1
|
Francik R, Kryczyk-Kozioł J, Krośniak M, Francik S, Hebda T, Pedryc N, Knapczyk A, Berköz M, Ślipek Z. The Influence of Organic Vanadium Complexes on an Antioxidant Profile in Adipose Tissue in Wistar Rats. MATERIALS 2022; 15:ma15051952. [PMID: 35269182 PMCID: PMC8912069 DOI: 10.3390/ma15051952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
One of the aspects of biological activity of vanadium is its influence on carbohydrate metabolism. For more than 30 years, various vanadium complexes have been tested as antidiabetic agents. This study researched organic vanadium complexes with bipyridinium ligands and their influences on metabolic rate, as well as on the antioxidant activity of adipose tissue. The effects of sodium (2,2′-bipyridine) oxidobisperoxovanadate (V) octahydrate (known as the V complex), bis(2,2′-bipyridine) oxidovanadium (IV) sulfate dehydrate (known as the B complex), and bis(4.4′-dimethyl-2,2′-bipyridine) oxidovanadium (IV) sulfate dihydrate (labelled as the BM complex) were assessed. Solutions of the tested complexes were introduced intraperitoneally with a probe to animals fed with either a control diet or a high-fat diet. The BM complex had a significant influence on the increase in ferric reducing antioxidant power, as well as on the concentration of glutathione in the adipose tissue of rats fed with a high-fat diet. The V complex increased the concentration of glutathione in the adipose tissue of rats fed with control fodder, as well as significantly reduced the relative change in rat weight for the high-fat diet. Furthermore, the presence of each tested vanadium complex had an impact of statistically significant increase in basal metabolic rate, regardless of applied diet. Further research on these organic vanadium complexes is necessary to understand the mechanisms responsible for their ability to affect adipose tissue.
Collapse
Affiliation(s)
- Renata Francik
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
- Correspondence: (R.F.); (S.F.); Tel.: +48-12-62-05-512 (R.F.); +48-12-662-46-41 (S.F)
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.K.-K.); (M.K.)
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.K.-K.); (M.K.)
| | - Sławomir Francik
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (T.H.); (N.P.); (A.K.); (Z.Ś.)
- Correspondence: (R.F.); (S.F.); Tel.: +48-12-62-05-512 (R.F.); +48-12-662-46-41 (S.F)
| | - Tomasz Hebda
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (T.H.); (N.P.); (A.K.); (Z.Ś.)
| | - Norbert Pedryc
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (T.H.); (N.P.); (A.K.); (Z.Ś.)
| | - Adrian Knapczyk
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (T.H.); (N.P.); (A.K.); (Z.Ś.)
| | - Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van 65090, Turkey;
| | - Zbigniew Ślipek
- Department of Mechanical Engineering and Agrophysics, Faculty of Production Engineering and Energetics, University of Agriculture in Krakow, Balicka 120, 30-149 Krakow, Poland; (T.H.); (N.P.); (A.K.); (Z.Ś.)
- Technical Institute, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| |
Collapse
|
2
|
Sakurai H. The discovery of vanadyl and zinc complexes for treating diabetes and metabolic syndromes. Expert Opin Drug Discov 2013; 2:873-87. [PMID: 23489004 DOI: 10.1517/17460441.2.6.873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of diabetes mellitus has increased over the decades because of lifestyle changes. The number of people with diabetes mellitus worldwide is expected to increase from 150 million to 220 million by 2010 and to 300 million by 2025. There are two main types of diabetes mellitus. Type 1 diabetes mellitus is due to the autoimmune-mediated destruction of pancreatic β cells, resulting in absolute insulin deficiency; the patients require exogenous insulin injections. Type 2 is characterized by insulin resistance and abnormal insulin secretion and the patients require exercise, diet control and/or oral hypoglycemics. However, each treatment has some adverse effects, including physical burden, formation of self-antibodies for insulin injections, the severe side effects of hypoglycemics and the discontinuation of insulin synthesis in the pancreas. To overcome these adverse effects and replace the use of these agents, the author attempted to develop new antidiabetic agents with novel structures and mechanisms. This review focuses on the authors' recent development of vanadium and zinc complexes for antidiabetic and antimetabolic syndromes.
Collapse
Affiliation(s)
- Hiromu Sakurai
- Kyoto Pharmaceutical University, Department of Analytical and Bioinorganic Chemistry, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
3
|
Katoh A, Matsumura Y, Yoshikawa Y, Yasui H, Sakurai H. Evaluation of insulin-mimetic activities of vanadyl and zinc(II) complexes from the viewpoint of heterocyclic bidentate ligands. J Inorg Biochem 2008; 103:567-74. [PMID: 19162327 DOI: 10.1016/j.jinorgbio.2008.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/05/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
Vanadyl sulfate (VOSO(4)) has been clinically tested in diabetic patients since 1995. Oral administrations of VOSO(4) improved the type 2 diabetic state with respect to plasma glucose, HbA(1c), and fructosamine levels. The development of toxicity by increasing the administration of VOSO(4) should be avoided. One method was the utilization of vanadyl complexes with coordination compounds that are low-toxic and low-molecular-weight ligands to enhance the permeation of the metal ion to lipid bilayer membrane. Over a decade we have focused on a variety of heterocyclic compounds as bidentate ligands for metal ions. Vanadyl and zinc(II) complexes of 1-substituted 3-hydroxy-2-methyl-4(1H)-pyridinethiones, 4,5,6-substituted 1-hydroxy-2(1H)-pyrimidinones, 4-(p-substituted)phenyl-3-hydroxythiazole-2(3H)-thiones, 3-hydroxypyrone, 1-alkyl- or 1-phenylalkyl-3-hydroxy-2(1H)-pyridinethiones, optically active 1-substituted 3-hydroxy-4(1H)-pyridinethiones, and 5-dialkylsulfonamido- or 5,7-bis(dialkylsulfonamido)-8-hydroxyquinolines were prepared, and their insulin-mimetic activities were evaluated in terms of IC(50) values which stand for a 50% inhibitory concentration of the free fatty acid release from isolated rat adipocytes. In this article, the relationship between the insulin-mimetic activity and the partition coefficient, the chirality, the substituent effect, molecular weight, the pK(a) value, and the coordination mode was discussed. In vivo blood glucose-lowering effects of the vanadyl complex with 1-hydroxy-4,6-dimethyl-2(1H)-pyrimidinone in streptozotocin (STZ)-induced diabetic rats and the zinc(II) complexes with 4-(p-chlorophenyl)thiazole- and 4-methylthiazole-2(3H)-thione in KK-A(y) mice were also discussed.
Collapse
Affiliation(s)
- Akira Katoh
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kitamachi, Kichijoji, Musashino-shi, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
5
|
Yasui H, Adachi Y, Katoh A, Sakurai H. Metallokinetic characteristics of antidiabetic bis(allixinato)oxovanadium(IV)-related complexes in the blood of rat. J Biol Inorg Chem 2007; 12:843-53. [PMID: 17503093 DOI: 10.1007/s00775-007-0239-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 04/03/2007] [Indexed: 12/01/2022]
Abstract
The antidiabetic effect of vanadium is a widely accepted phenomenon; some oxovanadium(IV) complexes have been found to normalize high blood glucose levels in both type 1 and type 2 diabetic animals. In light of the future clinical use of these complexes, the relationship among their chemical structures, physicochemical properties, metallokinetics, and antidiabetic activities must be closely investigated. Recently, we found that among bis(3-hydroxypyronato)oxovanadium(IV) [VO(3hp)(2)] related complexes, bis(allixinato)oxovanadium(IV) [VO(alx)(2)] exhibits a relatively strong hypoglycemic effect in diabetic animals. Next, we examined its metallokinetics in the blood of rats that received five VO(3hp)(2)-related complexes by the blood circulation monitoring-electron paramagnetic resonance method. The metallokinetic parameters were obtained from the blood clearance curves based on a two-compartment model; most parameters, such as area under the concentration curve and mean residence time, correlated significantly with the in vitro insulinomimetic activity in terms of 1/IC(50) (IC(50) is the 50% inhibitory concentration of the complex required for the release of free fatty acids in adipocytes) and the lipophilicity of the complex (log P (com)). The oxovanadium(IV) concentration was significantly higher and the species resided longer in the blood of rats that received VO(alx)(2) than in the blood of rats that received VO(3hp)(2) or bis(kojato)oxovanadium(IV); VO(alx)(2) also exhibited higher log P (com) and 1/IC(50) values. On the basis of these results, we propose that the introduction of lipophilic groups at the C2 and C6 positions of the 3hp ligand is an effective method to enhance the hypoglycemic effect of the complexes, as supported by the observed in vivo exposure and residence in the blood.
Collapse
Affiliation(s)
- Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | |
Collapse
|
6
|
Sakurai H, Katoh A, Yoshikawa Y. Chemistry and Biochemistry of Insulin-Mimetic Vanadium and Zinc Complexes. Trial for Treatment of Diabetes Mellitus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1645] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Willsky GR, Chi LH, Liang Y, Gaile DP, Hu Z, Crans DC. Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulfate. Physiol Genomics 2006; 26:192-201. [PMID: 16684804 DOI: 10.1152/physiolgenomics.00196.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment with vanadium, a representative of a class of antidiabetic compounds, alleviates diabetic hyperglycemia and hyperlipidemia. Oral administration of vanadium compounds in animal models and humans does not cause clinical symptoms of hypoglycemia, a common problem for diabetic patients with insulin treatment. Gene expression, using Affymetrix arrays, was examined in muscle from streptozotocin-induced diabetic and normal rats in the presence or absence of oral vanadyl sulfate treatment. This treatment affected normal rats differently from diabetic rats, as demonstrated by two-way ANOVA of the full array data. Diabetes altered the expression of 133 genes, and the expression of 30% of these genes dysregulated in diabetes was normalized by vanadyl sulfate treatment. For those genes, the ratio of expression in normal animals to the expression in diabetic animals showed a strong negative correlation with the ratio of expression in diabetic animals to the expression in diabetic animals treated with vanadyl sulfate ( P = −0.85). The genes identified belong to six major metabolic functional groups: lipid metabolism, oxidative stress, muscle structure, protein breakdown and biosynthesis, the complement system, and signal transduction. The identification of oxidative stress genes, coupled with the known oxidative chemistry of vanadium, implicates reactive oxygen species in the action of this class of compounds. These results imply that early transition metals or compounds formed from their chemical interactions with other metabolites may act as general transcription modulators, a role not usually associated with this class of compounds.
Collapse
Affiliation(s)
- Gail R Willsky
- Department of Biochemistry, School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | | | |
Collapse
|