1
|
Okada K, Yokota J, Yamashita T, Inui T, Kishimoto W, Nakase H, Mizuguchi H. Establishment of human intestinal organoids derived from commercially available cryopreserved intestinal epithelium and evaluation for pharmacokinetic study. Drug Metab Pharmacokinet 2024; 54:100532. [PMID: 38064926 DOI: 10.1016/j.dmpk.2023.100532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 02/06/2024]
Abstract
Human intestinal organoids (HIOs) have been reported to exert their functions in a way that mimics living organs, and HIOs-derived monolayers are expected to be applied to in vitro intestinal pharmacokinetic studies. However, HIOs are established from human tissue, which raises issues of availability and ethics. In the present study, to solve these problems, we have established intestinal organoids using commercially available cryopreserved human intestinal epithelial cells (C-IOs), and compared their functions with biopsy-derived human intestinal organoids (B-IOs) from a pharmacokinetic point of view. Both C-IOs and B-IOs reproduced the morphological features of the intestinal tract and were shown to be composed of epithelial cells. Monolayers generated from C-IOs and B-IOs (C-IO-2D, B-IO-2D, respectively) structurally mimic the small intestine. The C-IOs showed gene expression levels comparable to those of the B-IOs, which were close to those of adult human small intestine. Importantly, the C-IOs-2D showed levels of pharmacokinetics-related protein expression and activity-including cytochrome P450 3A4 (CYP3A4) and carboxylesterase 2 (CES2) enzymatic activities and P-glycoprotein (P-gp) transporter activities -similar to those of B-IOs-2D. This study addresses the difficulties associated with B-IOs and provides fundamental characteristics for the application of C-IOs in pharmacokinetic studies.
Collapse
Affiliation(s)
- Kentaro Okada
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Jumpei Yokota
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuya Inui
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Xie Y, Zhang Y, Liu H, Xing J. Metabolic Retroversion of Piperaquine (PQ) via Hepatic Cytochrome P450-Mediated N-Oxidation and Reduction: Not an Important Contributor to the Prolonged Elimination of PQ. Drug Metab Dispos 2021; 49:379-388. [PMID: 33674271 DOI: 10.1124/dmd.120.000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
As a partner antimalarial with an extremely long elimination half-life (∼30 days), piperaquine (PQ) is mainly metabolized into a pharmacologically active N-oxide metabolite [piperaquine N-oxide (PN1)] in humans. In the present work, the metabolic retroversion of PQ and PN1, potentially associated with decreased clearance of PQ, was studied. The results showed that interconversion existed for PQ and its metabolite PN1. The N-oxidation of PQ to PN1 was mainly mediated by CYP3A4, and PN1 can rapidly reduce back to PQ via cytochrome P450 (P450)/flavin-containing monooxygenase enzymes. In accordance with these findings, the P450 nonselective inhibitor (1-ABT) or CYP3A4 inhibitor (ketoconazole) inhibited the N-oxidation pathway in liver microsomes (>90%), and the reduction metabolism was inhibited by 1-ABT (>90%) or methimazole (∼50%). Based on in vitro physiologic and enzyme kinetic studies, quantitative prediction of hepatic clearance (CLH) of PQ was performed, which indicated its negligible decreased elimination in humans in the presence of futile cycling, with the unbound CLH decreasing by 2.5% (0.069 l/h per kilogram); however, a minor decrease in unbound CLH (by 12.8%) was found in mice (0.024 l/h per kilogram). After an oral dose of PQ (or PN1) to mice, the parent form predominated in the blood circulation, and PN1 (or PQ) was detected as a major metabolite. Other factors probably associated with delayed elimination of PQ (intestinal metabolism and enterohepatic circulation) did not play a key role in PQ elimination. These data suggested that the metabolic interconversion of PQ and its N-oxide metabolite contributes to but may not significantly prolong its duration in humans. SIGNIFICANCE STATEMENT: This paper investigated the interconversion metabolism of piperaquine (PQ) and its N-oxide metabolite in vitro as well as in mice. The metabolic profiles of PQ were reestablished by this futile cycling, which contributes to but may not significantly prolong its elimination in humans. Enzyme phenotyping indicated a low possibility of interaction of PQ during artemisinin drug-based combination therapy treatment.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yunrui Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
3
|
Beyoğlu D, Idle JR. Metabolomic insights into the mode of action of natural products in the treatment of liver disease. Biochem Pharmacol 2020; 180:114171. [DOI: 10.1016/j.bcp.2020.114171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
|
4
|
Extent and rate of oral drug absorption in minipigs: Comparison with mice, rats and humans. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Buccioni M, Dal Ben D, Lambertucci C, Martí Navia A, Ricciutelli M, Spinaci A, Volpini R, Marucci G. New sensible method to quantize the intestinal absorption of receptor ligands. Bioorg Med Chem 2019; 27:3328-3333. [PMID: 31230970 DOI: 10.1016/j.bmc.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
In recent years, special attention has been paid to the A3 adenosine receptor (A3AR) as a possible pharmacological target to treat intestinal inflammation. In this work, it was set up a novel method to quantify the concentration of a promising anti-inflammatory agent inside and outside of intestinal barrier using the everted gut sac technique. The compound chosen for the present study is one of the most potent and selective A3AR agonist reported so far, named AR 170 (N6-methyl-2-phenylethynyl-5'-N-methylcarboxamidoadenosine). In order to evaluate the intestinal absorption of AR 170 the radioligand binding assay in comparison with HPLC-DAD was used. Results showed that the compound is absorbed via passive diffusion by paracellular pathway. The concentrations determined in the serosal (inside the sac) fluid by radioligand binding assay are in good agreement with those obtained through the widely used HPLC/MS protocol, demonstrating the reliability of the method. It is worthwhile to note that the radioligand binding assay allows detecting very low concentrations of analyte, thus offering an excellent tool to measure the intestinal absorption of receptor ligands. Moreover, the AR 170 quantity outside the gut sac and the interaction with A3AR could presuppose good topical anti-inflammatory effects of this compound.
Collapse
Affiliation(s)
- Michela Buccioni
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Diego Dal Ben
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Catia Lambertucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Aleix Martí Navia
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Andrea Spinaci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Rosaria Volpini
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | - Gabriella Marucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy.
| |
Collapse
|
6
|
Arnot JA, Mackay D. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:86-97. [PMID: 29300412 DOI: 10.1039/c7em00539c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The chemical dietary absorption efficiency (ED) quantifies the amount of chemical absorbed by an organism relative to the amount of chemical an organism is exposed to following ingestion. In particular, ED can influence the extent of bioaccumulation and biomagnification for hydrophobic chemicals. A new ED model is developed to quantify chemical process rates in the gastrointestinal tract (GIT). The new model is calibrated with critically evaluated measured ED values (n = 250) for 80 hydrophobic persistent chemicals. The new ED model is subsequently used to estimate chemical reaction rate constants (kR) assumed to occur in the lumen of the GIT from experimental dietary exposure tests (n = 255) for 165 chemicals. The new kR estimates are corroborated with kR estimates for the same chemicals from the same data derived previously by other methods. The roles of kR and the biotransformation rate constant (kB) on biomagnification factors (BMFs) determined under laboratory test conditions and on BMFs and bioaccumulation factors (BAFs) in the environment are examined with the new model. In this regard, differences in lab and field BMFs are highlighted. Recommendations to address uncertainty in ED and kR data are provided.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting, 36 Sproat Ave., Toronto, ON M4M 1W4, Canada.
| | | |
Collapse
|
7
|
Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, Oswald S. Protein Abundance of Clinically Relevant Drug-Metabolizing Enzymes in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clin Pharmacol Ther 2017; 104:515-524. [DOI: 10.1002/cpt.967] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - Diana Busch
- Department of Clinical Pharmacology; University Medicine of Greifswald; Greifswald Germany
| | - Joanna Lapczuk
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - Janett Müller
- Department of Clinical Pharmacology; University Medicine of Greifswald; Greifswald Germany
| | - Marek Ostrowski
- Department of General and Transplantation Surgery; Pomeranian Medical University; Szczecin Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology; Pomeranian Medical University; Szczecin Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology; University Medicine of Greifswald; Greifswald Germany
| |
Collapse
|
8
|
Yau E, Petersson C, Dolgos H, Peters SA. A comparative evaluation of models to predict human intestinal metabolism from nonclinical data. Biopharm Drug Dispos 2017; 38:163-186. [PMID: 28152562 PMCID: PMC5412686 DOI: 10.1002/bdd.2068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Extensive gut metabolism is often associated with the risk of low and variable bioavailability. The prediction of the fraction of drug escaping gut wall metabolism as well as transporter-mediated secretion (Fg ) has been challenged by the lack of appropriate preclinical models. The purpose of this study is to compare the performance of models that are widely employed in the pharmaceutical industry today to estimate Fg and, based on the outcome, to provide recommendations for the prediction of human Fg during drug discovery and early drug development. The use of in vitro intrinsic clearance from human liver microsomes (HLM) in three mechanistic models - the ADAM, Qgut and Competing Rates - was evaluated for drugs whose metabolism is dominated by CYP450s, assuming that the effect of transporters is negligible. The utility of rat as a model for human Fg was also explored. The ADAM, Qgut and Competing Rates models had comparable prediction success (70%, 74%, 69%, respectively) and bias (AFE = 1.26, 0.74 and 0.81, respectively). However, the ADAM model showed better accuracy compared with the Qgut and Competing Rates models (RMSE =0.20 vs 0.30 and 0.25, respectively). Rat is not a good model (prediction success =32%, RMSE =0.48 and AFE = 0.44) as it seems systematically to under-predict human Fg . Hence, we would recommend the use of rat to identify the need for Fg assessment, followed by the use of HLM in simple models to predict human Fg . © 2017 Merck KGaA. Biopharmaceutics & Drug Disposition Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Estelle Yau
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck, Darmstadt, Germany
| | - Carl Petersson
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck, Darmstadt, Germany
| | - Hugues Dolgos
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck, Darmstadt, Germany
| | - Sheila Annie Peters
- Global Early Development/Quantitative Pharmacology and Drug Disposition (QPD), Merck, Darmstadt, Germany
| |
Collapse
|
9
|
Peters SA, Jones CR, Ungell AL, Hatley OJD. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models. Clin Pharmacokinet 2016; 55:673-96. [PMID: 26895020 PMCID: PMC4875961 DOI: 10.1007/s40262-015-0351-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Frankfurter Str. 250, F130/005, 64293, Darmstadt, Germany.
| | | | - Anna-Lena Ungell
- Investigative ADME, Non-Clinical Development, UCB New Medicines, BioPharma SPRL, Braine l'Alleud, Belgium
| | - Oliver J D Hatley
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| |
Collapse
|
10
|
Newby D, Freitas AA, Ghafourian T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur J Med Chem 2014; 90:751-65. [PMID: 25528330 DOI: 10.1016/j.ejmech.2014.12.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/11/2023]
Abstract
Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology.
Collapse
Affiliation(s)
- Danielle Newby
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, Kent ME4 4TB, UK
| | - Alex A Freitas
- School of Computing, University of Kent, Canterbury, Kent CT2 7NF, UK
| | - Taravat Ghafourian
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, Kent ME4 4TB, UK; Drug Applied Research Centre and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Cho HJ, Kim JE, Kim DD, Yoon IS. In vitro–in vivoextrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: principles and applications. Drug Dev Ind Pharm 2013; 40:989-98. [DOI: 10.3109/03639045.2013.831439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Predicting human exposure of active drug after oral prodrug administration, using a joined in vitro/in silico–in vivo extrapolation and physiologically-based pharmacokinetic modeling approach. J Pharmacol Toxicol Methods 2013; 67:203-13. [DOI: 10.1016/j.vascn.2012.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 11/18/2022]
|
13
|
Zou P, Zheng N, Yang Y, Yu LX, Sun D. Prediction of volume of distribution at steady state in humans: comparison of different approaches. Expert Opin Drug Metab Toxicol 2012; 8:855-72. [DOI: 10.1517/17425255.2012.682569] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Bouzom F, Ball K, Perdaems N, Walther B. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs? Biopharm Drug Dispos 2012; 33:55-71. [DOI: 10.1002/bdd.1767] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022]
Affiliation(s)
- François Bouzom
- Technologie Servier; 25/27 rue E. Vignat; 45000; Orleans; France
| | - Kathryn Ball
- Technologie Servier; 25/27 rue E. Vignat; 45000; Orleans; France
| | | | - Bernard Walther
- Technologie Servier; 25/27 rue E. Vignat; 45000; Orleans; France
| |
Collapse
|
15
|
Bonnefille P, Sezgin-Bayindir Z, Belkhelfa H, Arellano C, Gandia P, Woodley J, Houin G. The use of isolated enterocytes to study Phase I intestinal drug metabolism: validation with rat and pig intestine. Fundam Clin Pharmacol 2010; 25:104-14. [DOI: 10.1111/j.1472-8206.2010.00904.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Fenneteau F, Poulin P, Nekka F. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. J Pharm Sci 2010; 99:486-514. [PMID: 19479982 DOI: 10.1002/jps.21802] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The first objective of the present study was to predict the pharmacokinetics of selected CYP3A substrates administered at a single oral dose to human. The second objective was to predict pharmacokinetics of the selected drugs in presence of inhibitors of the intestinal and/or hepatic CYP3A activity. We developed a whole-body physiologically based pharmacokinetics (WB-PBPK) model accounting for presystemic elimination of midazolam (MDZ), alprazolam (APZ), triazolam (TRZ), and simvastatin (SMV). The model also accounted for concomitant administration of the above-mentioned drugs with CYP3A inhibitors, namely ketoconazole (KTZ), itraconazole (ITZ), diltiazem (DTZ), saquinavir (SQV), and a furanocoumarin contained in grape-fruit juice (GFJ), namely 6',7'-dihydroxybergamottin (DHB). Model predictions were compared to published clinical data. An uncertainty analysis was performed to account for the variability and uncertainty of model parameters when predicting the model outcomes. We also briefly report on the results of our efforts to develop a global sensitivity analysis and its application to the current WB-PBPK model. Considering the current criterion for a successful prediction, judged satisfied once the clinical data are captured within the 5th and 95th percentiles of the predicted concentration-time profiles, a successful prediction has been obtained for a single oral administration of MDZ and SMV. For APZ and TRZ, however, a slight deviation toward the 95th percentile was observed especially for C(max) but, overall, the in vivo profiles were well captured by the PBPK model. Moreover, the impact of DHB-mediated inhibition on the extent of intestinal pre-systemic elimination of MDZ and SMV has been accurately predicted by the proposed PBPK model. For concomitant administrations of MDZ and ITZ, APZ and KTZ, as well as SMV and DTZ, the in vivo concentration-time profiles were accurately captured by the model. A slight deviation was observed for SMV when coadministered with ITZ, whereas more important deviations have been obtained between the model predictions and in vivo concentration-time profiles of MDZ coadministered with SQV. The same observation was made for TRZ when administered with KTZ. Most of the pharmacokinetic parameters predicted by the PBPK model were successfully predicted within a two-fold error range either in the absence or presence of metabolism-based inhibition. Overall, the present study demonstrated the ability of the PBPK model to predict DDI of CYP3A substrates with promising accuracy.
Collapse
Affiliation(s)
- Frederique Fenneteau
- Faculté de Pharmacie, Université de Montréal, CP 6128, Succursale Centre Ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
17
|
Mather J, Rainville PD, Potts WB, Smith NW, Plumb RS. Development of a high sensitivity bioanalytical method for alprazolam using ultra-performance liquid chromatography/tandem mass spectrometry. Drug Test Anal 2010; 2:11-8. [PMID: 20878881 DOI: 10.1002/dta.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A rapid, specific, assay was developed for the benzodiapine alprazolam in rat plasma using sub-2 µm particle liquid chromatography (LC) and tandem quadrupole mass spectrometry (MS/MS). The limit of quantification using protein precipitation was determined to 10 pg/mL, whereas the limit of quantification using solid-phase extraction (SPE) was determined to be 1.0 pg/mL. The assay was optimized for throughput and resolution of the analyte of interest from the hydroxy metabolite. During the method development process the plasma matrix signal was monitored, for lipids and other endogenous metabolites, to maximize signal response and minimize ion suppression. This was achieved by using a tandem quadrupole mass spectrometer equipped with a novel collision cell design which allowed for the simultaneous collection of full scan MS and multiple reaction monitoring (MRM) data. The lipid profile from the SPE process was significantly less than obtained with the protein precipitation approach.
Collapse
Affiliation(s)
- Joanne Mather
- Pharmaceutical Business Operations, Waters Corporation, Milford, MA, USA
| | | | | | | | | |
Collapse
|
18
|
Takahashi M, Washio T, Suzuki N, Igeta K, Yamashita S. The species differences of intestinal drug absorption and first-pass metabolism between cynomolgus monkeys and humans. J Pharm Sci 2010; 98:4343-53. [PMID: 19230019 DOI: 10.1002/jps.21708] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to elucidate the causes of the species differences in the oral bioavailability (BA) between cynomolgus monkeys and humans, the contributions of first-pass metabolism and intestinal absorption were investigated. Typical substrates of cytochrome P450 enzymes, UDP-glucuronosyltransferase enzymes and efflux transporters were selected, and the BA, the hepatic availability (Fh) and the fraction dose absorbed from gastro-intestinal tract (Fa*Fg) were calculated from pharmacokinetic analysis after oral and intravenous administration in cynomolgus monkeys. In addition, in vitro metabolism was investigated using liver and intestinal microsomes to evaluate the relationship between in vivo and in vitro results. The BA of cynomolgus monkeys was low compared with that in humans with most of the drugs tested, and not only Fh but also Fa*Fg contributed significantly to the low BA in cynomolgus monkeys. When Fh was evaluated in in vitro experiments, it correlated well with the in vivo Fh. However, although the metabolic activities of CYP3A4 substrates were high in cynomolgus monkey intestinal microsomes, those of the other substrates were low or not detected. These findings suggested that the species differences and low BA in cynomolgus monkeys could be mostly attributed not only to hepatic first-pass metabolism but also to the intestinal absorption process.
Collapse
Affiliation(s)
- Masayuki Takahashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, R&D Division, Daiichi-Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Abstract
Objective
Although the human small intestine serves primarily as an absorptive organ for nutrients and water, it also has the ability to metabolise drugs. Interest in the small intestine as a drug-metabolising organ has been increasing since the realisation that it is probably the most important extrahepatic site of drug biotransformation.
Key findings
Among the metabolising enzymes present in the small intestinal mucosa, the cytochromes P450 (CYPs) are of particular importance, being responsible for the majority of phase I drug metabolism reactions. Many drug interactions involving induction or inhibition of CYP enzymes, in particular CYP3A, have been proposed to occur substantially at the level of the intestine rather than exclusively within the liver, as originally thought. CYP3A and CYP2C represent the major intestinal CYPs, accounting for approximately 80% and 18%, respectively, of total immunoquantified CYPs. CYP2J2 is also consistently expressed in the human gut wall. In the case of CYP1A1, large interindividual variation in the expression levels has been reported. Data for the intestinal expression of the polymorphic CYP2D6 are conflicting. Several other CYPs, including the common hepatic isoform CYP2E1, are expressed in the human small intestine to only a very low extent, if at all. The distribution of most CYP enzymes is not uniform along the human gastrointestinal tract, being generally higher in the proximal regions of the small intestine.
Summary
This article reviews the current state of knowledge of CYP enzyme expression in human small intestine, the role of the gut wall in CYP-mediated metabolism, and how this metabolism limits the bioavailability of orally administered drugs. Possible interactions between drugs and CYP activity in the small intestine are also discussed.
Collapse
Affiliation(s)
- Kirstin Thelen
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Jennifer B Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A Comparison of Pharmacokinetics between Humans and Monkeys. Drug Metab Dispos 2009; 38:308-16. [DOI: 10.1124/dmd.109.028829] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Lavé T, Chapman K, Goldsmith P, Rowland M. Human clearance prediction: shifting the paradigm. Expert Opin Drug Metab Toxicol 2009; 5:1039-48. [DOI: 10.1517/17425250903099649] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Sugano K. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol 2009; 5:259-93. [DOI: 10.1517/17425250902835506] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Fagerholm U. Prediction of human pharmacokinetics-biliary and intestinal clearance and enterohepatic circulation. J Pharm Pharmacol 2008; 60:535-42. [PMID: 18416932 DOI: 10.1211/jpp.60.5.0001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The main objective was to evaluate and propose methods for predicting biliary clearance (CL(bile)) and enterohepatic circulation (EHC) of intact drugs in man. Another aim was to evaluate to role of intestinal drug secretion and propose a method for prediction of intestinal secretion CL (CL(i)). Animal data poorly predict the CL and CL(bile) of biliary excreted drugs, and the suggested molecular weight threshold for bile excretion as the dominant elimination route does not seem to hold. Active transport, low metabolic intrinsic CL (CL(int)) and, as an approximation, permeability (P(e)) less than that of metoprolol is required for substantial CL(bile) to occur. The typical EHC plasma concentration vs time profile (multiple peaks) is demonstrated for many low metabolic CL(int)-compounds with efflux and moderate to high intestinal P(e) and fraction absorbed. Physiologically-based in-vitro to in-vivo (PB-IVIV) methodology with in-vitro intrinsic CL(bile)-data obtained with sandwich-cultured human hepatocytes has generated 2- and 5-fold underpredictions for two compounds with intermediate to high CL(bile). This is despite not considering the unbound fraction. Possible explanations include low transporter activity and diffusion limitations in the in-vitro experiments. Intestinal reabsorption and EHC were also neglected in these predictions and in-vivo CL(bile) estimations. The sandwich model and these reference data are still very useful. Consideration of an empirical scaling factor and a newly developed approach that accounts for intestinal reabsorption and EHC could potentially lead to improved PB-IVIV predictions of CL(bile). Apparently, no attempts have been made to predict CL(i). Elimination via the intestinal route does not appear to be of great importance for the few compounds with available data, but could be equally as important as bile excretion. Net secretion in-vitro P(e) and newly estimated in-vivo intrinsic CL(i) data for digoxin and rosuvastatin could be useful for approximation of CL(i) of other compounds.
Collapse
Affiliation(s)
- Urban Fagerholm
- Clinical Pharmacology, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden.
| |
Collapse
|
24
|
Abstract
Cytochrome P450 3A4 (CYP3A4) is present not only in the liver but also in the small intestine, where it functions as a barrier against xenobiotics. Some CYP3A4 substrates exhibit low bioavailability due to intestinal first pass metabolism. The AUCs of such CYP3A4 substrates are remarkably changed by the inhibition, induction, and saturation of CYP3A4 and so prediction of intestinal first-pass metabolism is important. In this article, factors affecting intestinal first-pass metabolism of drugs are reviewed, focusing on the intestinal metabolism by CYP3A. The methods to predict intestinal first-pass metabolism are also reviewed.
Collapse
Affiliation(s)
- Motohiro Kato
- Pre-clinical Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan.
| |
Collapse
|
25
|
Dressman JB, Thelen K, Jantratid E. Towards Quantitative Prediction of Oral Drug Absorption. Clin Pharmacokinet 2008; 47:655-67. [DOI: 10.2165/00003088-200847100-00003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|