1
|
Manivannan HP, Veeraraghavan VP, Francis AP. Prediction of Multi-targeting Pharmacological Activity of Bioactive Compounds from Medicinal Plants Against Hepatocellular Carcinoma Through Advanced Network Pharmacology and Bioinformatics-Based Investigation. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05150-8. [PMID: 39820926 DOI: 10.1007/s12010-024-05150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
The primary objective of this study was to identify bioactive compounds from four medicinal plants with multi-targeting activity against hepatocellular carcinoma (HCC). A comprehensive analysis led to the identification of a subset of compounds possessing favorable drug-likeness, pharmacokinetics, and absence of toxicity profiles. Target analysis for 42 phytochemicals revealed 210 potential targets associated with HCC. Protein-protein interaction (PPI) analysis of these targets uncovered five critical hub genes, STAT3, SRC, AKT1, MAPK3, and EGFR, in our study. Correlation analysis of these hub genes indicated a strong positive correlation between EGFR, MAPK3, and SRC expression highlighting their interconnected roles in HCC. Survival analysis underscored the significant prognostic role of these hub genes in HCC underscoring their potential as biomarkers. The co-expression analysis unveiled an intricate network of interactions among the hub genes, while the enrichment analysis demonstrated their enrichment in diverse biological and signaling pathways related to HCC. Molecular docking analysis between the seven phytochemicals and five identified targets revealed that bauerenol exhibited good affinity towards all the targets. Subsequent molecular dynamics (MD) simulations demonstrated that bauerenol formed stable complexes with STAT3, AKT1, EGFR, and MAPK3, suggesting its potential as a multi-targeted inhibitor. Our research suggests that bauerenol shows promise as an inhibitor for HCC targets and stands out as a notable lead compound. However, further experimental studies are necessary to confirm its activity and to evaluate its potential as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
2
|
Ayres LB, Furgala JT, Garcia CD. Deciphering antioxidant interactions via data mining and RDKit. Sci Rep 2025; 15:670. [PMID: 39753585 PMCID: PMC11699150 DOI: 10.1038/s41598-024-77948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 01/06/2025] Open
Abstract
Minimizing the oxidation of lipids remains one of the most important challenges to extend the shelf-life of food products and reduce food waste. While most consumer products contain antioxidants, the most efficient strategy is to incorporate combinations of two or more compounds, boosting the total antioxidant capacity. Unfortunately, the reasons for observing synergistic / antagonistic / additive effects in food samples are still unclear, and it is common to observe very different responses even for similar mixtures. Aiming to identify chemical features that can be correlated with specific responses, this report presents an analysis of 1243 mixtures of antioxidants reported in the literature. The analysis focuses on the most commonly reported compounds and mixtures and considers how various chemical descriptors (number of atoms, number of heavy atoms, number of heteroatoms, number of carbon atoms, number of oxygen atoms, number of nitrogen atoms, number of chloride atoms, polar surface area, molecular weight, number of aromatic rings, logP, and hydrogen bond counts) affect the response. Out of those, our analysis showed that hydrogen bonding plays an important role in determining how antioxidants interact, potentially affecting the overall behavior of mixtures. Far from drawing a universal conclusion about one particular mechanism; this article provides an overview of what has worked so far, delving into the possible chemical variables behind those interactions.
Collapse
Affiliation(s)
- Lucas B Ayres
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Justin T Furgala
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Carlos D Garcia
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
3
|
Lou C, Huang Q, Lv L, Li Z. Formal Transformation of Benzylic Carboxylic Acids to Phenols. Chemistry 2024; 30:e202403301. [PMID: 39400927 DOI: 10.1002/chem.202403301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/15/2024]
Abstract
Phenols play a crucial role as core structural motifs in natural products and also serve as fundamental building blocks in synthetic chemistry. Apart from the known protocols for the conversion of aryl precursors to phenols (i. e., decarboxylative oxygenation), we report here the efficient synthesis of phenols from the stable and readily available benzylic carboxylic acids under mild reaction conditions. The photocatalytic conversion of carboxylic acids to peroxides is a crucial step in this strategy, allowing the subsequent C-O bond formation via Hock rearrangement.
Collapse
Affiliation(s)
- Chenhao Lou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| |
Collapse
|
4
|
Karakuş N. Revealing the antioxidant properties of alkyl gallates: a novel approach through quantum chemical calculations and molecular docking. J Mol Model 2024; 30:401. [PMID: 39542935 DOI: 10.1007/s00894-024-06196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
CONTEXT This study investigates the antioxidant potential of alkyl gallates (C1-C10), focusing on the impact of alkyl chain length and solvent polarity on their antioxidant properties. Known for their biomedical relevance in mitigating oxidative stress, alkyl gallates' structure-activity relationships, particularly regarding chain length and environmental factors, still need to be explored. Key thermochemical parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE), reveal that shorter alkyl chains (C1-C4) exhibit superior antioxidant activity. In contrast, longer chains (C5-C10) show reduced effectiveness due to steric hindrance and lower solubility in polar solvents. Molecular docking studies also demonstrated favorable binding interactions with vital biological targets, further reinforcing their antioxidant potential. METHODS Quantum chemical calculations were performed using Gaussian 16 with the B3LYP/6-311G(dp) basis set for geometry optimizations. Solvent effects were modeled using the integral equation formalism-polarized continuum model (IEF-PCM). Molecular docking studies were conducted using AutoDockTools 4.2, targeting Tyrosine Kinase Hck, Heme Oxygenase, and Human Serum Albumin to evaluate fundamental binding interactions. These computational methods provided insights into alkyl gallates' chemical reactivity and antioxidant efficiency, allowing for the rational design of more potent antioxidant compounds.
Collapse
Affiliation(s)
- Nihat Karakuş
- Department of Chemistry, Faculty of Science Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
5
|
M Y G, I S T, N V L, E Y V, R A K, N D F, G A K, N P O, R L S. Catechol-derived Mannich bases: radical regulatory properties, cytotoxicity and interaction with biomolecules. Free Radic Res 2024; 58:770-781. [PMID: 39602367 DOI: 10.1080/10715762.2024.2433985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Free radicals are ubiquitous in biological systems, being responsible for pathogenesis of degenerative diseases and participating in vitally important biochemical processes, which are mediated by radical regulatory agents. The effects of the aliphatic amine substituents in the catechol-derived Mannich bases on their antioxidant and pro-oxidant activity were investigated. It has been found that the presence of catechol moiety in the structure of Mannich bases allows them to act as Cu(II) reductants, efficient Fe(II) chelators and potent DPPH radical scavengers. It has been found that the plausible mechanism of the DPPH radical scavenging proceeds via quinone formation, followed by their interaction with ethanol via the Michael addition reaction. In the neutrophil respiratory burst assay, several compounds have demonstrated a weak antioxidant activity at the micromolar level (0.1-10 µM), whereas at the millimolar level (0.1 mМ) a strong pro-oxidant effect has been observed. Additionally, at the highest used concentrations a pronounced cytotoxicity against dermal fibroblasts DF-2 and an immunosuppressive effect against T-lymphocytes have been observed for all the synthesized compounds. It has been demonstrated that the oxidation of catechols in the presence of low-molecular thiols results in the formation of covalent adducts, which provides an insight into their cytotoxicity and detoxification pathways.
Collapse
Affiliation(s)
- Gvozdev M Y
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
| | - Turomsha I S
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Loginova N V
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Varfolomeeva E Y
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Kovalev R A
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Fedorova N D
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Ksendzova G A
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Osipovich N P
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Sverdlov R L
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| |
Collapse
|
6
|
Mihaly Cozmuta A, Peter A, Nicula C, Jastrzębska A, Jakubczak M, Purbayanto M, Bunea A, Bora F, Uivarasan A, Szakács Z, Mihaly Cozmuta L. The impact of visible light component bands on polyphenols from red grape seed extract powder encapsulated in alginate-whey protein matrix. Food Chem X 2024; 23:101758. [PMID: 39679380 PMCID: PMC11639332 DOI: 10.1016/j.fochx.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 12/17/2024] Open
Abstract
Beads made of sodium alginate, whey protein concentrate, and red grape seed extract powder were exposed to white light and its red-orange, yellow-green-cyan, and cyan-blue-violet bands. The chemical analysis showed that encapsulation in the alginate-whey protein matrix protected polyphenols, flavonoids and cyanidin-3-O-glucoside when exposed to red-orange light. The reflectance spectra acquired from grape seed extract powder and grape seed extract beads were deconvoluted and anthocyanins-based moieties which contribute to the expression of bathochromic or hypsochromic effects were identified. The evolution of the peak areas assigned to the colored compounds confirms that the most intense polyphenol degradation occurred in grape seed extract powder and grape seed extract beads exposed to cyan-blue-violet light, as shown by the chemical analysis. The results of the study are important in choosing the light band from the visible spectrum which can be used to process food enriched with grape seed extract with minimal polyphenol degradation.
Collapse
Affiliation(s)
- A. Mihaly Cozmuta
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - A. Peter
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - C. Nicula
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - A. Jastrzębska
- Warsaw University of Technology, Faculty of Mechatronics, 8 Andrzeja Boboli Street, 02-525 Warsaw, Poland
| | - M. Jakubczak
- Warsaw University of Technology, Faculty of Mechatronics, 8 Andrzeja Boboli Street, 02-525 Warsaw, Poland
| | - M.A.K. Purbayanto
- Warsaw University of Technology, Faculty of Mechatronics, 8 Andrzeja Boboli Street, 02-525 Warsaw, Poland
| | - A. Bunea
- Biochemistry Department, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - F. Bora
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - A. Uivarasan
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - Z. Szakács
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| | - L. Mihaly Cozmuta
- Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania
| |
Collapse
|
7
|
Lardy S, Lerda VL, Schmidt VA. Polarity-Driven Thiyl Radical-Catalyzed Aerobic Debenzylation of Ethers and Amines. J Org Chem 2024; 89:15062-15067. [PMID: 39380545 PMCID: PMC11494661 DOI: 10.1021/acs.joc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
We report the use of a strongly electrophilic thiyl radical derived from commercially available pentafluorothiophenol as a demonstration of highly chemoselective H atom abstraction from electron-rich and relatively weak benzylic C-H bonds adjacent to the O and N atoms. This approach enables the selective oxidative removal of benzyl and p-methoxybenzyl groups from amines and ethers under ambient aerobic conditions.
Collapse
Affiliation(s)
- Samuel
W. Lardy
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Victoria L. Lerda
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Valerie A. Schmidt
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Noshirvani N, Le Coz C, Gardrat C, Ghanbarzadeh B, Coma V. Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules 2024; 29:4664. [PMID: 39407592 PMCID: PMC11477974 DOI: 10.3390/molecules29194664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Active, fully biobased film-forming dispersions (FFDs) with highly promising results for sliced soft bread preservation were successfully elaborated from carboxymethyl cellulose (CMC) and chitosan (CH) using a simple method based on pH adjustments. They consisted of the association of polysaccharides and oleic acid (OL) added with cinnamon (CEO) or ginger (GEO) essential oils. The chemical compositions of the commercial essential oils were first determined via GC/MS, with less than 3% of compounds unidentified. The films obtained from FFDs were characterized by SEM, FTIR and DSC, indicating specific microstructures and some interactions between essential oils and the polymer matrix. CEO-based films exhibited higher antioxidant properties and a lower minimal inhibitory concentration in terms of antifungal properties. From experiments on sliced soft bread, the ginger-based films could increase the shelf life up to 20 days longer than that of the control. Even more promising, cinnamon-based films led to complete fungal inhibition in bread slices that was maintained beyond 60 days. Enumeration of the yeasts and molds for the FFD-coated breads revealed complete inhibition even after 15 days of storage with the FFDs containing the highest concentration of CEO.
Collapse
Affiliation(s)
- Nooshin Noshirvani
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
- Department of Food Science and Technology, Tuyserkan Faculty of Engineering & Natural Resources, Bu-Ali Sina University, Hamedan 65178-38695, Iran
| | - Cédric Le Coz
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
| | - Christian Gardrat
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran;
| | - Véronique Coma
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, F-33600 Pessac, France; (N.N.); (C.L.C.); (C.G.)
| |
Collapse
|
9
|
Maldonado-Sanabria LA, Rodriguez-Saavedra IN, Reyes-Peña IV, Castillo-Aguirre A, Maldonado M, Crespo A, Esteso MA. Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene. Int J Mol Sci 2024; 25:10010. [PMID: 39337498 PMCID: PMC11432429 DOI: 10.3390/ijms251810010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
C-tetra(4-methoxyphenyl)calix[4]resorcinarene was synthesized by hydrochloric acid-catalysed cyclocondensation of resorcinol and 4-methoxybenzaldehyde. Under these conditions, the reaction produces a conformational mixture of crown and chair structural conformers, which were separated and characterized by chromatographic and spectroscopic techniques. The antioxidant activity of both conformers was measured by using the DPPH assay, through which it was observed that the chair conformer showed greater antioxidant activity (IC50 = 47.46 ppm) than the crown conformer (IC50 = 78.46 ppm). Additionally, it was observed that the mixture of both conformers presented lower antioxidant activity than either conformer in isolation. The results found suggest that the chair conformer has efficient antioxidant activity that makes it a potential target for further research.
Collapse
Affiliation(s)
- Laura Angélica Maldonado-Sanabria
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Ivette Nicole Rodriguez-Saavedra
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Ingrid Valentina Reyes-Peña
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Almudena Crespo
- Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| | - Miguel A. Esteso
- Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
10
|
Minibayeva FV, Rassabina AE, Zakirjanova GF, Fedorov NS, Khabibrakhmanova VR, Galeeva EI, Kuznetsova EA, Malomouzh AI, Petrov AM. Protective properties of melanin from lichen Lobaria pulmonaria (L.) HOFFM. In models of oxidative stress in skeletal muscle. Fitoterapia 2024; 177:106127. [PMID: 39019238 DOI: 10.1016/j.fitote.2024.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Melanin is a dark pigment from the group of phenolic or indole polymers with inherent biocompatibility and antioxidant capacity. In extremophilic lichen Lobaria pulmonaria, melanin is responsible for protective properties against hostile environments. Herein, the ability of melanin extracted from L. pulmonaria to counteract oxidative stress and related damages was studied in the mouse diaphragm, the main respiratory muscle. Initial in vitro experiments demonstrated ultraviolet (UV)-absorbing, antioxidant and metal chelating activities of melanin. This melanin can form nanoparticles and stabile colloidal system at concentration of 5 μg/ml. Pretreatment of the muscle with melanin (5 μg/ml) markedly reduced UV-induced increase in intracellular and extracellular reactive oxygen species (ROS) as well as antimycin A-mediated enhancement in mitochondrial ROS production accompanied by lipid peroxidation and membrane asymmetry loss. In addition, melanin attenuated suppression of neuromuscular transmission and alterations of contractile responses provoked by hydrogen peroxide. Thus, this study shed the light on the perspectives of the application of a lichen melanin as a protective component for treatment of skeletal muscle disorders, which are accompanied with an increased ROS production.
Collapse
Affiliation(s)
- Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia.
| | - Anna E Rassabina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Guzalia F Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Nikita S Fedorov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Venera R Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Ekaterina I Galeeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Kazan National Research Technical University, 10, K. Marx St., Kazan 420111, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan 420111, Russia; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia; Kazan State Mediсal University, 49 Butlerova Street, Kazan 420012, Russia.
| |
Collapse
|
11
|
Edelmann S, Lumb JP. A para- to meta-isomerization of phenols. Nat Chem 2024; 16:1193-1199. [PMID: 38632366 DOI: 10.1038/s41557-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phenols and their derivatives are ubiquitous in nature and critically important industrial chemicals. Their properties are intimately linked to the relative substitution pattern of the aromatic ring, reflecting well-known electronic effects of the OH group. Because of these ortho-, para-directing effects, meta-substituted phenols have historically been more difficult to synthesize. Here we describe a procedure to transpose phenols that hinges on a regioselective diazotization of the corresponding ortho-quinone. The procedure affords the meta-substituted phenol directly from its more common and accessible para-substituted isomer, and demonstrates good chemoselectivity that enables its application in late-stage settings. By changing the electronic effect of the OH group and its trajectory of hydrogen bonding, our transposition can be used to diversify natural products and existing chemical libraries, and potentially shorten the length and cost of producing underrepresented arene isomers.
Collapse
Affiliation(s)
- Simon Edelmann
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
13
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
14
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
15
|
Khelifi R, Latelli N, Charifi Z, Morell C, Chermette H. Predicting the activity of methoxyphenol derivatives antioxidants: II-Importance of the nature of the solvent on the mechanism, a DFT study. J Comput Chem 2024; 45:886-897. [PMID: 38156812 DOI: 10.1002/jcc.27284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The various mechanisms of primary antioxidant action of a series of 2-Methoxyphenols are investigated in the present work. The electronic properties have just been studied in a joint article, so that we focus here on Hydrogen Atom Transfer (HAT), Single Electron Transfer-Proton Transfer (SET-PT) and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms. The two computational approaches used in the previous study of the structure and reactivity of these compounds [Computational and Theoretical Chemistry 1229 (2023) 114287] provide identical mechanisms trends in gas phase. In gas media, hydrogen atom transfer (HAT) is more favored. On the contrary, the solvent polarity has a significant effect on the mechanism of the antioxidant activity, since the polarity of the solvent increases the contribution of the SPLET mechanism.
Collapse
Affiliation(s)
- Roumaissa Khelifi
- Faculté des sciences, Département de chimie, Université de Msila, M'sila, Algeria
- Laboratoire des Matériaux Inorganiques (LMI), Université de Msila, M'sila, Algeria
| | - Nadjia Latelli
- Faculté des sciences, Département de chimie, Université de Msila, M'sila, Algeria
- Laboratoire chimie des matériaux et des vivants: activité, réactivité, Université El-Hadj Lakhdar Batna, Batna, Algeria
| | - Zoulikha Charifi
- Department of Physics, Faculty of Science, University of M'sila, M'sila, Algeria
- Laboratory of Physics and Chemistry of Materials, University of M'sila, M'sila, Algeria
| | - Christophe Morell
- Université de Lyon, Université Lyon 1 et CNRS UMR 5280, Institut des Sciences Analytiques, Villeurbanne, France
| | - Henry Chermette
- Université de Lyon, Université Lyon 1 et CNRS UMR 5280, Institut des Sciences Analytiques, Villeurbanne, France
| |
Collapse
|
16
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
17
|
Olszowy-Tomczyk M, Typek R. Transformation of phenolic acids during radical neutralization. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:790-797. [PMID: 38410270 PMCID: PMC10894153 DOI: 10.1007/s13197-023-05879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 12/08/2021] [Accepted: 10/21/2023] [Indexed: 02/28/2024]
Abstract
Negative influence of reactive oxygen species on living organisms and stability of food products is the reason for significant interest in the substances exhibiting antioxidant properties. Phenolic acids are very popular among the known diet antioxidants. The paper presents the results of research on the application of chromatographic measurements for determination of antioxidant changes and products of radical neutralization reaction for the chosen phenolic acids (caffeic, ferulic, p-coumaric, protocatechuic and vanilic). The measurements were performed using the ABTS method in a long period time (8 days). The experiments have shown that the examined acids were depletion to ca 50 h but the reaction products (dimers or quinones) were converted into new compounds, observed in both methanolic and ethanolic measuring systems after a given period of time. The obtained results seem to be important in the context of living organisms because the biological activity of transformation products and their impact on human health have not been fully recognized yet. Moreover, the presented results can be interesting for both the producer and the consumer of food as generated substances may have influence on the nutritional value as well as the taste and aroma of the food in which phenolic compounds are applied. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05879-w.
Collapse
Affiliation(s)
- Małgorzata Olszowy-Tomczyk
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Pl. Marii Curie Sklodowskiej 3, 20-031 Lublin, Poland
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Pl. Marii Curie Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
18
|
Abraham AB, Panneerselvam M, Ebenezer C, Costa LT, Vijay Solomon R. A theoretical study on radical scavenging activity of phenolic derivatives naturally found within Alternaria alternata extract. Org Biomol Chem 2024; 22:2059-2074. [PMID: 38363153 DOI: 10.1039/d3ob02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The increasing oxidative stress demands potential chemical compounds derived from natural resources with good antioxidant activity to overcome adverse health issues. In this context, we investigated the antioxidant properties of four dibenzopyrone phenolic compounds obtained from the endophytic fungus Alternaria alternata: altenusin, altenusin B, alterlactone, and dehydroaltenusin using DFT calculations. Our investigation focused on understanding the structure-antioxidant property relationship. It delved into probing the activity by modelling the antioxidant mechanisms. The computed transition states and thermochemical parameters, along with the structural attributes, indicate that altenusin B has good antioxidant efficacy among the four compounds, and it follows the HAT mechanism in an aqueous phase. Remarkably, our findings indicate that altenusin B exhibits potent HOO˙ radical scavenging properties, characterized by the computed high rate constant. The molecular docking studies of these compounds with the pro-oxidant enzyme xanthine oxidase (XO) gave insights into the binding modes of the compounds in the protein environment. Furthermore, molecular dynamics (MD) simulations were employed to study the interaction and stability of the compounds inside the XO enzyme. Our exploration sheds light on the radical scavenging potential of the -OH sites and the underlying antioxidant mechanisms that underpin the compounds' effective antioxidant potential.
Collapse
Affiliation(s)
- Alen Binu Abraham
- Department of Chemistry, St Stephen's College, Affiliated to the University of Delhi, Delhi - 110007, India
| | - Murugesan Panneerselvam
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| | - Luciano T Costa
- MolMod-CS - Instituto de Química, Universidade Federal Fluminense, Campos Valonginho s/n, Centro, Niterói 24020-14, Rio de Janeiro, Brazil
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), Affiliated to the University of Madras, Chennai - 600 059, Tamil Nadu, India.
| |
Collapse
|
19
|
Chanu WK, Chatterjee A, Singh N, Nagaraj VA, Singh CB. Phytochemical screening, antioxidant analyses, and in vitro and in vivo antimalarial activities of herbal medicinal plant - Rotheca serrata (L.) Steane & Mabb. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117466. [PMID: 37981115 DOI: 10.1016/j.jep.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is a major global health concern that is presently challenged by the emergence of Plasmodium falciparum (Pf) resistance to mainstay artemisinin-based combination therapies (ACTs). Hence, the discovery of novel and effective antimalarial drugs is pivotal to treating and controlling malaria. For many years, traditional plant-based herbal medicines have been employed in the treatment of various illnesses. Rotheca serrata (L.) Steane & Mabb. belongs to the Lamiaceae family that has been traditionally used to treat, cure, and prevent numerous diseases including malaria. AIM The present investigation sought to assess the phytoconstituents, antioxidant, cytotoxicity, antimalarial activities of Rotheca serrata extract and its fractions. The in vitro antiplasmodial activity was assessed in chloroquine-sensitive Pf3D7 and artemisinin-resistant PfCam3.IR539T cultures, and the in vivo antimalarial activity was analyzed in Plasmodium berghei (Pb) ANKA strain-infected BALB/c mouse model. MATERIALS AND METHODS The fresh leaves of Rotheca serrata were extracted in methanol (RsMeOH crude leaf extract). A portion of the extract was used to prepare successive solvent fractions using ethyl acetate (RsEA) and hexane (RsHex). The in vitro antiplasmodial activity was evaluated using [3H]-hypoxanthine incorporation assays against Pf3D7 and PfCam3.IR539T cultures. In vitro cytotoxicity study on HeLa, HEK-293T, and MCF-7 cell lines was carried out using MTT assay. The human red blood cells (RBCs) were used to perform the hemolysis assays. In vitro antioxidant studies and detailed phytochemical analysis were performed using GC-MS and FTIR. The four-day Rane's test was performed to evaluate the in vivo antimalarial activity against Pb ANKA strain-infected mice. RESULTS Phytochemical quantification of Rotheca serrata extract (RsMeOH) and its fractions (RsEA and RsHex) revealed that RsMeOH crude extract and RsEA fraction had higher contents of total phenol and flavonoid than RsHex fraction. The RsEA fraction showed potent in vitro antiplasmodial activity against Pf3D7 and PfCam3.IR539T with IC50 values of 9.24 ± 0.52 μg/mL and 17.41 ± 0.43 μg/mL, respectively. The RsMeOH crude extract exhibited moderate antiplasmodial activity while the RsHex fraction showed the least antiplasmodial activity. The GC-MS and FTIR analysis of RsMeOH and RsEA revealed the presence of triterpenes, phenols, and hydrocarbons as major constituents. The RsMeOH crude extract was non-hemolytic and non-cytotoxic to HeLa, HEK-293T, and MCF-7 cell lines. The in vivo studies showed that a 1200 mg/kg dose of RsMeOH crude extract could significantly suppress parasitemia by ∼63% and prolong the survival of treated mice by ∼10 days. The in vivo antiplasmodial activity of RsMeOH was better than the RsEA fraction. CONCLUSION The findings of this study demonstrated that traditionally used herbal medicinal plants like R. serrata provide a platform for the identification and isolation of potent bioactive phytochemicals that in turn can promote the antimalarial drug research. RsMeOH crude extract and RsEA fraction showed antiplasmodial, antimalarial and antioxidant activities. Chemical fingerprinting analysis suggested the presence of bioactive phytocompounds that are known for their antimalarial effects. Further detailed investigations on RsMeOH crude extract and RsEA fraction would be needed for the identification of the entire repertoire of the active antimalarial components with potent pharmaceutical and therapeutic values.
Collapse
Affiliation(s)
- Wahengbam Kabita Chanu
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
| | - Aditi Chatterjee
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India.
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
| | | | - Chingakham Brajakishor Singh
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
| |
Collapse
|
20
|
Pandey P, Grover K, Dhillon TS, Chawla N, Kaur A. Development and quality evaluation of polyphenols enriched black carrot (Daucus carota L.) powder incorporated bread. Heliyon 2024; 10:e25109. [PMID: 38322869 PMCID: PMC10844063 DOI: 10.1016/j.heliyon.2024.e25109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Black carrot is a prominent source of polyphenols and the cheapest source of anthocyanins in India. In this study, an attempt has been made to examine the feasibility of black carrot powder as an ingredient in bread. Black carrot bread was prepared by incorporating different concentrations of black carrot powder (BCP) at 2.5, 5.0, 7.5 and 10 %. The developed bread samples were analyzed for physical and textural quality, proximate composition, bioactive compounds, antioxidant properties, sensory characteristics, mineral content and storage quality. The results revealed that loaf volume and specific volume decreased (1995-1254 mL, 5.25-3.28 mL/g) with the incorporation of BCP into bread. Textural analysis revealed that the addition of BCP led to increased hardness in the bread (0.110-12 0.151 N), whereas the resilience (43.64-35.10 %), cohesion and springiness (89.930-13 82.146 %) decreased significantly. The content of bioactive compounds such as total phenols, anthocyanins (29.63-112.68 mg/100 g) and flavonoids increased to exceptionally high levels in BCP-incorporated bread and showed high antioxidant activity. Incorporation of BCP up to 7.5 % showed the most acceptable sensory analysis score (7.85) with a significant increase in dietary fiber (40 %) and total mineral content (50 %), which revealed that black carrot powder could be used up to 7.5 % as an ingredient into bread with high acceptability. The present study revealed significant enhancement in bioactive compounds and mineral content of bread after the incorporation of black carrot powder, which supports its immense potential in preventing hunger and oxidative stress-induced disorders in developing countries.
Collapse
Affiliation(s)
- Pragya Pandey
- Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, 224229, India
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kiran Grover
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Neena Chawla
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
21
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
22
|
Lazarova M, Tsvetanova E, Georgieva A, Stefanova M, Uzunova D, Denev P, Vassileva V, Tasheva K. Extracts of Sideritis scardica and Clinopodium vulgare Alleviate Cognitive Impairments in Scopolamine-Induced Rat Dementia. Int J Mol Sci 2024; 25:1840. [PMID: 38339117 PMCID: PMC10855470 DOI: 10.3390/ijms25031840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Sideritis scardica Griseb. and Clinopodium vulgare L., belonging to the Lamiaceae family, are rich in terpenoids and phenolics and exhibit various pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer activities. While the memory-enhancing impacts of S. scardica are well documented, the cognitive benefits of C. vulgare remain unexplored. This study assessed the potential effect of C. vulgare on learning and memory in healthy and scopolamine (Sco)-induced memory-impaired male Wistar rats, comparing it with the effects of S. scardica. Over a 21-day period, rats orally received extracts of cultivated S. scardica (200 mg/kg) and C. vulgare (100 mg/kg), either individually or in combination, with administration starting 10 days before and continuing 11 days simultaneously with Sco injection at a dose of 2 mg/kg intraperitoneally. The results showed that both extracts effectively mitigated Sco-induced memory impairment. Their combination significantly improved recognition memory and maintained monoaminergic function. S. scardica excelled in preserving spatial working memory, while C. vulgare exhibited comparable retention of recognition memory, robust antioxidant activity and acetylcholinesterase inhibitory activity. The extracts alleviated Sco-induced downregulation of p-CREB/BDNF signaling, suggesting neuroprotective mechanisms. The extract combination positively affected most of the Sco-induced impairments, underscoring the potential for further investigation of these extracts for therapeutic development.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Science, 1113 Sofia, Bulgaria; (M.L.); (E.T.); (A.G.); (M.S.); (D.U.)
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Valya Vassileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria;
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
23
|
Gu NX, Palumbo CT, Bleem AC, Sullivan KP, Haugen SJ, Woodworth SP, Ramirez KJ, Kenny JK, Stanley LD, Katahira R, Stahl SS, Beckham GT. Autoxidation Catalysis for Carbon-Carbon Bond Cleavage in Lignin. ACS CENTRAL SCIENCE 2023; 9:2277-2285. [PMID: 38161372 PMCID: PMC10755848 DOI: 10.1021/acscentsci.3c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Selective lignin depolymerization is a key step in lignin valorization to value-added products, and there are multiple catalytic methods to cleave labile aryl-ether bonds in lignin. However, the overall aromatic monomer yield is inherently limited by refractory carbon-carbon linkages, which are abundant in lignin and remain intact during most selective lignin deconstruction processes. In this work, we demonstrate that a Co/Mn/Br-based catalytic autoxidation method promotes carbon-carbon bond cleavage in acetylated lignin oligomers produced from reductive catalytic fractionation. The oxidation products include acetyl vanillic acid and acetyl vanillin, which are ideal substrates for bioconversion. Using an engineered strain of Pseudomonas putida, we demonstrate the conversion of these aromatic monomers to cis,cis-muconic acid. Overall, this study demonstrates that autoxidation enables higher yields of bioavailable aromatic monomers, exceeding the limits set by ether-bond cleavage alone.
Collapse
Affiliation(s)
- Nina X. Gu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Chad T. Palumbo
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Alissa C. Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kevin P. Sullivan
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Stefan J. Haugen
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sean P. Woodworth
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kelsey J. Ramirez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa D. Stanley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Rui Katahira
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
24
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
25
|
Potra Cicalău GI, Ciavoi G, Scrobotă I, Marcu AO, Romanul I, Marian E, Vicaș LG, Ganea M. Assessing the Antioxidant Benefits of Topical Carvacrol and Magnolol Periodontal Hydrogel Therapy in Periodontitis Associated with Diabetes in Wistar Rats. Dent J (Basel) 2023; 11:284. [PMID: 38132422 PMCID: PMC10742747 DOI: 10.3390/dj11120284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
It is well recognized that oxidative stress contributes to chronic stress-induced cytotoxicity, which is a major factor in the progression of many diseases, including periodontitis and diabetes. Formulas based on natural extracts with antioxidant properties are alternative treatment perspectives in the management of such diseases. The aim of our study was to assess how carvacrol and magnolol influence periodontitis associated with diabetes in Wistar rats. Ninety Wistar rats were distributed in nine groups: I-control group; II-diabetes group (D); III-periodontitis group (P); IV-periodontitis and diabetes group (PD); V-periodontitis and diabetes with vehicle alone (PDV); VI-periodontitis and diabetes treated with carvacrol (PDC); VII-periodontitis and diabetes treated with magnolol (PDM); VIII-periodontitis and diabetes treated with carvacrol and magnolol (PDCM); IX-healthy group with vehicle alone (CV). Blood malondialdehyde (MDA) levels and catalase activity levels (CAT) were measured as indicators of oxidative stress and antioxidant capacity, respectively. Where diabetes and periodontitis were induced, MDA was augmented and CAT was depleted significantly. Whether given alone (PDM) or in combination with carvacrol (PDCM), magnolol significantly decreased MDA. Between the PDM group and the PDCM group, there were no notable differences. In Wistar rats with periodontitis related to diabetes, topical use of hydrogels containing magnolol, either alone or in combination with carvacrol, may reduce oxidative stress.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.I.P.C.); (G.C.); (I.R.)
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.I.P.C.); (G.C.); (I.R.)
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.I.P.C.); (G.C.); (I.R.)
| | - Andreea Olivia Marcu
- Preclinics Department, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ioana Romanul
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.I.P.C.); (G.C.); (I.R.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (E.M.); (L.G.V.); (M.G.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (E.M.); (L.G.V.); (M.G.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (E.M.); (L.G.V.); (M.G.)
| |
Collapse
|
26
|
Shahab-Navaei F, Asoodeh A. Synthesis of optimized propolis solid lipid nanoparticles with desirable antimicrobial, antioxidant, and anti-cancer properties. Sci Rep 2023; 13:18290. [PMID: 37880491 PMCID: PMC10600131 DOI: 10.1038/s41598-023-45768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
This study aimed to produce stable propolis nanoparticles with a size below 100 nm, suitable for various applications in industries such as pharmaceuticals, medicine, cosmetics, food, and packaging. To achieve this, propolis solid lipid nanoparticles (PSLNs) were synthesized using the hot homogenization method, and the optimized nanoparticles were analyzed using Design Expert software. The properties of the synthesized PSLN were characterized using UV-visible spectroscopy, FTIR, XRD, PSA, TEM, and zeta potential analysis. The results indicated that PSLNs with a size range of 57 ± 15 nm remained stable in an aqueous medium at pH 7.4. HPLC analysis showed that the active ingredient of phenols and flavonoids in the extract remained stable after the formation of PSLNs. Antioxidant and antibacterial properties of the extract and nanoparticles were also evaluated. The results demonstrated that the biological properties of the extract were effectively preserved in PSLNs, Additionally, the PSLN synthesized exhibited remarkable anticancer properties against the A549 cell line and with IC50 of 0.01 mg/ml after 72 h-treatment. In conclusion, the optimized PSLNs can be utilized as antioxidant and antibacterial additives and have the potential to be used as a drug or drug carrier for the treatment of lung cancer.
Collapse
Affiliation(s)
- Fatemeh Shahab-Navaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
27
|
Mercogliano M, Iesce MR, Alfieri ML, Buommino E, DellaGreca M. Hands-on synthesis of furanamides and evaluation of their antimicrobial activity. Nat Prod Res 2023; 37:3484-3491. [PMID: 35700078 DOI: 10.1080/14786419.2022.2087220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Diverse natural and synthetic furan derivatives have shown biological activity. Here, we describe the preparation of benzyl and arylethyl β-furanamides with OH or OMe aryl substituents by an adapted sustainable method from a furoic acid using methyl chloroformate. Symmetric and asymmetric β,β'-furanamides have instead been prepared using azabenzotriazole based catalyst (HATU). The products have been evaluated for their antimicrobial properties on Gram positive and Gram negative bacteria. Just a minimal not-significant activity has been observed in some derivatives.
Collapse
Affiliation(s)
- Marcello Mercogliano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
- Institute of Biomolecular Chemistry (CNR), Pozzuoli, Napoli, Italy
| | - Maria Rosaria Iesce
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | | | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| |
Collapse
|
28
|
Pan W, Giovanardi I, Sagynova T, Cariola A, Bresciani V, Masetti M, Valgimigli L. Potent Antioxidant and Anti-Tyrosinase Activity of Butein and Homobutein Probed by Molecular Kinetic and Mechanistic Studies. Antioxidants (Basel) 2023; 12:1763. [PMID: 37760066 PMCID: PMC10525132 DOI: 10.3390/antiox12091763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Butein (BU) and homobutein (HB) are bioactive polyhydroxylated chalcones widespread in dietary plants, whose antioxidant properties require mechanistic definition. They were investigated by inhibited autoxidation kinetic studies of methyl linoleate in Triton™ X-100 micelles at pH 7.4, 37 °C. Butein had kinh = (3.0 ± 0.9) × 104 M-1s-1 showing a chain-breaking mechanism with higher antioxidant activity than reference α-tocopherol (kinh = (2.2 ± 0.6) × 104 M-1s-1), particularly concerning the stoichiometry or peroxyl radical trapping n = 3.7 ± 1.1 vs. 2.0 for tocopherol. Homobutein had kinh = (2.8 ± 0.9) × 103 M-1s-1, pairing the relative BDEOH measured by radical equilibration EPR as 78.4 ± 0.2 kcal/mol for BU and estimated as 82.6 kcal/mol for HB. The inhibition of mushroom tyrosinase (mTYR) by HB and BU was also investigated. BU gives a reversible uncompetitive inhibition of monophenolase reaction with KI' = 9.95 ± 2.69 µM and mixed-type diphenolase inhibition with KI = 3.30 ± 0.75 µM and KI' = 18.75 ± 5.15 µM, while HB was nearly competitive toward both mono- and diphenolase with respective KI of 2.76 ± 0.70 µM and 2.50 ± 1.56 µM. IC50 values (monophenolase/diphenolase at 1 mM substrate) were 10.88 ± 2.19 µM/15.20 ± 1.25 µM, 14.78 ± 1.05 µM/12.36 ± 2.00 µM, and 33.14 ± 5.03 µM/18.27 ± 3.42 µM, respectively, for BU, HB, and reference kojic acid. Molecular docking studies confirmed the mechanism. Results indicate very potent antioxidant activity for BU and potent anti-tyrosinase activity for both chalcones, which is discussed in relation to bioactivity toward protection from skin disorders and food oxidative spoilage.
Collapse
Affiliation(s)
- Wenkai Pan
- Department of Chemistry “G. Ciamician”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Ilaria Giovanardi
- Department of Chemistry “G. Ciamician”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy
| | - Tomiris Sagynova
- Department of Chemistry “G. Ciamician”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy
| | - Alice Cariola
- Department of Chemistry “G. Ciamician”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy
| | - Veronica Bresciani
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47922 Rimini, Italy
| |
Collapse
|
29
|
Chen F, Wang Y, Wang K, Chen J, Jin K, Peng K, Chen X, Liu Z, Ouyang J, Wang Y, Zhang X, Zou H, Zhou J, He B, Lin Q. Effects of Litsea cubeba essential oil on growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora of pigs. Front Pharmacol 2023; 14:1166022. [PMID: 37465523 PMCID: PMC10350539 DOI: 10.3389/fphar.2023.1166022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of Litsea cubeba essential oil (LCO) on the growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora in fattening pigs. A total of 120 pigs were randomly assigned to five groups, with six replicate pens per treatment and four pigs per pen, and they were fed basal diet, chlortetracycline (CTC), and low-, medium-, and high-concentration LCO. The results of the study showed that compared with the control treatment and CTC addition treatment of the basic diet, the catalase level in the serum of the pigs treated with 500 mg/kg LCO in the diet of finishing pigs was significantly increased (p < 0.05). The apparent digestibility of crude protein, crude ash, and calcium in pigs with different levels of LCO was significantly increased compared with the control treatments fed the basal diet (p < 0.05). In addition, compared with the control treatment fed the basal diet and the treatment with CTC, the apparent digestibility of ether extract in pigs treated with medium-dose LCO was significantly increased (p < 0.05), and the apparent digestibility of pigs was significantly increased after the addition of low-dose LCO (p < 0.05). Among the genera, the percentage abundance of SMB53 (p < 0.05) was decreased in the feces of the CTC group when compared to that in the medium-LCO group. At the same time, the relative abundance of L7A_E11 was markedly decreased in the feces of the control and medium- and high-concentration LCO group than that in the CTC group (p < 0.05). In conclusion, adding the level of 250 mg/kg LCO in the diet of pig could improve the growth performance and blood physiological and biochemical indicators of pigs, improve the antioxidant level of body and the efficiency of digestion and absorption of nutrients, and show the potential to replace CTC.
Collapse
Affiliation(s)
- Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yushi Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Ke Jin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kaiqiang Peng
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Xu Chen
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Zhimou Liu
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Jiang Ouyang
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yong Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaoya Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haowei Zou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
30
|
Tamim K, Gale CB, Silverthorne KEC, Lu G, Iao CH, Brook MA. Antioxidant Silicone Elastomers without Covalent Cross-Links. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:7062-7071. [PMID: 37192891 PMCID: PMC10171216 DOI: 10.1021/acssuschemeng.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/11/2023] [Indexed: 05/18/2023]
Abstract
Improved sustainability is associated with elastomers that readily breakdown in the environment at end of life and, as importantly, that can be reprocessed/reused long before end of life arises. We report the preparation of silicone elastomers that possess both thermoplasticity-reprocessability-and antioxidant activity. A combination of ionic and H-bonding links natural phenolic antioxidants, including catechol, pyrogallol, tannic acid, and others, to telechelic aminoalkylsilicones. The mechanical properties of the elastomers, including their processability, are intimately linked to the ratio of [ArOH]/[H2NR] that was found to be optimal when the ratio exceeded 1:1.
Collapse
Affiliation(s)
- Khaled Tamim
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Cody B. Gale
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Kaitlyn E. C. Silverthorne
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Guanhua Lu
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Cheok Hang Iao
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Michael A. Brook
- Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
31
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
32
|
Bakshi P, Sharma P, Chouhan R, Mir BA, Gandhi SG, Bhardwaj R, Alam P, Ahmad P. Interactive effect of 24-epibrassinolide and plant growth promoting rhizobacteria inoculation restores photosynthetic attributes in Brassica juncea L. under chlorpyrifos toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120760. [PMID: 36464116 DOI: 10.1016/j.envpol.2022.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chlorpyrifos (CP) is a commonly used organophosphorous pesticide that is frequently utilised in the agricultural industry because of its great efficiency and inexpensive cost. The focus of the present study was to assess the impact of CP toxicity on Brassica juncea L. and to unravel the ameliorative potential of phytohormone, 24-epibrassinolide (EBL) mediated plant-microbe (Pseudomonas aeruginosa (B1), Burkholderia gladioli (B2)) interaction in B. juncea L. The maximum significant increment in the total chlorophyll, carotenoids, xanthophyll, anthocyanin and flavonoid content with EBL and B2 treatment in CP stressed B. juncea seedlings on spectrophotometric analysis were observed. Autofluorescence imaging of photosynthetic pigments i.e. chlorophyll, carotenoids, and total phenols with confocal microscopy showed maximum fluorescence with EBL and B2. Furthermore, when compared to CP stressed seedlings, scanning electron microscopy (SEM) study of the abaxial surface of leaves revealed a recovery in stomatal opening. The supplementation of EBL and PGPR (plant growth promoting rhizobacteria) improved the level of psb A (D1 subunit PSII) and psb B (CP 47 subunit of PSII) genes expression. The expression analysis of chalcone synthase (CHS), Phenylalanine ammonialyase (PAL), Phyotene synthase (PSY) with RT-PCR system showed up-regulation in the expression when supplemented with EBL and PGPR. As a result, the current study suggests that EBL and PGPR together, can reduce CP-induced toxicity in B. juncea seedlings and recovering the seedling biomass.
Collapse
Affiliation(s)
- Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180001, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Life Science, Satellite Campus, University of Kashmir, Kargil, Jammu and Kashmir, 190006, India; Department of Botany, Kargil Campus, Khumbathang-Kargil, University of Ladakh, Ladakh, 194105, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu, 180001, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
33
|
Zhang L, Piao X. Use of aromatic plant-derived essential oils in meat and derived products: Phytochemical compositions, functional properties, and encapsulation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
34
|
Buonsenso F, Schiavon G, Spadaro D. Efficacy and Mechanisms of Action of Essential Oils' Vapours against Blue Mould on Apples Caused by Penicillium expansum. Int J Mol Sci 2023; 24:ijms24032900. [PMID: 36769223 PMCID: PMC9917833 DOI: 10.3390/ijms24032900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofumigation with slow-release diffusers of essential oils (EOs) of basil, oregano, savoury, thyme, lemon, and fennel was assessed for the control of blue mould of apples, caused by Penicillium expansum. In vitro, the ability of the six EOs to inhibit the mycelial growth was evaluated at concentrations of 1.0, 0.5, and 0.1%. EOs of thyme, savoury, and oregano, at all three concentrations, and basil, at 1.0 and 0.5%, were effective in inhibiting the mycelial growth of P. expansum. In vivo, disease incidence and severity were evaluated on 'Opal' apples artificially inoculated with the pathogen and treated at concentrations of 1.0% and 0.5% of EOs. The highest efficacy in reducing blue mould was observed with EOs of lemon and oregano at 1.0% after 60 days of storage at 1 ± 1 °C (incidence of rot, 3 and 1%, respectively) and after a further 14 days of shelf-life at 15 ± 1 °C (15 and 17%). Firmness, titratable acidity, and total soluble solids were evaluated at harvest, after cold storage, and after shelf-life. Throughout the storage period, no evident phytotoxic effects were observed. The EOs used were characterised through GC-MS to analyse their compositions. Moreover, the volatile organic compounds (VOCs) present in the cabinets were characterised during storage using the SPME-GC-MS technique. The antifungal effects of EOs were confirmed both in vitro and in vivo and the possible mechanisms of action were hypothesised. High concentrations of antimicrobial and antioxidant compounds in the EOs explain the efficacy of biofumigation in postharvest disease control. These findings provide new insights for the development of sustainable strategies for the management of postharvest diseases and the reduction of fruit losses during storage.
Collapse
Affiliation(s)
- Fabio Buonsenso
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giada Schiavon
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
- Correspondence:
| |
Collapse
|
35
|
Chen R, Funnell JL, Quinones GB, Bentley M, Capadona JR, Gilbert RJ, Palermo EF. Poly(pro-curcumin) Materials Exhibit Dual Release Rates and Prolonged Antioxidant Activity as Thin Films and Self-Assembled Particles. Biomacromolecules 2023; 24:294-307. [PMID: 36512693 DOI: 10.1021/acs.biomac.2c01135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin is a natural polyphenol that exhibits remarkable antioxidant and anti-inflammatory activities; however, its clinical application is limited in part by its physiological instability. Here, we report the synthesis of curcumin-derived polyesters that release curcumin upon hydrolytic degradation to improve curcumin stability and solubility in physiological conditions. Curcumin was incorporated in the polymer backbone by a one-pot condensation polymerization in the presence of sebacoyl chloride and polyethylene glycol (PEG, Mn = 1 kDa). The thermal and mechanical properties, surface wettability, self-assembly behavior, and drug-release kinetics all depend sensitively on the mole percentage of curcumin incorporated in these statistical copolymers. Curcumin release was triggered by the hydrolysis of phenolic esters on the polymer backbone, which was confirmed using a PEGylated curcumin model compound, which represented a putative repeating unit within the polymer. The release rate of curcumin was controlled by the hydrophilicity of the polymers. Burst release (2 days) and extended release (>8 weeks) can be achieved from the same polymer depending on curcumin content in the copolymer. The materials can quench free radicals for at least 8 weeks and protect primary neurons from oxidative stress in vitro. Further, these copolymer materials could be processed into both thin films and self-assembled particles, depending on the solvent-based casting conditions. Finally, we envision that these materials may have potential for neural tissue engineering application, where antioxidant release can mitigate oxidative stress and the inflammatory response following neural injury.
Collapse
Affiliation(s)
- Ruiwen Chen
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jessica L Funnell
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Geraldine B Quinones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Marvin Bentley
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Albany Stratton Veteran Affairs Medical Center, Albany, New York 12208, United States
| | - Edmund F Palermo
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
36
|
Li X, Zhang J, Liu C, Mu W, Kong Z, Li Y, Wang Z, Yu Q, Cheng G, Chen L. Effects of Pine Needle Extracts on the Degradation of LLDPE. Polymers (Basel) 2022; 15:polym15010032. [PMID: 36616382 PMCID: PMC9824879 DOI: 10.3390/polym15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Polyolefin suffers from degradation during processing and application. To prolong the service life, antioxidants are needed in the packing formula of polyolefin products. The usage of natural antioxidants could avoid potential health hazards aroused by synthetic ones. Pine needles have long lives and hardly rot, suggesting their high resistance to degradation. To provide a new candidate of natural antioxidants and add more value to pine needles, pine needle extracts (PNE) were investigated as the antioxidant of linear low-density polyethylene (LLDPE). PNE-modified LLDPE (PE-PNE) exhibited much better short-term and long-term aging resistance than pure LLDPE (PE): Oxidation induction time (OIT) of PE-PNE was 52 times higher than that of PE, and the increments of carbonyl index (CI) of PE-PNE-1st samples placed under daylight and in the dark were approximately 75% and 63% of PE under the same conditions. It could be attributed to the attractive antioxidant capacity of PNE (IC50 of DPPH radical scavenging was 115 μg/mL). In addition, the PE-PNE sample showed high processing stability and maintenance of the mechanical property during multiple extrusions: only a 0.2 g/10 min decrease in melting flow rate was found after five extrusions; the tensile strength and elongation at break were almost unchanged. All results reveal that pine needle extracts could play a role in LLDPE stabilization. Moreover, as pine needles are mainly considered a kind of waste, the present study would benefit the budget-reducing polyolefin industry.
Collapse
Affiliation(s)
- Xiangyao Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jie Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chengchao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wenmin Mu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhe Kong
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan Li
- School of Biological and Chemical Engineering, Qingdao Technical College, Qingdao 266555, China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qing Yu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence: (Q.Y.); (L.C.)
| | - Guiqing Cheng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Long Chen
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence: (Q.Y.); (L.C.)
| |
Collapse
|
37
|
Characterization of Hypolipidemic Phenol Analogues from Fermented Tea by Eurotium cristatum. Foods 2022; 12:foods12010049. [PMID: 36613264 PMCID: PMC9818934 DOI: 10.3390/foods12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fuzhuan brick tea (FBT), a type of black tea, is a traditional beverage in China, especially popular among frontier ethnic groups. FBT is well-known for its health benefits, such as hypoglycemic, anti-hypertensive, anti-inflammatory, diuretic, and detoxification effects. Nevertheless, the underlying mechanisms on the molecular level are still elusive and the key compounds responsible for the health benefits are unidentified. Previous studies have mainly focused on functional studies of the water extract. However, FBT is typically cooked with butter or milk. Therefore, we hypothesized that some lipophilic components in FBT, which can be absorbed through the co-consumption of butter or milk, may play an important role in the health benefits. The present study aimed to investigate whether the liposoluble extract of FBT alleviates symptoms related to metabolic diseases and to identify the active compounds involved. By comparing the high-performance liquid chromatography (HPLC) profiles of water, milk and hexane extract, some low polarity peaks were observed in the milk and hexane extracts. Furthermore, the hexane extract treatment alleviated body weight gain, serum total cholesterol and triglyceride levels, and inhibited the accumulation of hepatic fat granules in a high-fat diet (HFD)-induced C57BL/6N mouse model. In order to identify the key functional lipophilic compounds in FBT, the hexane extract of FBT was subjected to chemical characterization. Four phenol analogs were characterized, namely, isodihydroauroglaucin (1), dihydroauroglaucin (2), tetrahydroauroglaucin (3), and flavoglaucin (4). Compounds 1 and 4 reduced the levels of total cholesterol and triglyceride in vivo. Both compounds also inhibited the high-fat diet-induced body weight gain and accumulation of fat granules in the liver of C57BL/6N mice. Isodihydroauroglaucin and flavoglaucin have therefore been identified as bioactive ingredients that contribute to the health benefits of FBT.
Collapse
|
38
|
Amić A, Cagardová DM. Mactanamide and lariciresinol as radical scavengers and Fe 2+ ion chelators - A DFT study. PHYTOCHEMISTRY 2022; 204:113442. [PMID: 36150528 DOI: 10.1016/j.phytochem.2022.113442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A DFT based kinetic study of OOH radical scavenging potency of mactanamide (MA) and lariciresinol (LA), two natural polyphenols, indicates their nearly equal potential via the proton coupled electron transfer (PCET) mechanism in lipid media. Contribution of C-H bond breaking to this potency is negligible compared to O-H bond breaking, contrary to recent claims. The predicted potency of both compounds is not sufficient to protect biological molecules from oxidative damage in lipid media. In aqueous media, the scavenging potency of MA and LA phenoxide anions via the single electron transfer (SET) mechanism is much higher and may contribute to the protection of lipids, proteins, and DNA from OOH radical damage. Also, MA and LA have the potential to chelate catalytic Fe2+ ions, thus suppressing the formation of dangerous OH radicals via Fenton-type reactions. The monoanionic species of MA and LA show stronger monodentate chelating ability with Fe2+ ion compared to its neutral form. The dianionic specie LA2- exhibited the highest chelation ability with Fe2+ ion via bidentate 1:2 coordination. However, direct radical scavenging and metal chelation could be rarely operative in vivo because MA and LA presumably achieve very low concentrations in systemic circulation.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, Osijek, 31000, Croatia.
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, SK-812 37, Slovak Republic
| |
Collapse
|
39
|
Biela M, Kleinová A, Klein E. Guaiacol oxidation: theoretical insight into thermochemistry of radical processes involving methoxy group demethylation. Free Radic Res 2022; 56:730-739. [PMID: 36669169 DOI: 10.1080/10715762.2023.2170880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Guaiacol (2-methoxyphenol) is naturally occurring phenolic compound essential in various research areas. Oxidative transformation of guaiacol can lead to the formation of various products, including 1,3-benzodioxole or ortho-quinone. Therefore, this study is focused on the investigation of the reaction enthalpies of experimentally observed guaiacol oxidation pathways in gas-phase, as well as in non-polar environment and aqueous solution. Corresponding Density Functional Theory (DFT) calculations were carried out using two hybrid functionals (M06-2X and B3LYP-D3). All reaction enthalpies, as well as Gibbs free energies, were also calculated using composite ab initio G4 method. M06-2X and G4 results show mutual agreement and the best accordance with available experimentally determined reaction enthalpies. Obtained Gibbs free reaction energies indicate that formation of ortho-quinone is thermodynamically preferred to formation of 1,3-benzodioxole at 298 K in studied environments. Moreover, all computational methods confirm that the reaction enthalpy of methoxy group demethylation, i.e. O-C bond dissociation enthalpy (BDE), is substantially lower in comparison to the enthalpy of hydrogen atom transfer from phenolic OH group. In the case of phenoxide anion of guaiacol, which can be formed in ionization supporting solvents, O-C BDE shows further significant decrease, exceeding 50 kJ mol-1, in comparison to parent molecule.HIGHLIGHTSReaction enthalpies and Gibbs free energies of individual steps of guaiacol transformation to 1,3-benzodioxole or ortho-quinone are studied in three environments.M06-2X functional and composite ab initio G4 methods provide reliable O-H and O-C bond dissociation enthalpies.Dissociation enthalpy of methoxy group O-C bond is lower by ca. 100 kJ mol-1 in comparison to phenolic O-H bond.Phenoxide anion of guaiacol shows substantially lower O-C BDE than parent molecule.
Collapse
Affiliation(s)
- Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Andrea Kleinová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| |
Collapse
|
40
|
Kumar A, Borisova G, Maleva M, Tripti, Shiryaev G, Tugbaeva A, Sobenin A, Kiseleva I. Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L. Microorganisms 2022; 10:2164. [PMID: 36363756 PMCID: PMC9695043 DOI: 10.3390/microorganisms10112164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Metal tolerant plant growth-promoting (PGP) rhizobacteria are promising for enhancing plant productivity under copper (Cu) stress. Present pot scale experiment was conducted on Brassica napus L. to check the efficiency of rhizobacteria isolated from the rhizosphere of Tussilago farfara L. growing on Cu-contaminated soils. Out of fifty Cu tolerant strains, three isolates which showed multiple PGP traits such as indole-3-acetic acid (IAA) synthesis, phosphate (PS) solubilization, siderophore and ammonia production were identified preliminarily by morphological and physiological characteristics followed by 16S rRNA gene sequencing. The best Bacillus altitudinis strain TF16a which showed IAA: 15.5 mg L-1, PS: 215 mg L-1, siderophore halo zone ratio of 3.0 with high ammonia production was selected to prepare a biochar-based biofertilizer (BF). Seedling test showed maximum growth of B. napus shoot and root in presence of 5% of BF and this concentration was selected for further experiment. The pot experiment included four treatments: control (soil), 100Cu (100 mg Cu kg-1 soil), 5%BF (v/v), and 5%BF+100Cu, which were carried out for 30 days, after which the morphological, physiological, and biochemical parameters of B. napus were studied. The Cu treatment caused its accumulation in shoot and root up to 16.9 and 30.4 mg kg-1 DW, respectively, and increased malondialdehyde (MDA) content by 20%. Application of BF with copper led to the decrease in the Cu accumulation by 20% for shoot and 28% for root while MDA content was the same as in the control. Both treatments of BF with and without Cu increased chlorophyll a and b content by 1.3 times on average as well as non-enzymatic antioxidants such as soluble phenolic compounds (1.3 times) and free proline (1.6 times). Moreover, BF + Cu led to the increase in the biomass of shoot and root by 30 and 60%, respectively, while there was no significant effect on the growth characteristics of plants after the addition of BF without Cu. The study elucidates that BF based on B.altitudinis strain TF16a and biochar can be a promising bioformulation which could increase rapeseed growth under the moderate Cu concentration in soil.
Collapse
Affiliation(s)
- Adarsh Kumar
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Galina Borisova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Maria Maleva
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Tripti
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Grigory Shiryaev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Anastasia Tugbaeva
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Artem Sobenin
- Institute of Mining of the Ural Branch of RAS, 620075 Yekaterinburg, Russia
| | - Irina Kiseleva
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia
| |
Collapse
|
41
|
Aziz M, Ahmad S, Khurshid U, Pervaiz I, Lodhi AH, Jan N, Khurshid S, Arshad MA, Ibrahim MM, Mersal GAM, Alenazi FS, Awadh Saleh Alamri A, Butt J, Saleem H, El-Bahy ZM. Comprehensive Biological Potential, Phytochemical Profiling Using GC-MS and LC-ESI-MS, and In-Silico Assessment of Strobilanthes glutinosus Nees: An Important Medicinal Plant. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206885. [PMID: 36296481 PMCID: PMC9608989 DOI: 10.3390/molecules27206885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Plants of the genus Strobilanthes have notable use in folklore medicines as well as being used for pharmacological purposes. The present work explored the biological predispositions of Strobilanthes glutinosus and attempted to accomplish a comprehensive chemical profile through GC-MS of different fractions concerning polarity (chloroform and n-butanol) and LC-ESI-MS of methanolic extract by both positive and negative ionization modes. The biological characteristics such as antioxidant potential were assessed by applying six different methods. The potential for clinically relevant enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibition was examined. The DPPH, ABTS, CUPRAC, and FRAP results revealed that the methanol fraction presented efficient results. The phosphomolybdenum assay revealed that the n-hexane fraction showed the most efficient results, while maximum metal chelation potential was observed for the chloroform fraction. The GC-MS profiling of n-butanol and chloroform fractions revealed the existence of several (110) important compounds presenting different classes (fatty acids, phenols, alkanes, monoterpenes, diterpenes, sesquiterpenoids, and sterols), while LC-ESI-MS tentatively identified the presence of 44 clinically important secondary metabolites. The n-hexane fraction exhibited the highest potential against α-amylase (497.98 mm ACAE/g extract) and α-glucosidase (605.85 mm ACAE/g extract). Significant inhibitory activity against tyrosinase enzyme was displayed by fraction. Six of the prevailing compounds from the GC-MS study (lupeol, beta-amyrin, stigmasterol, gamma sitosterol, 9,12-octadecadienoic acid, and n-hexadecanoic acid) were modelled against α-glucosidase and α-amylase enzymes along with a comparison of binding affinity to standard acarbose, while three compounds identified through LC-ESI-MS were docked to the mushroom tyrosinase enzyme and presented with significant biding affinities. Thus, it is assumed that S. glutinosus demonstrated effective antioxidant and enzyme inhibition prospects with effective bioactive molecules, potentially opening the door to a new application in the field of medicine.
Collapse
Affiliation(s)
- Marya Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (U.K.); (H.S.)
| | - Irfan Pervaiz
- Department of Pharmacy, University of Chenab, Gujrat 50700, Pakistan
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology, Mirpur 10250, Pakistan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sameera Khurshid
- Bahawalpur College of Pharmacy, Bahawalpur Medical and Dental College, Bahawalpur 63100, Pakistan
| | - Muhammad Adeel Arshad
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Fahaad S. Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail 55473, Saudi Arabia
- Medical Education Unit, College of Medicine, University of Hail, Hail 55473, Saudi Arabia
| | - Ahmed Awadh Saleh Alamri
- Medical Services, Ministry of Interior-Security Forces Hospital in Najran, Najran 66256, Saudi Arabia
| | - Juwairiya Butt
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 54000, Pakistan
- Correspondence: (U.K.); (H.S.)
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
42
|
Theofanous A, Sarli I, Fragou F, Bletsa E, Deligiannakis Y, Louloudi M. Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12333-12345. [PMID: 36165696 DOI: 10.1021/acs.langmuir.2c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen-atom-transfer (HAT) is among the key mechanisms of antioxidant and antiradical activity in natural systems. Hyaluronic acid (HyA) is currently used extensively in health and cosmetics applications. Herein it is shown that {HyA@SiO2} hybrids based on hyaluronic acid (HyA) components grafted on SiO2 nanoparticles enable significant HAT activity versus DPPH radicals, while the homogeneous HyA counterparts are practically inactive. The {HyA@SiO2} hybrids consist of the two building blocks of HyA [d-glucuronic acid (GLA) and N-acetyl-d-glucosamine (GLAM)] covalently grafted on SiO2 nanoparticles. Based on the kinetic-thermodynamic Arrhenius study, we show that the {SiO2@GLA} hybrids operate spontaneously via hydrogen-atom-transfer (HAT) with a low activation energy barrier, i.e., by ΔΕα ∼ 20 kJ/mol vs the nongrafted counterparts. Moreover, a doubly grafted {GLA@SiO2@GLAM} nanohybrid, i.e. that contains both components of HyA, shows the most significant antioxidant activity. FTIR and Raman analysis reveal that local H-bonding between the SiO2 matrix, GLA, and GLAM in {GLA@SiO2@GLAM} decreases the activation barrier of the HAT mechanism. Thus, {GLA@SiO2@GLAM} nanohybrids exemplify a novel family of materials that are not the mere sum of their components. The present case is the first example of non-phenolic molecules being able to perform antiradical HAT, opening new perspectives not foreseen until today.
Collapse
Affiliation(s)
- Annita Theofanous
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Panepistimioupoli Ioannina, Greece
| | - Irene Sarli
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Panepistimioupoli Ioannina, Greece
| | - Fotini Fragou
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Panepistimioupoli Ioannina, Greece
| | - Eleni Bletsa
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Panepistimioupoli Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Panepistimioupoli Ioannina, Greece
| | - Maria Louloudi
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Panepistimioupoli Ioannina, Greece
| |
Collapse
|
43
|
Mena LD, Baumgartner MT. Chalcogen Atoms as Electron Donors in Proton-Coupled Electron Transfer Reactions. J Am Chem Soc 2022; 144:15922-15927. [PMID: 36018719 DOI: 10.1021/jacs.2c05602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions are crucial for the optimal functioning of a broad scope of chemical and biological processes. In this report, we present an unprecedented type of concerted PCET (cPCET), in which a chalcogen atom acts as the electron donor. The nature of this mechanism is key for understanding the reactivity of different radical-trapping antioxidants having heavy chalcogens (S, Se, or Te) in their structures. Moreover, this chalcogen-assisted cPCET is likely to be occurring in multiple systems of biological interest.
Collapse
Affiliation(s)
- Leandro D Mena
- QUIAMM-INBIOTEC-Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata B7600, Argentina
| | - María T Baumgartner
- INFIQC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000, Argentina
| |
Collapse
|
44
|
Biela M, Kleinová A, Klein E. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. PHYTOCHEMISTRY 2022; 200:113254. [PMID: 35623472 DOI: 10.1016/j.phytochem.2022.113254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Phenolic acids represent naturally occurring antioxidants and play important role in free radicals scavenging. In this work, we have studied thermodynamics of the first step of primary antioxidant action for phenolic OH groups of benzoic and cinnamic acid derivatives, and their carboxylate anions. M06-2X/6-311++G(d,p) reaction enthalpies related to Hydrogen Atom Transfer (HAT), Single Electron Transfer - Proton Transfer (SET-PT), and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms were computed for model non-polar environment (benzene) and aqueous solution. The effect of acid structure on found reaction enthalpies was investigated, as well. For HAT, representing relevant reaction path in both environments, the lowest O-H bond dissociation enthalpies, BDE, were found for sinapic acid (347 kJ mol-1 in benzene and 337 kJ mol-1 in water). With two exceptions, carboxylate anions show lower BDEs than parent acids. In aqueous solution, enthalpies of the first step of SPLET from phenolic OH groups are low (135-199 kJ mol-1). It indicates thermodynamic feasibility of the mechanism for acids, as well as their carboxylate anions. Although enthalpies of electron transfer from dianions formed after successive deprotonations of carboxyl and phenolic groups in water are usually higher than BDEs, differences are within 25 kJ mol-1. Demethylation of OCH3 groups may affect radical scavenging activity of studied substances due to O-CH3 BDE considerably lower (230-269 kJ mol-1) in comparison to O-H ones.
Collapse
Affiliation(s)
- Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Andrea Kleinová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia.
| |
Collapse
|
45
|
ANTIOXIDANT ACTIVITY OF TEMBESU (Fagraea fragrans Roxb.) LEAF. BIOVALENTIA: BIOLOGICAL RESEARCH JOURNAL 2022. [DOI: 10.24233/biov.8.2.2022.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herbal medicine is becoming a trend in curing several diseases especially degenerative because of the bad effects of synthetic drugs. Tembesu plant (Fagraea fragrans Roxb.) is traditionally used for degenerative diseases. This study aims to separate bioactive compounds (active fraction), pure isolate compounds from tembesu leaf, then observe antioxidant activity. The methods used are maceration extraction, liquid-liquid fractionation, purification of compounds by gravity chromatography column and antioxidant activity by scavenging DPPH radicals. The results showed that the active antioxidant fractions were n-hexane and ethyl acetate fractions. The results of purification of antioxidant compounds, obtained 6 isolates N1, N2, N4, N5, E8 and E11. Antioxidant activity (IC50) of pure isolates N1 (13.72 ppm), N2 (28.93 ppm), N4 (110.44 ppm), N5 (177.23 ppm), E8 (82.50 ppm) and E11 (12 ,86 ppm). The antioxidant compounds that have been isolated are terpenes (N1, N2, N4, E8), phenols (N5) and flavonoids (E11). This study concluded that tembesu leaf have antioxidant potential. Antioxidant bioactive compounds in tembesu leaf have the potential to be developed into standardized herbs and phytopharmaceuticals.
Collapse
|
46
|
Quantitative Structure-Property Relationship (QSPR) of Plant Phenolic Compounds in Rapeseed Oil and Comparison of Antioxidant Measurement Methods. Processes (Basel) 2022. [DOI: 10.3390/pr10071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natural antioxidants are known for their ability to scavenge free radicals and protect oils from oxidation. Our aim was to study the structural properties such as the number of hydroxyl groups and Bors criteria of phenolic substances leading to high antioxidant activity in oil in order to analyze common trends and differences in widespread in vitro antioxidant assays. Therefore, 20 different phenolic substances were incorporated into rapeseed oil and were measured using pressurized differential scanning calorimetry (P-DSC) and the Rancimat method. The Bors criteria had the highest influence on the antioxidant effect in rapeseed oil, which is why myricetin (MYR), fulfilling all Bors criteria, reached the highest result of the flavonoids. In the Rancimat test and P-DSC, MYR obtained an increase in oxidation induction time (OIT) of 231.1 ± 44.6% and 96.8 ± 1.8%, respectively. Due to differences in the measurement parameters, the results of the Rancimat test and P-DSC were only partially in agreement. Furthermore, we compared the results to in vitro assays (ABTS, DPPH, FC and ORAC) in order to evaluate their applicability as alternative rapid methods. These analysis showed the highest correlation of the oil methods with the results of the DPPH assay, which is, therefore, most suitable to predict the antioxidant behavior of oil.
Collapse
|
47
|
Scurti S, Caretti D, Mollica F, Di Antonio E, Amorati R. Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11061163. [PMID: 35740061 PMCID: PMC9219998 DOI: 10.3390/antiox11061163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are important materials for biomedical applications, and phenol capping is a common procedure to passivate their surface. As phenol capped SPION have been reported to behave as antioxidants, herein, we investigate the mechanism underlying this activity by studying the reaction with alkyl peroxyl (ROO•) radicals. SPION were prepared by coprecipitation of Fe(II) and Fe(III), using phenolic antioxidants (gallic acid, Trolox and nordihydroguaiaretic acid) as post-synthesis capping agents and by different purification procedures. The reactivity of ROO• was investigated by inhibited autoxidation studies, using styrene as an oxidizable substrate (solvent MeCN, 30 °C) and azo-bis(isobutyronitrile) as a radical initiator. While unprotected, bare SPION behaved as prooxidant, accelerating the O2 consumption of styrene autoxidation, phenol capping provided a variable antioxidant effect that was dependent upon the purification degree of the material. Thoroughly washed SPION, containing from 7% to 14% (w/w) of phenols, had a low reactivity toward peroxyl radicals, while SPION with a higher phenol content (46% to 55%) showed a strong radical trapping activity. Our results indicate that the antioxidant activity of phenol-capped SPION can be caused by its release in a solution of weakly bound phenols, and that purification plays a major role in determining the properties of these materials.
Collapse
Affiliation(s)
- Stefano Scurti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Daniele Caretti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, UdR INSTM of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; (S.S.); (D.C.)
| | - Fabio Mollica
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Erika Di Antonio
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via San Giacomo 11, 40126 Bologna, Italy; (F.M.); (E.D.A.)
- Correspondence:
| |
Collapse
|
48
|
Antioxidant potential of various extracts from 5 common European mosses and its correlation with phenolic compounds. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Summary
Introduction: This paper presents the results of research about the antioxidant properties of extracts from 5 moss species, namely Brachythecium rutabulum, Callicladium haldanianum, Hypnum cupressiforme, Orthodicranum montanum and Polytrichastrum formosum. The macerates of each above mentioned species in water and ethanol (50% and 96%) solutions were analysed.
Objective: Total phenolic acids, total flavonoids and total flavonols concentrations and content of carotenoids was determined. Also some phenolic compounds were determined by HPLC.
Methods: The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and the advanced oxidation protein products (AOPP) formation inhibition were studied.
Results: The obtained results showed that the extracts prepared with 50% ethanol had the strongest radical scavenging activities. Every 50% ethanol extract also inhibited formation of AOPP. 96% ethanol extracts had the lowest free radical scavenging activities, although B. rutabulum extract strongly inhibited protein oxidation. Pearson’s correlation showed that the radical scavenging effects of water extracts and extracts prepared with 50% ethanol are dependent on the presence of phenolic acids and flavonoids.
Conclusion: The results suggest the moss extracts as materials for potential use in pharmacy or cosmetology.
Collapse
|
49
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
50
|
Imran A, Shehzad MT, Shah SJA, Al Adhami T, Laws M, Rahman KM, Alharthy RD, Khan IA, Shafiq Z, Iqbal J. Development and exploration of novel substituted thiosemicarbazones as inhibitors of aldose reductase via in vitro analysis and computational study. Sci Rep 2022; 12:5734. [PMID: 35388067 PMCID: PMC8986850 DOI: 10.1038/s41598-022-09658-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
The role of aldose reductase (ALR2) in causing diabetic complications is well-studied, with overactivity of ALR2 in the hyperglycemic state leading to an accumulation of intracellular sorbitol, depletion of cytoplasmic NADPH and oxidative stress and causing a variety of different conditions including retinopathy, nephropathy, neuropathy and cardiovascular disorders. While previous efforts have sought to develop inhibitors of this enzyme in order to combat diabetic complications, non-selective inhibition of both ALR2 and the homologous enzyme aldehyde reductase (ALR1) has led to poor toxicity profiles, with no drugs targeting ALR2 currently approved for therapeutic use in the Western world. In the current study, we have synthesized a series of N-substituted thiosemicarbazones with added phenolic moieties, of which compound 3m displayed strong and selective ALR2 inhibitory activity in vitro (IC50 1.18 µM) as well as promising antioxidant activity (75.95% free radical scavenging activity). The target binding modes of 3m were studied via molecular docking studies and stable interactions with ALR2 were inferred through molecular dynamics simulations. We thus report the N-substituted thiosemicarbazones as promising drug candidates for selective inhibition of ALR2 and possible treatment of diabetic complications.
Collapse
Affiliation(s)
- Aqeel Imran
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.,Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.,School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | | | - Syed Jawad Ali Shah
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Taha Al Adhami
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Mark Laws
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Rima D Alharthy
- Chemistry Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Imtiaz Ali Khan
- Department of Entomology, Agricultural University, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Jamshed Iqbal
- Center for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan. .,Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|