1
|
Yin Q, Song X, Yang P, Yang W, Li X, Wang X, Wang S. Incorporation of glycyrrhizic acid and polyene phosphatidylcholine in lipid nanoparticles ameliorates acute liver injury via delivering p65 siRNA. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102649. [PMID: 36584740 DOI: 10.1016/j.nano.2022.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Liver injury caused by hepatitis is the pathological basis of varied hepatic diseases with high morbidity and mortality. Although siRNA appears promising in therapeutics of hepatitis, efficient and safe delivery remains a challenge. In this study, we developed a new strategy of incorporating glycyrrhizic acid (GA) and polyene phosphatidylcholine (PPC) into lipid nanoparticles (GA/PPC-modified LNPs), which was capable of promoting cellular uptake, enhancing gene-silencing, reducing cytotoxicity and improving siRNA stability. GA/PPC-modified LNP and siRNA lipoplex targeting NF-κB, a key mediator of inflammation, mitigates acute liver injury, as assessed by liver histology, hematological and pro-inflammatory cytokine analysis. Furthermore, GA/PPC-modified LNPs reveal efficiently intracellular delivery of antisense oligonucleotides (ASOs) and mRNA inhibiting viral infection. In conclusion, GA/PPC-modified LNPs could be used as a promising delivery system for nucleic acid-based therapy.
Collapse
Affiliation(s)
- Qiming Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Xiang Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China.
| | - Peng Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China
| | - Wen Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Xinyu Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xuejun Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China.
| | - Shengqi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China.
| |
Collapse
|
2
|
Wang H, Zhang B, Dong W, Li Y, Zhao L, Zhang Y. Effect of Diammonium Glycyrrhizinate in Improving Focal Cerebral Ischemia-Reperfusion Injury in Rats Through Multiple Mechanisms. Dose Response 2022; 20:15593258221142792. [PMID: 36479318 PMCID: PMC9720820 DOI: 10.1177/15593258221142792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Acute ischemic stroke is a current major disabling and killer disease worldwide. We aimed to investigate the protective effect and mechanism of diammonium glycyrrhizinate in alleviating acute ischemic stroke. METHODS Ninety male Sprague Dawley (SD) rats (weighing 250-300 g) were randomly allocated into three groups: sham operation group (sham group), diammonium glycyrrhizinate group (DG group) and model group (model group) each with 30 individuals. A rat model of focal CIR injury was established by reversible middle cerebral artery occlusion. RESULTS Zea-Longa scores for the rats in the DG group and model group were 7-fold and 8-fold higher than those of the sham group 2 h post-surgery (2.90 ± 0.99 vs. 0.30 ± 0.53, P < .05; 2.80 ± 0.61 vs. 0.30 ± 0.53, P < .05, respectively). Three days after model establishment, the scores of DG group were 26.92% lower compared with those of the model group (1.90 ± 0.76 vs. 2.60 ± 0.62, P < .05). In addition, compared with the sham group, the number of Nissl bodies and Akt-positive cells in were 27.35% and 30.42% lower in the hippocampus of the DG group (Nissl bodies: 83.40 ± 7.01 vs. 115.60 ± 11.97, p < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 136.10 ± 10.37, P < .05) and 58.65% and 57.31% lower in the model group (Nissl bodies: 47.80 ± 4.91 vs. 115.60 ± 11.97, P < .05; Akt-positive cells: 58.10 ± 4.98 vs. 136.10 ± 10.37, P < 0.05), respectively. However, the number of Nissl bodies and Akt-positive cells in the hippocampus of DG group were 74.48% and 62.9% higher compared with the model group, respectively (Nissl bodies: 83.40 ± 7.01 vs. 47.80 ± 4, P < 0.05; Akt-positive cells: 94.70 ± 8.23 vs. 58.10 ± 4.98, P < .05). In addition, compared with the sham group, the number of caspase-3-positive cells, the expression level of p38 mitogen-activated protein kinase (MAPK) and the expression of matrix metallopeptidase 9 (MMP-9) were 2-fold, 34.38%, 64.78% higher in the DG group (caspase-3-positive cells: 78.70 ± 6.52 vs. 27.10 ±3.00, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.32 ± 0.10, P < .05; MMP-9: 14.83 ± 1.18 vs. 9.00 ± 2.05, P < .05, respectively), and more than 3-fold, 1-fold and 1-fold higher in model group (caspase-3-positive cells: 121.10 ± 11.04 vs. 27.10 ± 3.00, P < .05; p-38MAPK: 0.70 ± 0.12 vs. 0.32 ± 0.10, P < .05; MMP-9: 19.00 ± 1.90 vs. 9.00 ± 2.05, P < .05), respectively. However, the number of caspase-3-positive cells and the expression levels of p-38MAPK and MMP-9 were 35.01%, 38.57% and 28.12% lower in DG group compared with the model group (caspase-3-positive cells: 78.70 ± 6.52 vs. 121.10 ± 11.04, P < .05; p-38MAPK: 0.43 ± 0.15 vs. 0.70 ± 0.12, P < .05; MMP-9: 14.83 ± 1.18 vs. 19.00 ± 1.90, P < .05). CONCLUSIONS Our study showed that diammonium glycyrrhizinate at 20 mg/kg/day had a protective effect on cerebral ischemia-reperfusion injury in rats by promoting formation of Nissl bodies and increasing protein expression of Akt while decreasing that of caspase-3, p38 MAPK and MMP-9, either directly or indirectly, by inhibiting apoptosis and reducing neuroinflammation. All these mechanisms resulted in improved overall neurological function.
Collapse
Affiliation(s)
- Hong Wang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| | - Binbin Zhang
- Department of Neurology,
Dongli District
Hospital, Tianjin, Chian
| | - Weiwei Dong
- Department of Nuclear Medicine,
The
Fourth Central Clinical School, Tianjin Medical
University, Tianjin, China
| | - Yuying Li
- Department of Neurology,
Tianjin
Medical University General Hospital,
Tianjin, China
| | - Liwen Zhao
- Department of Neurosurgery,
Tianjin
Medical University General Hospital Airport
Site, Tianjin, China
| | - Ying Zhang
- Rehabilitation Medical Department,
Tianjin
Union Medical Center, Rehabilitation
Medical Research Center of Tianjin, Tianjin, China
| |
Collapse
|
3
|
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:906-918. [PMID: 35919388 PMCID: PMC9333650 DOI: 10.1134/s1068162022050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022050132.
Collapse
Affiliation(s)
- E. A. H. Mohammed
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Y. Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Z. Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - X. Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Q. Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
4
|
Sen S. Liposome-encapsulated glycyrrhizin alleviates hyperglycemia and glycation-induced iron-catalyzed oxidative reactions in streptozotocin-induced diabetic rats. J Liposome Res 2022; 32:376-385. [PMID: 35166624 DOI: 10.1080/08982104.2022.2036756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glycyrrhizin, a bioactive constituent of Glycyrrhiza glabra has been reported to ameliorate diabetes. Here, the effects of liposome-encapsulated glycyrrhizin on STZ-induced diabetes and associated oxidative stress were investigated. Wistar rats were grouped as control (NC, received placebo), diabetic (DC, STZ-induced), diabetic treated with free glycyrrhizin (DTG, 3 i.v. doses, 1.6 mg/0.5 ml), empty liposomes (DTl, 3 i.v. doses), and liposome-encapsulated glycyrrhizin (DTbd, 3 i.v. doses, 1.6 mg/0.5 ml). Serum glucose, insulin, intraperitoneal glucose tolerance test and glycohemoglobin were estimated. Free iron and iron-mediated oxidative stress were examined. Histological examinations of the kidney and liver were performed. Liposomal-glycyrrhizin treatment caused significant improvement of hyperglycemia (DC vs. DTbd p < .05), glucose intolerance (DC vs. DTG p < .01 and DC vs. DTbd p < .05), insulin (DC vs. DTG p < .1, DTbd vs. DC p < .05 and DTbd vs. DTG p < .1) and glycohemoglobin (DC vs. DTG p < .1 and DC vs. DTbd p < .05) levels in the DTbd group. Alleviation of free iron release (DC vs. DTbd p < .05), lipid peroxidation (DC + H2O2 vs. DTbd + H2O2 p < .05), deoxyribose (DC + H2O2 vs. DTbd + H2O2, p < .05), and DNA degradation occurred in the DTbd group. The abnormalities of the kidney and liver were abolished in the DTbd group. The inhibitory effects were more pronounced compared to free glycyrrhizin. Liposome-encapsulated glycyrrhizin treatment caused inhibition of diabetic complications through its antioxidant effects and can be exploited for effective treatment of diabetes.
Collapse
Affiliation(s)
- Subhrojit Sen
- Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Jain R, Hussein MA, Pierce S, Martens C, Shahagadkar P, Munirathinam G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol Res 2022; 178:106138. [PMID: 35192957 PMCID: PMC8857760 DOI: 10.1016/j.phrs.2022.106138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18β-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.
Collapse
|
6
|
Pharmacodynamic Evaluation of the Gexia Zhuyu Decoction in the Treatment of NAFLD and the Molecular Mechanism Underlying the TRPM4 Pathway Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3364579. [PMID: 34887931 PMCID: PMC8651363 DOI: 10.1155/2021/3364579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome of abnormal lipid deposition in the liver mediated by nonalcohol intake. The Gexia Zhuyu decoction, a classic traditional Chinese medicine compound, is widely used in the clinical treatment of NAFLD. However, its specific efficacy and underlying mechanisms have not been elucidated yet. This study aimed to quantitatively evaluate the efficacy of the Gexia Zhuyu decoction using pharmacodynamics and to explore its molecular mechanisms in conjunction with proteomics. High-fat diets and methionine choline-deficient diets were used to induce various NAFLD progression stages in mouse models. The effects of oral Gexia Zhuyu decoction administration on NAFLD were evaluated by measuring the serum and liver indicators of the treated mice before and after drug intervention and by comparing the changes in liver tissue. Liver TRPM4 mRNA and protein levels were measured using reverse transcription-polymerase chain reaction and Western blotting, respectively. Experimental data showed that serum ALT, AST, and liver triglyceride (TG) levels in each disease stage group of drug intervention mice decreased, and high-density lipoprotein (HDL) and superoxide dismutase (SOD) levels increased. Liver TG levels decreased after drug intervention in the liver fibrosis mice, but serum TG levels increased. Furthermore, cellular fatty changes, inflammatory changes, and fibrous tissue proliferation were all relieved. The TRPM4 protein and mRNA levels in the liver tissue were decreased, and the microRNA (miRNA)-24 expression was increased. The Gexia Zhuyu decoction has a clear therapeutic effect at each stage of NAFLD. It likely acts by altering miRNA-24 expression and regulating the target TRPM4 protein pathway to achieve NAFLD treatment.
Collapse
|
7
|
Heidari S, Mehri S, Hosseinzadeh H. The genus Glycyrrhiza (Fabaceae family) and its active constituents as protective agents against natural or chemical toxicities. Phytother Res 2021; 35:6552-6571. [PMID: 34414608 DOI: 10.1002/ptr.7238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Licorice is the dried roots and rhizomes of various species of the genus Glycyrrhiza (Fabaceae) that have been used in folk medicine from ancient times. Many important research projects have established several beneficial effects for this medicinal herb, including antiinflammatory, antimicrobial, antiviral, antiprotozoal, antioxidant, antihyperglycemic, antihyperlipidemic, hepatoprotective, and neuroprotective. Licorice contains important bioactive components, such as glycyrrhizin (glycyrrhizic, glycyrrhizinic acid), liquiritigenin, liquiritin, and glycyrrhetinic acid. The protective effects of licorice and its main chemical components against toxins and toxicants in several organs including the brain, heart, liver, kidney, and lung have been shown. In this comprehensive review article, the protective effects of these constituents against natural, industrial, environmental, and chemical toxicities with attention on the cellular and molecular mechanism are introduced. Also, it has been revealed that this plant and its main compounds can inhibit the toxicity of different toxins by the antioxidant, antiinflammatory, and anti-apoptotic properties as well as the modulation of Inhibitor of kappaB kinase (IKK), Extracellular signal-regulated protein kinase1/2 (ERK1/2), p38, inducible nitric oxide synthase, and nuclear factor-κB (NF-κB) signaling pathways. More high-quality investigations in both experimental and clinical studies need to firmly establish the efficacy of licorice and its main constituents against toxic agents.
Collapse
Affiliation(s)
- Somaye Heidari
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Quantitative 1H Nuclear Magnetic Resonance Method for Assessing the Purity of Dipotassium Glycyrrhizinate. Molecules 2021; 26:molecules26123549. [PMID: 34200734 PMCID: PMC8230393 DOI: 10.3390/molecules26123549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
A simple, rapid, accurate, and selective quantitative method based on 1H nuclear magnetic resonance (qNMR) was successfully established and developed for assessing the purity of dipotassium glycyrrhizinate (KG). In this study, using potassium hydrogen phthalate and fumaric acid as internal standard (IS), several important experimental parameters, such as relaxation delay and pulse angle, were explored. Reliability, specificity, linearity, limit of quantification, precision, stability, and accuracy were also validated. Calibration results obtained from qNMR were consistent with those obtained from HPLC coupled with ultraviolet detection. The proposed method, independent of the reference standard substance, is a useful, reliable, and practical protocol for the determination of KG and glycyrrhizin analogs.
Collapse
|
9
|
The Protective Effects of Flavonoids in Cataract Formation through the Activation of Nrf2 and the Inhibition of MMP-9. Nutrients 2020; 12:nu12123651. [PMID: 33261005 PMCID: PMC7759919 DOI: 10.3390/nu12123651] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cataracts account for over half of global blindness. Cataracts formations occur mainly due to aging and to the direct insults of oxidative stress and inflammation to the eye lens. The nuclear factor-erythroid-2-related factor 2 (Nrf2), a transcriptional factor for cell cytoprotection, is known as the master regulator of redox homeostasis. Nrf2 regulates nearly 600 genes involved in cellular protection against contributing factors of oxidative stress, including aging, disease, and inflammation. Nrf2 was reported to disrupt the oxidative stress that activates Nuclear factor-κB (NFκB) and proinflammatory cytokines. One of these cytokines is matrix metalloproteinase 9 (MMP-9), which participates in the decomposition of lens epithelial cells (LECs) extracellular matrix and has been correlated with cataract development. Thus, during inflammatory processes, MMP production may be attenuated by the Nrf2 pathway or by the Nrf2 inhibition of NFκB pathway activation. Moreover, plant-based polyphenols have garnered attention due to their presumed safety and efficacy, nutritional, and antioxidant effects. Polyphenol compounds can activate Nrf2 and inhibit MMP-9. Therefore, this review focuses on discussing Nrf2's role in oxidative stress and cataract formation, epigenetic effect in Nrf2 activity, and the association between Nrf2 and MMP-9 in cataract development. Moreover, we describe the protective role of flavonoids in cataract formation, targeting Nrf2 activation and MMP-9 synthesis inhibition as potential molecular targets in preventing cataracts.
Collapse
|
10
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|
11
|
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. PHARMACEUTICAL BIOLOGY 2017; 55:5-18. [PMID: 27650551 PMCID: PMC7012004 DOI: 10.1080/13880209.2016.1225775] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 06/13/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Increasing incidence and impact of inflammatory diseases have encouraged the search of new pharmacological strategies to face them. Licorice has been used to treat inflammatory diseases since ancient times in China. OBJECTIVE To summarize the current knowledge on anti-inflammatory properties and mechanisms of compounds isolated from licorice, to introduce the traditional use, modern clinical trials and officially approved drugs, to evaluate the safety and to obtain new insights for further research of licorice. METHODS PubMed, Web of Science, Science Direct and ResearchGate were information sources for the search terms 'licorice', 'licorice metabolites', 'anti-inflammatory', 'triterpenoids', 'flavonoids' and their combinations, mainly from year 2010 to 2016 without language restriction. Studies were selected from Science Citation Index journals, in vitro studies with Jadad score less than 2 points and in vivo and clinical studies with experimental flaws were excluded. RESULTS Two hundred and ninety-five papers were searched and 93 papers were reviewed. Licorice extract, 3 triterpenes and 13 flavonoids exhibit evident anti-inflammatory properties mainly by decreasing TNF, MMPs, PGE2 and free radicals, which also explained its traditional applications in stimulating digestive system functions, eliminating phlegm, relieving coughing, nourishing qi and alleviating pain in TCM. Five hundred and fifty-four drugs containing licorice have been approved by CFDA. The side effect may due to the cortical hormone like action. CONCLUSION Licorice and its natural compounds have demonstrated anti-inflammatory activities. More pharmacokinetic studies using different models with different dosages should be carried out, and the maximum tolerated dose is also critical for clinical use of licorice extract and purified compounds.
Collapse
Affiliation(s)
- Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Chuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yong-Sheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Cloning and molecular evolution of 9-cis-epoxycarotenoid dioxygenase gene (NCED3) in six species of Glycyrrhiza L. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Miyaoka Y, Jin D, Tashiro K, Komeda K, Masubuchi S, Hirokawa F, Hayashi M, Takai S, Uchiyama K. Chymase inhibitor prevents the development and progression of non-alcoholic steatohepatitis in rats fed a high-fat and high-cholesterol diet. J Pharmacol Sci 2017; 134:139-146. [PMID: 28673635 DOI: 10.1016/j.jphs.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
The effect of the chymase inhibitor TY-51469 on the development and progression of non-alcoholic steatohepatitis (NASH) was evaluated in rats fed a high-fat and high-cholesterol (HFC) diet. To evaluate the preventive effect of TY-51469 on the development of NASH, stroke-prone spontaneously hypertensive rat 5 (SHRSP5)/Dmcr rats were fed either a normal or HFC diet for 8 weeks, and concurrently administered either placebo or TY-51469 (1 mg/kg per day). To evaluate the effect of TY-51469 on the survival rate, TY-51469 was administered either concurrently with HFC diet (pretreated group) or 8 weeks after HFC diet at which point NASH had developed (posttreated group). Eight weeks after HFC diet, significant increases of steatosis, fibrosis and chymase-positive cells were observed in liver from the placebo-treated rats. Significant increases of myeloperoxidase, transforming growth factor-β, matrix metalloproteinase-9, and collagen I mRNA levels were also observed. However, all parameters were significantly attenuated in the TY-51469-treated group. A survival rate of the placebo-treated group fed the HFC diet was 0% at 14 weeks. In comparison, the rates of TY-51469-pretreated and TY-51469-posttreated groups were 100% and 50% at 14 weeks, respectively. Chymase inhibitor may be applicable to preventing the development and progression of NASH.
Collapse
Affiliation(s)
- Yuta Miyaoka
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Keitaro Tashiro
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Koji Komeda
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Shinsuke Masubuchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Fumitoshi Hirokawa
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Michihiro Hayashi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki 569-8686, Japan.
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki 569-8686, Japan
| |
Collapse
|
14
|
Protective effects of hepatocyte-specific glycyrrhetic derivatives against carbon tetrachloride-induced liver damage in mice. Bioorg Chem 2017; 72:42-50. [PMID: 28346874 DOI: 10.1016/j.bioorg.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 01/31/2023]
Abstract
Glycyrrhetic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the roots of the Chinese herb Glycyrrhiza glabra, was reported to be accumulated in hepatocytes due to the extensive distribution of GA receptors in liver. A series of hepatocyte-specific derivatives on the basis of anetholtrithione and glycyrrhizic were designed and synthesized. The potential beneficial effect was evaluated in carbon tetrachloride (CCl4)-induced liver injury model. In addition, the hepatoprotective activity of these derivatives was assessed by measuring levels of serum marker enzymes, including serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and the ratio of GSH to GSSG. Gratifyingly, compounds 5a-c (100mg/kg, p.o.) markedly prevented CCl4-induced elevation of levels of serum GPT, GOT. A comparative histopathological study of liver exhibited almost a normal liver lobular architecture and cell structure of the livers, as compared to CCl4-treated group. These findings were confirmed with the histopathological observations, where hepatocyte-specific glycyrrhetic acid derivatives 5a-c were capable of reversing the toxic effects of CCl4 on hepatocytes.
Collapse
|
15
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
16
|
Lv QB, Gao X, Lin DS, Chen Y, Cao B, Zhou KL. Effects of diammonium glycyrrhizinate on random skin flap survival in rats: An experimental study. Biomed Rep 2016; 5:383-389. [PMID: 27588181 DOI: 10.3892/br.2016.733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Partial necrosis of skin flaps continues to restrict the survival of local skin flaps following plastic and reconstructive surgeries. The aim of the present study was to investigate the effects of diammonium glycyrrhizinate (DG), a salt of glycyrrhetinic acid that has been widely used in the therapy of chronic hepatitis and human immunodeficiency virus infection, on random skin flap survival in rats. McFarlane flaps were established in 60 male Sprague-Dawley rats randomly divided into three groups. Group I served as the control group and was injected with saline (10 mg/kg) once per day. Group II and group III were the experimental groups, and were injected with 10 mg/kg DG once and twice per day, respectively. On day 7, the survival area of the flap was measured. Tissue samples were stained with hematoxylin and eosin and immunohistochemically evaluated. Tissue edema, neutrophil density, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels were evaluated. The mean survival areas of the flaps of group II were significantly larger when compared with those of group I (P<0.05), and the rats of group III exhibited significantly higher survival areas than group II (P<0.05). Histologic and immunohistochemical evaluation showed that microvessel development and the expression level of vascular endothelial growth factor were higher in the two experimental groups than in the control group. Furthermore, SOD activity was significantly increased (P<0.05), while the neutrophil density and MDA level were significantly reduced (P<0.05) in group II when compared with group I. Significant differences between group II and group III with regard to SOD activity and MDA level were also observed (P<0.05). Thus, DG may have a dose-dependent effect on promoting the survival of random skin flaps.
Collapse
Affiliation(s)
- Qing-Bo Lv
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ding-Sheng Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yun Chen
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Bin Cao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kai-Liang Zhou
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
17
|
Xu Q, Wang J, Chen F, Lin K, Zhu M, Chen L, Zhou X, Li C, Zhu H. Protective role of magnesium isoglycyrrhizinate in non-alcoholic fatty liver disease and the associated molecular mechanisms. Int J Mol Med 2016; 38:275-82. [PMID: 27220460 DOI: 10.3892/ijmm.2016.2603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 01/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and there is an urgent need to identify effective pharmacological strategies to treat NAFLD. For this purpose, in the present study, we examined the the possible molecular mechanisms responsible for the effects of MgIG and the protective effects of MgIG in a model of NAFLD. The human hepatic L02 cell line and oleic acid were employed to establish an in vitro model of NAFLD. The CCK-8 assay, Hoechst 33258 staining and Annexin V-PI staining were performed in order to evaluate cell viability and apoptosis. Oil red O staining was used to detect lipid accumulation within the L02 cells. We found that MgIG significantly inhibited lipid accumulation and protected the L02 cells against lipid accumulation-induced apoptosis. Key molecules involved in unfolded protein response (UPR) signaling were upregulated in lipid-overloaded hepatic cells whereas MgIG suppressed the activation of the UPR. Furthermore, MgIG significantly inhibited the expression of the downstream inflammatory cytokines which had been induced by lipid accumulation. Taken together, these findings suggest that the activation of UPR signaling induces the expression of inflammatory cytokines through the activation of nuclear factor-κB (NF-κB) in lipid-overloaded hepatic cells. In addition, MgIG may suppress the activation of UPR signaling thereby protecting hepatic cells from NAFLD‑induced injury.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ji Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Feifei Chen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Kaisu Lin
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Mingao Zhu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lei Chen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiumin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chong Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Hong Zhu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
18
|
Santoro M, Maetzler W, Stathakos P, Martin HL, Hobert MA, Rattay TW, Gasser T, Forrester JV, Berg D, Tracey KJ, Riedel G, Teismann P. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson's disease which can be attenuated by glycyrrhizin. Neurobiol Dis 2016; 91:59-68. [PMID: 26921471 PMCID: PMC4867789 DOI: 10.1016/j.nbd.2016.02.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 12/09/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a nuclear and cytosolic protein that is released during tissue damage from immune and non-immune cells — including microglia and neurons. HMGB1 can contribute to progression of numerous chronic inflammatory and autoimmune diseases which is mediated in part by interaction with the receptor for advanced glycation endproducts (RAGE). There is increasing evidence from in vitro studies that HMGB1 may link the two main pathophysiological components of Parkinson's disease (PD), i.e. progressive dopaminergic degeneration and chronic neuroinflammation which underlie the mechanistic basis of PD progression. Analysis of tissue and biofluid samples from PD patients, showed increased HMGB1 levels in human postmortem substantia nigra specimens as well as in the cerebrospinal fluid and serum of PD patients. In a mouse model of PD induced by sub-acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), systemic administration of neutralizing antibodies to HMGB1 partly inhibited the dopaminergic cell death, and reduced the increase of RAGE and tumour necrosis factor-alpha. The small natural molecule glycyrrhizin, a component from liquorice root which can directly bind to HMGB1, both suppressed MPTP-induced HMGB1 and RAGE upregulation while reducing MPTP-induced dopaminergic cell death in a dose dependent manner. These results provide first in vivo evidence that HMGB1 serves as a powerful bridge between progressive dopaminergic neurodegeneration and chronic neuroinflammation in a model of PD, suggesting that HMGB1 is a suitable target for neuroprotective trials in PD. HMGB1 is up-regulated in Parkinson's disease. HMGB1 is translocalized into the cytoplasm after MPTP. Inhibition of HMGB1 protects against MPTP-toxicity. Translocalization of HMGB1 is reduced after inhibition a neutralizing antibody or glycyrrhizin.
Collapse
Affiliation(s)
- Matteo Santoro
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK
| | - Walter Maetzler
- Center of Neurology, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Otfried-Müller-Str. 27, 72076 Tuebingen, Germany
| | - Petros Stathakos
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK
| | - Heather L Martin
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK
| | - Markus A Hobert
- Center of Neurology, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Otfried-Müller-Str. 27, 72076 Tuebingen, Germany
| | - Tim W Rattay
- Center of Neurology, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Otfried-Müller-Str. 27, 72076 Tuebingen, Germany
| | - Thomas Gasser
- Center of Neurology, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Otfried-Müller-Str. 27, 72076 Tuebingen, Germany
| | - John V Forrester
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK; Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Western Australia 6009, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia 6009, Australia
| | - Daniela Berg
- Center of Neurology, Department of Neurodegeneration, Hertie-Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Otfried-Müller-Str. 27, 72076 Tuebingen, Germany
| | - Kevin J Tracey
- Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Gernot Riedel
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK
| | - Peter Teismann
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland, UK.
| |
Collapse
|
19
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhang Y, Qian D, Pan Y, Zhu Z, Huang J, Xi J, Guo J, Zhou X, Zhong G, Duan J. Comparisons of the pharmacokinetic profile of four bioactive components after oral administration of gan-sui-ban-xia decoction plus-minus gansui and gancao drug combination in normal rats. Molecules 2015; 20:9295-308. [PMID: 26007184 PMCID: PMC6272428 DOI: 10.3390/molecules20059295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022] Open
Abstract
Gan-Sui-Ban-Xia Decoction (GSBXD) was first presented by Zhang Zhongjing in the book Synopsis of Golden Chamber during the Han Dynasty period. The formula was then used for the treatment of persistent fluid retention with floating pulse in Traditional Chinese Medicine (TCM), which in modern medicine is known as malignant ascites. Here, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for the determination of glycyrrhizinic acid, liquiritin, paeoniflorin, albiflorin after oral administration of GSBXD plus-minus Gansui and Gancao anti-drug combination to investigate the possible pharmacokinetic profile differences of different prescriptions with GSBXD in normal rats. The differences of pharmacokinetic parameters among groups were tested by the Student’s t-test with p < 0.05 as the level of significance. Significant differences were found between the Gansui and Gancao anti-drug combination and other herbs in GSBXD on pharmacokinetic profile of glycyrrhizinic acid, liquiritin, paeoniflorin and albiflorin. The obtained knowledge might contribute to the rationality of the clinic use of GSBXD and also reveal the compatibility conditions of the Gansui and Gancao anti-drug combination.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ying Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenghua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jing Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Junzuan Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xueping Zhou
- The No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Gansheng Zhong
- Basic Medical College, Beijing University of Chinese Medicine, Beijing 100092, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Duval F, Moreno-Cuevas JE, González-Garza MT, Rodríguez-Montalvo C, Cruz-Vega DE. Protective mechanisms of medicinal plants targeting hepatic stellate cell activation and extracellular matrix deposition in liver fibrosis. Chin Med 2014; 9:27. [PMID: 25606051 PMCID: PMC4299307 DOI: 10.1186/s13020-014-0027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/26/2014] [Indexed: 01/18/2023] Open
Abstract
During chronic liver injury, hepatic stellate cells (HSC) are activated and proliferate, which causes excessive extracellular matrix (ECM) deposition, leading to scar formation and fibrosis. Medicinal plants are gaining popularity as antifibrotic agents, and are often safe, cost-effective, and versatile. This review aims to describe the protective role and mechanisms of medicinal plants in the inhibition of HSC activation and ECM deposition during the pathogenesis of liver fibrosis. A systematic literature review on the anti-fibrotic mechanisms of hepatoprotective plants was performed in PubMed, which yielded articles about twelve relevant plants. Many of these plants act via disruption of the transforming growth factor beta 1 signaling pathway, possibly through reduction in oxidative stress. This reduction could explain the inhibition of HSC activation and reduction in ECM deposition. Medicinal plants could be a source of anti-liver fibrosis compounds.
Collapse
Affiliation(s)
- Florent Duval
- Cell Therapy Department, School of Medicine, Tecnológico de Monterrey, Monterrey, NL CP 63710 Mexico
| | - Jorge E Moreno-Cuevas
- Cell Therapy Department, School of Medicine, Tecnológico de Monterrey, Monterrey, NL CP 63710 Mexico
| | | | | | - Delia Elva Cruz-Vega
- Cell Therapy Department, School of Medicine, Tecnológico de Monterrey, Monterrey, NL CP 63710 Mexico
| |
Collapse
|
22
|
Han JC, Yu J, Gao YJ. Lipidomics investigation of reversal effect of glycyrrhizin (GL) towards lithocholic acid (LCA)-induced alteration of phospholipid profiles. PHARMACEUTICAL BIOLOGY 2014; 52:1624-1628. [PMID: 25289528 DOI: 10.3109/13880209.2014.900810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Glycyrrhizin (GL), the major ingredient isolated from licorice, exerts multiple pharmacological activities. OBJECTIVE To elucidate the protective mechanism of GL towards lithocholic acid (LCA)-induced liver toxicity using lipidomics. MATERIALS AND METHODS GL (200 mg/kg) dissolved in corn oil was treated intraperitoneally for 7 d. On the 4th day, 200 mg/kg LCA was used to treat mice (i.p., twice daily) for another 4 d. The protective role of GL towards LCA-induced liver toxicity was investigated through evaluating the liver histology and the activity of alanine transaminase (ALT). The complete lipid profile was employed using UFLC-Triple TOF MS-based lipidomics. RESULTS Intraperitoneal (i.p.) administration of 200 mg/kg GL can significantly protect LCA-induced liver damage, indicated by alleviated histology alteration and prevention of the ALT elevation. Lipidomics analysis can well separate the control group from LCA-treated group, and three lipid components were major contributors, including LPC 16:0, LPC 18:0, and LPC 18:2. GL treatment can significantly prevent LCA-induced reduction of these three lipid compounds, providing a new explanation for GL's protection mechanism towards LCA-induced liver toxicity. DISCUSSION AND CONCLUSION The recent study highlights the importance of lipidomics in elucidating the therapeutic mechanism of herbs.
Collapse
Affiliation(s)
- Jing-Chun Han
- Oncology Department, First Affiliated Hospital of Dalian Medical University , Dalian , China and
| | | | | |
Collapse
|
23
|
Kuroda N, Inoue K, Ikeda T, Hara Y, Wake K, Sato T. Apoptotic response through a high mobility box 1 protein-dependent mechanism in LPS/GalN-induced mouse liver failure and glycyrrhizin-mediated inhibition. PLoS One 2014; 9:e92884. [PMID: 24690901 PMCID: PMC3972228 DOI: 10.1371/journal.pone.0092884] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
HMGB1 is a nuclear component involved in nucleosome stabilization and transcription regulation, but extracellularly it is able to serve as a potential late mediator of lethality. In the present study, we explored inflammation-promoting activity of HMGB1 and blockade of extracellular release of HMGB1 by glycyrrhizin (GL) in LPS/GalN-triggered mouse liver injury. At 1 to 10 h after LPS/GalN-treatment, mice were anesthetized to collect blood from heart puncture, and serum transaminase and HMGB1 were evaluated. Administration of LPS/GalN precipitated tissue injury associated with time-dependent alteration in HMGB1 serum levels. At 8 h nuclear immunoreactive products were remarkably reduced and extracellular HMGB1 expression was found exclusively in the pericentral foci. The treatment with GL significantly down-regulated the serum levels of ALT, AST, and HMGB1 in addition to the strong inhibition of tissue injury and extracellular immunoreactivity to HMGB1 and to acetylated-lysine. Furthermore, GL brought about a significant decrease in the number of apoptotic hepatocytes labeled with TUNEL-method. On the basis of these results, three apoptosis-associated genes were identified with microarray analysis and real-time PCR. The ChIP-assay revealed the binding of HMGB1 protein to Gsto1 promoter sequence in LPS/GalN-treated mice and the remarkable decrease in combined HMGB1 protein by GL. The current findings claim that a single injection of LPS/GalN might stimulate apoptosis of hepatocytes through the binding of HMGB1 protein to Gsto1 promoter region and that GL-treatment might prevent the apoptosis and inflammatory infiltrates caused with LPS/GalN-injection by disturbing the binding of HMGB1 protein to Gsto1 promoter sequence.
Collapse
Affiliation(s)
- Noriyuki Kuroda
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Kouji Inoue
- Research Center of Electron Microscopy, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tadayuki Ikeda
- Department of Geriatric Dentistry, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yaiko Hara
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Kenjiro Wake
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
- Liver Research Unit, Minophagen Pharmaceutical Co. Ltd., Tokyo, Japan
| | - Tetsuji Sato
- Department of Anatomy and Histocytology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
- * E-mail:
| |
Collapse
|
24
|
Imai Y, Takai S, Jin D, Komeda K, Tashiro K, Li ZL, Otsuki Y, Okamura H, Hayashi M, Uchiyama K. Chymase inhibition attenuates lipopolysaccharide/ d-galactosamine-induced acute liver failure in hamsters. Pharmacology 2014; 93:47-56. [PMID: 24457951 DOI: 10.1159/000357684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Chymase inhibition has been shown to attenuate matrix metalloproteinase (MMP)-9 and tumor necrosis factor (TNF)-α, both of which are associated with the pathogenesis of acute liver failure (ALF). This study investigated the effects of the chymase inhibitor TY-51469 on lipopolysaccharide (LPS)/D-galactosamine (GalN)-induced ALF in hamsters. METHODS TY-51469 (10 or 30 mg/kg) or placebo was administered 1 h before the LPS (160 µg/kg)/GalN (400 mg/kg) injection. RESULTS Hepatic chymase activity was significantly increased after the LPS/GalN injection, but the significant increase was dose-dependently and significantly attenuated by treatment with TY-51469. Significant increases in hepatic MMP-9 activity and TNF-α concentration were observed after the LPS/GalN injection, but these increases were also attenuated by treatment with TY-51469. Plasma aspartate aminotransferase and alanine aminotransferase activities were significantly increased after LPS/GalN injection in the placebo-treated group, but the increases were significantly attenuated in the TY-51469-treated group. The area of hepatic necrotic after LPS/GalN injection was significantly reduced by treatment with TY-51469. Treatment with TY-51469 resulted in significant reductions in the hepatic malondialdehyde concentration, mast cell numbers, and gene expressions of interleukin-1β and myeloperoxidase. DISCUSSION Chymase inhibition could be a useful strategy to attenuate LPS/GalN-induced ALF in hamsters.
Collapse
Affiliation(s)
- Yoshiro Imai
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo P, Sun Z, Liu W, Chen L, DU Y, Wei X. Correlation analysis between the rate of respiration in the root and the active components in licorice ( Glycyrrhiza uralensis). Exp Ther Med 2013; 7:270-274. [PMID: 24348804 PMCID: PMC3861456 DOI: 10.3892/etm.2013.1387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/30/2013] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to investigate the correlation between root respiration and the percentage of active components in licorice (Glycyrrhiza uralensis Fisch.), in order to provide a foundation for the regulation and modulation of the quality of G. uralensis. Respiration efflux of annual and biennial G. uralensis was determined using a Li-7000 CO2/H2O analyzer. The root systems were scanned at a resolution of 3,000 dpi using an Epson Expression 10000XL scanner. Root growth was determined by analyzing the scanned images using WinRHIZO version Pro2007d software and the rate of respiration in the root was subsequently calculated. In addition, the percentages of the five major active components in licorice, glycyrrhizic acid, glycyrrhizin, isoliquiritin, liquiritigenin and isoliquiritigenin, were detected using high-performance liquid chromatography (HPLC). The correlation between the root respiration and the percentage of the active components was investigated. Significant seasonal changes were observed in the rates of respiration of first and zero-class roots. In annual and biennial G. uralensis, the maximum and minimum values for rate of respiration were present in July (P<0.05) and November (P<0.05), respectively. The correlation coefficients between the five major active components and the rate of respiration were −0.304 (glycyrrhizin), −0.129 (liquiritigenin), −0.441 (glycyrrhizic acid; P<0.05), −0.471 (isoliquiritin; P<0.05) and 0.148 (isoliquiritigenin). The percentages of glycyrrhizic acid and isoliquiritin were significantly negatively correlated with the rate of respiration in annual and biennial G. uralensis. Understanding the correlation between the root rate of respiration and the active components in G. uralensis may be beneficial to ensuring the quality of cultivated G. uralensis.
Collapse
Affiliation(s)
- Peijun Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Wenlan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Long Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yuan DU
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xinxin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
26
|
Sakr S, El-Kenawy A, El-Sahra D. Metiram-induced nephrotoxicity in albino mice: effect of licorice aqueous extract. ENVIRONMENTAL TOXICOLOGY 2013; 28:372-379. [PMID: 21544926 DOI: 10.1002/tox.20728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/13/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
The present study was designed to estimate the effect of aqueous extract of licorice on metiram toxicity in mice. Treating mice with metiram at a dose level of [1/2] LD(50) daily for 3 weeks induced many histological changes in the kidney cortex. The renal tubules lost their characteristic appearance and their lining epithelial cells were degenerated. The glomeruli were atrophied and the renal blood vessels were congested. The intertubular spaces infiltrated by inflammatory leukocytic cells. Metiram caused an increase in proliferating cell nuclear antigen (PCNA) expression in nuclei of tubular epithelial cells. Metiram also caused marked elevation in serum creatinine and blood urea nitrogen. Treating animals with metiram and licorice aqueous extract led to an improvement, in both biochemical and histopathological alterations. These results proved that licorice had an ameliorative effect against kidney injury induced by metiram and this effect may be attributed to its antioxidant activity.
Collapse
Affiliation(s)
- Saber Sakr
- Department of Zoology, Faculty of Science, Menoufiya University, Shebin El-kom, Egypt.
| | | | | |
Collapse
|
27
|
Zhang A, Sun H, Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem 2013; 63:570-7. [PMID: 23567947 DOI: 10.1016/j.ejmech.2012.12.062] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 02/07/2023]
Abstract
Liver disease is any condition that may cause liver inflammation or tissue damage and affects liver function. Natural products that are found in vegetables, fruits, plant extracts, herbs, insects, and animals, have been traditionally used for treating liver diseases. They are chemical compounds that usually have biological activities for use in drug discovery and design. Many natural products have been clinically available as potent hepatoprotective agents against commonly occurring liver diseases. This review summarizes the current progress in the basic, clinical, and translational research on natural products in treatment of various liver diseases. Furthermore, we will focus on the discovery and biological evaluation of the natural products, which shows potential as a new therapeutic agent of liver diseases.
Collapse
Affiliation(s)
- Aihua Zhang
- National TCM Key Lab of Serum Pharmacochemistry, Key Lab of Chinmedomics, Key Pharmacometabolomics Platform of Chinese Medicines, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | | | | |
Collapse
|
28
|
Li H, Xu H, Sun B. Lipopolysaccharide regulates MMP-9 expression through TLR4/NF-κB signaling in human arterial smooth muscle cells. Mol Med Rep 2012; 6:774-8. [PMID: 22842850 DOI: 10.3892/mmr.2012.1010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/12/2012] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical to vascular smooth muscle cell migration in vivo. The dysregulation of MMPs is involved in the pathogenesis of abnormal arterial remodeling, aneurysm formation and atherosclerotic plaque instability. It has been confirmed that lipopolysaccharides (LPS) constitute a strong risk factor for the development of atherosclerosis. In this study, we aimed to determine a potential mechanism of LPS on MMP-9 expression in human arterial smooth muscle cells (HASMCs). RT-PCR analysis was used to detect MMP-9 mRNA expression and western blot analysis was performed to examine MMP-9 protein expression. An electrophoretic mobility shift assay was also employed to determine NF-κB binding activity. Results showed that LPS induced MMP-9 mRNA and protein expression in HASMCs in a TLR4-dependent manner. Notably, upon blocking the NF-κB binding with pyrrolidine dithiocarbamate, it was demonstrated that the expression of MMP-9 by LPS occurs through TLR4/NF-κB pathways. It was concluded that LPS induced MMP-9 expression through the TLR4/NF-κB pathway. Thus, the TLR4/NF-κB pathway may be involved in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Hongli Li
- Department of Cardiology, Shanghai First People's Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai, PR China
| | | | | |
Collapse
|
29
|
Hou SZ, Li Y, Zhu XL, Wang ZY, Wang X, Xu Y. Ameliorative effects of Diammonium Glycyrrhizinate on inflammation in focal cerebral ischemic-reperfusion injury. Brain Res 2012; 1447:20-7. [DOI: 10.1016/j.brainres.2012.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/20/2012] [Accepted: 02/03/2012] [Indexed: 12/15/2022]
|
30
|
ALK+ALCLs induce cutaneous, HMGB-1-dependent IL-8/CXCL8 production by keratinocytes through NF-κB activation. Blood 2012; 119:4698-707. [PMID: 22394598 DOI: 10.1182/blood-2011-10-386011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anaplastic large-cell lymphomas (ALCLs) bearing the t(2;5) translocation (ALK(+)ALCLs) are frequently characterized by skin colonization and associated with a poor prognosis. Using conditional transgenic models of anaplastic lymphoma kinase-positive (ALK(+)) lymphomas and human ALK(+)ALCL cell lines, in the present study, we show that high-mobility-group box-1 (HMGB-1), a proinflammatory cytokine, is released by ALK(+) cells, and demonstrate extracellular HMGB-1-stimulated secretion of the IL-8 chemokine by HaCaT keratinocytes through the involvement of MMP-9, PAR-2, and the NF-κB pathway. Furthermore, we demonstrate that, in vitro, IL-8 is able to induce the invasiveness of ALK(+) cells, which express the IL-8 receptors CXCR1 and CXCR2. In vitro and in vivo, HMGB-1 inhibition achieved by glycyrrhizin treatment led to a drastic reduction in ALK(+) cell invasiveness. The pathophysiological relevance of our observations was confirmed by demonstrating that the HMGB-1 and IL-8 receptors are expressed in ALK(+)ALCL biopsies. We have also shown that IL-8 secretion is correlated with leukemic dissemination of ALK(+) cells in a significant number of patients. The results of the present study demonstrate for the first time a relationship among the pro-inflammatory mediators HMGB-1, MMP-9, PAR-2, and IL-8. We propose that these mediators create a premetastatic niche within the skin, thereby participating in ALK(+) lymphoma epidermotropism.
Collapse
|
31
|
The use of albendazole and diammonium glycyrrhizinate in the treatment of eosinophilic meningitis in mice infected with Angiostrongylus cantonensis. J Helminthol 2011; 87:1-11. [PMID: 22152396 DOI: 10.1017/s0022149x11000745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiostrongylus cantonensis (A. cantonensis) infection causes eosinophilic meningitis in humans. Eosinophilia and a Th2-type immune response are the crucial immune mechanisms for eosinophilic meningitis. CD4+CD25+ regulatory T cells (Treg) are involved in the pathogenesis of A. cantonensis. Diammonium glycyrrhizinate (DG) is a compound related to glycyrrhizin (GL), a triterpene glycoside extracted from liquorice root. We investigated the curative effects and probable mechanisms of therapy involving a combination of albendazole and DG in BALB/c mice infected with A. cantonensis, and compared these with therapy involving albendazole and dexamethasone. We analysed survival time, body weight, signs, eosinophil numbers, immunoglobulin E (IgE), interleukin-5 (IL-5), and eotaxin concentrations, numbers and Foxp3 expression of CD4+CD25+ Treg, worm recovery and histopathology. The present results demonstrated that the combination of albendazole and DG could increase survival time more efficiently and relieve neurological dysfunction; decrease weight loss, eosinophil numbers, concentrations of IgE, IL-5 and eotaxin, the number and expression of Foxp3 of CD4+CD25+ Treg; and improve worm recovery and histopathology changes in treated animals, compared with the combination of albendazole and dexamethasone. The observations presented here suggest that the albendazole and dexamethasone combination could be replaced by the combination of albendazole and DG.
Collapse
|
32
|
Liu Y, Xiang J, Liu M, Wang S, Lee RJ, Ding H. Protective effects of glycyrrhizic acid by rectal treatment on a TNBS-induced rat colitis model. J Pharm Pharmacol 2011; 63:439-46. [DOI: 10.1111/j.2042-7158.2010.01185.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Objectives
The research compared rectal and oral treatments with glycyrrhizic acid for trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats.
Methods
Wistar rats were randomly divided into seven groups: one normal and six with colitis, including TNBS, glycyrrhizic acid (2, 10 and 50 mg/kg, rectally treated and 10 mg/kg, orally treated) and sulfasalazine (positive control, 225 mg/kg rectally treated) groups. Colitis was induced by colonic administration of TNBS in 30% ethanol.
Key findings
There were significant pathological changes in colon in TNBS-treated groups, and rectal glycyrrhizic acid significantly attenuated colitis. Myeloperoxidase, tumour necrosis factor-α and interleukin-1β of colon tissue or serum in the rectal glycyrrhizic acid groups were markedly reduced when compared with the TNBS group, and lower than in the orally treated glycyrrhizic acid group. It was further noted that, in vitro, glycyrrhizic acid (up to 100 µg/ml) inhibited interleukin-6 and elevated interleukin-10 production in lipopolysaccharide-activated macrophages, and significantly inhibited proliferation of spleen lymphocytes, suggesting the immunoregulatory function of glycyrrhizic acid.
Conclusions
Rectally administered glycyrrhizic acid has significant protective effects against TNBS-induced colitis in rats, and the rectal route may be a complementary treatment for inflammatory bowel disease.
Collapse
Affiliation(s)
- Ying Liu
- College of Pharmacy, Wuhan University, Wuhan, China
| | - Jin Xiang
- College of Pharmacy, Wuhan University, Wuhan, China
| | - Min Liu
- College of Pharmacy, Wuhan University, Wuhan, China
| | - Shi Wang
- College of Pharmacy, Wuhan University, Wuhan, China
| | - Robert J Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Hong Ding
- College of Pharmacy, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Li H, Xu H, Liu S. Toll-like receptors 4 induces expression of matrix metalloproteinase-9 in human aortic smooth muscle cells. Mol Biol Rep 2010; 38:1419-23. [PMID: 20725790 DOI: 10.1007/s11033-010-0246-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/15/2009] [Indexed: 11/25/2022]
Abstract
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. It was confirmed that the presence of functional TLR4 promotes a proinflammatory phenotype and proliferation of vascular smooth muscle cells (VSMCs). Here we tested whether designed TLR4 small interfering RNAs (TLR4 siRNAs) is capable of inducing TLR4 deficient and simultaneously regulating the expression of matrix metalloproteinase-9 (MMP-9) in human aortic smooth muscle cells (HASMCs). Human aortic smooth muscle cells were obtained from Cascade Biologics (Portland, USA). The siRNAs used in this study were chemically synthesized by Ambion, diluted in RNase free water at concentration of 2 μg/ml. The TLR4 siRNAs were complexed with Lipofectamine(TM) 2000 in transfection buffer. After 30 min incubation at room temperature, the complexes were added to the cells. Subsequent to 5 h incubation, cells were treated with 10 ng/ml LPS for 24 h. RT-PCR analysis was used to detect mRNA expression of GAPDH, TLR4 and MMP-9; Western blot analysis was used to examine GAPDH, TLR4 and MMP-9 protein expression. It was shown that all three designed TLR4 siRNAs inhibited the expression of TLR4 in HASMCs as compared to nontargeting siRNA. Notably, TLR4 siRNA-1 exhibited the strongest inhibition effect. Transfection of HASMCs with TLR4 siRNA-1 resulted in down-regulation of LPS-induced expression of MMP-9. It was concluded that TLR4 siRNA-transfected HASMCs were capable for regulating the expression of MMP-9, providing support for the rational design of siRNAs as atherosclerotic therapy.
Collapse
Affiliation(s)
- Hongli Li
- Department of Cardiology, Shanghai Jiaotong University Affiliated First People's Hospital, 100 Haining Road, Shanghai, 200080, People's Republic of China
| | | | | |
Collapse
|
34
|
Sui X, Yin J, Ren X. Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus. Antiviral Res 2009; 85:346-53. [PMID: 19879899 PMCID: PMC7114117 DOI: 10.1016/j.antiviral.2009.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 08/08/2009] [Accepted: 10/21/2009] [Indexed: 11/25/2022]
Abstract
Diammonium glycyrrhizin (DG), a salt from glycyrrhizinate (GL) that is a major active component of licorice root extract with various pharmacological activities was investigated for its inhibitory effect on pseudorabies virus (PrV) infection. In parallel, lithium chloride (LiCl), a chemical reagent with potential antiviral activity was compared with DG for their inhibitory ability against PrV infection in vitro. Virus plaque-reduction assays, PCR and RT-PCR analysis indicated that both drugs inhibited cell infection by PrV. Moreover, addition of the drugs resulted in fewer apoptotic cells during PrV infection.
Collapse
Affiliation(s)
- Xiuwen Sui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, 150030 Harbin, China
| | | | | |
Collapse
|
35
|
Tsuruoka N, Abe K, Wake K, Takata M, Hatta A, Sato T, Inoue H. Hepatic protection by glycyrrhizin and inhibition of iNOS expression in concanavalin A-induced liver injury in mice. Inflamm Res 2009; 58:593-9. [PMID: 19333727 DOI: 10.1007/s00011-009-0024-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE AND DESIGN In this study, the possible protective effect of glycyrrhizin (GL), an active compound derived from licorice root, was examined on T cell-mediated liver injury in mice. MATERIALS AND METHODS Mice were subjected to liver injury by intravenous injection of concanavalin A (Con A). They had been treated with GL (i.p.) 30 min before the injection. Liver injury was estimated by measuring serum levels of alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST), and by examining liver sections with hematoxylin-eosin staining. Expression of inducible nitric oxide synthase (iNOS) mRNA and protein in the liver was determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. RESULTS Serum transaminases and hepatic iNOS levels increased with time after Con A treatment. Expression of iNOS mRNA in the liver was elevated for up to 8 h, and at 8 h, GL (ED(50): 10.5 mg/kg) suppressed the increases in AST and ALT in response to Con A. An increase in iNOS mRNA expression and protein was inhibited by treatment with GL. Furthermore, GL inhibited cell infiltration and the degeneration of hepatocytes in the liver of Con A-treated mice. CONCLUSION The present study suggests that the prevention by GL of Con A-induced hepatitis is due partly to the modulation of hepatic iNOS induction and of degeneration of hepatocytes.
Collapse
Affiliation(s)
- Noriko Tsuruoka
- Pharmacological Research Department, Minophagen Pharmaceutical Co., 2-2-3, Komatsubara, Zama, Kanagawa, 228-0002, Japan.
| | | | | | | | | | | | | |
Collapse
|