1
|
Kiss A, Erdődi F, Lontay B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:2-15. [PMID: 30076859 DOI: 10.1016/j.bbamcr.2018.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders. This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
2
|
Tang S, Wu W, Tang W, Ge Z, Wang H, Hong T, Zhu D, Bi Y. Suppression of Rho-kinase 1 is responsible for insulin regulation of the AMPK/SREBP-1c pathway in skeletal muscle cells exposed to palmitate. Acta Diabetol 2017; 54:635-644. [PMID: 28265821 DOI: 10.1007/s00592-017-0976-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/19/2017] [Indexed: 11/28/2022]
Abstract
AIMS Clinical and experimental data suggest that early insulin therapy could reduce lipotoxicity in subjects and animal models with type 2 diabetes mellitus. However, the underlying mechanisms need to be clarified. Sterol regulatory element-binding protein 1c (SREBP-1c), which is negatively regulated by AMP-activated protein kinase (AMPK), plays a critical role in lipotoxicity and insulin resistance in skeletal muscle cells. Here, we investigated the effect and molecular mechanism of insulin intervention on the AMPK/SREBP-1c pathway in skeletal muscle cells with chronic exposure to palmitic acid (PA). METHODS Male C57BL/6 mice were fed with a high-fat diet for 12 weeks and were then treated with insulin, AMPK inhibitor, or metformin. L6 myotubes incubated with palmitic acid (PA) were treated with insulin or metformin. Dominant-negative AMPKα2 (DN-AMPKα2) lentivirus, AMPKα2 siRNA, or Rho-kinase 1 (ROCK1) siRNA were transfected into PA-treated L6 myotubes. RESULTS We found that the ability of PA to stimulate SREBP-1c and inhibit AMPK was reversed by insulin in L6 cells. Moreover, DN-AMPKα2 lentivirus and AMPKα2 siRNA were transfected into PA-treated L6 myotubes, and the decrease in SREBP-1c expression caused by insulin was blocked by AMPK inhibition independent of the phosphatidylinositol-4,5-biphosphate-3-kinase (PI3K)/AKT pathway. The serine/threonine kinase Rho-kinase (ROCK) 1, a downstream effector of the small G protein RhoA, was activated by PA. Interestingly, knockdown of ROCK1 by siRNA blocked the downregulation of AMPK phosphorylation under PA-treated L6 myotubes, which indicated that ROCK1 mediated the effect of insulin action on AMPK. CONCLUSIONS Our study indicated that insulin reduced lipotoxicity via ROCK1 and then improved AMPK/SREBP-1c signaling in skeletal muscle under PA-induced insulin resistance.
Collapse
Affiliation(s)
- Sunyinyan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Wenjun Wu
- Department of Endocrinology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Zhijuan Ge
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Ting Hong
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to the Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Zhao Z, Manser E. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 2015; 6:81-8. [PMID: 26090570 DOI: 10.1080/21541248.2014.1000699] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase protein family that plays key roles in local F-actin organization through a number of kinase and non-kinase effector proteins. The myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), and the RhoA binding coiled-coil containing kinases (ROCKs) are widely expressed members of the Dystrophia myotonica protein kinase (DMPK) family. The MRCK proteins are ∼190 kDa multi-domain proteins expressed in all cells and coordinate certain acto-myosin networks. Notably MRCK is a key regulator of myosin18A and myosin IIA/B, and through phosphorylation of their common regulatory light chains (MYL9 or MLC2) to promote actin stress fiber contractility. The MRCK kinases are regulated by Cdc42, which is required for cell polarity and directional migration; MRCK links to the acto-myosin complex through interaction with a coiled-coil containing adaptor proteins LRAP35a/b. The biological activities of MRCK in model organisms such as worms and flies confirm it as a myosin II activator. In mammalian cell culture MRCK can be critical for cancer cell migration and neurite outgrowth. We review the current literatures regarding MRCK and highlight the similarities and differences between MRCK and ROCK kinases.
Collapse
Affiliation(s)
- Zhuoshen Zhao
- a sGSK Group; Institute of Molecular and Cell Biology (IMCB) ; Singapore
| | | |
Collapse
|
4
|
Abd-Elrahman KS, Walsh MP, Cole WC. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol 2015; 93:177-84. [PMID: 25660561 DOI: 10.1139/cjpp-2014-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural and functional integrity of the brain, and therefore, cognition, are critically dependent on the appropriate control of blood flow within the cerebral circulation. Inadequate flow leads to ischemia, whereas excessive flow causes small vessel rupture and (or) blood-brain-barrier disruption. Cerebral blood flow is controlled through the interplay of several physiological mechanisms that regulate the contractile state of vascular smooth muscle cells (VSMCs) within the walls of cerebral resistance arteries and arterioles. The myogenic response of cerebral VSMCs is a key mechanism that is responsible for maintaining constant blood flow during variations in systemic pressure, i.e., flow autoregulation. Inappropriate myogenic control of cerebral blood flow is associated with, and prognostic of, neurological deterioration and poor outcome in patients with several conditions, including type 2 diabetes. Here, we review recent advances in our understanding of the role of inappropriate Rho-associated kinase activity as a cause of impaired myogenic regulation of cerebral arterial diameter in type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Libin Cardiovascular Institute, Hotchkiss Brain Institute, and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
5
|
Mahavadi S, Nalli A, Al-Shboul O, Murthy KS. Inhibition of MLC20 phosphorylation downstream of Ca2+ and RhoA: A novel mechanism involving phosphorylation of myosin phosphatase interacting protein (M-RIP) by PKG and stimulation of MLC phosphatase activity. Cell Biochem Biophys 2014; 68:1-8. [PMID: 23723008 DOI: 10.1007/s12013-013-9677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that cGMP-dependent protein kinase (PKG) act on several targets in the contractile pathway to reduce intracellular Ca(2+) and/or augment RhoA-regulated myosin light chain phosphatase (MLCP) activity and cause muscle relaxation. Recent studies have identified a novel protein M-RIP that associates with MYPT1, the regulatory subunit of MLCP. Herein, we examine whether PKG enhance MLCP activity downstream of Ca(2+) and RhoA via phosphorylation of M-RIP in gastric smooth muscle cells. Treatment of permeabilized muscle cells with 10 μM Ca(2+) caused an increase in MLC20 phosphorylation and muscle contraction, but had no effect on Rho kinase activity. Activators of PKG (GSNO or cGMP) decreased MLC20 phosphorylation and contraction in response to 10 μM Ca(2+), implying existence of inhibitory mechanism independent of Ca(2+) and RhoA. The effect of PKG on Ca(2+)-induced MLC20 phosphorylation was attenuated by M-RIP siRNA. Both GSNO and 8-pCPT-cGMP induced phosphorylation of M-RIP; phosphorylation was accompanied by an increase in the association of M-RIP with MYPT1 and MLCP activity. Taken together, these results provide evidence that PKG induces phosphorylation of M-RIP and enhances its association with MYPT1 to augment MLCP activity and MLC20 dephosphorylation and inhibits muscle contraction, downstream of Ca(2+)- or RhoA-dependent pathways.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298-0711, USA
| | | | | | | |
Collapse
|
6
|
Frismantiene A, Pfaff D, Frachet A, Coen M, Joshi MB, Maslova K, Bochaton-Piallat ML, Erne P, Resink TJ, Philippova M. Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: Constitutive and insulin-dependent effects. Cell Signal 2014; 26:1897-908. [DOI: 10.1016/j.cellsig.2014.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
|
7
|
Schinzari F, Tesauro M, Rovella V, Di Daniele N, Gentileschi P, Mores N, Campia U, Cardillo C. Rho-kinase inhibition improves vasodilator responsiveness during hyperinsulinemia in the metabolic syndrome. Am J Physiol Endocrinol Metab 2012; 303:E806-11. [PMID: 22829585 PMCID: PMC3468433 DOI: 10.1152/ajpendo.00206.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In patients with the metabolic syndrome (MetS), the facilitatory effect of insulin on forearm vasodilator responsiveness to different stimuli is impaired. Whether the RhoA/Rho kinase (ROCK) pathway is involved in this abnormality is unknown. We tested the hypotheses that, in MetS patients, ROCK inhibition with fasudil restores insulin-stimulated vasodilator reactivity and that oxidative stress plays a role in this mechanism. Endothelium-dependent and -independent forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, were assessed in MetS patients (n = 8) and healthy controls (n = 5) before and after the addition of fasudil (200 μg/min) to an intra-arterial infusion of insulin (0.1 mU/kg/min). In MetS patients (n = 5), fasudil was also infused without hyperinsulinemia. The possible involvement of oxidative stress in the effect of fasudil during hyperinsulinemia was investigated in MetS patients (n = 5) by infusing vitamin C (25 mg/min). In MetS patients, compared with saline, fasudil enhanced endothelium-dependent and -independent vasodilator responses during insulin infusion (P < 0.001 and P = 0.008, respectively), but not in the absence of hyperinsulinemia (P = 0.25 and P = 0.13, respectively). By contrast, fasudil did not affect vasoreactivity to ACh and SNP during hyperinsulinemia in controls (P = 0.11 and P = 0.56, respectively). In MetS patients, fasudil added to insulin and vitamin C did not further enhance vasodilation to ACh and SNP (P = 0.15 and P = 0.43, respectively). In the forearm circulation of patients with the MetS, ROCK inhibition by fasudil improves endothelium-dependent and -independent vasodilator responsiveness during hyperinsulinemia; increased oxidative stress seems to be involved in the pathophysiology of this phenomenon.
Collapse
Affiliation(s)
- Francesca Schinzari
- Department of Internal Medicine, Catholic University Medical School, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mesenteric Lymph Return Is an Important Contributor to Vascular Hyporeactivity and Calcium Desensitization After Hemorrhagic Shock. Shock 2012; 38:186-95. [DOI: 10.1097/shk.0b013e31825f1c9b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Lee JH, Palaia T, Ragolia L. Impaired insulin-stimulated myosin phosphatase Rho-interacting protein signaling in diabetic Goto-Kakizaki vascular smooth muscle cells. Am J Physiol Cell Physiol 2012; 302:C1371-81. [PMID: 22322972 DOI: 10.1152/ajpcell.00254.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation and therefore contributes to the enhanced incidence of hypertension observed in diabetes. In this study, we examined the role of insulin on the association of the myosin-binding subunit of myosin phosphatase (MYPT1) to myosin phosphatase Rho-interacting protein (MRIP), a relatively novel member of the myosin phosphatase complex that directly binds RhoA in vascular smooth muscle cells (VSMCs). Through a series of molecular and cellular studies, we investigated whether insulin stimulates the binding of MRIP to MYPT1 and compared the results generated from VSMCs isolated from both Wistar-Kyoto (WKY) control and Goto-Kakizaki (GK) diabetic rats. We demonstrate for the first time that insulin stimulates the binding of MRIP to MYPT1 in a dose- and time-dependent manner, as determined by immunoprecipitation, implying a regulatory role for MRIP in insulin-induced vasodilation signaling via MYPT1 interaction. VSMCs from GK model of Type 2 diabetes had impaired insulin-induced MRIP/MYPT1 binding as well as reduced MRIP expression. Adenovirus-mediated overexpression of MRIP in GK VSMCs led to significantly improved insulin-stimulated MRIP/MYPT1 binding. Finally, insulin-stimulated MRIP translocation out of stress fibers, which was observed in control VSMCs, was impaired in GK VSMCs. We believe the impaired expression of MRIP, and therefore decreased insulin-stimulated MRIP/MYPT1 association, in the GK diabetic model may contribute to the impaired insulin-mediated vasodilation observed in the diabetic vasculature and provides a novel therapeutic strategy for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Jin Hee Lee
- Vascular Biology Institute, Winthrop-University Hospital, Mineola, New York 11501, USA
| | | | | |
Collapse
|
10
|
Kirabo A, Kearns PN, Jarajapu YP, Sasser JM, Oh SP, Grant MB, Kasahara H, Cardounel AJ, Baylis C, Wagner KU, Sayeski PP. Vascular smooth muscle Jak2 mediates angiotensin II-induced hypertension via increased levels of reactive oxygen species. Cardiovasc Res 2011; 91:171-9. [PMID: 21354995 DOI: 10.1093/cvr/cvr059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Angiotensin II (Ang II) type AT(1) receptors expressed on vascular smooth muscle cells (VSMCs) couple to the Jak2 signalling pathway. However, the importance of this tissue-specific coupling is poorly understood. The purpose of this investigation was to determine the importance of VSMC-derived Jak2 in angiotensin II-mediated hypertension. METHODS AND RESULTS The Cre-loxP system was used to conditionally eliminate Jak2 tyrosine kinase expression within the smooth muscle cells of mice. Following chronic Ang II infusion, the resulting increase in mean arterial pressure (MAP) was significantly attenuated in the Jak2 null mice when compared with littermate controls. The VSMC Jak2 null mice were also protected from the Ang II-induced vascular remodelling. Aortic rings from the VSMC Jak2 null mice exhibited reduced Ang II-induced contraction and enhanced endothelial-dependent relaxation via increased nitric oxide (NO) bioavailability. When compared with controls, the VSMC Jak2 nulls also had lower levels of hydrogen peroxide, Rho kinase activity, and intracellular Ca(2+) in response to Ang II. CONCLUSIONS The data indicate that VSMC Jak2 expression is involved in the pathogenesis of Ang II-dependent hypertension due to the increased presence of reactive oxygen species (ROS). As such, VSMC-derived Jak2 tyrosine kinase modulates overall vascular tone via multiple, non-redundant mechanisms.
Collapse
Affiliation(s)
- Annet Kirabo
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Demiryurek AT, Erbagci I, Oztuzcu S, Alasehirli B, Ozkara E, Seker M, Sönmez A, Ozsan M, Camci C. Lack of association between the Thr431Asn and Arg83Lys polymorphisms of the ROCK2 gene and diabetic retinopathy. Curr Eye Res 2010; 35:1128-34. [PMID: 20961215 DOI: 10.3109/02713683.2010.507903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To analyze the genotype distributions and allele frequencies for ROCK2 Thr431Asn and Arg83Lys polymorphisms among the diabetic retinopathy patients in a Turkish population. METHODS In this case-control study, 335 patients with diabetes mellitus were recruited and divided into three groups according to non-proliferative (n = 127), proliferative (n = 85) diabetic retinopathy, and no retinopathy (n = 123, served as a diabetic control group). Genomic DNA from the patients, and the nondiabetic healthy control cases (n = 132) was analyzed by real-time PCR using a Light-Cycler. RESULTS Neither genotype distributions nor the allele frequencies for the Thr431Asn or Arg83Lys polymorphisms showed a significant difference between the groups. The haplotypes were also not significantly associated with diabetic retinopathy. CONCLUSION These results suggest that there were no evidence for an association of ROCK2 gene Thr431Asn and Arg83Lys polymorphisms with diabetes or diabetic retinopathy in the Turkish population.
Collapse
Affiliation(s)
- Abdullah T Demiryurek
- Department of Pharmacology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee JH, Palaia T, Ragolia L. Impaired insulin-mediated vasorelaxation in diabetic Goto-Kakizaki rats is caused by impaired Akt phosphorylation. Am J Physiol Cell Physiol 2008; 296:C327-38. [PMID: 19052261 DOI: 10.1152/ajpcell.00254.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation. Previously, we showed the phosphorylation of myosin-bound phosphatase substrate MYPT1, a marker of the vascular smooth muscle cell (VSMC) contraction, was negatively regulated by Akt (protein kinase B) phosphorylation in response to insulin stimulation. In this study we examined the role of Akt phosphorylation on impaired insulin-induced vasodilation in the Goto-Kakizaki (GK) rat model of Type 2 diabetes. GK VSMCs had impaired basal and insulin-induced Akt phosphorylation as well as increases in basal MYPT1 phosphorylation, inducible nitric oxide synthase (iNOS) expression, and nitrite/nitrate production compared with Wistar-Kyoto controls. Both iNOS expression and the inhibition of angiotensin (ANG) II-induced MYPT1 phosphorylation were resistant to the effects of insulin in diabetic GK VSMC. We also measured the isometric tension of intact and denuded GK aorta using a myograph and observed significantly impaired insulin-induced vasodilation. Adenovirus-mediated overexpression of constitutively active Akt in GK VSMC led to significantly improved insulin sensitivity in terms of counteracting ANG II-induced contractile signaling via MYPT1, myosin light chain dephosphorylation, and reduced iNOS expression, S-nitrosylation and survivin expression. We demonstrated for the first time the presence of Akt-independent iNOS expression in the GK diabetic model and that the defective insulin-induced vasodilation observed in the diabetic vasculature can be restored by the overexpression of active Akt, which advocates a novel therapeutic strategy for treating diabetes.
Collapse
Affiliation(s)
- Jin Hee Lee
- Vascular Biology Institute, Winthrop Univ. Hospital, 222 Station Plaza North, Rm. 505B, Mineola, NY 11501, USA
| | | | | |
Collapse
|
13
|
Abstract
Insulin has important vascular actions to stimulate production of nitric oxide from endothelium. This leads to capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in classical insulin target tissues (e.g., skeletal muscle). Phosphatidylinositol 3-kinase-dependent insulin-signaling pathways regulating endothelial production of nitric oxide share striking parallels with metabolic insulin-signaling pathways. Distinct MAPK-dependent insulin-signaling pathways (largely unrelated to metabolic actions of insulin) regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These and other cardiovascular actions of insulin contribute to coupling metabolic and hemodynamic homeostasis under healthy conditions. Cardiovascular diseases are the leading cause of morbidity and mortality in insulin-resistant individuals. Insulin resistance is typically defined as decreased sensitivity and/or responsiveness to metabolic actions of insulin. This cardinal feature of diabetes, obesity, and dyslipidemia is also a prominent component of hypertension, coronary heart disease, and atherosclerosis that are all characterized by endothelial dysfunction. Conversely, endothelial dysfunction is often present in metabolic diseases. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase-dependent signaling that in vascular endothelium contributes to a reciprocal relationship between insulin resistance and endothelial dysfunction. The clinical relevance of this coupling is highlighted by the findings that specific therapeutic interventions targeting insulin resistance often also ameliorate endothelial dysfunction (and vice versa). In this review, we discuss molecular mechanisms underlying cardiovascular actions of insulin, the reciprocal relationships between insulin resistance and endothelial dysfunction, and implications for developing beneficial therapeutic strategies that simultaneously target metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892-1632, USA
| | | | | | | |
Collapse
|
14
|
Li T, Liu L, Xu J, Yang G, Ming J. CHANGES OF RHO KINASE ACTIVITY AFTER HEMORRHAGIC SHOCK AND ITS ROLE IN SHOCK-INDUCED BIPHASIC RESPONSE OF VASCULAR REACTIVITY AND CALCIUM SENSITIVITY. Shock 2006; 26:504-9. [PMID: 17047522 DOI: 10.1097/01.shk.0000228796.41044.41] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of the present study is to investigate the changes of Rho kinase activity and its role in biphasic response of vascular reactivity and calcium sensitivity after hemorrhagic shock. The vascular reactivity and calcium sensitivity of superior mesenteric artery (SMA) from hemorrhagic shock rats were determined via observing the contraction initiated by norepinephrine (NE) and Ca under depolarizing conditions (120 mmol/L K) with isolated organ perfusion system. At same time, Rho kinase activity in mesenteric artery was measured, and the effects of Rho kinase activity-regulating agents, angiotensin II (Ang-II), insulin, and Y-27632, on vascular reactivity and calcium sensitivity were also observed. The results indicated that the vascular reactivity and calcium sensitivity were increased at early shock (immediate and 30 min after shock) and decreased at late shock (1 and 2 h after shock). The maximal contractions of NE and Ca were significantly increased (P < 0.05 or P < 0.01) at early shock. But they were significantly decreased at late shock (P < 0.05 or P < 0.01). Rho kinase activity was significantly increased at early shock (immediate after shock) (P < 0.05) but significantly decreased at 1 and 2 h after shock (P < 0.05 or P < 0.01). It was positively correlated with the changes of vascular reactivity and calcium sensitivity. Insulin decreased the increased contractile response of SMA to NE and Caat early shock (P < 0.05 or P < 0.01). Angiotensin II increased the decreased contractile response of SMA to NE and Ca at 2-h shock (P < 0.05 or P < 0.01); Y-27632, Rho kinase-specific antagonist, decreased the contractile response of SMA to NE and Ca at 2-h shock, and abolished Ang-II induced the increase of vascular reactivity and calcium sensitivity. The results suggest that Rho kinase may be involved in the biphasic change of vascular reactivity and calcium sensitivity after hemorrhagic shock. Rho kinase may regulate vascular reactivity through the regulation of calcium sensitivity. Rho kinase-regulating agents may have some beneficial effects on shock-induced vascular hyporeactivity.
Collapse
MESH Headings
- Amides
- Angiotensins/pharmacology
- Animals
- Calcium/metabolism
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Insulin/pharmacology
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Pyridines
- Rats
- Rats, Wistar
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/physiopathology
- rho GTP-Binding Proteins/antagonists & inhibitors
- rho GTP-Binding Proteins/drug effects
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, The 2nd Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Lee JH, Ragolia L. AKT phosphorylation is essential for insulin-induced relaxation of rat vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 291:C1355-65. [PMID: 16855220 PMCID: PMC1636679 DOI: 10.1152/ajpcell.00125.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance, a major factor in the development of type 2 diabetes, is known to be associated with defects in blood vessel relaxation. The role of Akt on insulin-induced relaxation of vascular smooth muscle cell (VSMC) was investigated using siRNA targeting Akt (siAKTc) and adenovirus constructing myristilated Akt to either suppress endogenous Akt or overexpress constitutively active Akt, respectively. siAKTc decreased both basal and insulin-induced phosphorylations of Akt and glycogen synthase kinase 3beta, abolishing insulin-induced nitric oxide synthase (iNOS) expression. cGMP-dependent kinase 1alpha (cGK1alpha) and myosin-bound phosphatase (MBP) activities, both downstream of iNOS, were also decreased. siAKTc treatment resulted in increased insulin and ANG II-stimulated phosphorylation of contractile apparatus, such as MBP substrate (MYPT1) and myosin light chain (MLC20), accompanied by increased Rho-associated kinase alpha (ROKalpha) activity, demonstrating the requirement of Akt for insulin-induced vasorelaxation. Corroborating these results, constitutively active Akt upregulated the signaling molecules involved in insulin-induced relaxation such as iNOS, cGK1alpha, and MBP activity, even in the absence of insulin stimulation. On the contrary, the contractile response involving the phosphorylation of MYPT1 and MLC20, and increased ROKalpha activity stimulated by ANG II were all abolished by overexpressing active Akt. In conclusion, we demonstrated here that insulin-induced VSMC relaxation is dependent on Akt activation via iNOS, cGK1alpha, and MBP activation, as well as the decreased phosphorylations of MYPT1 and MLC20 and decreased ROKalpha activity.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Carrier Proteins/metabolism
- Cells, Cultured
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Insulin/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myosin Light Chains/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Phosphoprotein Phosphatases/metabolism
- Phosphorylation
- Protein Phosphatase 1
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Inbred WKY
- Vasodilation/physiology
- rho-Associated Kinases
Collapse
Affiliation(s)
- Jin Hee Lee
- Vascular Biology Institute, Winthrop-University Hospital, Mineola NY 11501
| | - Louis Ragolia
- Vascular Biology Institute, Winthrop-University Hospital, Mineola NY 11501
- School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
16
|
Jin L, Burnett AL. RhoA/Rho-kinase in erectile tissue: mechanisms of disease and therapeutic insights. Clin Sci (Lond) 2006; 110:153-65. [PMID: 16411892 DOI: 10.1042/cs20050255] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Penile erection is a complicated event involving the regulation of corpus cavernosal smooth muscle tone. Recently, the small monomeric G-protein RhoA and its downstream effector Rho-kinase have been proposed to be important players for mediating vasoconstriction in the penis. RhoA/Rho-kinase increases MLC (myosin light chain) phosphorylation through inhibition of MLCP (MLC phosphatase) thereby increasing Ca2+ sensitivity. This review will outline the RhoA/Rho-kinase signalling pathway, including the upstream regulators, guanine nucleotide exchange factors, GDP dissociation inhibitors and GTPase-activating proteins. We also summarize the current knowledge about the physiological roles of RhoA/Rho-kinase in both male and female erectile tissues and its aberrations contributing to erectile dysfunction in several disease states. Understanding the RhoA/Rho-kinase signalling pathway in the regulation of erection is important for the development of therapeutic interventions for erectile dysfunction.
Collapse
Affiliation(s)
- Liming Jin
- Department of Urology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | |
Collapse
|
17
|
Pang H, Guo Z, Su W, Xie Z, Eto M, Gong MC. RhoA-Rho kinase pathway mediates thrombin- and U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells. Am J Physiol Cell Physiol 2005; 289:C352-60. [PMID: 15814590 DOI: 10.1152/ajpcell.00111.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-delta, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs.
Collapse
Affiliation(s)
- Huan Pang
- Department of Physiology and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lukas TJ. A signal transduction pathway model prototype II: Application to Ca2+-calmodulin signaling and myosin light chain phosphorylation. Biophys J 2005; 87:1417-25. [PMID: 15345524 PMCID: PMC1304550 DOI: 10.1529/biophysj.104.042721] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An agonist-initiated Ca(2+) signaling model for calmodulin (CaM) coupled to the phosphorylation of myosin light chains was created using a computer-assisted simulation environment. Calmodulin buffering was introduced as a module for directing sequestered CaM to myosin light chain kinase (MLCK) through Ca(2+)-dependent release from a buffering protein. Using differing simulation conditions, it was discovered that CaM buffering allowed transient production of more Ca(2+)-CaM-MLCK complex, resulting in elevated myosin light chain phosphorylation compared to nonbuffered control. Second messenger signaling also impacts myosin light chain phosphorylation through the regulation of myosin light chain phosphatase (MLCP). A model for MLCP regulation via its regulatory MYPT1 subunit and interaction of the CPI-17 inhibitor protein was assembled that incorporated several protein kinase subsystems including Rho-kinase, protein kinase C (PKC), and constitutive MYPT1 phosphorylation activities. The effects of the different routes of MLCP regulation depend upon the relative concentrations of MLCP compared to CPI-17, and the specific activities of protein kinases such as Rho and PKC. Phosphorylated CPI-17 (CPI-17P) was found to dynamically control activity during agonist stimulation, with the assumption that inhibition by CPI-17P (resulting from PKC activation) is faster than agonist-induced phosphorylation of MYPT1. Simulation results are in accord with literature measurements of MLCP and CPI-17 phosphorylation states during agonist stimulation, validating the predictive capabilities of the system.
Collapse
Affiliation(s)
- Thomas J Lukas
- Department of Molecular Pharmacology and Drug Discovery Program, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
19
|
Ragolia L, Palaia T, Koutrouby TB, Maesaka JK. Inhibition of cell cycle progression and migration of vascular smooth muscle cells by prostaglandin D2 synthase: resistance in diabetic Goto-Kakizaki rats. Am J Physiol Cell Physiol 2004; 287:C1273-81. [PMID: 15240344 DOI: 10.1152/ajpcell.00230.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis plays a clear role in the atherosclerotic process. Recently, we reported on the inhibition of the exaggerated growth phenotype of VSMCs isolated from hypertensive rats by lipocalin-type prostaglandin D2 synthase (L-PGDS). In the present study, we report the differential effects of L-PGDS on VSMC cell cycle progression, migration, and apoptosis in wild-type VSMCs vs. those from a type 2 diabetic model. In wild-type VSMCs, exogenously added L-PGDS delayed serum-induced cell cycle progression from the G1 to S phase, as determined by gene array analysis and the decreased protein expressions of cyclin-dependent kinase-2, p21Cip1, and cyclin D1. Cyclin D3 protein expression was unaffected by L-PGDS, although its gene expression was stimulated by L-PGDS in wild-type cells. In addition, platelet-derived growth factor-induced VSMC migration was inhibited by L-PGDS in wild-type cells. Type 2 diabetic VSMCs, however, were resistant to the L-PGDS effects on cell cycle progression and migration. L-PGDS did suppress the hyperproliferation of diabetic cells, albeit through a different mechanism, presumably involving the 2.5-fold increase in apoptosis and the concomitant 10-fold increase of L-PGDS uptake we observed in these cells. We propose that in wild-type VSMCs, L-PGDS retards cell cycle progression and migration, precluding hyperplasia of the tunica media, and that diabetic cells appear resistant to the inhibitory effects of L-PGDS, which consequently may help explain the increased atherosclerosis observed in diabetes.
Collapse
Affiliation(s)
- Louis Ragolia
- Vascular Biology Laboratory, Winthrop-University Hospital, Mineola, New York 11501, USA.
| | | | | | | |
Collapse
|
20
|
Jacob A, Smolenski A, Lohmann SM, Begum N. MKP-1 expression and stabilization and cGK Iα prevent diabetes- associated abnormalities in VSMC migration. Am J Physiol Cell Physiol 2004; 287:C1077-86. [PMID: 15355857 DOI: 10.1152/ajpcell.00477.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a major risk factor in the development of atherosclerosis and cardiovascular disease conditions, involving intimal injury and enhanced vascular smooth muscle cell (VSMC) migration. We report a mechanistic basis for divergences between insulin’s inhibitory effects on migration of aortic VSMC from control Wistar Kyoto (WKY) rats versus Goto-Kakizaki (GK) diabetic rats. In normal WKY VSMC, insulin increased MAPK phosphatase-1 (MKP-1) expression as well as MKP-1 phosphorylation, which stabilizes it, and inhibited PDGF-mediated MAPK phosphorylation and cell migration. In contrast, basal migration was elevated in GK diabetic VSMCs, and all of insulin’s effects on MKP-1 expression and phosphorylation, MAPK phosphorylation, and PDGF-stimulated migration were markedly inhibited. The critical importance of MKP-1 in insulin inhibition of VSMC migration was evident from several observations. MKP-1 small interfering RNA inhibited MKP-1 expression and abolished insulin inhibition of PDGF-induced VSMC migration. Conversely, adenoviral expression of MKP-1 decreased MAPK phosphorylation and basal migration rate and restored insulin's ability to inhibit PDGF-directed migration in GK diabetic VSMCs. Also, the proteasomal inhibitors lactacystin and MG132 partially restored MKP-1 protein levels in GK diabetic VSMCs and inhibited their migration. Furthermore, GK diabetic aortic VSMCs had reduced cGMP-dependent protein kinase Iα (cGK Iα) levels as well as insulin-dependent, but not sodium nitroprusside-dependent, stimulation of cGMP. Adenoviral expression of cGK Iα enhanced MKP-1 inhibition of MAPK phosphorylation and VSMC migration. We conclude that enhanced VSMC migration in GK diabetic rats is due at least in part to a failure of insulin-stimulated cGMP/cGK Iα signaling, MKP-1 expression, and stabilization and thus MAPK inactivation.
Collapse
Affiliation(s)
- Asha Jacob
- Diabetes Rsearch Laboratory, Winthrop University Hospital, Mineola 11501, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Diminished insulin (Ins) sensitivity is a characteristic feature of various pathological conditions such as the cardiometabolic syndrome, Type 2 diabetes, and hypertension. Persons with essential hypertension are more prone than normotensive persons to develop diabetes, and this propensity may reflect decreased ability of Ins to promote relaxation and glucose transport in vascular and skeletal muscle tissue, respectively. There are increasing data suggesting that ANG II acting through its ANG type 1 receptor inhibits the actions of Ins in vascular and skeletal muscle tissue, in part, by interfering with Ins signally through phosphatidylinositol 3-kinase (PI3K) and its downstream protein kinase B (Akt) signaling pathways. This inhibitory action of ANG II is mediated, in part, through stimulation of RhoA activity and oxidative stress. Activated RhoA and increased reactive oxygen species inhibition of PI3K/Akt signaling results in decreased endothelial cell production of nitric oxide, increased myosin light chain activation with vasoconstriction, and reduced skeletal muscle glucose transport.
Collapse
|
22
|
Su X, Smolock EM, Marcel KN, Moreland RS. Phosphatidylinositol 3-kinase modulates vascular smooth muscle contraction by calcium and myosin light chain phosphorylation-independent and -dependent pathways. Am J Physiol Heart Circ Physiol 2003; 286:H657-66. [PMID: 14551055 DOI: 10.1152/ajpheart.00497.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of smooth muscle contraction involves a number of signaling mechanisms that include both kinase and phosphatase reactions. The goal of the present study was to determine the role of one such kinase, phosphatidylinositol (PI)3-kinase, in vascular smooth muscle excitation-contraction coupling. Using intact medial strips of the swine carotid artery, we found that inhibition of PI3-kinase by LY-294002 resulted in a concentration-dependent decrease in the contractile response to both agonist stimulation and membrane depolarization-dependent contractions and a decrease in Ca(2+)-dependent myosin light chain (MLC) phosphorylation, the primary step in the initiation of smooth muscle contraction. Inhibition of PI3-kinase also depressed phorbol dibutyrate-induced contractions, which are not dependent on either Ca(2+) or MLC phosphorylation but are dependent on protein kinase C. To determine the Ca(2+)-dependent site of action of PI3-kinase, we determined the effect of several inhibitors of calcium metabolism on LY-294002-dependent inhibition of contraction. These inhibitors included nifedipine, SK&F-96365, and caffeine. Only SK&F-96365 blocked the LY-294002-dependent inhibition of contraction. Interestingly, all compounds blocked the LY-294002-dependent inhibition of MLC phosphorylation. Our results suggest that activation of PI3-kinase is involved in a Ca(2+)- and MLC phosphorylation-independent pathway for contraction likely to involve protein kinase C. In addition, our results also suggest that activation of PI3-kinase is involved in Ca(2+)-dependent signaling at the level of receptor-operated calcium channels.
Collapse
Affiliation(s)
- Xiaoling Su
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
23
|
Bogatcheva NV, Verin AD, Wang P, Birukova AA, Birukov KG, Mirzopoyazova T, Adyshev DM, Chiang ET, Crow MT, Garcia JGN. Phorbol esters increase MLC phosphorylation and actin remodeling in bovine lung endothelium without increased contraction. Am J Physiol Lung Cell Mol Physiol 2003; 285:L415-26. [PMID: 12740219 DOI: 10.1152/ajplung.00364.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direct protein kinase C (PKC) activation with phorbol myristate acetate (PMA) results in the loss of endothelial monolayer integrity in bovine lung endothelial cells (EC) but produces barrier enhancement in human lung endothelium. To extend these findings, we studied EC contractile events and observed a 40% increase in myosin light chain (MLC) phosphorylation in bovine endothelium following PMA challenge. The increase in PMA-mediated MLC phosphorylation occurred at sites distinct from Ser19/Thr18, sites catalyzed by MLC kinase (MLCK), and immunoblotting with antibodies specific to phosphorylated Ser19/Thr18 demonstrated profound time-dependent Ser19/Thr18 dephosphorylation. These events occurred in conjunction with rearrangement of stress fibers into a grid-like network, but without an increase in cellular contraction as measured by silicone membrane wrinkling assay. The PMA-induced MLC dephosphorylation was not due to kinase inhibition but, rather, correlated with rapid increases in myosin-associated phosphatase 1 (PPase 1) activity. These data suggest that PMA-mediated EC barrier regulation may involve dual mechanisms that alter MLC phosphorylation. The increase in bovine MLC phosphorylation likely occurs via direct PKC-dependent MLC phosphorylation in conjunction with decreases in Ser19/Thr18 phosphorylation catalyzed by MLCK due to PMA-induced increases in PPase 1 activity. Together, these events result in stress fiber destabilization and profound actin rearrangement in bovine endothelium, which may result in the physiological alterations observed in these models.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ragolia L, Palaia T, Paric E, Maesaka JK. Prostaglandin D2 synthase inhibits the exaggerated growth phenotype of spontaneously hypertensive rat vascular smooth muscle cells. J Biol Chem 2003; 278:22175-81. [PMID: 12684506 DOI: 10.1074/jbc.m302769200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipocalin-type prostaglandin D2 synthase (L-PGDS) has recently been linked to a variety of pathophysiological cardiovascular conditions including hypertension and diabetes. In this study, we report on the 50% increase in L-PGDS protein expression observed in vascular smooth muscle cells (VSMC) isolated from spontaneously hypertensive rats (SHR). L-PGDS expression also increased 50% upon the differentiation of normotensive control cells (WKY, from Wistar-Kyoto rats). In addition, we demonstrate differential effects of L-PGDS treatment on cell proliferation and apoptosis in VSMCs isolated from SHR versus WKY controls. L-PGDS (50 microg/ml) was able to significantly inhibit VSMC proliferation and DNA synthesis and induce the apoptotic genes bax, bcl-x, and ei24 in SHR but had no effect on WKY cells. Hyperglycemic conditions also had opposite effects, in which increased glucose concentrations (20 mm) resulted in decreased L-PGDS expression in control cells but actually stimulated L-PGDS expression in SHR. Furthermore, we examined the effect of L-PGDS incubation on insulin-stimulated Akt, glycogen synthase kinase-3beta (GSK-3beta), and ERK phosphorylation. Unexpectedly, we found that when WKY cells were pretreated with L-PGDS, insulin could actually induce apoptosis and failed to stimulate Akt/GSK-3beta phosphorylation. Insulin-stimulated ERK phosphorylation was unaffected by L-PGDS pretreatment in both cell lines. We propose that L-PGDS is involved in the balance of VSMC proliferation and apoptosis and in the increased expression observed in the hypertensive state is an attempt to maintain a proper equilibrium between the two processes via the induction of apoptosis and inhibition of cell proliferation.
Collapse
Affiliation(s)
- Louis Ragolia
- Cellular Biology Laboratory, Winthrop-University Hospital, Suite 505-B, 222 Station Plaza North, Mineola, NY 11501, USA.
| | | | | | | |
Collapse
|
25
|
Teoh H, Zacour M, Wener AD, Gunaratnam L, Ward ME. Increased myofibrillar protein phosphatase-1 activity impairs rat aortic smooth muscle activation after hypoxia. Am J Physiol Heart Circ Physiol 2003; 284:H1182-9. [PMID: 12595284 DOI: 10.1152/ajpheart.00680.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (10% O(2)) for 48 h than in rings from normoxic animals. PP1 inhibition also restored the level of phosphorylation of the 20-kDa myosin light chain (LC(20)) during maximal phenylephrine-induced contraction to that observed in the normoxic control group. Myofibrillar PP1 activity was greater in aortas from rats exposed to hypoxia than in normoxic rats (P < 0.05). Levels of the protein myosin phosphatase-targeting subunit 1 (MYPT1) that mediates myofibrillar localization of PP1 activity were increased in aortas from hypoxic rats (193 +/- 28% of the normoxic control value, P < 0.05) and in human aortic smooth muscle cells after hypoxic (1% O(2)) incubation (182 +/- 18% of the normoxic control value, P < 0.05). Aortic levels of myosin light chain kinase were similar in normoxic and hypoxic groups. In conclusion, after hypoxia, increased MYPT1 protein and myofibrillar PP1 activity impair aortic vasoreactivity through enhanced dephosphorylation of LC(20).
Collapse
Affiliation(s)
- Hwee Teoh
- Terrence Donnelly Laboratories, Division of Respirology and Department of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1W8
| | | | | | | | | |
Collapse
|
26
|
Yan C, Kim D, Aizawa T, Berk BC. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 2003; 23:26-36. [PMID: 12524221 DOI: 10.1161/01.atv.0000046231.17365.9d] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II (Ang II) and nitric oxide (NO) signaling pathways mutually regulate each other by multiple mechanisms. Ang II regulates the expression of NO synthase and NO production, whereas NO downregulates the Ang II type I (AT1) receptor. In addition, downstream effectors of Ang II and NO signaling pathways also interact with each other. A feedback mechanism between Ang II and NO is critical for normal vascular structure and function. Imbalance of Ang II and NO has been implicated in the pathophysiology of many vascular diseases. In this review, we focus on the diverse ways in which Ang II and NO interact and the importance of the balance between the signaling pathways activated by these mediators.
Collapse
Affiliation(s)
- Chen Yan
- Center for Cardiovascular Research, University of Rochester, Rochester, NY, USA
| | | | | | | |
Collapse
|
27
|
Jacob A, Molkentin JD, Smolenski A, Lohmann SM, Begum N. Insulin inhibits PDGF-directed VSMC migration via NO/ cGMP increase of MKP-1 and its inactivation of MAPKs. Am J Physiol Cell Physiol 2002; 283:C704-13. [PMID: 12176727 DOI: 10.1152/ajpcell.00110.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the role of insulin in the control of vascular smooth muscle cell (VSMC) migration in the normal vasculature. Platelet-derived growth factor (PDGF) increased VSMC migration, which was inhibited by pretreatment with insulin in a dose-dependent manner. Insulin also caused a 60% decrease in PDGF-stimulated mitogen-activated protein kinase (MAPK) phosphorylation and activation. Insulin inhibition of MAPK was accompanied by a rapid induction of MAPK phosphatase (MKP-1), which inactivates MAPKs by dephosphorylation. Pretreatment with inhibitors of the nitric oxide (NO)/cGMP pathway, blocked insulin-induced MKP-1 expression and restored PDGF-stimulated MAPK activation and migration. In contrast, adenoviral infection of VSMCs with MKP-1 or cGMP-dependent protein kinase Ialpha (cGK Ialpha), the downstream effector of cGMP signaling, blocked the activation of MAPK and prevented PDGF-directed VSMC migration. Expression of antisense MKP-1 RNA prevented insulin's inhibitory effect and restored PDGF-directed VSMC migration and MAPK phosphorylation. We conclude that insulin inhibition of VSMC migration may be mediated in part by NO/cGMP/cGK Ialpha induction of MKP-1 and consequent inactivation of MAPKs.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cell Cycle Proteins
- Cell Movement/drug effects
- Cells, Cultured
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/metabolism
- Cyclic GMP/pharmacology
- Cyclic GMP-Dependent Protein Kinase Type I
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Dual Specificity Phosphatase 1
- Enzyme Inhibitors/pharmacology
- Humans
- Immediate-Early Proteins/antagonists & inhibitors
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Insulin/pharmacology
- Male
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase Type II
- Phosphoprotein Phosphatases
- Phosphorylation/drug effects
- Platelet-Derived Growth Factor/pharmacology
- Protein Phosphatase 1
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Proto-Oncogene Proteins c-sis
- RNA, Antisense/biosynthesis
- RNA, Antisense/pharmacology
- Rats
- Rats, Inbred WKY
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Asha Jacob
- The Diabetes Research Laboratory, Winthrop University Hospital, Mineola 11501, New York
| | | | | | | | | |
Collapse
|
28
|
Begum N, Sandu OA, Duddy N. Negative regulation of rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells: role of nitric oxide and cyclic guanosine monophosphate signaling pathways. Diabetes 2002; 51:2256-63. [PMID: 12086958 DOI: 10.2337/diabetes.51.7.2256] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies from our laboratory have shown that insulin induces relaxation of vascular smooth muscle cells (VSMCs) via stimulation of myosin phosphatase and inhibition of Rho kinase activity. In this study, we examined the mechanism whereby insulin inhibits Rho signaling and its impact on actin cytoskeleton organization. Incubation of confluent serum-starved VSMCs with thrombin or phenylephrine (PE) caused a rapid increase in glutathione S-transferase-Rhotekin-Rho binding domain-associated RhoA, Rho kinase activation, and actin cytoskeleton organization, which was blocked by preincubation with insulin. Preexposure to N(G)-monomethyl L-arginine acetate (L-NMMA), a nitric oxide synthase inhibitor, and Rp-8 CPT-cyclic guanosine monophosphate (RpcGMP), a cyclic guanosine monophosphate (cGMP) antagonist, attenuated the inhibitory effect of insulin on RhoA activation and restored thrombin-induced Rho kinase activation, and site-specific phosphorylation of the myosin-bound regulatory subunit (MBS(Thr695)) of myosin-bound phosphatase (MBP), and caused actin fiber reorganization. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked the inhibitory effects of insulin and abolished thrombin-mediated Rho activation. Insulin inactivation of RhoA was accompanied by inhibition of isoprenylation via reductions in geranylgeranyl transferase-1 activity as well as increased RhoA phosphorylation, which was reversed by pretreatment with RpcGMP and L-NMMA. We conclude that insulin may inhibit Rho signaling by affecting posttranslational modification of RhoA via nitric oxide/cGMP signaling pathway to cause MBP activation, actin cytoskeletal disorganization, and vasodilation.
Collapse
Affiliation(s)
- Najma Begum
- Diabetes Research Laboratory, Winthrop University Hospital, 259 First Street, Mineola, NY 11501, USA.
| | | | | |
Collapse
|
29
|
Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A. Active Rho kinase (ROK-alpha ) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 2002; 277:6214-22. [PMID: 11739394 DOI: 10.1074/jbc.m110508200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies from our laboratory have shown that insulin stimulates myosin-bound phosphatase (MBP) in vascular smooth muscle cells (VSMCs) by decreasing site-specific phosphorylation of the myosin-bound subunit (MBS) of MBP via nitric oxide/cGMP-mediated Rho/Rho kinase inactivation. Here we tested potential interactions between Rho kinase and insulin signaling pathways. In control VSMCs, insulin inactivates ROK-alpha, the major Rho kinase isoform in VSMCs, and inhibits thrombin-induced increase in ROK-alpha association with the insulin receptor substrate-1 (IRS-1). Hypertension (in spontaneous hypertensive rats) or expression of an active RhoA(V14) up-regulates Rho kinase activity and increases ROK-alpha/IRS-1 association resulting in IRS-1 serine phosphorylation that leads to inhibition of both insulin-induced IRS-1 tyrosine phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activation. In contrast, expression of dominant negative RhoA or cGMP-dependent protein kinase type I alpha inactivates Rho kinase, abolishes ROK-alpha/IRS-1 association, and potentiates insulin-induced tyrosine phosphorylation and PI3-kinase activation leading to decreased MBS(T695) phosphorylation and decreased MBP inhibition. Collectively, these results suggest a novel function for ROK-alpha in insulin signal transduction at the level of IRS-1 and potential cross-talk between cGMP-dependent protein kinase type I alpha, Rho/Rho kinase signaling, and insulin signaling at the level of IRS-1/PI3-kinase.
Collapse
Affiliation(s)
- Najma Begum
- Diabetes Research Laboratory, Winthrop University Hospital, Mineola, New York 11501, USA.
| | | | | | | | | |
Collapse
|
30
|
Sandu OA, Ito M, Begum N. Selected contribution: insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle. J Appl Physiol (1985) 2001; 91:1475-82. [PMID: 11509551 DOI: 10.1152/jappl.2001.91.3.1475] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, resulting in a decrease in phosphorylation of the myosin-bound subunit (MBS(Thr695)) of MBP and in its activation. Treatment of confluent serum-starved VSMCs with insulin prevented thrombin-induced increases in membrane-associated RhoA, Rho kinase activation, and site-specific phosphorylation of MBS(Thr695) of MBP and caused MBP activation. Preexposure to N(G)-monomethyl-L-arginine, a NO synthase inhibitor, and R-p-8-(4-chlorophenylthio)cGMP, a cGMP antagonist, attenuated insulin's inhibitory effect on Rho translocation and restored thrombin-mediated Rho kinase activation and site-specific MBS(Thr695) phosphorylation, resulting in MBP inactivation. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked insulin's inhibitory effects by abolishing thrombin-mediated Rho signaling and promoted dephosphorylation of MBS(Thr695). Furthermore, expression of a dominant-negative RhoA decreased basal as well as thrombin-induced MBS(Thr695) phosphorylation and caused insulin activation of MBP. Collectively, these results indicate that insulin inhibits Rho signaling by decreasing RhoA translocation via the NO/cGMP signaling pathway to cause MBP activation via site-specific dephosphorylation of its regulatory subunit MBS.
Collapse
Affiliation(s)
- O A Sandu
- The Diabetes Research Laboratory, Winthrop University Hospital, Mineola, New York 11501, USA
| | | | | |
Collapse
|