in combination with testosterone is used for the differential diagnosis of disorders of sex development, anorchia, non-obstructive azoospermia, and persistent Müllerian duct syndrome. Recently, serum AMH measurements have also been used in fertility preservation programs in oncofertility, screening for granulosa cell tumors, and prediction of menopause applications. In this review, we will focus on clinical application of AMH in fertility assessments for healthy men and women, as well as for cancer patients. Anti-Müllerian hormone (AMH) plays a key role in models assessing ovarian reserve AMH is used for the differential diagnosis of disorders of sex development AMH provides a molecular marker for related fertility and infertility disorders An international standard will aid in the development of various AMH assays
Collapse
Affiliation(s)
- Huiyu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, P.R. China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Mengqian Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, P.R. China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Hongxian Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | | | - Lina Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, P.R. China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, P.R. China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, P.R. China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, P.R. China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, P.R. China
| |
Collapse
|
6
|
Morohashi KI, Inoue M, Baba T. Coordination of Multiple Cellular Processes by NR5A1/Nr5a1. Endocrinol Metab (Seoul) 2020; 35:756-764. [PMID: 33397036 PMCID: PMC7803590 DOI: 10.3803/enm.2020.402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 11/11/2022] Open
Abstract
The agenesis of the gonads and adrenal gland in revealed by knockout mouse studies strongly suggested a crucial role for Nr5a1 (SF-1 or Ad4BP) in organ development. In relation to these striking phenotypes, NR5A1/Nr5a1 has the potential to reprogram cells to steroidogenic cells, endow pluripotency, and regulate cell proliferation. However, due to limited knowledge regarding NR5A1 target genes, the mechanism by which NR5A1/Nr5a1 regulates these fundamental processes has remained unknown. Recently, newlyestablished technologies have enabled the identification of NR5A1 target genes related to multiple metabolic processes, as well as the aforementioned biological processes. Considering that active cellular processes are expected to be accompanied by active metabolism, NR5A1 may act as a key factor for processes such as cell differentiation, proliferation, and survival by coordinating these processes with cellular metabolism. A complete and definite picture of the cellular processes coordinated by NR5A1/Nr5a1 could be depicted by accumulating evidence of the potential target genes through whole genome studies.
Collapse
Affiliation(s)
- Ken-Ichirou Morohashi
- Division of Biology of Sex Differences, Graduate School of Medical Sciences, and Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Inoue
- Division of Biology of Sex Differences, Graduate School of Medical Sciences, and Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Baba
- Division of Biology of Sex Differences, Graduate School of Medical Sciences, and Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Xu HY, Zhang HX, Xiao Z, Qiao J, Li R. Regulation of anti-Müllerian hormone (AMH) in males and the associations of serum AMH with the disorders of male fertility. Asian J Androl 2020; 21:109-114. [PMID: 30381580 PMCID: PMC6413543 DOI: 10.4103/aja.aja_83_18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a functional marker of fetal Sertoli cells. The germ cell number in adults depends on the number of Sertoli cells produced during perinatal development. Recently, AMH has received increasing attention in research of disorders related to male fertility. This paper reviews and summarizes the articles on the regulation of AMH in males and the serum levels of AMH in male fertility-related disorders. We have determined that follicle-stimulating hormone (FSH) promotes AMH transcription in the absence of androgen signaling. Testosterone inhibits the transcriptional activation of AMH. The undetectable levels of serum AMH and testosterone levels indicate a lack of functional testicular tissue, for example, that in patients with anorchia or severe Klinefelter syndrome suffering from impaired spermatogenesis. The normal serum testosterone level and undetectable AMH are highly suggestive of persistent Müllerian duct syndrome (PMDS), combined with clinical manifestations. The levels of both AMH and testosterone are always subnormal in patients with mixed disorders of sex development (DSD). Mixed DSD is an early-onset complete type of disorder with fetal hypogonadism resulting from the dysfunction of both Leydig and Sertoli cells. Serum AMH levels are varying in patients with male fertility-related disorders, including pubertal delay, severe congenital hypogonadotropic hypogonadism, nonobstructive azoospermia, Klinefelter syndrome, varicocele, McCune-Albright syndrome, and male senescence.
Collapse
Affiliation(s)
- Hui-Yu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Hong-Xian Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Zhen Xiao
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
8
|
Emura N, Wang CM, Yang WH, Yang WH. Steroidogenic Factor 1 (NR5A1) Activates ATF3 Transcriptional Activity. Int J Mol Sci 2020; 21:ijms21041429. [PMID: 32093223 PMCID: PMC7073147 DOI: 10.3390/ijms21041429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic Factor 1 (SF-1/NR5A1), an orphan nuclear receptor, is important for sexual differentiation and the development of multiple endocrine organs, as well as cell proliferation in cancer cells. Activating transcription factor 3 (ATF3) is a transcriptional repressor, and its expression is rapidly induced by DNA damage and oncogenic stimuli. Since both NR5A1 and ATF3 can regulate and cooperate with several transcription factors, we hypothesized that NR5A1 may interact with ATF3 and plays a functional role in cancer development. First, we found that NR5A1 physically interacts with ATF3. We further demonstrated that ATF3 expression is up-regulated by NR5A1. Moreover, the promoter activity of the ATF3 is activated by NR5A1 in a dose-dependent manner in several cell lines. By mapping the ATF3 promoter as well as the site-directed mutagenesis analysis, we provide evidence that NR5A1 response elements (-695 bp and -665 bp) are required for ATF3 expression by NR5A1. It is well known that the transcriptional activities of NR5A1 are modulated by post-translational modifications, such as small ubiquitin-related modifier (SUMO) modification and phosphorylation. Notably, we found that both SUMOylation and phosphorylation of NR5A1 play roles, at least in part, for NR5A1-mediated ATF3 expression. Overall, our results provide the first evidence of a novel relationship between NR5A1 and ATF3.
Collapse
Affiliation(s)
- Natsuko Emura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan;
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - William Harry Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; (C.-M.W.); (W.H.Y.)
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
9
|
van den Bergen JA, Robevska G, Eggers S, Riedl S, Grover SR, Bergman PB, Kimber C, Jiwane A, Khan S, Krausz C, Raza J, Atta I, Davis SR, Ono M, Harley V, Faradz SMH, Sinclair AH, Ayers KL. Analysis of variants in GATA4 and FOG2/ZFPM2 demonstrates benign contribution to 46,XY disorders of sex development. Mol Genet Genomic Med 2020; 8:e1095. [PMID: 31962012 PMCID: PMC7057099 DOI: 10.1002/mgg3.1095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Background GATA‐binding protein 4 (GATA4) and Friend of GATA 2 protein (FOG2, also known as ZFPM2) form a heterodimer complex that has been shown to influence transcription of genes in a number of developmental systems. Recent evidence has also shown these genes play a role in gonadal sexual differentiation in humans. Previously we identified four variants in GATA4 and an unexpectedly large number of variants in ZFPM2 in a cohort of individuals with 46,XY Differences/Disorders of Sex Development (DSD) (Eggers et al, Genome Biology, 2016; 17: 243). Method Here, we review variant curation and test the functional activity of GATA4 and ZFPM2 variants. We assess variant transcriptional activity on gonadal specific promoters (Sox9 and AMH) and variant protein–protein interactions. Results Our findings support that the majority of GATA4 and ZFPM2 variants we identified are benign in their contribution to 46,XY DSD. Indeed, only one variant, in the conserved N‐terminal zinc finger of GATA4, was considered pathogenic, with functional analysis confirming differences in its ability to regulate Sox9 and AMH and in protein interaction with ZFPM2. Conclusions Our study helps define the genetic factors contributing to 46,XY DSD and suggests that the majority of variants we identified in GATA4 and ZFPM2/FOG2 are not causative.
Collapse
Affiliation(s)
| | - Gorjana Robevska
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia
| | - Stefanie Eggers
- Research Genomics, Murdoch Children's Research Institute, Parkville, Vic., Australia
| | - Stefan Riedl
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,Paediatric Department, Medical University of Vienna, Vienna, Austria
| | - Sonia R Grover
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatric and Adolescent Gynaecology, Royal Children's Hospital Melbourne, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Philip B Bergman
- Department of Paediatric Endocrinology and Diabetes, Monash Children's Hospital, Clayton, Vic., Australia.,Department of Paediatrics, Monash University, Clayton, Vic., Australia
| | - Chris Kimber
- Department of Paediatric Urology, Monash Children's Hospital, Clayton, Vic., Australia
| | - Ashish Jiwane
- Department of Urology, Sydney Children's Hospital Randwick, Randwick, NSW, Australia
| | - Sophy Khan
- Surgical Department, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio", University of Florence, Firenze, Toscana, Italy
| | - Jamal Raza
- Paediatric Department, National Institute of Child Health, Karachi City, Sindh, Pakistan
| | - Irum Atta
- Paediatric Department, National Institute of Child Health, Karachi City, Sindh, Pakistan
| | - Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Makato Ono
- Department of Paediatrics, Tokyo Bay Urayasu Ichikawa Iryo Center, Urayasu, Chiba, Japan
| | - Vincent Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Sultana M H Faradz
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine, Diponegoro University (FMDU), Semarang, Indonesia
| | - Andrew H Sinclair
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Katie L Ayers
- Genetics, Murdoch Children's Research Institute, Parkville, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
10
|
Promoter Identification and Transcriptional Regulation of the Goose AMH Gene. Animals (Basel) 2019; 9:ani9100816. [PMID: 31623192 PMCID: PMC6826907 DOI: 10.3390/ani9100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Anti-Müllerian hormone (AMH) plays a vital role in the development of follicles. We found that the cloning nucleotide sequence of AMH was high homology in geese with other species. Several regulatory elements were identified and transcriptional factors were predicted in the AMH promoter sequence. Through a double-luciferase reporter assay, potential regulatory relationship spanning from −637 to −87 bp were identified. In addition, the mRNA expression of AMH gradually decreased during the development of follicles in geese. In the Chinese hamster ovary (CHO) cell line, the luciferase activity significantly increased by co-expression of AMH and GATA-4. However, when the binding sites of GATA-4 to the promoter of AMH were mutated, the luciferase activity significantly decreased. These results indicated that the transcription of AMH was activated by GATA-4 to inhibit the development of follicles in geese. Abstract Anti-Müllerian hormone (AMH) is recognized as a reliable marker of ovarian reserve. However, the regulatory mechanism of goose AMH gene remains poorly understood. In the present study, both the full-length coding sequence (CDS) and promoter sequence of goose AMH have been cloned. Its CDS consisted of 2013 nucleotides encoding 670 amino acids and the amino acid sequence contained two structural domain: AMH-N and transforming growth factor beta (TGF-β) domain. The obtained promoter sequence spanned from the −2386 bp to its transcription start site (ATG). Core promoter regions and regulatory elements were identified as well as transcription factors were predicted in its promoter sequence. The luciferase activity was the highest spanning from the −331 to −1 bp by constructing deletion promoter reporter vectors. In CHO cells, the luciferase activity significantly increased by co-expression of AMH and GATA binding protein 4 (GATA-4), while that significantly decreased by mutating the binding sites of GATA-4 located in the −778 and −1477 bp. Results from quantitative real-time polymerase chain reaction (qPCR) indicated that levels of AMH mRNA in geese granulosa layers decreased gradually with the increasing follicular diameter. Taken together, it could be concluded that the transcriptional activity of AMH was activated by GATA-4 to inhibit the development of small follicles in goose.
Collapse
|
11
|
Mehanovic S, Mendoza-Villarroel RE, Viger RS, Tremblay JJ. The Nuclear Receptor COUP-TFII Regulates Amhr2 Gene Transcription via a GC-Rich Promoter Element in Mouse Leydig Cells. J Endocr Soc 2019; 3:2236-2257. [PMID: 31723721 PMCID: PMC6839530 DOI: 10.1210/js.2019-00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
12
|
Bouchard MF, Bergeron F, Grenier Delaney J, Harvey LM, Viger RS. In Vivo Ablation of the Conserved GATA-Binding Motif in the Amh Promoter Impairs Amh Expression in the Male Mouse. Endocrinology 2019; 160:817-826. [PMID: 30759208 PMCID: PMC6426834 DOI: 10.1210/en.2019-00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.
Collapse
Affiliation(s)
- Marie France Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Jasmine Grenier Delaney
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Louis-Mathieu Harvey
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Quebec, Canada
- Correspondence: Robert S. Viger, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval, 2705 Laurier Boulevard, Quebec, Quebec G1V 4G2, Canada. E-mail:
| |
Collapse
|
13
|
Hummitzsch K, Hatzirodos N, Irving-Rodgers HF, Hartanti MD, Perry VEA, Anderson RA, Rodgers RJ. Morphometric analyses and gene expression related to germ cells, gonadal ridge epithelial-like cells and granulosa cells during development of the bovine fetal ovary. PLoS One 2019; 14:e0214130. [PMID: 30901367 PMCID: PMC6430378 DOI: 10.1371/journal.pone.0214130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Cells on the surface of the mesonephros give rise to replicating Gonadal Ridge Epithelial-Like (GREL) cells, the first somatic cells of the gonadal ridge. Later germ cells associate with the GREL cells in the ovigerous cords, and the GREL cells subsequently give rise to the granulosa cells in follicles. To examine these events further, 27 bovine fetal ovaries of different gestational ages were collected and prepared for immunohistochemical localisation of collagen type I and Ki67 to identify regions of the ovary and cell proliferation, respectively. The non-stromal cortical areas (collagen-negative) containing GREL cells and germ cells and later in development, the follicles with oocytes and granulosa cells, were analysed morphometrically. Another set of ovaries (n = 17) were collected and the expression of genes associated with germ cell lineages and GREL/granulosa cells were quantitated by RT-PCR. The total volume of non-stromal areas in the cortex increased significantly and progressively with ovarian development, plateauing at the time the surface epithelium developed. However, the proportion of non-stromal areas in the cortex declined significantly and progressively throughout gestation, largely due to a cessation in growth of the non-stroma cells and the continued growth of stroma. The proliferation index in the non-stromal area was very high initially and then declined substantially at the time follicles formed. Thereafter, it remained low. The numerical density of the non-stromal cells was relatively constant throughout ovarian development. The expression levels of a number of genes across gestation either increased (AMH, FSHR, ESR1, INHBA), declined (CYP19A1, ESR2, ALDH1A1, DSG2, OCT4, LGR5) or showed no particular pattern (CCND2, CTNNB1, DAZL, FOXL2, GATA4, IGFBP3, KRT19, NR5A1, RARRES1, VASA, WNT2B). Many of the genes whose expression changed across gestation, were positively or negatively correlated with each other. The relationships between these genes may reflect their roles in the important events such as the transition of ovigerous cords to follicles, oogonia to oocytes or GREL cells to granulosa cells.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F. Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Monica D. Hartanti
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Viv E. A. Perry
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
14
|
Bernardi LA, Dyson MT, Tokunaga H, Sison C, Oral M, Robins JC, Bulun SE. The Essential Role of GATA6 in the Activation of Estrogen Synthesis in Endometriosis. Reprod Sci 2018; 26:60-69. [PMID: 29402198 DOI: 10.1177/1933719118756751] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endometriotic stromal cells synthesize estradiol via the steroidogenic pathway. Nuclear receptor subfamily 5, group A, member 1 (NR5A1) is critical, but alone not sufficient, in activating this cascade that involves at least 5 genes. To evaluate whether another transcription factor is required for the activation of this pathway, we examined whether GATA Binding Protein 6 (GATA6) can transform a normal endometrial stromal cell (NoEM) into an endometriotic-like cell by conferring an estrogen-producing phenotype. We ectopically expressed GATA6 alone or with NR5A1 in NoEM or silenced these transcription factors in endometriotic stromal cells (OSIS) and assessed the messenger RNAs or proteins encoded by the genes in the steroidogenic cascade. Functionally, we assessed the effects of GATA6 expression or silencing on estradiol formation. In OSIS, GATA6 was necessary for catalyzing the conversion of progesterone to androstenedione (CYP17A1; P < .05). In NoEM, ectopic expression of GATA6 was essential for converting pregnenolone to estrogen (HSD3B2, CYP17A1, and CYP19A1; P < .05). However, simultaneous ectopic expression of both GATA6 and NR5A1 was required and sufficient to confer induction of all 5 genes and their encoded proteins that convert cholesterol to estrogen. Functionally, only simultaneous knockdown of GATA6 and NR5A1 blocked estradiol formation in OSIS ( P < .05). The presence of both transcription factors was required and sufficient to transform endometrial stromal cells into endometriotic-like cells that produced estradiol in large quantities ( P < .05). In summary, GATA6 alone is essential but not sufficient for estrogen formation in endometriosis. However, simultaneous addition of GATA6 and NR5A1 to an endometrial stromal cell is sufficient to transform it into an endometriotic-like cell, manifested by the activation of the estradiol biosynthetic cascade.
Collapse
Affiliation(s)
- Lia A Bernardi
- 1 Division of Reproductive Science and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew T Dyson
- 1 Division of Reproductive Science and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hideki Tokunaga
- 1 Division of Reproductive Science and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,3 Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Seiryo, Aoba, Sendai, Japan
| | - Christia Sison
- 1 Division of Reproductive Science and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Muge Oral
- 1 Division of Reproductive Science and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jared C Robins
- 2 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- 1 Division of Reproductive Science and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,2 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Jin H, Won M, Park SE, Lee S, Park M, Bae J. FOXL2 Is an Essential Activator of SF-1-Induced Transcriptional Regulation of Anti-Müllerian Hormone in Human Granulosa Cells. PLoS One 2016; 11:e0159112. [PMID: 27414805 PMCID: PMC4944948 DOI: 10.1371/journal.pone.0159112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is required for proper sexual differentiation by regulating the regression of the Müllerian ducts in males. Recent studies indicate that AMH could be an important factor for maintaining the ovarian reserve. However, the mechanisms of AMH regulation in the ovary are largely unknown. Here, we provide evidence that AMH is an ovarian target gene of steroidogenic factor-1 (SF-1), an orphan nuclear receptor required for proper follicle development. FOXL2 is an evolutionally conserved transcription factor, and its mutations cause blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES), wherein affected females display eyelid defects and premature ovarian failure (POF). Notably, we found that functional FOXL2 is essential for SF-1-induced AMH regulation, via protein–protein interactions between FOXL2 and SF-1. A BPES-inducing mutant of FOXL2 (290–291delCA) was unable to interact with SF-1 and failed to mediate the association between SF-1 and the AMH promoter. Therefore, this study identified a novel regulatory circuit for ovarian AMH production; specifically, through the coordinated interplay between FOXL2 and SF-1 that could control ovarian follicle development.
Collapse
Affiliation(s)
- Hanyong Jin
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Miae Won
- Department of Pharmacy, CHA University, Seongnam, Korea
| | - Si Eun Park
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Seunghwa Lee
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Mira Park
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
16
|
McDonald EA, Smith JE, Cederberg RA, White BR. Divergent activity of the gonadotropin-releasing hormone receptor gene promoter among genetic lines of pigs is partially conferred by nuclear factor (NF)-B, specificity protein (SP)1-like and GATA-4 binding sites. Reprod Biol Endocrinol 2016; 14:36. [PMID: 27356969 PMCID: PMC4928339 DOI: 10.1186/s12958-016-0170-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Binding of gonadotropin-releasing hormone (GnRH) to its receptor (GnRHR) on gonadotropes within the anterior pituitary gland is essential to reproduction. In pigs, the GnRHR gene is also located near a genetic marker for ovulation rate, a primary determinant of prolificacy. We hypothesized that pituitary expression of the GnRHR gene is alternatively regulated in genetic strains with elevated ovulation rates (Chinese Meishan and Nebraska Index) vs. standard white crossbred swine (Control). METHODS Luciferase reporter vectors containing 5118 bp of GnRHR gene promoter from either the Control, Index or Meishan swine lines were generated. Transient transfection of line-specific, full length, deletion and mutation constructs into gonadotrope-derived αT3-1 cells were performed to compare promoter activity and identify regions necessary for divergent regulation of the porcine GnRHR gene. Additionally, transcription factors that bind the GnRHR promoter from each line were identified with electrophoretic mobility shift assays (EMSA). RESULTS Dramatic differences in luciferase activity among Control, Index and Meishan promoters (19-, 27- and 49-fold over promoterless control, respectively; P < 0.05) were established. A single bp substitution (-1690) within a previously identified upstream enhancer (-1779/-1667) bound GATA-4 in the Meishan promoter and the p52/p65 subunits of nuclear factor (NF)-κB in the homologous Control/Index promoters. Transient transfection of vectors containing block replacement mutations of either the GATA-4 or NF-κB binding sites within the context of their native promoters resulted in a 50 and 60 % reduction of luciferase activity, respectively (P < 0.05). Furthermore, two single-bp substitutions in the Meishan compared to Control/Index promoters resulted in binding of the p52 and p65 subunits of NF-κB and a specificity protein 1 (SP1)-like factor (-1235) as well as GATA-4 (-845). Vectors containing the full-length Meishan promoter harboring individual mutations spanning these regions reduced luciferase activity by 25 and 20 %, respectively, compared to native sequence (P < 0.05). CONCLUSIONS Elevated activity of the Meishan GnRHR gene promoter over Control/Index promoters in αT3-1 cells is partially due to three single nucleotide polymorphisms resulting in the unique binding of GATA-4 (-1690), the p52/p65 subunits of NF-kB in combination with a SP1-like factor (-1235), and GATA-4 (-845).
Collapse
Affiliation(s)
- Emily A. McDonald
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
- Present address: Center for International Health Research, Rhode Island Hospital, Providence, RI USA
| | - Jacqueline E. Smith
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
- Present address: Stowers Institute for Medical Research, Kansas City, MO USA
| | - Rebecca A. Cederberg
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Brett R. White
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
17
|
Di-Luoffo M, Daems C, Bergeron F, Tremblay JJ. Novel Targets for the Transcription Factors MEF2 in MA-10 Leydig Cells. Biol Reprod 2015; 93:9. [PMID: 26019261 DOI: 10.1095/biolreprod.114.127761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Testosterone production by Leydig cells is a tightly regulated process requiring synchronized expression of several steroidogenic genes by numerous transcription factors. Myocyte enhancer factor 2 (MEF2) are transcription factors recently identified in somatic cells of the male gonad. In other tissues, MEF2 factors are essential regulators of organogenesis and cell differentiation. So far in the testis, MEF2 factors were found to regulate Leydig cell steroidogenesis by controlling Nr4a1 and Star gene expression. To expand our understanding of the role of MEF2 in Leydig cells, we performed microarray analyses of MEF2-depleted MA-10 Leydig cells, and the results were analyzed using Partek and Ingenuity Pathway Analysis software. Several genes were differentially expressed in MEF2-depleted Leydig cells, and 16 were validated by quantitative RT-PCR. A large number of these genes are known to be involved in fertility, gonad morphology, and steroidogenesis. These include Ahr, Bmal1, Cyp1b1, Hsd3b1, Hsd17b7, Map2k1, Nr0b2, Pde8a, Por, Smad4, Star, and Tsc22d3, which were all downregulated in the absence of MEF2. In silico analyses revealed the presence of MEF2-binding sites within the first 2 kb upstream of the transcription start site of the Por, Bmal1, and Nr0b2 promoters, suggesting direct regulation by MEF2. Using transient transfections in MA-10 Leydig cells, small interfering RNA knockdown, and a MEF2-Engrailed dominant negative, we found that MEF2 activates the Por, Bmal1, and Nr0b2 promoters and that this requires an intact MEF2 element. Our results identify novel target genes for MEF2 and define MEF2 as an important regulator of Leydig cell function and male reproduction.
Collapse
Affiliation(s)
- Mickaël Di-Luoffo
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Caroline Daems
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada Centre de recherche en biologie de la reproduction, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
18
|
Padua MB, Fox SC, Jiang T, Morse DA, Tevosian SG. Simultaneous gene deletion of gata4 and gata6 leads to early disruption of follicular development and germ cell loss in the murine ovary. Biol Reprod 2014; 91:24. [PMID: 24899573 DOI: 10.1095/biolreprod.113.117002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Granulosa cell formation and subsequent follicular assembly are important for ovarian development and function. Two members of the GATA family of transcription factors, GATA4 and GATA6, are expressed in ovarian somatic cells early in development, and their importance in adult ovarian function has been recently highlighted. In this study, we demonstrated that the embryonic loss of Gata4 and Gata6 expression within the ovary results in a strong down-regulation of genes involved in the ovarian developmental pathway (Fst and Irx3) as well as diminished expression of the pregranulosa and granulosa cell markers SPRR2 and FOXL2, respectively. Postnatal ovaries deficient in both Gata genes show impaired somatic cell proliferation and arrested follicular development at the primordial stage, where oocytes are either enclosed by one layer of squamous granulosa cells or remain in germ cell nests/clusters. Furthermore, germ cell nests and primordial follicles are predominantly localized to the central region of the Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) ovaries, where the boundary between the medulla and cortex is almost nonexistent. Lastly, most of the oocytes are lost early in development in conditional double mutant ovaries, which confirms the importance of normally differentiated granulosa cells as supporting cells for oocyte survival. Thus, both GATA4 and GATA6 proteins are fundamental regulators of granulosa cell differentiation and proliferation, and consequently of proper follicular assembly during normal ovarian development and function.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Shawna C Fox
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Tianyu Jiang
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Deborah A Morse
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Sergei G Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
19
|
Wang CM, Liu R, Wang L, Yang WH. Acidic residue Glu199 increases SUMOylation level of nuclear hormone receptor NR5A1. Int J Mol Sci 2013; 14:22331-45. [PMID: 24232453 PMCID: PMC3856066 DOI: 10.3390/ijms141122331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 01/29/2023] Open
Abstract
Steroidogenic factor 1 (NR5A1/SF1) is a well-known master regulator in controlling adrenal and sexual development, as well as regulating numerous genes involved in adrenal and gonadal steroidogenesis. Several studies including ours have demonstrated that NR5A1 can be SUMOylated on lysine 194 (K194, the major site) and lysine 119 (K119, the minor site), and the cycle of SUMOylation regulates NR5A1’s transcriptional activity. An extended consensus negatively charged amino acid-dependent SUMOylation motif (NDSM) enhances the specificity of substrate modification by SUMO has been reported; however, the mechanism of NDSM for NR5A1 remains to be clarified. In this study, we investigated the functional significance of the acidic residue located downstream from the core consensus SUMO site of NR5A1. Here we report that E199A (glutamic acid was replaced with alanine) of NR5A1 reduced, but not completely abolished, its SUMOylation level. We next characterized the functional role of NR5A1 E199A on target gene expression and protein levels. We found that E199A alone, as well as combination with K194R, increased Mc2r and Cyp19a1 reporter activities. Moreover, E199A alone as well as combination with K194R enhanced NR5A1-mediated STAR protein levels in mouse adrenocortical cancer Y1 cells. We also observed that E199A increased interaction of NR5A1 with CDK7 and SRC1. Overall, we provide the evidence that the acidic residue (E199) located downstream from the core consensus SUMO site of NR5A1 is, at least in part, required for SUMOylation of NR5A1 and for its mediated target gene and protein expression.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; E-Mail:
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mails: (R.L.); (L.W.)
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mails: (R.L.); (L.W.)
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-912-350-1708; Fax: +1-912-350-1765
| |
Collapse
|
20
|
Udhane S, Kempna P, Hofer G, Mullis PE, Flück CE. Differential regulation of human 3β-hydroxysteroid dehydrogenase type 2 for steroid hormone biosynthesis by starvation and cyclic AMP stimulation: studies in the human adrenal NCI-H295R cell model. PLoS One 2013; 8:e68691. [PMID: 23874725 PMCID: PMC3706324 DOI: 10.1371/journal.pone.0068691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/31/2013] [Indexed: 12/14/2022] Open
Abstract
Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6–8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.
Collapse
Affiliation(s)
- Sameer Udhane
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
- Graduate School Berne for Cellular and Biomedical Sciences, University of Berne, Berne, Switzerland
| | - Petra Kempna
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Gaby Hofer
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Primus E. Mullis
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Christa E. Flück
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, Berne, Switzerland
- Department of Clinical Research, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Cai K, Sewer MB. cAMP-stimulated transcription of DGKθ requires steroidogenic factor 1 and sterol regulatory element binding protein 1. J Lipid Res 2013; 54:2121-2132. [PMID: 23610160 DOI: 10.1194/jlr.m035634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diacylglycerol kinase (DGK)θ is a lipid kinase that phosphorylates diacylglycerol to form phosphatidic acid (PA). We have previously shown that PA is a ligand for the nuclear receptor steroidogenic factor 1 (SF1) and that cAMP-stimulated expression of SF1 target genes requires DGKθ. In this study, we sought to investigate the role of cAMP signaling in regulating DGKθ gene expression. Real time RT-PCR and Western blot analysis revealed that dibutyryl cAMP (Bt2cAMP) increased the mRNA and protein expression, respectively, of DGKθ in H295R human adrenocortical cells. SF1 and sterol regulatory element binding protein 1 (SREBP1) increased the transcriptional activity of a reporter plasmid containing 1.5 kb of the DGKθ promoter fused to the luciferase gene. Mutation of putative cAMP responsive sequences abolished SF1- and SREBP-dependent DGKθ reporter gene activation. Consistent with this finding, chromatin immunoprecipitation assay demonstrated that Bt2cAMP signaling increased the recruitment of SF1 and SREBP1 to the DGKθ promoter. Coimmunoprecipitation assay revealed that SF1 and SREBP1 interact, suggesting that the two transcription factors form a complex on the DGKθ promoter. Finally, silencing SF1 and SREBP1 abolished cAMP-stimulated DGKθ expression. Taken together, we demonstrate that SF1 and SREBP1 activate DGKθ transcription in a cAMP-dependent manner in human adrenocortical cells.
Collapse
Affiliation(s)
- Kai Cai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Marion B Sewer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093.
| |
Collapse
|
22
|
Virgone C, Cecchetto G, Ferrari A, Bisogno G, Donofrio V, Boldrini R, Collini P, Dall'Igna P, Alaggio R. GATA-4 and FOG-2 expression in pediatric ovarian sex cord-stromal tumors replicates embryonal gonadal phenotype: results from the TREP project. PLoS One 2012; 7:e45914. [PMID: 23029311 PMCID: PMC3454334 DOI: 10.1371/journal.pone.0045914] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022] Open
Abstract
AIM GATA proteins are a family of zinc finger transcription factors regulating gene expression, differentiation and proliferation in various tissues. The expression of GATA-4 and FOG-2, one of its modulators, was studied in pediatric Sex Cord-Stromal tumors of the ovary, in order to evaluate their potential role as diagnostic markers and prognostic factors. MATERIALS AND METHODS Clinical and histological data of 15 patients, enrolled into the TREP Project since 2000 were evaluated. When available, immunostaines for FOG-2, GATA-4, α-Inhibin, Vimentin and Pancytokeratin were also analyzed. RESULTS In our series there were 6 Juvenile Granulosa Cell Tumors (JGCT), 6 Sertoli-Leydig Cell Tumors (SLCT), 1 Cellular Fibroma, 1 Theca Cell Tumor and 1 Stromal Sclerosing Tumor (SST). Thirteen patients obtained a complete remission (CR), 1 reached a second CR after the removal of a metachronous tumor and 1 died of disease. Inhibin was detectable in 11/15, Vimentin in 13/15, Pancytokeratin in 6/15, GATA-4 in 5/13 and FOG-2 in 11/15. FOG-2 was highly expressed in 5/6 JGCT, while GATA-4 was weakly detectable only in 1 of the cases. SLCT expressed diffusely FOG-2 (4/6) and GATA-4 (3/5). GATA-4 and FOG-2 were detected in fibroma and thecoma but not in the SST. CONCLUSIONS Pediatric granulosa tumors appear to express a FOG-2/GATA-4 phenotype in keeping with primordial ovarian follicles. High expression of GATA-4 does not correlate with aggressive behaviour as seen in adults, but it is probably involved in cell proliferation its absence can be associated with the better outcome of JGCT. SLCTs replicate the phenotype of Sertoli cells during embryogenesis in normal testis. In this group, the lack of expression of FOG-2 in tumors in advanced stages might reveal a hypothetical role in inhibiting GATA-4 cell proliferation pathway. In fibroma/thecoma group GATA-4 and FOG-2 point out the abnormal activation of GATA pathway and might be involved in the onset of these tumors.
Collapse
Affiliation(s)
- Calogero Virgone
- Pediatric Surgery, Departments of Pediatrics and Gynaecology-Obstetrics, University Hospital, Padua, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bennett J, Wu YG, Gossen J, Zhou P, Stocco C. Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 2012; 153:2474-85. [PMID: 22434075 PMCID: PMC3339651 DOI: 10.1210/en.2011-1969] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Single GATA-6 (G6(gcko)), GATA-4 (G4(gcko)), and double GATA-4/6 (G4/6(gcko)) granulosa cell-specific knockout mice were generated to further investigate the role of GATA transcription factors in ovarian function in vivo. No reproductive defects were found in G6(gcko) animals. G4(gcko) animals were subfertile as indicated by the reduced number of pups per litter and the release of significantly fewer oocytes at ovulation. In marked contrast, G4/6(gcko) females fail to ovulate and are infertile. Furthermore, G4/6(gcko) females had irregular estrous cycles, which correlate with the abnormal ovarian histology found in unstimulated adult G4/6(gcko) females showing lack of follicular development and increased follicular atresia. Moreover, treatment with exogenous gonadotropins did not rescue folliculogenesis or ovulation in double-knockout G4/6(gcko) mice. In addition, ovary weight and estradiol levels were significantly reduced in G4(gcko) and G4/6(gcko) animals when compared with control and G6(gcko) mice. Aromatase, P450scc, and LH receptor expression was significantly lower in G4(gcko) and G4/6(gcko) mice when compared with control animals. Most prominently, FSH receptor (FSHR) protein was undetectable in granulosa cells of G4(gcko) and G4/6(gcko). Accordingly, gel shift and reporter assays revealed that GATA-4 binds and stimulates the activity of the FSHR promoter. These results demonstrate that GATA-4 and GATA-6 are needed for normal ovarian function. Our data are consistent with a role for GATA-4 in the regulation of the FSHR gene and provide a possible molecular mechanism to explain the fertility defects observed in animals with deficient GATA expression in the ovary.
Collapse
Affiliation(s)
- Jill Bennett
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
24
|
Belaguli NS, Zhang M, Garcia AH, Berger DH. PIAS1 is a GATA4 SUMO ligase that regulates GATA4-dependent intestinal promoters independent of SUMO ligase activity and GATA4 sumoylation. PLoS One 2012; 7:e35717. [PMID: 22539995 PMCID: PMC3334497 DOI: 10.1371/journal.pone.0035717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 01/12/2023] Open
Abstract
GATA4 confers cell type-specific gene expression on genes expressed in cardiovascular, gastro-intestinal, endocrine and neuronal tissues by interacting with various ubiquitous and cell-type-restricted transcriptional regulators. By using yeast two-hybrid screening approach, we have identified PIAS1 as an intestine-expressed GATA4 interacting protein. The physical interaction between GATA4 and PIAS1 was confirmed in mammalian cells by coimmunoprecipitation and two-hybrid analysis. The interacting domains were mapped to the second zinc finger and the adjacent C-terminal basic region of GATA4 and the RING finger and the adjoining C-terminal 60 amino acids of PIAS1. PIAS1 and GATA4 synergistically activated IFABP and SI promoters but not LPH promoters suggesting that PIAS1 differentially activates GATA4 targeted promoters. In primary murine enterocytes PIAS1 was recruited to the GATA4-regulated IFABP promoter. PIAS1 promoted SUMO-1 modification of GATA4 on lysine 366. However, sumoylation was not required for the nuclear localization and stability of GATA4. Further, neither GATA4 sumoylation nor the SUMO ligase activity of PIAS1 was required for coactivation of IFABP promoter by GATA4 and PIAS1. Together, our results demonstrate that PIAS1 is a SUMO ligase for GATA4 that differentially regulates GATA4 transcriptional activity independent of SUMO ligase activity and GATA4 sumoylation.
Collapse
Affiliation(s)
- Narasimhaswamy S. Belaguli
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
- * E-mail: (NSB); (DHB)
| | - Mao Zhang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - Andres-Hernandez Garcia
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - David H. Berger
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
- * E-mail: (NSB); (DHB)
| |
Collapse
|
25
|
Bagu ET, Santos MM. Friend of GATA suppresses the GATA-induced transcription of hepcidin in hepatocytes through a GATA-regulatory element in the HAMP promoter. J Mol Endocrinol 2011; 47:299-313. [PMID: 21971825 PMCID: PMC3307792 DOI: 10.1530/jme-11-0060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepcidin is an antimicrobial peptide hormone involved in the metabolism of iron, encoded for by the HAMP gene mainly in hepatocytes. It's expressed at lower levels in other cells such as the macrophages. The mechanisms that determine tissue-specific expression of hepcidin remain unclear. GATA- and its co-factor Friend of GATA (FOG) modulate the tissue-specific transcription of other genes involved in the metabolism of iron. GATA proteins are group of evolutionary conserved transcriptional regulators that bind to the consensus motif -WGATAR- in the promoter. We characterized a 1.3 kb fragment of the 5'-flanking sequence of the HAMP gene in Huh7 cells, which express HAMP. Transfection of 5'-deletions of the HAMP promoter in Huh7 cells revealed two regions, -932/-878 and -155/-96, that when deleted decreased promoter activity. Using site-directed mutations in the HAMP promoter region -155/-96 we identified two subregions, -138/-125 and -103/-98, which when mutated suppressed promoter activity by 70 and 90% respectively. Site -103/-98 with a sequence -TTATCT- to which endogenous GATA proteins 4 and 6 bind and transactivate HAMP is a GATA-regulatory element (RE). Mutation of the GATA-RE abrogated binding of GATA proteins 4 and 6 to the promoter and blunted the GATA transactivation of HAMP. FOG proteins 1 and 2 suppressed the endogenous and exogenous GATA activation of the HAMP promoter. We concluded that the GATA-RE, -TTATCT- in the HAMP promoter region -103/-98 is crucial for the GATA-4 and GATA-6 driven transcription of hepcidin in Huh7 cells and that FOG proteins moderate the transcription by suppressing the GATA transactivation of HAMP.
Collapse
Affiliation(s)
- Edward T Bagu
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) and Institut du cancer de Montréal, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
26
|
Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol 2011; 353:229-41. [PMID: 21385577 DOI: 10.1016/j.ydbio.2011.02.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
Abstract
Assembly of functioning testis and ovary requires a GATA4-FOG2 transcriptional complex. To define the separate roles for GATA4 and FOG2 proteins in sexual development of the testis we have ablated the corresponding genes in somatic gonadal cells. We have established that GATA4 is required for testis differentiation, for the expression of Dmrt1 gene, and for testis cord morphogenesis. While Sf1Cre-mediated excision of Gata4 permitted normal expression of most genes associated with embryonic testis development, gonadal loss of Fog2 resulted in an early partial block in male pathway and sex reversal. We have also determined that testis sexual differentiation is sensitive to the timing of GATA4 loss during embryogenesis. Our results now demonstrate that these two genes also have non-overlapping essential functions in testis development.
Collapse
|
27
|
Yang WH, Gutierrez NM, Wang L, Ellsworth BS, Wang CM. Synergistic activation of the Mc2r promoter by FOXL2 and NR5A1 in mice. Biol Reprod 2010; 83:842-51. [PMID: 20650879 DOI: 10.1095/biolreprod.110.085621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Forkhead box protein L2 (FOXL2) is the earliest ovarian marker and plays an important role in the regulation of cholesterol and steroid metabolism, inflammation, apoptosis, and ovarian development and function. Mutations and deficiencies of the human FOXL2 gene have been shown to cause blepharophimosis-ptosis-epicanthus inversus syndrome as well as premature ovarian failure. Although Foxl2 interacts with steroidogenic factor 1 (Nr5a1) and up-regulates cyp19a1a gene transcription in fish, FOXL2 represses the transcriptional activity of the gene that codes for steroidogenic acute regulatory protein (Star) in mice. Most of the recent studies have heavily focused on the FOXL2 target genes (Star and Cyp19a1) in the ovaries. Hence, it is of importance to search for other downstream targets of FOXL2 and for the possibility of FOXL2 expression in nonovarian tissues. Herein, we demonstrate that the interplay between FOXL2 and NR5A1 regulates Star and melanocortin 2 receptor (Mc2r) gene expression in mammalian systems. Both FOXL2 and NR5A1 are expressed in ovarian and adrenal gland tissues. As expected, FOXL2 represses and NR5A1 enhances the promoter activity of Star. Notably, the promoter activity of Mc2r is activated by FOXL2 in a dose-dependent manner. Surprisingly, we found that FOXL2 and NR5A1 synergistically up-regulate the transcriptional activity of Mc2r. By mapping the Mc2r promoter, we provide evidence that distal NR5A1 response elements (-1410 and -975) are required for synergistic activation by FOXL2 and NR5A1. These results suggest that the interplay between FOXL2 and NR5A1 on the Mc2r promoter functions as a novel mechanism for regulating MC2R-mediated cell signaling as well as steroidogenesis in adrenal glands.
Collapse
Affiliation(s)
- Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 31404-3089, USA.
| | | | | | | | | |
Collapse
|
28
|
Schimmer BP, White PC. Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol Endocrinol 2010; 24:1322-37. [PMID: 20203099 DOI: 10.1210/me.2009-0519] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The orphan nuclear receptor steroidogenic factor 1 (SF-1, also called Ad4BP, encoded by the NR5A1 gene) is an essential regulator of endocrine development and function. Initially identified as a tissue-specific transcriptional regulator of cytochrome P450 steroid hydroxylases, studies of both global and tissue-specific knockout mice have demonstrated that SF-1 is required for the development of the adrenal glands, gonads, and ventromedial hypothalamus and for the proper functioning of pituitary gonadotropes. Many genes are transcriptionally regulated by SF-1, and many proteins, in turn, interact with SF-1 and modulate its activity. Whereas mice with heterozygous mutations that disrupt SF-1 function have only subtle abnormalities, humans with heterozygous SF-1 mutations can present with XY sex reversal (i.e. testicular failure), ovarian failure, and occasionally adrenal insufficiency; dysregulation of SF-1 has been linked to diseases such as endometriosis and adrenocortical carcinoma. The current state of knowledge of this important transcription factor will be reviewed with a particular emphasis on the pioneering work on SF-1 by the late Keith Parker.
Collapse
Affiliation(s)
- Bernard P Schimmer
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G1L6, Canada
| | | |
Collapse
|
29
|
SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol Cell Biol 2008; 29:613-25. [PMID: 19015234 DOI: 10.1128/mcb.00295-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) is an orphan nuclear receptor selectively expressed in the adrenal cortex and gonads, where it mediates the hormonal stimulation of multiple genes involved in steroid hormone biosynthesis. SF-1 is the target of both phosphorylation and SUMOylation, but how these modifications interact or contribute to SF-1 regulation of endogenous genes remains poorly defined. We found that SF-1 is selectively SUMOylated at K194 in Y1 adrenocarcinoma cells and that although SUMOylation does not alter the subcellular localization of SF-1, the modification inhibits the ability of SF-1 to activate target genes. Notably, whereas SF-1 SUMOylation is independent of S203 phosphorylation and is unaffected by adrenocorticotropin (ACTH) treatment, loss of SUMOylation leads to enhanced SF-1 phosphorylation at serine 203. Furthermore, preventing SF-1 SUMOylation increases the mRNA and protein levels of multiple steroidogenic enzyme genes. Analysis of the StAR promoter indicates that blockade of SF-1 SUMOylation leads to an increase in overall promoter occupancy but does not alter the oscillatory recruitment dynamics in response to ACTH. Notably, we find that CDK7 binds preferentially to the SUMOylation-deficient form of SF-1 and that CDK7 inhibition reduces phosphorylation of SF-1. Based on these observations, we propose a coordinated modification model in which inhibition of SF-1-mediated transcription by SUMOylation in adrenocortical cancer cells is mediated through reduced CDK7-induced phosphorylation of SF-1.
Collapse
|
30
|
Martin LJ, Boucher N, Brousseau C, Tremblay JJ. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol Endocrinol 2008; 22:2021-37. [PMID: 18599618 DOI: 10.1210/me.2007-0370] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cholesterol transport in the mitochondrial membrane, an essential step of steroid biosynthesis, is mediated by a protein complex containing the steroidogenic acute regulatory (StAR) protein. The importance of this transporter is underscored by mutations in the human StAR gene that cause lipoid congenital adrenal hyperplasia, male pseudohermaphroditism, and adrenal insufficiency. StAR transcription in steroidogenic cells is hormonally regulated and involves several transcription factors. The nuclear receptor NUR77 is present in steroidogenic cells, and its expression is induced by hormones known to activate StAR expression. We have now established that StAR transcription in cAMP-stimulated Leydig cells requires de novo protein synthesis and involves NUR77. We found that cAMP-induced NUR77 expression precedes that of StAR both at the mRNA and protein levels in Leydig cells. In these cells, small interfering RNA-mediated NUR77 knockdown reduces cAMP-induced StAR expression. Chromatin immunoprecipitation assays revealed a cAMP-dependent increase in NUR77 recruitment to the proximal StAR promoter, whereas transient transfections in MA-10 Leydig cells confirmed that NUR77 can activate the StAR promoter and that this requires an element located at -95 bp. cAMP-induced StAR and NUR77 expression in Leydig cells was found to require a Ca2+/calmodulin-dependent protein kinase (CaMK)-dependent signaling pathway. Consistent with this, we show that within the testis, CaMKI is specifically expressed in Leydig cells. Finally, we report that CaMKI transcriptionally cooperates with NUR77, but not steroidogenic factor 1, to further enhance StAR promoter activity in Leydig cells. All together, our results implicate NUR77 as a mediator of cAMP action on StAR transcription in steroidogenic Leydig cells and identify a role for CaMKI in this process.
Collapse
Affiliation(s)
- Luc J Martin
- Reproduction, Perinatal and Child Health, Centre Hospitalier Universitaire of Quebec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
31
|
Mouillet JF, Yan X, Ou Q, Jin L, Muglia LJ, Crawford PA, Sadovsky Y. DEAD-box protein-103 (DP103, Ddx20) is essential for early embryonic development and modulates ovarian morphology and function. Endocrinology 2008; 149:2168-75. [PMID: 18258677 PMCID: PMC2329271 DOI: 10.1210/en.2007-1237] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The DEAD-box helicase DP103 (Ddx20, Gemin3) is a multifunctional protein that interacts with Epstein-Barr virus nuclear proteins (EBNA2/EBNA3) and is a part of the spliceosomal small nuclear ribonucleoproteins complex. DP103 also aggregates with the micro-RNA machinery complex. We have previously shown that DP103 interacts with the nuclear receptor steroidogenic factor-1 (SF-1, NR5A1), a key regulator of reproductive development, and represses its transcriptional activity. To further explore the physiological function of DP103, we disrupted the corresponding gene in mice. Homozygous Dp103-null mice die early in embryonic development before a four-cell stage. Although heterozygous mice are healthy and fertile, analysis of steroidogenic tissues revealed minor abnormalities in mutant females, including larger ovaries, altered estrous cycle, and reduced basal secretion of ACTH. Our data point to diverse functions of murine DP103, with an obligatory role during early embryonic development and also in modulation of steroidogenesis.
Collapse
Affiliation(s)
- Jean-François Mouillet
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 2008; 9:44. [PMID: 18445271 PMCID: PMC2387164 DOI: 10.1186/1471-2199-9-44] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background In mammals, sex determination is genetically controlled. The SRY gene, located on Y chromosome, functions as the dominant genetic switch for testis development. The SRY gene is specifically expressed in a subpopulation of somatic cells (pre-Sertoli cells) of the developing urogenital ridge for a brief period during gonadal differentiation. Despite this tight spatiotemporal expression pattern, the molecular mechanisms that regulate SRY transcription remain poorly understood. Sry expression has been shown to be markedly reduced in transgenic mice harboring a mutant GATA4 protein (a member of the GATA family of transcription factors) disrupted in its ability to interact with its transcriptional partner FOG2, suggesting that GATA4 is involved in SRY gene transcription. Results Although our results show that GATA4 directly targets the pig SRY promoter, we did not observe similar action on the mouse and human SRY promoters. In the mouse, Wilms' tumor 1 (WT1) is an important regulator of both Sry and Müllerian inhibiting substance (Amh/Mis) expression and in humans, WT1 mutations are associated with abnormalities of sex differentiation. GATA4 transcriptionally cooperated with WT1 on the mouse, pig, and human SRY promoters. Maximal GATA4/WT1 synergism was dependent on WT1 but not GATA4 binding to their consensus regulatory elements in the SRY promoter and required both the zinc finger and C-terminal regions of the GATA4 protein. Although both isoforms of WT1 synergized with GATA4, synergism was stronger with the +KTS rather than the -KTS isoform. WT1/GATA4 synergism was also observed on the AMH promoter. In contrast to SRY, WT1/GATA4 action on the mouse Amh promoter was specific for the -KTS isoform and required both WT1 and GATA4 binding. Conclusion Our data therefore provide new insights into the molecular mechanisms that contribute to the tissue-specific expression of the SRY and AMH genes in both normal development and certain syndromes of abnormal sex differentiation.
Collapse
|
33
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
34
|
Bielinska M, Seehra A, Toppari J, Heikinheimo M, Wilson DB. GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn 2007; 236:203-13. [PMID: 17096405 PMCID: PMC2174205 DOI: 10.1002/dvdy.21004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor GATA-4 is expressed in Sertoli cells, steroidogenic Leydig cells, and other testicular somatic cells. Previous studies have established that interaction between GATA-4 and its cofactor FOG-2 is necessary for proper Sry expression and all subsequent steps in testicular organogenesis, including testis cord formation and differentiation of both Sertoli and fetal Leydig cells. Since fetal Leydig cell differentiation depends on Sertoli cell-derived factors, it has remained unclear whether GATA-4 has a cell autonomous role in Leydig cell development. We used two experimental systems to explore the role of GATA-4 in the ontogeny of testicular steroidogenic cells. First, chimeric mice were generated by injection of Gata4-/- ES cells into Rosa26 blastocysts. Analysis of the resultant chimeras showed that in developing testis Gata4-/- cells can contribute to fetal germ cells and interstitial fibroblasts but not fetal Leydig cells. Second, wild-type or Gata4-/- ES cells were injected into the flanks of intact or gonadectomized nude mice and the resultant teratomas examined for expression of steroidogenic markers. Wild-type but not Gata4-/- ES cells were capable of differentiating into gonadal-type steroidogenic lineages in teratomas grown in gonadectomized mice. In chimeric teratomas derived from mixtures of GFP-tagged Gata4+/+ ES cells and unlabeled Gata4-/- ES cells, sex steroidogenic cell differentiation was restricted to GFP-expressing cells. Collectively these data suggest that GATA-4 plays an integral role in the development of testicular steroidogenic cells.
Collapse
Affiliation(s)
- Malgorzata Bielinska
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | - Amrita Seehra
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | - Jorma Toppari
- Departments of Physiology and Pediatrics, University of Turku, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
- Children's Hospital, Program for Developmental and Reproductive Biology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- University Central Hospital and University of Tampere, Tampere, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
- Correspondence and reprint requests to: David B. Wilson, MD PhD, Box 8208, Washington Univ. School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110 USA, Phone: +1.314.286.2834, FAX: +1.314.286.2892,
| |
Collapse
|
35
|
Abstract
Arguably the most defining moment in our lives is fertilization, the point at which we inherit either an X or a Y chromosome from our father. The profoundly different journeys of male and female life are thus decided by a genetic coin toss. These differences begin to unfold during fetal development, when the Y-chromosomal Sry ("sex-determining region Y") gene is activated in males and acts as a switch that diverts the fate of the undifferentiated gonadal primordia, the genital ridges, towards testis development. This sex-determining event sets in train a cascade of morphological changes, gene regulation, and molecular interactions that directs the differentiation of male characteristics. If this does not occur, alternative molecular cascades and cellular events drive the genital ridges toward ovary development. Once testis or ovary differentiation has occurred, our sexual fate is further sealed through the action of sex-specific gonadal hormones. We review here the molecular and cellular events (differentiation, migration, proliferation, and communication) that distinguish testis and ovary during fetal development, and the changes in gene regulation that underpin these two alternate pathways. The growing body of knowledge relating to testis development, and the beginnings of a picture of ovary development, together illustrate the complex mechanisms by which these organ systems develop, inform the etiology, diagnosis, and management of disorders of sexual development, and help define what it is to be male or female.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development and Australian Research Council Centre of Excellence in Biotechnology and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
36
|
Cai Z, Kwintkiewicz J, Young ME, Stocco C. Prostaglandin E2 increases cyp19 expression in rat granulosa cells: implication of GATA-4. Mol Cell Endocrinol 2007; 263:181-9. [PMID: 17097802 PMCID: PMC1779458 DOI: 10.1016/j.mce.2006.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/22/2006] [Accepted: 09/28/2006] [Indexed: 01/08/2023]
Abstract
The expression of Cyp19, the key gene of estrogen biosynthesis, in granulosa cells (GC) is essential for follicular growth and coordination of the ovulatory process. The goal of this study was to examine the effect of PGE2 and PGF2alpha on Cyp19 expression in undifferentiated and luteinized GC (UGC and LGC). In UGC, PGE2 increased Cyp19 mRNA and Cyp19 protein levels whereas PGF2alpha had no effect. In LGC, PGF2alpha decreased Cyp19 expression whereas PGE2 had no effect. Gene-reporter experiments demonstrated that PGE2 increases Cyp19 transcription in UGC. A protein kinase A inhibitor blocked PGE2-induced increase in Cyp19 promoter activity. PGE2 increased GATA-4 binding to the Cyp19 promoter. Mutation of the GATA binding site resulted in the loss of PGE2 stimulation. This study demonstrates that PGE2 stimulates Cyp19 expression in rat GC and suggests that GATA-4 may mediate (at least in part) the stimulatory effect of PGE2.
Collapse
Affiliation(s)
- Zailong Cai
- Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT 06520, United States
| | | | | | | |
Collapse
|
37
|
Yao HHC, Capel B. Temperature, genes, and sex: a comparative view of sex determination in Trachemys scripta and Mus musculus. J Biochem 2005; 138:5-12. [PMID: 16046442 PMCID: PMC4066379 DOI: 10.1093/jb/mvi097] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex determination, the step at which differentiation of males and females is initiated in the embryo, is of central importance to the propagation of species. There is a remarkable diversity of mechanisms by which sex determination is accomplished. In general these mechanisms fall into two categories: Genetic Sex Determination (GSD), which depends on genetic differences between the sexes, and Environmental Sex Determination (ESD), which depends on extrinsic cues. In this review we will consider these two means of determining sex with particular emphasis on two species: a species that depends on GSD, Mus musculus, and a species that depends on ESD, Trachemys scripta. Because the structural organization of the adult testis and ovary is very similar across vertebrates, most biologists had expected that the pathways downstream of the sex-determining switch would be conserved. However, emerging data indicate that not only are the initial sex determining mechanisms different, but the downstream pathways and morphogenetic events leading to the development of a testis or ovary also are different.
Collapse
Affiliation(s)
- Humphrey H-C Yao
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center
| |
Collapse
|
38
|
Divine JK, Staloch LJ, Haveri H, Jacobsen CM, Wilson DB, Heikinheimo M, Simon TC. GATA-4, GATA-5, and GATA-6 activate the rat liver fatty acid binding protein gene in concert with HNF-1alpha. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1086-99. [PMID: 14715527 DOI: 10.1152/ajpgi.00421.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transcriptional regulation by GATA-4, GATA-5, and GATA-6 in intestine and liver was explored using a transgene constructed from the proximal promoter of the rat liver fatty acid binding protein gene (Fabpl). An immunohistochemical survey detected GATA-4 and GATA-6 in enterocytes, GATA-6 in hepatocytes, and GATA-5 in neither cell type in adult animals. In cell transfection assays, GATA-4 or GATA-5 but not GATA-6 activated the Fabpl transgene solely through the most proximal of three GATA binding sites in the Fabpl promoter. However, all three factors activated transgenes constructed from each Fabpl site upstream of a minimal viral promoter. GATA factors interact with hepatic nuclear factor (HNF)-1alpha, and the proximal Fabpl GATA site adjoins an HNF-1 site. GATA-4, GATA-5, or GATA-6 bounded to HNF-1alpha in solution, and all cooperated with HNF-1alpha to activate the Fabpl transgene. Mutagenizing all Fabpl GATA sites abrogated transgene activation by GATA factors, but GATA-4 activated the mutagenized transgene in the presence of HNF-1alpha. These in vitro results suggested GATA/HNF-1alpha interactions function in Fabpl regulation, and in vivo relevance was determined with subsequent experiments. In mice, the Fabpl transgene was active in enterocytes and hepatocytes, a transgene with mutagenized HNF-1 site was silent, and a transgene with mutagenized GATA sites had identical expression as the native transgene. Mice mosaic for biallelic Gata4 inactivation lost intestinal but not hepatic Fabpl expression in Gata4-deficient cells but not wild-type cells. These results demonstrate GATA-4 is critical for intestinal gene expression in vivo and suggest a specific GATA-4/HNF-1alpha physical and functional interaction in Fabpl activation.
Collapse
Affiliation(s)
- Joyce K Divine
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Nakano K, Matsushita A, Sasaki S, Misawa H, Nishiyama K, Kashiwabara Y, Nakamura H. Thyroid-hormone-dependent negative regulation of thyrotropin beta gene by thyroid hormone receptors: study with a new experimental system using CV1 cells. Biochem J 2004; 378:549-57. [PMID: 14611644 PMCID: PMC1223958 DOI: 10.1042/bj20031592] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 11/12/2003] [Indexed: 11/17/2022]
Abstract
The molecular mechanism involved in the liganded thyroid hormone receptor suppression of the TSHbeta (thyroid-stimulating hormone beta, or thyrotropin beta) gene transcription is undetermined. One of the main reasons is the limitation of useful cell lines for the experiments. We have developed an assay system using non-pituitary CV1 cells and studied the negative regulation of the TSHbeta gene. In CV1 cells, the TSHbeta-CAT (chloramphenicol acetyltransferase) reporter was stimulated by Pit1 and GATA2 and suppressed by T3 (3,3',5-tri-iodothyronine)-bound thyroid hormone receptor. The suppression was dependent on the amounts of T3 and the receptor. Unliganded receptor did not stimulate TSHbeta activity, suggesting that the receptor itself is not an activator. Analyses using various receptor mutants revealed that the intact DNA-binding domain is crucial to the TSHbeta gene suppression. Co-activators and co-repressors are not necessarily essential, but are required for the full suppression of the TSHbeta gene. Among the three receptor isoforms, beta2 exhibited the strongest inhibition and its protein level was the most predominant in a thyrotroph cell line, TalphaT1, in Western blotting. The dominant-negative effects of various receptor mutants measured on the TSHbeta-CAT reporter were not simple mirror images of those in the positive regulation under physiological T3 concentration.
Collapse
Affiliation(s)
- Keiko Nakano
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The doublesex and mab-3 related transcription factor 1 (Dmrt1) is a putative transcriptional regulator that is expressed exclusively in the gonads and is required for postnatal testis differentiation. Here we describe the transcriptional mechanisms regulating testis-specific expression of the Dmrt1 gene. Transient-transfection analysis identified a region of the promoter between kb -3.2 and -2.8 that is important for Sertoli cell-specific expression. DNase I footprinting revealed four sites of DNA-protein interaction within this region, three of which were prominent in primary Sertoli cells. Analysis of these sites, using electrophoretic mobility shift assays, revealed that Gata4 and another unknown factor bound within these regions. Further transient-transfection assays of various mutant promoters established the functional relevance of the Gata4-response and unknown factor-response elements, while studies of Dmrt1 expression in 13.5 days postcoitum Fog2 null gonads supported the in vivo importance of Gata4's regulation. As a whole, these studies identify Gata4 as an important regulator in the Dmrt1 transcriptional machinery that is responsible for robust expression of Dmrt1 in the testis.
Collapse
Affiliation(s)
- Ning Lei
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | | |
Collapse
|
41
|
Liu YW, Gao W, Teh HL, Tan JH, Chan WK. Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol 2003; 23:7243-55. [PMID: 14517294 PMCID: PMC230334 DOI: 10.1128/mcb.23.20.7243-7255.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) plays an essential role in adrenal development, although the exact molecular mechanisms are unclear. Our previous work established that Ff1b is the zebra fish homologue of SF-1 and that its disruption by antisense morpholinos leads to a complete ablation of the interrenal organ. In this study, results of biochemical analyses suggest that Ff1b and other Ff1 members interact with Prox1, a homeodomain protein. Fine mapping using site-directed mutants showed that this interaction requires an intact Ff1b heptad 9 and AF2, as well as Prox1 NR Box I. In vivo, this physical interaction led to the inhibition of Ff1-mediated transactivation of pLuc3XFRE, indicating that Prox1 acts to repress the transcriptional activity of Ff1b. In situ hybridization demonstrates that prox1 colocalizes with ff1a and ff1b in the liver and interrenal primordia, respectively. Embryos microinjected with prox1 morpholino displayed a consistent partial reduction of 3 eta-Hsd activity in the interrenal organ, while ff1b morpholino led to a disappearance of prox1. Based on these results, we propose that during the course of interrenal organogenesis, Prox1 functions as a tissue-specific coregulator of Ff1b and that the subsequent inhibition of Ff1b activity, after its initial roles in the specification of interrenal primordium, is critical for the maturation of the interrenal organ.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
42
|
Val P, Lefrançois-Martinez AM, Veyssière G, Martinez A. SF-1 a key player in the development and differentiation of steroidogenic tissues. NUCLEAR RECEPTOR 2003; 1:8. [PMID: 14594453 PMCID: PMC240021 DOI: 10.1186/1478-1336-1-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 09/18/2003] [Indexed: 12/16/2022]
Abstract
Since its discovery in the early 1990s, the orphan nuclear receptor SF-1 has been attributed a central role in the development and differentiation of steroidogenic tissues. SF-1 controls the expression of all the steroidogenic enzymes and cholesterol transporters required for steroidogenesis as well as the expression of steroidogenesis-stimulating hormones and their cognate receptors. SF-1 is also an essential regulator of genes involved in the sex determination cascade. The study of SF-1 null mice and of human mutants has been of great value to demonstrate the essential role of this factor in vivo, although the complete adrenal and gonadal agenesis in knock-out animals has impeded studies of its function as a transcriptional regulator. In particular, the role of SF-1 in the hormonal responsiveness of steroidogenic genes promoters is still a subject of debate. This extensive review takes into account recent data obtained from SF-1 haploinsufficient mice, pituitary-specific knock-outs and from transgenic mice experiments carried out with SF-1 target gene promoters. It also summarizes the pros and cons regarding the presumed role of SF-1 in cAMP signalling.
Collapse
Affiliation(s)
- Pierre Val
- UMR CNRS 6547, Physiologie Comparée et Endocrinologie Moléculaire, Université Blaise Pascal, Clermont II, Complexe Universitaire des Cézeaux, 24 avenue des Landais, 63177 Aubiere Cedex, France
| | - Anne-Marie Lefrançois-Martinez
- UMR CNRS 6547, Physiologie Comparée et Endocrinologie Moléculaire, Université Blaise Pascal, Clermont II, Complexe Universitaire des Cézeaux, 24 avenue des Landais, 63177 Aubiere Cedex, France
| | - Georges Veyssière
- UMR CNRS 6547, Physiologie Comparée et Endocrinologie Moléculaire, Université Blaise Pascal, Clermont II, Complexe Universitaire des Cézeaux, 24 avenue des Landais, 63177 Aubiere Cedex, France
| | - Antoine Martinez
- UMR CNRS 6547, Physiologie Comparée et Endocrinologie Moléculaire, Université Blaise Pascal, Clermont II, Complexe Universitaire des Cézeaux, 24 avenue des Landais, 63177 Aubiere Cedex, France
| |
Collapse
|
43
|
Hong CY, Park JH, Seo KH, Kim JM, Im SY, Lee JW, Choi HS, Lee K. Expression of MIS in the testis is downregulated by tumor necrosis factor alpha through the negative regulation of SF-1 transactivation by NF-kappa B. Mol Cell Biol 2003; 23:6000-12. [PMID: 12917325 PMCID: PMC180915 DOI: 10.1128/mcb.23.17.6000-6012.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 03/21/2003] [Accepted: 06/04/2003] [Indexed: 11/20/2022] Open
Abstract
The expression of Mullerian inhibiting substance (MIS), a key molecule in sex differentiation and reproduction, is tightly regulated. It has been suggested that meiotic germ cells repress MIS expression in testicular Sertoli cells, although the substance responsible for this cell-cell communication remains unknown. Here, we present the cytokine tumor necrosis factor alpha (TNF-alpha) as a strong candidate for such a substance and its downstream molecular events. TNF-alpha inhibited MIS expression in testis organ cultures, and TNF-alpha(-/-) testes showed high and prolonged MIS expression. Furthermore, in transient-transfection assays TNF-alpha suppressed the MIS promoter that was activated by steroidogenic factor 1 (SF-1), one of the major transcription factors that regulate MIS expression. The modulation of SF-1 transactivation by TNF-alpha is through the activation of NF-kappa B, which subsequently interacts with SF-1 and represses its transactivation. The physical association of NF-kappa B with SF-1 was shown by yeast two-hybrid protein interaction, glutathione S-transferase pull-down, and coimmunoprecipitation (ChIP) analyses. ChIP assays also revealed that endogenous NF-kappa B, as well as SF-1, is recruited to the MIS promoter upon TNF-alpha signaling. SF-1-bound NF-kappa B subsequently recruits histone deacetylases to inhibit the SF-1-activated gene expression. These results may identify, for the first time, the responsible substance and its action mechanism underlying the repression of MIS expression by meiotic germ cells in the testis.
Collapse
Affiliation(s)
- Cheol Yi Hong
- Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jacobs SBR, Coss D, McGillivray SM, Mellon PL. Nuclear factor Y and steroidogenic factor 1 physically and functionally interact to contribute to cell-specific expression of the mouse Follicle-stimulating hormone-beta gene. Mol Endocrinol 2003; 17:1470-83. [PMID: 12730328 PMCID: PMC2933173 DOI: 10.1210/me.2002-0286] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
FSH is a heterodimeric glycoprotein hormone secreted from the gonadotrope cell population of the anterior pituitary. Despite its crucial role in mammalian reproduction, very little is known about regulation of the FSH beta-subunit gene at the molecular level. In this report, we examine the basis for cell-specific expression of FSH beta using the mouse L beta T2 and alpha T3-1 gonadotrope-derived cell lines. Characterization of the hormonal content of L beta T2 and alpha T3-1 cells at the protein level classifies these cells as relatively mature and immature gonadotropes, respectively. We studied L beta T2 cell-specific expression of FSH beta using 398 bp of the mouse FSH beta regulatory region linked to a luciferase reporter gene in transient transfection assays. This mouse FSH beta promoter can direct reporter gene expression specifically to L beta T2 cells when compared with other pituitary- and non-pituitary-derived cell lines, including alpha T3-1 cells. Furthermore, it is induced by activin, and interruption of the autocrine activin loop in L beta T2 cells by the addition of follistatin reduces its expression. Truncation analysis indicates that several regions of the promoter are involved in this specificity and that these can be dissociated from activin regulation. We identify binding sites for the orphan nuclear receptor steroidogenic factor-1 and the heterotrimeric transcription factor nuclear factor Y and show that these elements functionally interact to regulate FSH beta gene expression in an L beta T2 cell-specific manner. Moreover, steroidogenic factor-1 and nuclear factor Y are shown to physically interact with each other. This study is the first to demonstrate the presence of basal FSH beta protein in L beta T2 cells and to identify specific elements within the FSH beta promoter that contribute to basal and cell-specific expression of the gene.
Collapse
Affiliation(s)
- Suzanne B R Jacobs
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
45
|
Suzuki T, Kasahara M, Yoshioka H, Morohashi KI, Umesono K. LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 2003; 23:238-49. [PMID: 12482977 PMCID: PMC140654 DOI: 10.1128/mcb.23.1.238-249.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 06/25/2002] [Accepted: 09/24/2002] [Indexed: 12/19/2022] Open
Abstract
The orphan receptor Ad4BP/SF-1 (NR5A1) is a constitutive activator, and its activity is repressed by another orphan receptor, Dax-1 (NR0B1). In the present study, we investigated the molecular mechanisms underlying this repression by Dax-1. Yeast two-hybrid and transient-transfection assays confirmed the necessity of three LXXLL-related motifs in Dax-1 for interaction with and repression of Ad4BP/SF-1. In vitro pull-down experiments confirmed that Dax-1 interacts with Ad4BP/SF-1 and also with LRH-1 (NR5A2). The target specificity of the LXXLL-related motifs was indicated by the observations that Ad4BP/SF-1, ERalpha (NR3A1), LRH-1, ERR2 (NR3B2), and fly FTZ-F1 (NR5A3) interacted through their ligand binding domains with all the LXXLL-related motifs in Dax-1 whereas HNF4 (NR2A1) and RORalpha (NR1F1) did not. Transcriptional activities of the receptors whose DNA binding domains (DBDs) were replaced by the GAL4 DBD were repressed by Dax-1 to various levels, which correlated with the strength of interaction. Amino acid substitutions revealed that Ad4BP/SF-1 and LRH-1 preferentially interact with L(+1)XXLL-related motifs containing serine, tyrosine, serine, and threonine at positions -2, +2, +3, and +6, respectively. Taken together, our results indicate that the specificities of LXXLL-related motifs in Dax-1 based on their amino acid sequences play an important role in regulation of orphan receptors.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Cells, Cultured
- DAX-1 Orphan Nuclear Receptor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Estrogen Receptor alpha
- Fushi Tarazu Transcription Factors
- Homeodomain Proteins
- Mice
- Molecular Sequence Data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serine/genetics
- Serine/metabolism
- Steroidogenic Factor 1
- Substrate Specificity
- Threonine/genetics
- Threonine/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Taiga Suzuki
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
46
|
Heckert LL. Activation of the rat follicle-stimulating hormone receptor promoter by steroidogenic factor 1 is blocked by protein kinase a and requires upstream stimulatory factor binding to a proximal E box element. Mol Endocrinol 2001; 15:704-15. [PMID: 11328853 PMCID: PMC1496918 DOI: 10.1210/mend.15.5.0632] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The receptor for the pituitary glycoprotein hormone FSH (FSHR) and the nuclear hormone receptor steroidogenic factor 1 (SF-1) play important roles in control of the hypothalamic-pituitary- gonadal axis. FSHR is essential for integrating the pituitary FSH signal to gonadal response, while SF-1 is an important transcriptional regulator of many genes that function within this axis and is essential for the development of gonads and adrenal glands. Given the critical role of SF-1 in regulation of the gonads and the coexpression of FSHR and SF-1 in Sertoli and granulosa cells, we examined the ability of SF-1 to regulate transcription of the FSHR gene. We found that SF-1 stimulated rat FSHR promoter activity in a dose-dependent and promoter-specific manner. Examination of various promoter deletion mutants indicated that SF-1 acts through the proximal promoter region and upstream promoter sequences. An E box element within the proximal promoter is essential for activation of the FSHR promoter by SF-1. This element binds the transcriptional regulators USF1 and USF2 (upstream stimulatory factors 1 and 2) but not SF-1, as shown by electrophoretic mobility shift assays. In addition, functional studies identified a requirement for the USF proteins in SF-1 activation of FSHR and mapped an important regulatory domain within exons 4 and 5 of USF2. Cotransfection studies revealed that activation of protein kinase A leads to inhibition of SF-1-stimulated transcription of FSHR, while it synergized with SF-1 to activate the equine LH beta-promoter (ebeta). Thus, stimulation of the cAMP pathway differentially regulates SF-1 activation of the FSHR and ebeta-promoters.
Collapse
Affiliation(s)
- L L Heckert
- Department of Molecular and Integrative Physiology The University of Kansas Medical Center Kansas City, Kansas 66160, USA.
| |
Collapse
|
47
|
Lopez D, Nackley AC, Shea-Eaton W, Xue J, Schimmer BP, McLean MP. Effects of mutating different steroidogenic factor-1 protein regions on gene regulation. Endocrine 2001; 14:353-62. [PMID: 11444433 DOI: 10.1385/endo:14:3:353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Revised: 01/17/2001] [Accepted: 01/17/2001] [Indexed: 11/11/2022]
Abstract
The involvement of cyclic adenosine monophosphate cAMP-dependent protein kinase A (PKA) in the regulation of the steroidogenic acute regulatory protein (StAR) and the high-density lipoprotein receptor (HDL-R) genes by steroidogenic factor-1 (SF-1) and cAMP were examined. Cotransfection studies carried out in Kin 8 cells, a Y1 cell line (mouse adrenal) with a mutation in the type I PKA regulatory subunit, demonstrated that an intact PKA is required for maximal activation and that SF-1 participates in cAMP regulation of these genes. Site-directed mutational analysis was performed to examine which SF-1 regions could be involved in SF-1 transcriptional activation of the StAR and HDL-R genes. SF-1 regions protein analyzed were amino acids Thr 60, Ser 203, Ser 431, Thr 462, and the activation function-2 domain (amino acids 449-462). Plasmids encoding each of the mutated SF-1 proteins were cotransfected with the StAR and HDL-R promoter constructs into human bladder carcinoma (HTB-9) cells in the presence or absence of dibutyryl cAMP. The results of these studies suggest that although SF-1 is required for optimal promoter response to cAMP, transcriptional activation of genes by SF-1 and cAMP are promoter dependent, perhaps resulting from gene-specific interactions of this transcription factor with other regulatory proteins.
Collapse
Affiliation(s)
- D Lopez
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, USA
| | | | | | | | | | | |
Collapse
|
48
|
Watanabe K, Clarke TR, Lane AH, Wang X, Donahoe PK. Endogenous expression of Müllerian inhibiting substance in early postnatal rat sertoli cells requires multiple steroidogenic factor-1 and GATA-4-binding sites. Proc Natl Acad Sci U S A 2000; 97:1624-9. [PMID: 10677509 PMCID: PMC26485 DOI: 10.1073/pnas.97.4.1624] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/1999] [Indexed: 11/18/2022] Open
Abstract
Müllerian inhibiting substance (MIS) is a key element required to complete mammalian male sex differentiation. The expression pattern of MIS is tightly regulated in fetal, neonatal, and prepubertal testes and adult ovaries and is well conserved among mammalian species. Although several factors have been shown to be essential to MIS expression, its regulatory mechanisms are not fully understood. We have examined MIS promoter activity in 2-day postnatal primary cultures of rat Sertoli cells that continue to express endogenous MIS mRNA. Using this system, we found that the region between human MIS-269 and -192 is necessary for full MIS promoter activity. We identified by DNase I footprint and electrophoretic mobility-shift analyses a distal steroidogenic factor-1 (SF-1)-binding site that is essential for full promoter activity. Mutational analysis of this new distal SF-1 site and the previously identified proximal SF-1 site showed that both are necessary for transcriptional activation. Moreover, the proximal promoter also contains multiple GATA-4-binding sites that are essential for functional promoter activity. Thus multiple SF-1- and GATA-4-binding sites in the MIS promoter are required for normal tissue-specific and developmental expression of MIS.
Collapse
Affiliation(s)
- K Watanabe
- Pediatric Surgical Research Laboratories and Gene Therapy Center, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|