1
|
Chen G, Lv S, Pascal LE, Wang Z. Regulation of glucocorticoid receptor nuclear localization in prostate cancer cells. J Pharmacol Exp Ther 2025; 392:103577. [PMID: 40288208 DOI: 10.1016/j.jpet.2025.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Glucocorticoid receptor (GR) plays important roles in many diseases including prostate cancer. Intracellular shuttling of GR is thought to be an important mechanism regulating its localization to the nucleus required for transactivation of GR target genes. Here, using fluorescent microscopy coupled with pulse-chase and nucleocytoplasmic fractionation coupled with western blot, we provided evidence that GR can be imported and then degraded in the nucleus in the absence of ligand. We also showed that nuclear GR was stabilized by glucocorticoid hormone and that hormone withdrawal caused nuclear GR degradation, but not export. Further analysis showed that GR ubiquitination occurred predominantly in the nucleus compared with cytoplasm and was suppressed by glucocorticoids. Using small interfering RNA knockdown, we showed that loss of E3 ligase CHIP significantly inhibited GR ubiquitination and degradation in the nucleus, while enhancing the expression of GR target gene SGK1. These findings support an updated model that GR nucleocytoplasmic trafficking is a 1-way trip, involving nuclear import but not export. Future studies should focus on defining the mechanisms regulating GR ubiquitination and degradation in the nucleus, which may lead to novel approaches to modulate GR function for disease treatment. SIGNIFICANCE STATEMENT: This study suggests that glucocorticoid receptor (GR) nucleocytoplasmic trafficking is a 1-way trip, involving nuclear import but not export. This will guide future studies on defining the mechanisms regulating GR nuclear localization, which may lead to novel approaches to modulate GR function for disease treatment.
Collapse
Affiliation(s)
- Guang Chen
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shidong Lv
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
2
|
Zhao G, Liu Z, Lu J, Quan J, Pan Y. Protective Effects of 17-βE 2 on the Primary Hepatocytes of Rainbow Trout ( Oncorhynchus mykiss) Under Acute Heat Stress. Antioxidants (Basel) 2024; 13:1316. [PMID: 39594459 PMCID: PMC11590922 DOI: 10.3390/antiox13111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
The rainbow trout (Oncorhynchus mykiss) is a typical cold-water species. However, due to global warming, it has experienced prolonged high-temperature stress. Research indicates that thermotolerance in rainbow trout varies by sex at multiple physiological levels. Specifically, females exhibit higher thermotolerance, which may be attributed to estrogen-mediated signal transduction pathways. This study involved culturing primary hepatocytes from rainbow trout and exposing them to estradiol and estrogen receptor antagonists to assess estradiol's protective effects. The analysis focused on expression of ER, HSPs genes, hepatocyte viability, and antioxidant indices. Four experimental groups were treated with 17-βE2 at concentrations of 0, 0.1, 1, and 10 μM/mL for durations of 4, 8, 12, 24, and 48 h at 18 °C. 17-βE2 treatment led to increased hepatocyte viability and enhanced SOD, GSH-Px, and CAT levels but decreased MDA levels. hsp70a, hsp90β, era1, and erβ1 levels were notably higher, with the optimal 17-βE2 concentration being 1.0 μM/mL. Following heat stress (24 °C), the addition of 1.0 μM/mL 17-βE2 improved hepatocyte viability and increased SOD, GSH-Px, and CAT levels, while MDA content initially decreased before rising. The gene expression of hsp70a, hsp90β, era1, and erβ1 was significantly elevated compared to controls. Flow cytometry analysis showed increased apoptosis after heat exposure; however, 17-βE2 treatment significantly reduced the heat stress-induced effects (p < 0.05). In conclusion, 17-βE2 and mild heat stress collaboratively enhanced the expression of HSPs and estrogen receptors, thereby providing protection to hepatocytes from heat stress damage, indicating a beneficial protective role of estradiol in rainbow trout hepatocytes.
Collapse
Affiliation(s)
| | - Zhe Liu
- Department of College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.Z.); (J.L.); (J.Q.); (Y.P.)
| | | | | | | |
Collapse
|
3
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
4
|
Noddings CM, Johnson JL, Agard DA. Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the glucocorticoid receptor. Nat Struct Mol Biol 2023; 30:1867-1877. [PMID: 37945740 PMCID: PMC10716051 DOI: 10.1038/s41594-023-01128-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Hsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins, including the glucocorticoid receptor (GR). Previously, we revealed that Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding, aided by co-chaperones. In vivo, the co-chaperones FKBP51 and FKBP52 antagonistically regulate GR activity, but a molecular understanding is lacking. Here we present a 3.01 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP52 complex, revealing how FKBP52 integrates into the GR chaperone cycle and directly binds to the active client, potentiating GR activity in vitro and in vivo. We also present a 3.23 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP51 complex, revealing how FKBP51 competes with FKBP52 for GR:Hsp90 binding and demonstrating how FKBP51 can act as a potent antagonist to FKBP52. Altogether, we demonstrate how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation.
Collapse
Affiliation(s)
- Chari M Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT. AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1250218. [PMID: 37711895 PMCID: PMC10498919 DOI: 10.3389/fendo.2023.1250218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Ghada M. Sharif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
7
|
Lopes PC, Faber-Hammond JJ, Siemonsma C, Patel S, Renn SCP. The social environment alters neural responses to a lipopolysaccharide challenge. Brain Behav Immun 2023; 110:162-174. [PMID: 36878331 DOI: 10.1016/j.bbi.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sick animals display drastic changes in their behavioral patterns, including decreased activity, decreased food and water intake, and decreased interest in social interactions. These behaviors, collectively called "sickness behaviors", can be socially modulated. For example, when provided with mating opportunities, males of several species show reduced sickness behaviors. While the behavior is known to change, how the social environment affects neural molecular responses to sickness is not known. Here, we used a species, the zebra finch, Taeniopygia guttata, where males have been shown to decrease sickness behaviors when presented with novel females. Using this paradigm, we obtained samples from three brain regions (the hypothalamus, the bed nucleus of the stria terminalis, and the nucleus taeniae) from lipopolysaccharide (LPS) or control treated males housed under four different social environments. Manipulation of the social environment rapidly changed the strength and co-expression patterns of the neural molecular responses to the immune challenge in all brain regions tested, therefore suggesting that the social environment plays a significant role in determining the neural responses to an infection. In particular, brains of males paired with a novel female showed muted immune responses to LPS, as well as altered synaptic signaling. Neural metabolic activity in response to the LPS challenge was also affected by the social environment. Our results provide new insights into the effects of the social environment on brain responses to an infection, thereby improving our understanding of how the social environment can affect health.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | | | - Chandler Siemonsma
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Sachin Patel
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA
| |
Collapse
|
8
|
Tufano M, Marrone L, D'Ambrosio C, Di Giacomo V, Urzini S, Xiao Y, Matuozzo M, Scaloni A, Romano MF, Romano S. FKBP51 plays an essential role in Akt ubiquitination that requires Hsp90 and PHLPP. Cell Death Dis 2023; 14:116. [PMID: 36781840 PMCID: PMC9925821 DOI: 10.1038/s41419-023-05629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
FKBP51 plays a relevant role in sustaining cancer cells, particularly melanoma. This cochaperone participates in several signaling pathways. FKBP51 forms a complex with Akt and PHLPP, which is reported to dephosphorylate Akt. Given the recent discovery of a spliced FKBP51 isoform, in this paper, we interrogate the canonical and spliced isoforms in regulation of Akt activation. We show that the TPR domain of FKBP51 mediates Akt ubiquitination at K63, which is an essential step for Akt activation. The spliced FKBP51, lacking such domain, cannot link K63-Ub residues to Akt. Unexpectedly, PHLPP silencing does not foster phosphorylation of Akt, and its overexpression even induces phosphorylation of Akt. PHLPP stabilizes levels of E3-ubiquitin ligase TRAF6 and supports K63-ubiquitination of Akt. The interactome profile of FKBP51 from melanoma cells highlights a relevant role for PHLPP in improving oncogenic hallmarks, particularly, cell proliferation.
Collapse
Affiliation(s)
- Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Simona Urzini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Monica Matuozzo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
9
|
Liang J, Ingalla ER, Yao X, Wang BE, Tai L, Giltnane J, Liang Y, Daemen A, Moore HM, Aimi J, Chang CW, Gates MR, Eng-Wong J, Tam L, Bacarro N, Roose-Girma M, Bellet M, Hafner M, Metcalfe C. Giredestrant reverses progesterone hypersensitivity driven by estrogen receptor mutations in breast cancer. Sci Transl Med 2022; 14:eabo5959. [PMID: 36130016 DOI: 10.1126/scitranslmed.abo5959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ESR1 (estrogen receptor 1) hotspot mutations are major contributors to therapeutic resistance in estrogen receptor-positive (ER+) breast cancer. Such mutations confer estrogen independence to ERα, providing a selective advantage in the presence of estrogen-depleting aromatase inhibitors. In addition, ESR1 mutations reduce the potency of tamoxifen and fulvestrant, therapies that bind ERα directly. These limitations, together with additional liabilities, inspired the development of the next generation of ERα-targeted therapeutics, of which giredestrant is a high-potential candidate. Here, we generated Esr1 mutant-expressing mammary gland models and leveraged patient-derived xenografts (PDXs) to investigate the biological properties of the ESR1 mutations and their sensitivity to giredestrant in vivo. In the mouse mammary gland, Esr1 mutations promote hypersensitivity to progesterone, triggering pregnancy-like tissue remodeling and profoundly elevated proliferation. These effects were driven by an altered progesterone transcriptional response and underpinned by gained sites of ERα-PR (progesterone receptor) cobinding at the promoter regions of pro-proliferation genes. PDX experiments showed that the mutant ERα-PR proliferative program is also relevant in human cancer cells. Giredestrant suppressed the mutant ERα-PR proliferation in the mammary gland more so than the standard-of-care agents, tamoxifen and fulvestrant. Giredestrant was also efficacious against the progesterone-stimulated growth of ESR1 mutant PDX models. In addition, giredestrant demonstrated activity against a molecularly characterized ESR1 mutant tumor from a patient enrolled in a phase 1 clinical trial. Together, these data suggest that mutant ERα can collaborate with PR to drive protumorigenic proliferation but remain sensitive to inhibition by giredestrant.
Collapse
Affiliation(s)
- Jackson Liang
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Ellen Rei Ingalla
- Translational Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Xiaosai Yao
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Bu-Er Wang
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Lisa Tai
- Research Pathology, Genentech, South San Francisco, CA 94080, USA
| | | | - Yuxin Liang
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Anneleen Daemen
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Heather M Moore
- Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Junko Aimi
- Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Ching-Wei Chang
- Biostatistics, Genentech, South San Francisco, CA 94080, USA
| | - Mary R Gates
- Early Clinical Development, Genentech, South San Francisco, CA 94080, USA
| | - Jennifer Eng-Wong
- Early Clinical Development, Genentech, South San Francisco, CA 94080, USA
| | - Lucinda Tam
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Natasha Bacarro
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | | | - Meritxell Bellet
- Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Marc Hafner
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Ciara Metcalfe
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Baker SJC, Corrigan E, Melnyk N, Hilker R, Van Der Kraak G. Nuclear progesterone receptor regulates ptger4b and PLA2G4A expression in zebrafish (Danio rerio) ovulation. Gen Comp Endocrinol 2021; 311:113842. [PMID: 34252451 DOI: 10.1016/j.ygcen.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20β-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20β-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20β-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20β-P.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Emily Corrigan
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Nicholas Melnyk
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Renee Hilker
- Department of Animal Biosciences, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
12
|
Laulhé M, Dumeige L, Vu TA, Hani I, Pussard E, Lombès M, Viengchareun S, Martinerie L. Sexual Dimorphism of Corticosteroid Signaling during Kidney Development. Int J Mol Sci 2021; 22:ijms22105275. [PMID: 34069759 PMCID: PMC8155845 DOI: 10.3390/ijms22105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Sexual dimorphism involves differences between biological sexes that go beyond sexual characteristics. In mammals, differences between sexes have been demonstrated regarding various biological processes, including blood pressure and predisposition to develop hypertension early in adulthood, which may rely on early events during development and in the neonatal period. Recent studies suggest that corticosteroid signaling pathways (comprising glucocorticoid and mineralocorticoid signaling pathways) have distinct tissue-specific expression and regulation during this specific temporal window in a sex-dependent manner, most notably in the kidney. This review outlines the evidence for a gender differential expression and activation of renal corticosteroid signaling pathways in the mammalian fetus and neonate, from mouse to human, that may favor mineralocorticoid signaling in females and glucocorticoid signaling in males. Determining the effects of such differences may shed light on short term and long term pathophysiological consequences, markedly for males.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laurence Dumeige
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
| | - Thi An Vu
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Imene Hani
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Eric Pussard
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, CEDEX, 94276 Le Kremlin-Bicêtre, France; (M.L.); (L.D.); (T.A.V.); (I.H.); (E.P.); (M.L.); (S.V.)
- Pediatric Endocrinology Department, Hôpital Universitaire Robert Debre, France & Université de Paris, 75019 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Giordano C, Sabatino G, Romano S, Della Pepa GM, Tufano M, D’Alessandris QG, Cottonaro S, Gessi M, Balducci M, Romano MF, Olivi A, Gaudino S, Colosimo C. Combining Magnetic Resonance Imaging with Systemic Monocyte Evaluation for the Implementation of GBM Management. Int J Mol Sci 2021; 22:ijms22073797. [PMID: 33917598 PMCID: PMC8038816 DOI: 10.3390/ijms22073797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the gold standard for glioblastoma (GBM) patient evaluation. Additional non-invasive diagnostic modalities are needed. GBM is heavily infiltrated with tumor-associated macrophages (TAMs) that can be found in peripheral blood. FKBP51s supports alternative-macrophage polarization. Herein, we assessed FKBP51s expression in circulating monocytes from 14 GBM patients. The M2 monocyte phenotype was investigated by qPCR and flow cytometry using antibodies against PD-L1, CD163, FKBP51s, and CD14. MRI assessed morphologic features of the tumors that were aligned to flow cytometry data. PD-L1 expression on circulating monocytes correlated with MRI tumor necrosis score. A wider expansion in circulating CD163/monocytes was measured. These monocytes resulted in a dramatic decrease in patients with an MRI diagnosis of complete but not partial surgical removal of the tumor. Importantly, in patients with residual tumor, most of the peripheral monocytes that in the preoperative stage were CD163/FKBP51s- had turned into CD163/FKBP51s+. After Stupp therapy, CD163/FKBP51s+ monocytes were almost absent in a case of pseudoprogression, while two patients with stable or true disease progression showed sustained levels in such circulating monocytes. Our work provides preliminary but meaningful and novel results that deserve to be confirmed in a larger patient cohort, in support of potential usefulness in GBM monitoring of CD163/FKBP51s/CD14 immunophenotype in adjunct to MRI.
Collapse
Affiliation(s)
- Carolina Giordano
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| | - Giovanni Sabatino
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
- UOC of Neurochirurgia “Ospedale Mater Olbia”, 07026 Olbia, Italy
| | - Simona Romano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy; (S.R.); (M.T.)
| | - Giuseppe Maria Della Pepa
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
| | - Martina Tufano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy; (S.R.); (M.T.)
| | - Quintino Giorgio D’Alessandris
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
| | - Simone Cottonaro
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| | - Marco Gessi
- UOS di Neuropatologia, UOC Anatomia Patologica, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy;
| | - Mario Balducci
- UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy;
| | - Maria Fiammetta Romano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini, 5, 80131 Napoli, Italy; (S.R.); (M.T.)
- Correspondence: ; Tel.: +39-081-7463200; Fax: +39-081-7463205
| | - Alessandro Olivi
- UOC Neurochirurgia, Istituto di Neurochirurgia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (G.S.); (G.M.D.P.); (Q.G.D.); (A.O.)
| | - Simona Gaudino
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| | - Cesare Colosimo
- UOC Radiodiagnostica e Neuroradiologia, Istituto di Radiologia, Fondazione Policlinico Universitario “A.Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy; (C.G.); (S.C.); (S.G.); (C.C.)
| |
Collapse
|
14
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Islam MS, Afrin S, Jones SI, Segars J. Selective Progesterone Receptor Modulators-Mechanisms and Therapeutic Utility. Endocr Rev 2020; 41:bnaa012. [PMID: 32365199 PMCID: PMC8659360 DOI: 10.1210/endrev/bnaa012] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Selective progesterone receptor modulators (SPRMs) are a new class of compounds developed to target the progesterone receptor (PR) with a mix of agonist and antagonist properties. These compounds have been introduced for the treatment of several gynecological conditions based on the critical role of progesterone in reproduction and reproductive tissues. In patients with uterine fibroids, mifepristone and ulipristal acetate have consistently demonstrated efficacy, and vilaprisan is currently under investigation, while studies of asoprisnil and telapristone were halted for safety concerns. Mifepristone demonstrated utility for the management of endometriosis, while data are limited regarding the efficacy of asoprisnil, ulipristal acetate, telapristone, and vilaprisan for this condition. Currently, none of the SPRMs have shown therapeutic success in treating endometrial cancer. Multiple SPRMs have been assessed for efficacy in treating PR-positive recurrent breast cancer, with in vivo studies suggesting a benefit of mifepristone, and multiple in vitro models suggesting the efficacy of ulipristal acetate and telapristone. Mifepristone, ulipristal acetate, vilaprisan, and asoprisnil effectively treated heavy menstrual bleeding (HBM) in patients with uterine fibroids, but limited data exist regarding the efficacy of SPRMs for HMB outside this context. A notable class effect of SPRMs are benign, PR modulator-associated endometrial changes (PAECs) due to the actions of the compounds on the endometrium. Both mifepristone and ulipristal acetate are effective for emergency contraception, and mifepristone was approved by the US Food and Drug Administration (FDA) in 2012 for the treatment of Cushing's syndrome due to its additional antiglucocorticoid effect. Based on current evidence, SPRMs show considerable promise for treatment of several gynecologic conditions.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sara Isabel Jones
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Rekawiecki R, Dobrzyn K, Kotwica J, Kowalik MK. Progesterone Receptor Coregulators as Factors Supporting the Function of the Corpus Luteum in Cows. Genes (Basel) 2020; 11:genes11080923. [PMID: 32806523 PMCID: PMC7465684 DOI: 10.3390/genes11080923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Progesterone receptor (PGR) for its action required connection of the coregulatory proteins, including coactivators and corepressors. The former group exhibits a histone acetyltransferase (HAT) activity, while the latter cooperates with histone deacetylase (HDAC). Regulations of the coregulators mRNA and protein and HAT and HDAC activity can have an indirect effect on the PGR function and thus progesterone (P4) action on target cells. The highest mRNA expression levels for the coactivators—histone acetyltransferase p300 (P300), cAMP response element-binding protein (CREB), and steroid receptor coactivator-1 (SRC-1)—and nuclear receptor corepressor-2 (NCOR-2) were found in the corpus luteum (CL) on days 6 to 16 of the estrous cycle. The CREB protein level was higher on days 2–10, whereas SRC-1 and NCOR-2 were higher on days 2–5. The activity of HAT and HDAC was higher on days 6–10 of the estrous cycle. All of the coregulators were localized in the nuclei of small and large luteal cells. The mRNA and protein expression levels of the examined coactivators and corepressor changed with the P4 level. Thus, P4 may regulate CL function via the expression of coregulators, which probably affects the activity of the PGR.
Collapse
|
17
|
Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep 2020; 10:10733. [PMID: 32612187 PMCID: PMC7329908 DOI: 10.1038/s41598-020-67645-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
The function of steroid receptors in the cell depends on the chaperone machinery of Hsp90, as Hsp90 primes steroid receptors for hormone binding and transcriptional activation. Several conserved proteins are known to additionally participate in receptor chaperone assemblies, but the regulation of the process is not understood in detail. Also, it is unknown to what extent the contribution of these cofactors is conserved in other eukaryotes. We here examine the reconstituted C. elegans and human chaperone assemblies. We find that the nematode phosphatase PPH-5 and the prolyl isomerase FKB-6 facilitate the formation of glucocorticoid receptor (GR) complexes with Hsp90. Within these complexes, Hsp90 can perform its closing reaction more efficiently. By combining chemical crosslinking and mass spectrometry, we define contact sites within these assemblies. Compared to the nematode Hsp90 system, the human system shows less cooperative client interaction and a stricter requirement for the co-chaperone p23 to complete the closing reaction of GR·Hsp90·Pp5/Fkbp51/Fkbp52 complexes. In both systems, hormone binding to GR is accelerated by Hsp90 alone and in the presence of its cofactors. Our results show that cooperative complex formation and hormone binding patterns are, in many aspects, conserved between the nematode and human systems.
Collapse
|
18
|
Wang HC, Huo YN, Lee WS. Folic acid prevents the progesterone-promoted proliferation and migration in breast cancer cell lines. Eur J Nutr 2019; 59:2333-2344. [PMID: 31502059 DOI: 10.1007/s00394-019-02077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE We previously demonstrated that progesterone (P4) interacted with folic acid (FA) and abolished the FA-reduced endothelial cell proliferation and migration. These findings led us to investigate whether FA can interfere with the P4-promoted breast cancer cell proliferation and migration. METHODS We conducted MTT and wound healing assay to evaluate cell proliferation and migration, respectively. Western blot analysis and immunoprecipitation were performed to examine the protein expression and protein-protein interaction, respectively. RESULTS We demonstrated that P4 promoted proliferation and migration of breast cancer cell lines (T47D, MCF-7, BT474, and BT483). However, co-treatment with P4 and FA together abolished these promotion effects. Treatment with P4 alone increased the formation of PR-cSrc complex and the phosphorylation of cSrc at tyrosine 416 (Tyr416). However, co-treatment with P4 and FA together increased the formations of cSrc-p140Cap, cSrc-Csk, and cSrc-p-Csk complex, and the phosphorylation of cSrc at tyrosine 527 (Tyr527). Co-treatment with P4 and FA together also abolished the activation of cSrc-mediated signaling pathways involved in the P4-promoted breast cancer cell proliferation and migration. CONCLUSIONS Co-treatment with FA and P4 together abolished the P4-promoted breast cancer cell proliferation and migration through decreasing the formation of PR-cSrc complex and increasing the formations of cSrc-p140Cap and cSrc-Csk complex, subsequently activating Csk, which in turn suppressed the phosphorylation of cSrc at Tyr416 and increased the phosphorylation of cSrc at Tyr527, hence inactivating the cSrc-mediated signaling pathways. The findings from this study might provide a new strategy for preventing the P4-promoted breast cancer progress.
Collapse
Affiliation(s)
- Hui-Chen Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Nien Huo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Cancer Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Prozorovskii VN, Ipatova OM, Tikhonova EG, Zakharova TS, Druzhilovskaya OS, Korotkevich EI, Torkhovskaya TI. [Prednisolone in phospholipid nanoparticles: prolonged circulation and increased antiinflammatory effect]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:222-226. [PMID: 31258145 DOI: 10.18097/pbmc20196503222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Along with modern new drugs, many therapeutic schemes also include known effective drugs, particularly, glucocorticoids. One of the most distributed of them is prednisolone that has pronounced anti-inflammatory properties. Its disadvantage is short-term circulation, resulting in a number of side effects. For this reason the development of its more effective and safe formulations is carried out. We have obtained the formulation of prednisolone included in nanoparticles from soy phosphatidylcholine with an average diameter of 20 nm. With oral administration to rats and analysis by HPLC an increase in prednisolone maximal concentration in of plasma and the duration of circulation as compared with free drug administration were shown. The experiment with mice with conconavalin A induced inflammation was also carried out: conconavalin A was injected subplantary in an hour after oral administration of both prednisolone formulations in several doses. The index of the inflammatory reaction (determined by the edema degree) was suppressed more effectively in the case of prednisolone in nanoparticles. Maximal suppression (62.2% as compared with 49.6% for free prednisolone) was observed even at a minimal dose (2.5 mg/kg), at which the free drug did not act at all. The results indicate an increase in the efficiency of prednisolone included in phospholipid nanoparticles, that makes it possible to diminish its administered doses and thereby reduce the risk of side effects.
Collapse
Affiliation(s)
| | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
20
|
Dagar M, Singh JP, Dagar G, Tyagi RK, Bagchi G. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. J Biol Chem 2019; 294:8699-8710. [PMID: 30992362 PMCID: PMC6552429 DOI: 10.1074/jbc.ra119.007420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is often activated in prostate cancer patients undergoing androgen-ablative therapy because of the activation of cellular pathways that stimulate the AR despite low androgen levels. In many of these tumors, the cAMP-dependent protein kinase A (PKA) pathway is activated. Previous studies have shown that PKA can synergize with low levels of androgen to enhance androgen signaling and consequent cell proliferation, leading to castration-resistant prostate cancer. However, the mechanism by which PKA causes AR stimulation in the presence of low/no androgen is not established yet. Here, using immunofluorescence immunoblotting assays, co-immunoprecipitation, siRNA-mediated gene silencing, and reporter gene assays, we demonstrate that PKA activation is necessary for the phosphorylation of heat shock protein (HSP90) that binds to unliganded AR in the cytoplasm, restricting its entry into the nucleus. We also found that PKA-mediated phosphorylation of the Thr89 residue in HSP90 releases AR from HSP90, enabling AR binding to HSP27 and its migration into the nucleus. Substitution of the Thr89 in HSP90 prevented its phosphorylation by PKA and significantly reduced AR transactivation and cellular proliferation. We further observed that the transcription of AR target genes, such as prostate-specific antigen (PSA), is also lowered in the HSP90 Thr89 variant. These results suggest that using a small-molecule inhibitor against the HSP90 Thr89 residue in conjunction with existing androgen-ablative therapy may be more effective than androgen-ablative therapy alone in the treatment of prostate cancer patients.
Collapse
Affiliation(s)
- Manisha Dagar
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Julie Pratibha Singh
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Gunjan Dagar
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| | - Rakesh K Tyagi
- the Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gargi Bagchi
- From the Amity Institute of Biotechnology, Amity University Haryana, Gurgaon 122413, India and
| |
Collapse
|
21
|
Single-molecule force spectroscopy reveals folding steps associated with hormone binding and activation of the glucocorticoid receptor. Proc Natl Acad Sci U S A 2018; 115:11688-11693. [PMID: 30366952 DOI: 10.1073/pnas.1807618115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glucocorticoid receptor (GR) is a prominent nuclear receptor linked to a variety of diseases and an important drug target. Binding of hormone to its ligand binding domain (GR-LBD) is the key activation step to induce signaling. This process is tightly regulated by the molecular chaperones Hsp70 and Hsp90 in vivo. Despite its importance, little is known about GR-LBD folding, the ligand binding pathway, or the requirement for chaperone regulation. In this study, we have used single-molecule force spectroscopy by optical tweezers to unravel the dynamics of the complete pathway of folding and hormone binding of GR-LBD. We identified a "lid" structure whose opening and closing is tightly coupled to hormone binding. This lid is located at the N terminus without direct contacts to the hormone. Under mechanical load, apo-GR-LBD folds stably and readily without the need of chaperones with a folding free energy of [Formula: see text] The folding pathway is largely independent of the presence of hormone. Hormone binds only in the last step and lid closure adds an additional [Formula: see text] of free energy, drastically increasing the affinity. However, mechanical double-jump experiments reveal that, at zero force, GR-LBD folding is severely hampered by misfolding, slowing it to less than 1·s-1 From the force dependence of the folding rates, we conclude that the misfolding occurs late in the folding pathway. These features are important cornerstones for understanding GR activation and its tight regulation by chaperones.
Collapse
|
22
|
Gao Y, Elamin E, Zhou R, Yan H, Liu S, Hu S, Dong J, Wei M, Sun L, Zhao Y. FKBP51 promotes migration and invasion of papillary thyroid carcinoma through NF-κB-dependent epithelial-to-mesenchymal transition. Oncol Lett 2018; 16:7020-7028. [PMID: 30546435 PMCID: PMC6256738 DOI: 10.3892/ol.2018.9517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/03/2018] [Indexed: 12/19/2022] Open
Abstract
FK506-binding protein 51 (FKBP51) is a member of the immunophilin family, with relevant roles in multiple signaling pathways, tumorigenesis and chemoresistance. However, the function of FKBP51 in papillary thyroid carcinoma (PTC) remains largely unknown. In the present study, increased FKBP51 expression was detected in PTC tissues as compared with adjacent normal tissues, and the expression level was associated with clinical tumor, node and metastasis stage. Using FKBP51-overexpressing K1 cells and FKBP51-knockdown TPC-1 cells, both human PTC cell lines, it was identified that FKBP51 promoted the migration and invasion of PTC, without affecting cell proliferation. Further investigation revealed that FKBP51 activated the NF-κB pathway and epithelial-to-mesenchymal transition (EMT) genes, and EMT was suppressed when NF-κB was inhibited. It was also assessed whether FKBP51 promoted the formation of cytoskeleton to promote migration and invasion of PTC using a tubulin tracker; however, no evidence of such an effect was observed. These results suggested that FKBP51 promotes migration and invasion through NF-κB-dependent EMT.
Collapse
Affiliation(s)
- Ying Gao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China.,Department of Laboratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Shandong, Jinan 250014, P.R. China
| | - Elham Elamin
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Rongfang Zhou
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Huili Yan
- Department of Medicine and Life Science, University of Jinan-Shandong Academy of Medical Sciences, Shandong, Jinan 250062, P.R. China
| | - Shuang Liu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Shengnan Hu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Jing Dong
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Muyun Wei
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Linying Sun
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, Jinan 250021, P.R. China
| |
Collapse
|
23
|
Vitellius G, Trabado S, Bouligand J, Delemer B, Lombès M. Pathophysiology of Glucocorticoid Signaling. ANNALES D'ENDOCRINOLOGIE 2018; 79:98-106. [PMID: 29685454 DOI: 10.1016/j.ando.2018.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients.
Collapse
Affiliation(s)
- Géraldine Vitellius
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service d'endocrinologie diabète nutrition, CHU de Reims, hôpital Robert-Debré, 51100, France
| | - Séverine Trabado
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service de génétique moléculaire, pharmacogénétique et hormonologie, CHU de Bicêtre, hôpitaux universitaires Paris-Sud, AH-HP, 94275, France
| | - Jérôme Bouligand
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service de génétique moléculaire, pharmacogénétique et hormonologie, CHU de Bicêtre, hôpitaux universitaires Paris-Sud, AH-HP, 94275, France
| | - Brigitte Delemer
- Service d'endocrinologie diabète nutrition, CHU de Reims, hôpital Robert-Debré, 51100, France
| | - Marc Lombès
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service d'endocrinologie et des maladies de la reproduction, hôpitaux universitaires Paris-Sud, CHU Bicêtre, AH-HP, 94275 Le Kremlin Bicêtre, France.
| |
Collapse
|
24
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
25
|
Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017; 18:ijms18122614. [PMID: 29206196 PMCID: PMC5751217 DOI: 10.3390/ijms18122614] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Nils C Gassen
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
26
|
Tiwari M, Oasa S, Yamamoto J, Mikuni S, Kinjo M. A Quantitative Study of Internal and External Interactions of Homodimeric Glucocorticoid Receptor Using Fluorescence Cross-Correlation Spectroscopy in a Live Cell. Sci Rep 2017; 7:4336. [PMID: 28659593 PMCID: PMC5489515 DOI: 10.1038/s41598-017-04499-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/18/2017] [Indexed: 01/16/2023] Open
Abstract
Glucocorticoid receptor (GRα) is a well-known ligand-dependent transcription-regulatory protein. The classic view is that unliganded GRα resides in the cytoplasm, relocates to the nucleus after ligand binding, and then associates with a specific DNA sequence, namely a glucocorticoid response element (GRE), to activate a specific gene as a homodimer. It is still a puzzle, however, whether GRα forms the homodimer in the cytoplasm or in the nucleus before DNA binding or after that. To quantify the homodimerization of GRα, we constructed the spectrally different fluorescent protein tagged hGRα and applied fluorescence cross-correlation spectroscopy. First, the dissociation constant (Kd) of mCherry2-fused hGRα or EGFP-fused hGRα was determined in vitro. Then, Kd of wild-type hGRα was found to be 3.00 μM in the nucleus, which was higher than that in vitro. Kd of a DNA-binding-deficient mutant was 3.51 μM in the nucleus. This similarity indicated that GRα homodimerization was not necessary for DNA binding but could take place on GRE by means of GRE as a scaffold. Moreover, cytoplasmic homodimerization was also observed using GRα mutated in the nuclear localization signal. These findings support the existence of a dynamic monomer pathway and regulation of GRα function both in the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Manisha Tiwari
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Sho Oasa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Shintaro Mikuni
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
27
|
Rekawiecki R, Kowalik MK, Kotwica J. The expression of progesterone receptor coregulators mRNA and protein in corpus luteum and endometrium of cows during the estrous cycle. Anim Reprod Sci 2017; 183:102-109. [PMID: 28652026 DOI: 10.1016/j.anireprosci.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The aim of this study was to examine whether changes in the mRNA and protein expression of the progesterone receptor (PGR) coactivator P300/CBP-associated factor (PCAF) and the corepressor Nuclear Receptor Corepressor 1 (NCOR1) may participate in the regulation of PGR function during the estrous cycle in corpus luteum (CL) and endometrium and thus modulate the effect of progesterone (P4) within the reproductive system. The experimental material included CL and endometrial tissues from cows on days 2-5, 6-10, 11-16, and 17-20 of the estrous cycle. The mRNA expression of PCAF and NCOR1 was determined by means of real-time PCR, and protein levels were determined using western blotting. The highest mRNA and protein expression for PCAF (P<0.01) and NCOR1 (P<0.01) was found on days 6-16 in CL, whereas mRNA and protein expression for PCAF in endometrium was the highest on days 1-10 (P<0.05), but for NCOR1 it was the highest on days 2-5 (P<0.05) and decreased thereafter. Significant correlations were found between PCAF and NCOR1 mRNA and protein in CL and endometrium, between PCAF mRNA or protein and P4 levels only in CL, and between NCOR1 protein and P4 levels in endometrium only. Correlations between PCAF and NCOR1 mRNA and PCAF and NCOR1 protein were also found. These data suggest that the variable expression of these coregulators in CL and endometrium during the estrous cycle may depend on the influence of P4, and in these tissues both coregulators may compete for binding to the PGR.
Collapse
Affiliation(s)
- R Rekawiecki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland.
| | - M K Kowalik
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | - J Kotwica
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
28
|
Grbesa I, Hakim O. Genomic effects of glucocorticoids. PROTOPLASMA 2017; 254:1175-1185. [PMID: 28013411 DOI: 10.1007/s00709-016-1063-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Glucocorticoids and their receptor (GR) have been an important area of research because of their pleiotropic physiological functions and extensive use in the clinic. In addition, the association between GR and glucocorticoids, which is highly specific, leads to rapid nuclear translocation where GR associates with chromatin to regulate gene transcription. This simplified model system has been instrumental for studying the complexity of transcription regulation processes occurring at chromatin. In this review we discuss our current understanding of GR action that has been enhanced by recent developments in genome wide measurements of chromatin accessibility, histone marks, chromatin remodeling and 3D chromatin structure in various cell types responding to glucocorticoids.
Collapse
Affiliation(s)
- Ivana Grbesa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, 5290002, Ramat-Gan, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
29
|
Merkulov VM, Merkulova TI, Bondar NP. Mechanisms of Brain Glucocorticoid Resistance in Stress-Induced Psychopathologies. BIOCHEMISTRY (MOSCOW) 2017; 82:351-365. [PMID: 28320277 DOI: 10.1134/s0006297917030142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exposure to stress activates the hypothalamic-pituitary-adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stress- and GR-induced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.
Collapse
Affiliation(s)
- V M Merkulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
30
|
Ayyar VS, Almon RR, DuBois DC, Sukumaran S, Qu J, Jusko WJ. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics 2017; 160:84-105. [PMID: 28315483 DOI: 10.1016/j.jprot.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. SIGNIFICANCE Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and other tissues is sparse. While transcriptomic regulation following methylprednisolone (MPL) dosing has been temporally examined in rat liver, proteomic assessments are needed to better characterize the tissue-specific functional aspects of MPL actions. This study describes a functional pharmacoproteomic analysis of dynamic changes in MPL-regulated proteins in liver and provides biological insight into how steroid-induced perturbations on a molecular level may relate to both adverse and therapeutic responses presented clinically.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States.
| |
Collapse
|
31
|
Jia Y, Cavileer TD, Nagler JJ. Acute hyperthermic responses of heat shock protein and estrogen receptor mRNAs in rainbow trout hepatocytes. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:156-161. [DOI: 10.1016/j.cbpa.2016.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
32
|
Greenhough J, Papadakis ES, Cutress RI, Townsend PA, Oreffo ROC, Tare RS. Regulation of osteoblast development by Bcl-2-associated athanogene-1 (BAG-1). Sci Rep 2016; 6:33504. [PMID: 27633857 PMCID: PMC5025845 DOI: 10.1038/srep33504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
BCL-2-associated athanogene-1 (BAG-1) is expressed by osteoblast-lineage cells; early embryonic lethality in Bag-1 null mice, however, has limited the investigation of BAG-1 function in osteoblast development. In the present study, bone morphogenetic protein-2/BMP-2-directed osteogenic differentiation of bone marrow stromal cells (BMSCs) of Bag-1+/− (heterozygous) female mice was decreased significantly. Genes crucial for osteogenic differentiation, bone matrix formation and mineralisation were expressed at significantly lower levels in cultures of Bag-1+/− BMSCs supplemented with BMP-2, while genes with roles in inhibition of BMP-2-directed osteoblastogenesis were significantly upregulated. 17-β-estradiol (E2) enhanced responsiveness of BMSCs of wild-type and Bag-1+/− mice to BMP-2, and promoted robust BMP-2-stimulated osteogenic differentiation of BMSCs. BAG-1 can modulate cellular responses to E2 by regulating the establishment of functional estrogen receptors (ERs), crucially, via its interaction with heat shock proteins (HSC70/HSP70). Inhibition of BAG-1 binding to HSC70 by the small-molecule chemical inhibitor, Thioflavin-S, and a short peptide derived from the C-terminal BAG domain, which mediates binding with the ATPase domain of HSC70, resulted in significant downregulation of E2/ER-facilitated BMP-2-directed osteogenic differentiation of BMSCs. These studies demonstrate for the first time the significance of BAG-1-mediated protein-protein interactions, specifically, BAG-1-regulated activation of ER by HSC70, in modulation of E2-facilitated BMP-2-directed osteoblast development.
Collapse
Affiliation(s)
- Joanna Greenhough
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Emmanouil S Papadakis
- Cancer Research UK Centre Cancer Sciences Unit, Somers Building, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Ramsey I Cutress
- Cancer Research UK Centre Cancer Sciences Unit, Somers Building, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Paul A Townsend
- Institute of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
33
|
Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction. PLoS One 2016; 11:e0160312. [PMID: 27483141 PMCID: PMC4970746 DOI: 10.1371/journal.pone.0160312] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
Heat shock proteins (Hsps) are known to associate with estrogen receptors (ER) and regulate ER-mediated cell proliferation. Historically, the studies in this area have focused on Hsp90. However, some critical aspects of the Hsp-ERα interactions remain unclear. For example, we do not know which Hsps are the major or minor ERα interactants and whether or not different Hsp isoforms associate equally with ERα. In the present study, through a quantitative proteomic method we found that 21 Hsps and 3 Hsp cochaperones were associated with ERα in human 293T cells that were cultured in a medium containing necessary elements for cell proliferation. Four Hsp70s (Hsp70-1, Hsc70, Grp75, and Grp78) were the most abundant Hsps identified to associate with ERα, followed by two Hsp90s (Hsp90α and Hsp90β) and three Hsp110s (Hsp105, HspA4, and HspA4L). Hsp90α was found to be 2–3 times more abundant than Hsp90β in the ERα-containing complexes. Among the reported Hsp cochaperones, we detected prostaglandin E synthase 3 (p23), peptidyl-prolyl cis-trans isomerase FKBP5 (FKBP51), and E3 ubiquitin-protein ligase CHIP (CHIP). Studies with the two most abundant ERα-associated Hsps, Hsp70-1 and Hsc70, using human breast cancer MCF7 cells demonstrate that the two Hsps interacted with ERα in both the cytoplasm and nucleus when the cells were cultured in a medium supplemented with fetal bovine serum and phenol red. Interestingly, the ERα-Hsp70-1/Hsc70 interactions were detected only in the cytoplasm but not in the nucleus under hormone starvation conditions, and stimulation of the starved cells with 17β-estradiol (E2) did not change this. In addition, E2-treatment weakened the ERα-Hsc70 interaction but had no effect on the ERα-Hsp70-1 interaction. Further studies showed that significant portions of Hsp70-1 and Hsc70 were associated with transcriptionally active chromatin and inactive chromatin, and the two Hsps interacted with ERα in both forms of the chromatins in MCF7 cells.
Collapse
|
34
|
Vitellius G, Fagart J, Delemer B, Amazit L, Ramos N, Bouligand J, Le Billan F, Castinetti F, Guiochon-Mantel A, Trabado S, Lombès M. Three Novel Heterozygous Point Mutations ofNR3C1Causing Glucocorticoid Resistance. Hum Mutat 2016; 37:794-803. [DOI: 10.1002/humu.23008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Géraldine Vitellius
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
| | - Jérôme Fagart
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
| | - Brigitte Delemer
- Service d'Endocrinologie; Hôpital Robert Debré; CHU Reims; Reims F-51100 France
| | - Larbi Amazit
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
- INSERM UMS-32, Institut Biomédical de Bicêtre; Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94275 France
| | - Nelly Ramos
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
| | - Jérôme Bouligand
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
- Service de Génétique Moléculaire; Pharmacogénétique et Hormonologie; Hôpitaux Universitaires Paris Sud; CHU Bicêtre F-94275 France
| | - Florian Le Billan
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
| | - Frédéric Castinetti
- Service d'Endocrinologie; Hôpital de la Timone; CHU Marseille; Marseille F-13385 France
| | - Anne Guiochon-Mantel
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
- Service de Génétique Moléculaire; Pharmacogénétique et Hormonologie; Hôpitaux Universitaires Paris Sud; CHU Bicêtre F-94275 France
| | - Séverine Trabado
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
- Service de Génétique Moléculaire; Pharmacogénétique et Hormonologie; Hôpitaux Universitaires Paris Sud; CHU Bicêtre F-94275 France
| | - Marc Lombès
- INSERM UMR S 1185, Fac Med Paris Sud, Univ. Paris Sud; Université Paris-Saclay; Le Kremlin Bicêtre F-94276 France
- Service d'Endocrinologie et des Maladies de la Reproduction; Hôpitaux Universitaires Paris Sud; CHU Bicêtre; Le Kremlin Bicêtre F-94275 France
| |
Collapse
|
35
|
Gabryel M, Skrzypczak-Zielinska M, Kucharski MA, Slomski R, Dobrowolska A. The impact of genetic factors on response to glucocorticoids therapy in IBD. Scand J Gastroenterol 2016; 51:654-65. [PMID: 26776488 DOI: 10.3109/00365521.2015.1132336] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucocorticosteroids (GCs) are used for many years as first-line drugs for the achievement of remission in exacerbations of inflammatory bowel disease (IBD). However, close to 20% of patients are resistant to GCs, and 40% of patients become dependent on GCs. The challenge of today's personalized medicine is the anticipation of the steroid therapy effects even before the initiation of treatment. As several studies show, individually variable response to GCs in population has a genetic background and may depend on gene variability encoding proteins involved in the function and metabolism of GCs. To those genes belong: NR3C1--responsible for the synthesis of GC receptor (GR); Hsp90, HSP70, STIP1, FKB5--genes of GR protein complex; ABCB1 and IPO13 coding glycoprotein p170; and importin 13--involved in GCs transport; IL1A, IL1B, IL2, IL4, IL8, IL10, TNF, and MIF--genes of the epithelial pro-inflammatory factors synthesis, which excessive activation causes steroid resistance as well as CYP3A4 and CYP3A5--encoding GCs biotransformation enzymes. This work systematizes and sums up the state of current knowledge in the field of pharmacogenetics as well as expectations for the future in the realm of individualized medicine in IBD patients treated with GC drugs.
Collapse
Affiliation(s)
- Marcin Gabryel
- a Department of Gastroenterology, Human Nutrition and Internal Diseases , Poznan University of Medical Sciences , Poznan , Poland
| | | | - Marcin A Kucharski
- a Department of Gastroenterology, Human Nutrition and Internal Diseases , Poznan University of Medical Sciences , Poznan , Poland
| | - Ryszard Slomski
- b Institute of Human Genetics, Polish Academy of Sciences , Poznan , Poland
- c Department of Biochemistry and Biotechnology , University of Life Sciences , Poznan , Poland
| | - Agnieszka Dobrowolska
- a Department of Gastroenterology, Human Nutrition and Internal Diseases , Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
36
|
Saeed H, Shalaby M, Embaby A, Ismael M, Pathan A, Ataya F, Alanazi M, Bassiouny K. The Arabian camel Camelus dromedarius heat shock protein 90α: cDNA cloning, characterization and expression. Int J Biol Macromol 2015; 81:195-204. [PMID: 26234578 DOI: 10.1016/j.ijbiomac.2015.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 12/30/2022]
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved ubiquitous molecular chaperone contributing to assisting folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. In the present study, a heat shock protein 90α full length coding cDNA was isolated and cloned from the Arabian one-humped camel by reverse transcription polymerase chain reaction (RT-PCR). The full length cDNA sequence was submitted to NCBI GeneBank under the accession number KF612338. The sequence analysis of the Arabian camel Hsp90α cDNA showed 2202bp encoding a protein of 733 amino acids with estimated molecular mass of 84.827kDa and theoretical isoelectric point (pI) of 5.31. Blast search analysis revealed that the C. dromedarius Hsp90α shared high similarity with other known Hsp90α. Comparative analyses of camel Hsp90α protein sequence with other mammalian Hsp90s showed high identity (85-94%). Heterologous expression of camel Hsp90α cDNA in E. coli JM109 (DE3) gave a fusion protein band of 86.0kDa after induction with IPTG for 4h.
Collapse
Affiliation(s)
- Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Manal Shalaby
- Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Amira Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Ismael
- Biochemistry Department, College of Science King Saud University, Bld. 5, Lab AA10, P.O. Box 2454, Riyadh, Saudi Arabia
| | - Akbar Pathan
- Biochemistry Department, College of Science King Saud University, Bld. 5, Lab AA10, P.O. Box 2454, Riyadh, Saudi Arabia; Integrated Gulf Biosystems, Riyadh 11391, Saudi Arabia
| | - Farid Ataya
- Biochemistry Department, College of Science King Saud University, Bld. 5, Lab AA10, P.O. Box 2454, Riyadh, Saudi Arabia; National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammad Alanazi
- Biochemistry Department, College of Science King Saud University, Bld. 5, Lab AA10, P.O. Box 2454, Riyadh, Saudi Arabia
| | - Khalid Bassiouny
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Egypt
| |
Collapse
|
37
|
Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects. Mol Neurobiol 2015; 53:2090-9. [DOI: 10.1007/s12035-015-9178-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/13/2015] [Indexed: 01/20/2023]
|
38
|
Glucocorticoid-resistant Th17 cells are selectively attenuated by cyclosporine A. Proc Natl Acad Sci U S A 2015; 112:4080-5. [PMID: 25775512 DOI: 10.1073/pnas.1418316112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients' glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual's disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation.
Collapse
|
39
|
Shen Y, Gong YJ, Gu J, Huang LH, Feng QL. Physiological effect of mild thermal stress and its induction of gene expression in the common cutworm, Spodoptera litura. JOURNAL OF INSECT PHYSIOLOGY 2014; 61:34-41. [PMID: 24406661 DOI: 10.1016/j.jinsphys.2013.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Heat shock protein (Hsp) and its cognate protein (Hsc) play important roles in helping insects survive extreme temperatures. However, high level of Hsp expression usually brings negative physiological effects on organisms. The mechanism of this trade-off is unclear. In this study, a lepidopteran insect, the common cutworm Spodoptera litura, was stressed at different temperatures, and the impact on both thermotolerance and fecundity was examined. The mRNA levels of four Hsp/Hscs (Hsp90, Hsc90, Hsp70 and Hsc70) and two ecdysone receptors (EcRs, EcRA and EcRB1) in different stresses and during the larval-pupal metamorphosis were determined. The results revealed that the pre-acclamation at mild stress increased the thermotolerance but decreased the egg production in adults. During the stress process, the mRNA levels of all the Hsp/Hsc and ecdysone receptor genes were significantly up-regulated. The two Hsp/Hsc70s and EcRs revealed consistent expression profiles with each other during the larval-pupal metamorphosis. Co-immunoprecipitation and Western blotting analysis indicated that Hsp/Hsc70 interacted with EcRs. RNAi of Hsc70 decreased the mRNA levels of two 20E-induced genes such as E74B and E75. Hsp70 transferred from the cytoplasm to nucleus in response to cold stress. These data together suggest that Hsp/Hsc70 might be involved in the regulation of 20E signaling, and the protein-protein interaction between Hsp/Hsc70 and EcRs probably act as a bridge mediating the trade-off between high thermotolerance and physiological defects.
Collapse
Affiliation(s)
- Ying Shen
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yan-Jun Gong
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Gu
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li-Hua Huang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qi-Li Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
40
|
O'Shea LC, Hensey C, Fair T. Progesterone Regulation of AVEN Protects Bovine Oocytes from Apoptosis During Meiotic Maturation1. Biol Reprod 2013; 89:146. [DOI: 10.1095/biolreprod.113.111880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
41
|
George MM, Bhangoo A. Human immune deficiency virus (HIV) infection and the hypothalamic pituitary adrenal axis. Rev Endocr Metab Disord 2013; 14:105-12. [PMID: 23728720 DOI: 10.1007/s11154-013-9244-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The hypothalamic pituitary adrenal (HPA) axis is the most common of the endocrine lines/axis' to be affected by HIV infection. There are multiple factors that contribute to this HPA axis dysregulation. Direct invasion of the various organs in the axis can be either by opportunistic infections or infiltrative diseases. The soluble factors or cytokines released during viral infection and the chronic inflammatory state that follows, also contribute to these alterations. The actions of these cytokines released by the immune response can both activate the HPA axis and cause a glucocorticoid resistant state. Further, many of the anti-retroviral and other medications used to treat HIV infection can contribute to HPA axis dysfunction. While the diagnosis and treatment of endocrine dysfunction is the same as in any other patient, management pathways may be quite different. While some may be adaptive responses, life threatening adrenal insufficiency can also be present. It is important the latter be picked up expeditiously and treated promptly to avoid mortality.
Collapse
Affiliation(s)
- Minu M George
- Department of Pediatrics, Section of Pediatric Endocrinology and Diabetes, The University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | | |
Collapse
|
42
|
Vandevyver S, Dejager L, Tuckermann J, Libert C. New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 2013; 154:993-1007. [PMID: 23384835 DOI: 10.1210/en.2012-2045] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids are anti-inflammatory drugs that are widely used for the treatment of numerous (autoimmune) inflammatory diseases. They exert their actions by binding to the glucocorticoid receptor (GR), a member of the nuclear receptor family of transcription factors. Upon ligand binding, the GR translocates to the nucleus, where it acts either as a homodimeric transcription factor that binds glucocorticoid response elements (GREs) in promoter regions of glucocorticoid (GC)-inducible genes, or as a monomeric protein that cooperates with other transcription factors to affect transcription. For decades, it has generally been believed that the undesirable side effects of GC therapy are induced by dimer-mediated transactivation, whereas its beneficial anti-inflammatory effects are mainly due to the monomer-mediated transrepressive actions of GR. Therefore, current research is focused on the development of dissociated compounds that exert only the GR monomer-dependent actions. However, many recent reports undermine this dogma by clearly showing that GR dimer-dependent transactivation is essential in the anti-inflammatory activities of GR. Many of these studies used GR(dim/dim) mutant mice, which show reduced GR dimerization and hence cannot control inflammation in several disease models. Here, we review the importance of GR dimers in the anti-inflammatory actions of GCs/GR, and hence we question the central dogma. We summarize the contribution of various GR dimer-inducible anti-inflammatory genes and question the use of selective GR agonists as therapeutic agents.
Collapse
Affiliation(s)
- Sofie Vandevyver
- VIB-Department for Molecular Biomedical Research /Ugent, Technologiepark 927, Zwijnaarde 9052, Belgium
| | | | | | | |
Collapse
|
43
|
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:63-73. [PMID: 23338949 PMCID: PMC4017651 DOI: 10.1007/s10911-013-9273-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022] Open
Abstract
Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer.
Collapse
Affiliation(s)
- Celia Byrne
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
44
|
Progesterone and related compounds in hepatocellular carcinoma: basic and clinical aspects. BIOMED RESEARCH INTERNATIONAL 2013; 2013:290575. [PMID: 23484104 PMCID: PMC3581253 DOI: 10.1155/2013/290575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/28/2022]
Abstract
Primary liver cancer is the fifth most common cancer worldwide and the third most common cause of cancer mortality. Hepatocellular carcinoma (HCC) accounts for 85% to 90% of primary liver cancers. Major risk factors for HCC include infection with HBV or HCV, alcoholic liver disease, and most probably nonalcoholic fatty liver disease. In general, men are two to four times more often associated with HCC than women. It can be suggested that sex hormones including progesterone may play some roles in HCC. Rather, very limited information discusses its potential involvement in HCC. This paper thus collects some recent studies of the potential involvement of progesterone and related compounds in HCC from basic and clinical aspects. In addition, two synthetic progestins, megestrol acetate (MA) and medroxyprogesterone acetate (MPA), will be discussed thoroughly. It is noted that progesterone can also serve as the precursor for androgens and estrogens produced by the gonadal and adrenal cortical tissues, while men have a higher incidence of HCC than women might be due to the stimulatory effects of androgen and the protective effects of estrogen. Eventually, this paper suggests a new insight on the associations of progesterone and related compounds with HCC development and treatment.
Collapse
|
45
|
Woltedji D, Song F, Zhang L, Gala A, Han B, Feng M, Fang Y, Li J. Western Honeybee Drones and Workers (Apis mellifera ligustica) Have Different Olfactory Mechanisms than Eastern Honeybees (Apis cerana cerana). J Proteome Res 2012; 11:4526-40. [DOI: 10.1021/pr300298w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dereje Woltedji
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Feifei Song
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lan Zhang
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Alemayehu Gala
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Bin Han
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Mao Feng
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianke Li
- Institute
of Apicultural Research/Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
46
|
Romano S, Sorrentino A, Di Pace AL, Nappo G, Mercogliano C, Romano MF. The emerging role of large immunophilin FK506 binding protein 51 in cancer. Curr Med Chem 2012; 18:5424-9. [PMID: 22087835 PMCID: PMC3613799 DOI: 10.2174/092986711798194333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 12/14/2022]
Abstract
FK506 binding protein 51 (FKBP51) is an immunophilin physiologically expressed in lymphocytes. Very recently, aberrant expression of this protein was found in melanoma; FKBP51 expression correlates with melanoma aggressiveness and is maximal in metastatic lesions. FKBP51 promotes NF-κB activation and is involved in the resistance to genotoxic agents, including anthracyclines and ionizing radiation. FKBP51 is a cochaperone with peptidyl-prolyl isomerase activity that regulates several biological processes through protein-protein interaction. There is increasing evidence that FKBP51 hyperexpression is associated with cancer and this protein has a relevant role in sustaining cell growth, malignancy, and resistance to therapy. There is also evidence that FKBP ligands are potent anticancer agents, in addition to their immunosuppressant activity. In particular, rapamycin and its analogs have shown antitumor activity across a variety of human cancers in clinical trials. Although, classically, rapamycin actions are ascribed to inhibition of mTOR, recent studies indicate FKBP51 is also an important molecular determinant of the drug's anticancer activity. The aim of this article is to review the functions of FKBP51, especially in view of the recent findings that this protein is a potential oncogene when deregulated and a candidate target for signaling therapies against cancer.
Collapse
Affiliation(s)
- S Romano
- Department of Biochemistry and Medical Biotechnology, University of Naples "Federico II". Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Nouri MZ, Hiraga S, Yanagawa Y, Sunohara Y, Matsumoto H, Komatsu S. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress. PHYTOCHEMISTRY 2012; 74:20-9. [PMID: 22169501 DOI: 10.1016/j.phytochem.2011.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/27/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
Calnexin is an endoplasmic reticulum-localized molecular chaperone protein which is involved in folding and quality control of proteins. To evaluate the expression of calnexin in soybean seedlings under osmotic stress, immunoblot analysis was performed using a total membrane protein fraction. Calnexin constantly accumulated at an early growth stage of soybean under normal growth conditions. Expression of this protein decreased in 14-day-old soybean roots when treated with 10% polyethylene glycol for 2 days. Other abiotic stresses such as drought, salinity, cold as well as abscisic acid treatment, similarly reduced accumulation of calnexin and this reduction was correlated with reduction in root length in soybean seedlings under abiotic stresses. When compared between soybean and rice, calnexin expression was not changed in rice under abiotic stresses. Using Flag-tagged calnexin, a 70 kDa heat shock cognate protein was identified as an interacting protein. These results suggest that osmotic or other abiotic stresses highly reduce accumulation of the calnexin protein in developing soybean roots. It is also suggested that calnexin interacts with a 70 kDa heat shock cognate protein and probably functions as molecular chaperone in soybean.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Nuclear progesterone receptor isoforms and their functions in the female reproductive tract. Pol J Vet Sci 2011; 14:149-58. [DOI: 10.2478/v10181-011-0024-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear progesterone receptor isoforms and their functions in the female reproductive tract
Progesterone (P4), which is produced by the corpus luteum (CL), creates proper conditions for the embryo implantation, its development, and ensures proper conditions for the duration of pregnancy. Besides the non-genomic activity of P4 on target cells, its main physiological effect is caused through genomic action by the progesterone nuclear receptor (PGR). This nuclear progesterone receptor occurs in two specific isoforms, PGRA and PGRB. PGRA isoform acts as an inhibitor of transcriptional action of PGRB. The inactive receptor is connected with chaperone proteins and attachment of P4 causes disconnection of chaperones and unveiling of DNA binding domain (DBD). After receptor dimerization in the cells' nucleus and interaction with hormone response element (HRE), the receptor coactivators are connected and transcription is initiated. The ratio of these isoforms changes during the estrous cycle and reflects the different levels of P4 effect on the reproductive system. Both isoforms, PGRA and PGRB, also show a different response to the P4 receptor antagonist activity. Connection of the antagonist to PGRA can block PGRB, but acting through the PGRB isoform, P4 receptor antagonist may undergo conversion to a strongly receptor agonist. A third isoform, PGRC, has also been revealed. This isoform is the shortest and does not have transcriptional activity. Alternative splicing and insertion of additional exons may lead to the formation of different PGR isoforms. This paper summarizes the available data on the progesterone receptor isoforms and its regulatory action within the female reproductive system.
Collapse
|
49
|
Cox MB, Johnson JL. The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function. Methods Mol Biol 2011; 787:45-66. [PMID: 21898226 DOI: 10.1007/978-1-61779-295-3_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes, such as protein translation, translocation, and disassembly of protein complexes (1). Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | |
Collapse
|
50
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|