1
|
Godzien J, Jablonowski K, Ruperez FJ, Kretowski A, Ciborowski M, Kalaska B. Metabolic profiling reveals the nutraceutical effect of Gongolaria abies-marina and Rosmarinus officinalis extracts in a type 1 diabetes animal model. Biomed Pharmacother 2024; 175:116731. [PMID: 38761421 DOI: 10.1016/j.biopha.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Francisco J Ruperez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Madrid, Spain
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Adipose Tissue Aging and Metabolic Disorder, and the Impact of Nutritional Interventions. Nutrients 2022; 14:nu14153134. [PMID: 35956309 PMCID: PMC9370499 DOI: 10.3390/nu14153134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is the largest and most active endocrine organ, involved in regulating energy balance, glucose and lipid homeostasis and immune function. Adipose tissue aging processes are associated with brown adipose tissue whitening, white adipose tissue redistribution and ectopic deposition, resulting in an increase in age-related inflammatory factors, which then trigger a variety of metabolic syndromes, including diabetes and hyperlipidemia. Metabolic syndrome, in turn, is associated with increased inflammatory factors, all-cause mortality and cognitive impairment. There is a growing interest in the role of nutritional interventions in adipose tissue aging. Nowadays, research has confirmed that nutritional interventions, involving caloric restriction and the use of vitamins, resveratrol and other active substances, are effective in managing adipose tissue aging’s adverse effects, such as obesity. In this review we summarized age-related physiological characteristics of adipose tissue, and focused on what nutritional interventions can do in improving the retrogradation and how they do this.
Collapse
|
3
|
El-Baz FK, Aly HF, Abd-Alla HI. The ameliorating effect of carotenoid rich fraction extracted from Dunaliella salina microalga against inflammation- associated cardiac dysfunction in obese rats. Toxicol Rep 2019; 7:118-124. [PMID: 31938688 PMCID: PMC6953768 DOI: 10.1016/j.toxrep.2019.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
The carotenoid-rich fraction of Dunaliella salina improves serum inflammatory markers. The fraction has the ability to improve various disorders associated cardiac dysfunction in the high-fat diet treated rats. The fraction attenuates fibrotic cardiac tissue and congestion of myocardial blood vessels. The mentioned promising activities may be related to that fraction acts as an antioxidant and anti-inflammatory agent.
The carotenoid rich fraction of microalgae Dunaliella salina (crf-DS) have been receiving great attention, due to they abilities to protect and improve various disorders. The objective of this study is to explore the therapeutic efficiency of crf-DS on obesity-assciated cardiac dysfunction in the high-fat diet (HFD) treated rats. These rats were orally administered with crf-DS (150 mg /kg body weight), for six consecutive weeks in comparison with reference drug(orlistat). Specific cardiac biomarkers were examined including; adiponectin, plasminogen activator inhibitor (PAI-1), glucagon, troponin-I (cTnI). The cell adhesion molecules (VCAM and ICAM), C-reactive protein (CRP), collagen type II (Col II), collagen alpha-1 (III) chain (Col3A1), lipoxygenase activity (LOX), as well as histopathological examination of cardiac tissue were investigated. Results indicated a significant reduction(P ≤ 0.05) in adiponectin and glucagon levels in serum of obese rats. However, cTnI, PAI-1, cell adhesion molecules, CRP, Col II, and Col3A1 and LOX levels declared marked increase. Histopathological examination of cardiac tissue showed fibrosis with severe congestion in the myocardial blood vessels. On the other hand, rats medicated with a crf-DS demonstrated noticeable ameliorating effect in all the measured parameters. Beside, myocardial tissue of obese rats showed no alteration. Hence, It could be concluded that, oral supplementation with crf-DS is able to attenuate cardiac dysfunction in obese rats. Further extended work is needed to exploit, the possible application of D. salina as nutraceuticals and food additives.
Collapse
Affiliation(s)
- Farouk K El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Hanan F Aly
- Therapeutic Chemistry Department, National Research Centre (NRC), 33 El Bohouth St. (Former El- Tahrir St.), 12622 Dokki, Giza, Egypt
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre (NRC), 33 El Bohouth St. (Former El-Tahrir St.), 12622 Dokki, Giza, Egypt
| |
Collapse
|
4
|
Kim JC, Park GD, Kim SH. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats. J Nutr Sci Vitaminol (Tokyo) 2018; 63:277-283. [PMID: 29225311 DOI: 10.3177/jnsv.63.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to analyze the activation and expression patterns of upstream and downstream factors of PGC-1α to determine whether antioxidant (AO) supplementation inhibits mitochondrial biogenesis in skeletal muscles as an adaptation to endurance training, as well as to analyze changes in endurance capacity based on such findings. For this objective, 24 male Sprague-Dawley (SD) rats were allocated into 4 groups (vehicle-sedentary, V-Sed; vehicle-exercise, V-EX; antioxidant-sedentary, AO-Sed; antioxidant-exercise, AO-EX) of 6 rats each. The rats were then treated with vitamin C (500 mgkg-1 body weightd-1) or a placebo for 8 wk, and a swimming program was implemented in some rats during the last 4 wk of this period. Immediately after the last training session, blood was collected from the tail of each rat, and TBARS was measured to test the effect of vitamin C as an AO. As a result, increased oxidative stress from exercise was inhibited by vitamin C supplementation. Analysis of whether reduced oxidative stress by vitamin C supplementation also inhibited mitochondrial biogenesis within skeletal muscles showed that phosphorylation of p38 MAPK and AMPK, along with levels of PGC-1α, NRF-1, mtTFA, and mitochondrial electron transport enzymes, increased after endurance training in spite of vitamin C supplementation. Moreover, running time, distance, and total work increased significantly in the exercise group as compared to those in the sedentary group, regardless of vitamin C supplementation. These results indicate that mitochondrial biogenesis and endurance capacity increase as a result of endurance training, regardless of AO supplementation.
Collapse
Affiliation(s)
- Jae Cheol Kim
- Department of Sports Science, College of Natural Science, Chonbuk National University
| | - Gi Duck Park
- Department of Leisure Sport, Kyungpook National University
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Chonbuk National University
| |
Collapse
|
5
|
Alasmari WA, Faruk EM, Abourehab MAS, Elshazly AME, El Sawy NA. The Effect of Metformin versus Vitamin E on the Testis of Adult Diabetic Albino Rats: Histological, Biochemical and Immunohistochemistry Study. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/arsci.2018.64010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Castela A, Gomes P, Domingues VF, Paíga P, Costa R, Vendeira P, Costa C. Role of oxidative stress-induced systemic and cavernosal molecular alterations in the progression of diabetic erectile dysfunction. J Diabetes 2015; 7:393-401. [PMID: 24910190 DOI: 10.1111/1753-0407.12181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/13/2014] [Accepted: 06/01/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. METHODS Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2 O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2 O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS-α-SMA. RESULTS There was a significant increase in urinary H2 O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2 O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. CONCLUSIONS The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.
Collapse
Affiliation(s)
- Angela Castela
- Department of Biochemistry (U38/FCT), Center for Medical Research, Faculty of Medicine of the University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology of the University of Porto (IBMC-UP), Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
7
|
Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, Yilmaz I, Cankurt U, Yilmaz Y, Akdogan I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 2014; 555:119-26. [PMID: 25445279 DOI: 10.1016/j.gene.2014.10.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/16/2023]
Abstract
We aimed to investigate the effects of grape seed extract (GSE) and vitamin E (Vit E) on oxidative stress and apoptosis in the hippocampus of streptozotocin-induced diabetic rats. In Control, Diabetic, and Diabetic treated with GSE (Diabetic+GSE) and vitamin E (Diabetic+Vit E) groups, oxidative stress index (OSI), TUNEL staining and Bcl-2, Bcl-XL, Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were evaluated. OSI was significantly increased in the plasma and hippocampus of the Diabetic compared to Control group and decreased in Diabetic+GSE and Diabetic+Vit E groups compared to Diabetic. TUNEL positive neurons significantly increased in the hippocampus of the Diabetic group compared to Control and decreased in Diabetic+GSE (more prominently) and Diabetic+Vit E groups compared to Diabetic. In the hippocampus of the Diabetic group, Bcl-2 and Bcl-XL gene expressions were significantly decreased; Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were significantly increased compared to Control. In Diabetic+GSE and Diabetic+Vit E groups, Bcl-2 gene expressions were significantly increased; Bcl-XL gene expressions did not differ compared to the Diabetic group. The expression of Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB genes in the Diabetic+GSE group and the expression of caspase-3 and -9, TNF-α, and NF-κB genes in the Diabetic+Vit E group were significantly decreased compared to Diabetic. In conclusion, GSE (more prominently) and vitamin E decreased oxidative stress and neuronal apoptosis occurring in the hippocampus of diabetic rats.
Collapse
Affiliation(s)
| | - Yavuz Dodurga
- Pamukkale University School of Medicine, Department of Medical Biology, Denizli, Turkey.
| | - Esat Adiguzel
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| | - Gulsah Gundogdu
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Vural Kucukatay
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Seda Ozbal
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ismail Yilmaz
- Izmir Bozyaka Training and Research Hospital, Department of Pharmacology, Izmir, Turkey
| | - Ulker Cankurt
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Yusuf Yilmaz
- Mehmet Akif Ersoy University Faculty of Engineering and Architecture, Department of Food Engineering, Burdur, Turkey
| | - Ilgaz Akdogan
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| |
Collapse
|
8
|
Determination of Micronutrients and Oxidative Stress Status in the Blood of STZ-Induced Experimental Diabetic Rat Models. Cell Biochem Biophys 2014; 70:933-8. [DOI: 10.1007/s12013-014-0001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
The diabetic vasculature: physiological mechanisms of dysfunction and influence of aerobic exercise training in animal models. Life Sci 2014; 102:1-9. [PMID: 24583313 DOI: 10.1016/j.lfs.2014.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/30/2014] [Accepted: 02/15/2014] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is associated with a number of complications of which chronic vascular complications are undoubtedly the most complex and significant consequence. With a significant impact on health care, 50-80% of people with diabetes die of cardiovascular disease (including coronary artery disease, stroke, peripheral vascular disease and other vascular disease), making it the major cause of morbidity and mortality in diabetic patients. A healthy lifestyle is essential in the management of DM, especially the inclusion of aerobic exercise, which has been shown effective in reducing the deleterious effects in vasculature. Interest in exercise studies has increased significantly with promising results that demonstrate a future for investigation. Considering the importance of this emerging field, the aim of this mini-review is to summarize and integrate animal studies investigating physiological mechanisms of vascular dysfunction and remodeling in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) and how these are influenced by chronic aerobic exercise training.
Collapse
|
10
|
Dey A, Lakshmanan J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 2014; 4:1148-84. [PMID: 23760593 DOI: 10.1039/c3fo30317a] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several antioxidants and agents having similar antioxidant effects are known to exert beneficial effects in ameliorating the injurious effects of hyperglycemia on liver in different diabetic in vitro and in vivo models. The review deals with some of the agents which have been shown to exert protective effects on liver against hyperglycemic insult and the various mechanisms involved. The different classes of agents which protect the diabetic liver or decrease the severity of hyperglycemia mediated injury include flavonoids, catechins, and other polyphenolic compounds, curcumin and its derivatives, certain vitamins, hormones and drugs, trace elements, prototypical antioxidants and amino acids. Some of the pronounced changes mediated by the antioxidants in liver exposed to hyperglycemia include decreased oxidative stress, and alterations in carbohydrate and lipid metabolism. Other mechanisms through which the agents ameliorate hyperglycemia mediated liver injury include decrease in oxidative DNA and protein damage, restoration of mitochondrial structural and functional integrity, decrease in inflammation and improved insulin signaling. Thus, antioxidants may prove to be an important mode of defense in maintaining normal hepatic functions in diabetes.
Collapse
Affiliation(s)
- Aparajita Dey
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai 600044, India.
| | | |
Collapse
|
11
|
In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J Chromatogr A 2013; 1304:52-60. [DOI: 10.1016/j.chroma.2013.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/09/2013] [Accepted: 07/06/2013] [Indexed: 01/06/2023]
|
12
|
Kandasamy N, Ashokkumar N. Myricetin modulates streptozotocin–cadmium induced oxidative stress in long term experimental diabetic nephrotoxic rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Rodrigo R, Miranda-Merchak A, Valenzuela Grau R, Bachler JP, Vergara L. Modulation of (Na,K)-ATPase activity by membrane fatty acid composition: therapeutic implications in human hypertension. Clin Exp Hypertens 2013; 36:17-26. [DOI: 10.3109/10641963.2013.783048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Garcia-Diaz DF, Campion J, Arellano AV, Milagro FI, Moreno-Aliaga MJ, Martinez JA. Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid. Exp Biol Med (Maywood) 2012; 237:407-16. [DOI: 10.1258/ebm.2011.011317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antioxidant-based treatments have emerged as novel and interesting approaches to counteract fat accumulation in obesity and associated metabolic disturbances. Adipocytes from rats that were fed on chow or high-fat diet (HFD) for 50 d were isolated (primary adipocytes) and incubated (72 h) on low (LG; 5.6 mmol/L) or high (HG; 25 mmol/L) glucose levels, in the presence or absence of 1.6 nmol/L insulin and 200 μmol/L vitamin C (VC). Adipocytes from HFD-fed animals presented lower insulin-induced glucose uptake, lower lactate and glycerol release, and lower insulin-induced secretion of some adipokines as compared with controls. HG treatment restored the blunted response to insulin regarding apelin secretion in adipocytes from HFD-fed rats. VC treatment inhibited the levels of nearly all variables, irrespective of the adipocytes’ dietary origin. The HG treatment reduced adipocyte viability, and VC protected from this toxic effect, although more drastically in control adipocytes. Summing up, in vivo chow or HFD intake determines a differential response to insulin and glucose treatments that appears to be dependent on the insulin-resistance status of the adipocytes, while VC modifies some responses from adipocytes independently of the previous dietary intake of the animals.
Collapse
Affiliation(s)
- Diego F Garcia-Diaz
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Javier Campion
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Arianna V Arellano
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Maria J Moreno-Aliaga
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
15
|
Higashida K, Kim SH, Higuchi M, Holloszy JO, Han DH. Normal adaptations to exercise despite protection against oxidative stress. Am J Physiol Endocrinol Metab 2011; 301:E779-84. [PMID: 21750271 PMCID: PMC3214004 DOI: 10.1152/ajpendo.00655.2010] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been reported that supplementation with the antioxidant vitamins C and E prevents the adaptive increases in mitochondrial biogenesis and GLUT4 expression induced by endurance exercise. We reevaluated the effects of these antioxidants on the adaptive responses of rat skeletal muscle to swimming in a short-term study consisting of 9 days of vitamins C and E with exercise during the last 3 days and a longer-term study consisting of 8 wk of antioxidant vitamins with exercise during the last 3 wk. The rats in the antioxidant groups were given 750 mg·kg body wt(-1)·day(-1) vitamin C and 150 mg·kg body wt(-1)·day(-1) vitamin E. In rats euthanized immediately after exercise, plasma TBARs were elevated in the control rats but not in the antioxidant-supplemented rats, providing evidence for an antioxidant effect. In rats euthanized 18 h after exercise there were large increases in insulin responsiveness of glucose transport in epitrochlearis muscles mediated by an approximately twofold increase in GLUT4 expression in both the short- and long-term treatment groups. The protein levels of a number of mitochondrial marker enzymes were also increased about twofold. Superoxide dismutases (SOD) 1 and 2 were increased about twofold in triceps muscle after 3 days of exercise, but only SOD2 was increased after 3 wk of exercise. There were no differences in the magnitudes of any of these adaptive responses between the control and antioxidant groups. These results show that very large doses of antioxidant vitamins do not prevent the exercise-induced adaptive responses of muscle mitochondria, GLUT4, and insulin action to exercise and have no effect on the level of these proteins in sedentary rats.
Collapse
Affiliation(s)
- Kazuhiko Higashida
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
16
|
Moraes EP, Rupérez FJ, Plaza M, Herrero M, Barbas C. Metabolomic assessment with CE-MS of the nutraceutical effect of Cystoseira spp extracts in an animal model. Electrophoresis 2011; 32:2055-62. [PMID: 21792987 DOI: 10.1002/elps.201000546] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
There is a need of scientific evidence of claimed nutraceutical effects, but also there is a social movement towards the use of natural products and among them algae are seen as rich resources. Within this scenario, the development of methodology for rapid and reliable assessment of markers of efficiency and security of these extracts is necessary. The rat treated with streptozotocin has been proposed as the most appropriate model of systemic oxidative stress for studying antioxidant therapies. Cystoseira is a brown alga containing fucoxanthin and other carothenes whose pressure-assisted extracts were assayed to discover a possible beneficial effect on complications related to diabetes evolution in an acute but short-term model. Urine was selected as the sample and CE-TOF-MS as the analytical technique to obtain the fingerprints in a non-target metabolomic approach. Multivariate data analysis revealed a good clustering of the groups and permitted the putative assignment of compounds statistically significant in the classification. Interestingly a group of compounds associated to lysine glycation and cleavage from proteins was found to be increased in diabetic animals receiving vehicle as compared to control animals receiving vehicle (N6,N6,N6-trimethyl-L-lysine, N-methylnicotinamide, galactosylhydroxylysine, L-carnitine, N6-acetyl-N6-hydroxylysine, fructose-lysine, pipecolic acid, urocanic acid, amino-isobutanoate, formylisoglutamine. Fructoselysine significantly decreased after the treatment changing from a 24% increase to a 19% decrease. CE-MS fingerprinting of urine has provided a group of compounds different to those detected with other techniques and therefore proves the necessity of a cross-platform analysis to obtain a broad view of biological samples.
Collapse
Affiliation(s)
- Edgar P Moraes
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Barbas C, Moraes EP, Villaseñor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal 2011; 55:823-31. [PMID: 21376499 DOI: 10.1016/j.jpba.2011.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/19/2022]
Abstract
Metabolomics, understood as a data driven strategy trying to find markers of a situation under study without a priori hypothesis, has rapidly caught the attention and evolved from the simple pattern recognition strategy, which was a great innovation at its origins, to the interest for the final identification of markers responsible for class separation, i.e., from data to knowledge. Due to differences in physico-chemical properties and concentrations of the metabolites, but also due to differences in matrix properties, cross-platform approaches are proving to increase the capability of information. Once more techniques do not compete. This is the scene where capillary electrophoresis (CE) has its niche to provide information mainly on polar or ionic compounds in biological fluids. General advantages and disadvantages of CE for sample fingerprinting will be discussed and methods will be classified depending on the detection system (UV or MS) as this strongly affects all the conditions. Recent developments will be presented in different biological fluids, although urine is without a doubt the preferred sample for CE analysis.
Collapse
Affiliation(s)
- C Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| | | | | |
Collapse
|
18
|
Godzien J, Ciborowski M, Angulo S, Ruperez FJ, Paz Martínez M, Señorans FJ, Cifuentes A, Ibañez E, Barbas C. Metabolomic Approach with LC-QTOF to Study the Effect of a Nutraceutical Treatment on Urine of Diabetic Rats. J Proteome Res 2010; 10:837-44. [DOI: 10.1021/pr100993x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joanna Godzien
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Michal Ciborowski
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Santiago Angulo
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Francisco J. Ruperez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - M Paz Martínez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Francisco J. Señorans
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Alejandro Cifuentes
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Elena Ibañez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| | - Coral Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, 28668 Boadilla del Monte, Madrid, Spain, Department of Molecular Biology, Faculty of Mathematics and Natural Sciences, The John Paul II Catholic University of Lublin, Krasnicka 102, 20-718 Lublin, Poland, Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland, Sección Departamental Ciencias de la Alimentación, Universidad Autónoma de Madrid
| |
Collapse
|
19
|
Dias T, Mota-Filipe H, Liu B, Jones P, Houghton PJ, Paulo A. Recovery of oral glucose tolerance by Wistar rats after treatment with Coreopsis tinctoria infusion. Phytother Res 2010; 24:699-705. [PMID: 19827015 DOI: 10.1002/ptr.2998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infusions of Coreopsis tinctoria flowering tops have traditionally been used in Portugal to control hyperglycaemia but no pharmacological or toxicological studies have been reported until now. The chalcones marein and okanin were isolated from the aqueous extract, together with the 2S-3',4',7,8-tetrahydroxyflavanone. The content of marein in extracts was determined by HPLC-UV and the radical scavenging capacity evaluated by the DPPH method (EC(50) = 21 microg/mL). Glucose intolerance was induced by a single intraperitoneal injection of streptozotocin in saline (40 mg/Kg). After three weeks of oral treatment with C. tinctoria extract (500 mg/Kg/day) the animals were no longer glucose-intolerant (p > 0.05). Additionally, this oral treatment caused no hepatotoxicity in the rats, as determined by blood alanine and aspartate transaminases. A single administration of extract had no effect on oral glucose tolerance in normal Wistar rats. The extract also had no effect on insulin secretion by MIN6 cells. In conclusion, C. tinctoria infusion is able to abolish the streptozotocin-induced glucose-intolerance in rats after three weeks of oral treatment by a mechanism other than induction of insulin secretion. The recovery of beta-pancreatic function mediated by an antioxidant mechanism is a possibility that deserves further investigation.
Collapse
Affiliation(s)
- Teresa Dias
- i.Med-UL-Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
20
|
Pancreatic tissue protective nature of D-Pinitol studied in streptozotocin-mediated oxidative stress in experimental diabetic rats. Eur J Pharmacol 2009; 622:65-70. [DOI: 10.1016/j.ejphar.2009.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/19/2009] [Accepted: 09/08/2009] [Indexed: 02/02/2023]
|
21
|
Prat M, López-Gonzálvez A, Ruiz M, Barbas C. Ultrasound-assisted extraction for rapid determination of Zn, Cu, Fe, Mg and Mn in liver of diabetic rats under different antioxidant treatments. J Pharm Biomed Anal 2009; 49:1040-4. [DOI: 10.1016/j.jpba.2009.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 11/24/2022]
|
22
|
Dunaliella salina extract effect on diabetic rats: Metabolic fingerprinting and target metabolite analysis. J Pharm Biomed Anal 2009; 49:786-92. [DOI: 10.1016/j.jpba.2008.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/23/2008] [Accepted: 12/23/2008] [Indexed: 11/21/2022]
|
23
|
Zhang S, Nagana Gowda GA, Asiago V, Shanaiah N, Barbas C, Raftery D. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal Biochem 2008; 383:76-84. [PMID: 18775407 DOI: 10.1016/j.ab.2008.07.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/21/2008] [Accepted: 07/31/2008] [Indexed: 02/03/2023]
Abstract
Type 1 diabetes was induced in Sprague-Dawley rats using streptozotocin. Rat urine samples (8 diabetic and 10 control) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy. The derived metabolites using univariate and multivariate statistical analysis were subjected to correlative analysis. Plasma metabolites were measured by a series of bioassays. A total of 17 urinary metabolites were identified in the 1H NMR spectra and the loadings plots after principal components analysis. Diabetic rats showed significantly increased levels of glucose (P < 0.00001), alanine (P < 0.0002), lactate (P < 0.05), ethanol (P < 0.05), acetate (P < 0.05), and fumarate (P < 0.05) compared with controls. Plasma assays showed higher amounts of glucose, urea, triglycerides, and thiobarbituric acid-reacting substances in diabetic rats. Striking differences in the Pearson's correlation of the 17 NMR-detected metabolites were observed between control and diabetic rats. Detailed analysis of the altered metabolite levels and their correlations indicate a significant disturbance in the glucose metabolism and tricarboxylic acid (TCA) cycle and a contribution from gut microbial metabolism. Specific perturbed metabolic pathways include the glucose-alanine and Cori cycles, the acetate switch, and choline metabolism. Detection of the altered metabolic pathways and bacterial metabolites using this correlative and quantitative NMR-based metabolomics approach should help to further the understanding of diabetes-related mechanisms.
Collapse
Affiliation(s)
- Shucha Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|