1
|
Hilman A, Sato T, Wijatniko BD, Fujimura S, Nakamura K, Miura H, Iwatsuki K, Inoue R, Suzuki T. The expression of intestinal Cyp2c55 is regulated by the microbiota and inflammation. FASEB J 2024; 38:e70117. [PMID: 39432326 PMCID: PMC11580718 DOI: 10.1096/fj.202401807r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Although the mutualistic relationship between the intestinal microbiota and the human host is crucial for maintaining health, the underlying mechanisms of this relationship remain unclear. In the present study, aiming to elucidate the regulatory mechanisms governing the Cyp2c55 expression, which is predominantly observed in colonic tissues, germ-free, antibiotic-administered and colitic mice, as well as mouse colonoids, were used as experimental models. RNA sequencing showed comparable decreases in the colonic Cyp2c55 expression in germ-free and antibiotic-administered mice, when compared with that in specific pathogen-free mice. Furthermore, administration of dextran sulfate sodium decreased the Cyp2c55 expression in colitic mice. For these mice, a Pearson correlation analysis also showed a positive correlation between the Cyp2c55 expression and unconjugated bile acids (BAs), including chenodeoxycholic, muricholic, deoxycholic, lithocholic, and ursodeoxycholic acids, as well as taurine (T)-conjugated secondary BAs, including deoxycholic acid. Moreover, bacterial genera, such as Muribaculaceae and unclassified Lachnospiraceae, also exhibited a positive correlation with these BAs. While administration of an agonist of the pregnane X receptor (PXR) increased the Cyp2c55 expression in mouse colonoids, inflammatory cytokines decreased it. In conclusion, Cyp2c55 was highly expressed in the colonic epithelial cells of mice in a microbiota-dependent manner. The underlying mechanism seemed to involve a BA-mediated PXR activation. In addition, the colonic expression of Cyp2c55 was regulated by the inflammatory response. Although the physiological function of Cyp2c55 remains largely unidentified, our findings suggested that Cyp2c55 may play a role in the mutualistic interaction between the intestinal microbiota and the intestinal homeostasis.
Collapse
Affiliation(s)
- Adrian Hilman
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Department of Food Technology, Faculty of AgricultureUniversitas Sumatera UtaraMedanIndonesia
| | - Tetsu Sato
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Bambang Dwi Wijatniko
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Department of Food and Agricultural Product TechnologyUniversitas Gadjah MadaYogyakartaIndonesia
| | - So Fujimura
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Katsushi Nakamura
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| | - Hiroto Miura
- Faculty of AgricultureSetsunan UniversityHirakataJapan
| | - Ken Iwatsuki
- Faculty of Applied BioscienceTokyo University of AgricultureTokyoJapan
| | - Ryo Inoue
- Faculty of AgricultureSetsunan UniversityHirakataJapan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
2
|
Ali M, Xu C, Wang J, Kulyar MFEA, Li K. Emerging therapeutic avenues against Cryptosporidium: A comprehensive review. Vet Parasitol 2024; 331:110279. [PMID: 39116547 DOI: 10.1016/j.vetpar.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Cryptosporidium is among the top causes of life-threatening diarrheal infection in public health and livestock sectors. Despite its high prevalence and economic importance, currently, there is no vaccine. Control of this protozoan is difficult due to the excretion of many resistant oocysts in the feces of the infected host, which contaminate the environment. Paromomycin shows inconsistent results and isn't considered a reliable therapy for cryptosporidiosis. Nitazoxanide (NTZ), the only FDA-approved drug against this parasite, is less productive in impoverished children and PLWHA (people living with HIV/AIDS). The absence of mitochondria and apicoplast, its unique location inside enterocytes separated by parasitophorous vacuole, and, most importantly, challenges in its genetic manipulations are some hurdles to the drug-discovery process. A library of compounds has been tested against Cryptosporidium during in vitro and in vivo trials. However, there has still not been sufficient success in finding the drug of choice against this parasite. Recent genome editing technologies based on CRISPR/Cas-9 have explored the functions of the vital genes by producing transgenic parasites that help to screen a collection of compounds to find target-specific drugs, provided the sufficient availability of in vitro culturing platforms, efficient transfection methods, and analytic techniques. The use of herbal remedies against Cryptosporidium is also an emerging area of interest with sufficient clinical success due to enhanced concern regarding anthelmintic resistance. Here, we highlighted present treatment options with their associated limitations, the use of genetic tools and natural products against it to find safe, effective, and inexpensive drugs to control the ever-increasing global burden of this disease.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Wang QL, Zhang PX, Shen R, Xu M, Han L, Shi X, Zhou ZR, Yang JY, Liu JQ. Determination of arbutin in vitro and in vivo by LC-MS/MS: Pre-clinical evaluation of natural product arbutin for its early medicinal properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118232. [PMID: 38670407 DOI: 10.1016/j.jep.2024.118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% ∼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 μM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.
Collapse
Affiliation(s)
- Qiao-Lai Wang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China.
| | - Pei-Xi Zhang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Rui Shen
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Meng Xu
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Liang Han
- Sheng Xia Innovation Pharmaceutical Technology Co., Ltd., Xiamen, 361000, China
| | - Xuan Shi
- Sheng Xia Innovation Pharmaceutical Technology Co., Ltd., Xiamen, 361000, China
| | - Zi-Rui Zhou
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Jing-Yi Yang
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, 269 Chenghua North Road, Fengze District, Quanzhou, 362021, China; Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, Huaqiao University, Quanzhou, 362021, China.
| |
Collapse
|
4
|
Moss CD, Wilson AL, Reed KJ, Jennings KJ, Kunz IGZ, Landolt GA, Metcalf J, Engle TE, Coleman SJ. Gene Expression Analysis before and after the Pelvic Flexure in the Epithelium of the Equine Hindgut. Animals (Basel) 2024; 14:2303. [PMID: 39199837 PMCID: PMC11350661 DOI: 10.3390/ani14162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Previous research demonstrated the distribution of distinct microbial communities in the equine hindgut surrounding the pelvic flexure. The current study evaluated gene expression in epithelial tissues surrounding the pelvic flexure to characterize patterns that might correlate with microbial distribution. Gene expression was determined by analyzing RNA sequence data from the pelvic flexure, the left and right ventral colon, and the left and right dorsal colon. An average of 18,330 genes were expressed across the five tissues sampled. Most of the genes showed some level of expression in all five tissues. Tissue-restricted patterns of expression were also observed. Genes with restricted expression in the left ventral and left dorsal colons have communication, signaling, and regulatory functions that correlate with their known physiology. In contrast, genes expressed exclusively in the pelvic flexure have diverse functions. The ontology of genes differentially expressed between the pelvic flexure and the surrounding tissues was associated with immune functions and signaling processes. Despite being non-significant, these enrichment trends were reinforced by the functions of statistically significant expression differences between tissues of the hindgut. These results provide insight into the physiology of the equine hindgut epithelium that might influence the microbiota and its distribution.
Collapse
Affiliation(s)
- Cameron D. Moss
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Amber L. Wilson
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Kailee J. Reed
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Watchmaker Genomics, Boulder, CO 80301, USA
| | - Kaysie J. Jennings
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
- Transnetyx, Memphis, TN 38016, USA
| | - Isabelle G. Z. Kunz
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Gabriele A. Landolt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 8023, USA
| | - Jessica Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Terry E. Engle
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| | - Stephen J. Coleman
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 8023, USA; (C.D.M.); (I.G.Z.K.); (T.E.E.)
| |
Collapse
|
5
|
Martischang R, Nikolaou A, Daali Y, Samer CF, Terrier J. Guidance on Selecting Optimal Steady-State Tacrolimus Concentrations for Continuous IV Perfusion: Insights from Physiologically Based Pharmacokinetic Modeling. Pharmaceuticals (Basel) 2024; 17:1047. [PMID: 39204152 PMCID: PMC11357179 DOI: 10.3390/ph17081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Introduction: The dose-response relationships of tacrolimus have been primarily assessed through trough concentrations during intermittent administrations. In scenarios where oral administration (PO) is unfeasible, continuous intravenous (IV) administration is advised. Under these circumstances, only steady-state (Css) plasma or blood concentrations are measured, with the absence of distinct trough levels (Cmin). Consequently, the measured concentrations are frequently misinterpreted as trough concentrations, potentially resulting in sub-therapeutic true tacrolimus blood levels. This study employs physiologically based pharmacokinetic modeling (PBPK) to establish the Css/Cmin ratio for tacrolimus across various clinical scenarios. Method: Using a validated PBPK model, the tacrolimus dose (both PO and IV) and the Css/Cmin ratios corresponding to matching area under the blood concentration-time curve during a dosage interval (AUCτ) values were estimated under different conditions, including healthy subjects and individuals exhibiting cytochrome P450 3A (CYP3A) interactions or CYP3A5 polymorphisms, along with a demonstration of a real-life clinical application. Result: In healthy volunteers, the oral/intravenous (PO/IV) dose ratio was found to be 4.25, and the Css/Cmin ratio was 1.40. A specific clinical case substantiated the practical applicability of the Css/Cmin ratio as simulated by PBPK, demonstrating no immediate clinical complications related to the transplant. When considering liver donors versus recipients expressing CYP3A5, the tacrolimus AUCτ was notably affected, yielding a PO/IV dose ratio of 4.00 and a Css/Cmin ratio of 1.75. Furthermore, the concomitant administration of the CYP3A inhibitor itraconazole given PO resulted in a PO/IV ratio of 1.75 with and a Css/Cmin ratio of 1.28. Notably, the inhibitory effect of itraconazole was diminished when administered IV. Conclusions: Through the application of PBPK methodologies, this study estimates the PO/IV dose ratios and Css/Cmin ratios that can enhance dose adjustment and therapeutic drug monitoring during the switch between IV and PO administration of tacrolimus in transplant patients, ultimately guiding clinicians in real-time decision-making. Further validation with in vivo data is recommended to support these findings.
Collapse
Affiliation(s)
- Romain Martischang
- Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Argyro Nikolaou
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Caroline Flora Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Jean Terrier
- Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
7
|
Yuan T, Bi F, Hu K, Zhu Y, Lin Y, Yang J. Clinical Trial Data-Driven Risk Assessment of Drug-Drug Interactions: A Rapid and Accurate Decision-Making Tool. Clin Pharmacokinet 2024; 63:1147-1165. [PMID: 39102093 DOI: 10.1007/s40262-024-01404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND In clinical practice, the vast array of potential drug combinations necessitates swift and accurate assessments of pharmacokinetic drug-drug interactions (DDIs), along with recommendations for adjustments. Current methodologies for clinical DDI evaluations primarily rely on basic extrapolations from clinical trial data. However, these methods are limited in accuracy owing to their lack of a comprehensive consideration of various critical factors, including the inhibitory potency, dosage, and type of the inhibitor, as well as the metabolic fraction and intestinal availability of the substrate. OBJECTIVE This study aims to propose an efficient and accurate clinical pharmacokinetic-mediated DDI assessment tool, which comprehensively considers the effects of inhibitory potency and dosage of inhibitors, intestinal availability and fraction metabolized of substrates on DDI outcomes. METHODS This study focuses on DDIs caused by cytochrome P450 3A4 enzyme inhibition, utilizing extensive clinical trial data to establish a methodology to calculate the metabolic fraction and intestinal availability for substrates, as well as the concentration and inhibitory potency for inhibitors ( K i ork inact / K I ). These parameters were then used to predict the outcomes of DDIs involving 33 substrates and 20 inhibitors. We also defined the risk index for substrates and the potency index for inhibitors to establish a clinical DDI risk scale. The training set for parameter calculation consisted of 73 clinical trials. The validation set comprised 89 clinical DDI trials involving 53 drugs. which was used to evaluate the reliability of in vivo values of K i andk inact / K I , the accuracy of DDI predictions, and the false-negative rate of risk scale. RESULTS First, the reliability of the in vivo K i andk inact / K I values calculated in this study was assessed using a basic static model. Compared with values obtained from other methods, this study values showed a lower geometric mean fold error and root mean square error. Additionally, incorporating these values into the physiologically based pharmacokinetic-DDI model facilitated a good fitting of the C-t curves when the substrate's metabolic enzymes are inhibited. Second, area under the curve ratio predictions of studied drugs were within a 1.5 × margin of error in 81% of cases compared with clinical observations in the validation set. Last, the clinical DDI risk scale developed in this study predicted the actual risks in the validation set with only a 5.6% incidence of serious false negatives. CONCLUSIONS This study offers a rapid and accurate approach for assessing the risk of pharmacokinetic-mediated DDIs in clinical practice, providing a foundation for rational combination drug use and dosage adjustments.
Collapse
Affiliation(s)
- Tong Yuan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China
| | - Fulin Bi
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China
| | - Kuan Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China
| | - Yuqi Zhu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan Lin
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmiandadao Rd, Nanjing, 211198, People's Republic of China.
| | - Jin Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Mehta V, Karnam G, Madgula V. Liver-on-chips for drug discovery and development. Mater Today Bio 2024; 27:101143. [PMID: 39070097 PMCID: PMC11279310 DOI: 10.1016/j.mtbio.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Recent FDA modernization act 2.0 has led to increasing industrial R&D investment in advanced in vitro 3D models such as organoids, spheroids, organ-on-chips, 3D bioprinting, and in silico approaches. Liver-related advanced in vitro models remain the prime area of interest, as liver plays a central role in drug clearance of compounds. Growing evidence indicates the importance of recapitulating the overall liver microenvironment to enhance hepatocyte maturity and culture longevity using liver-on-chips (LoC) in vitro. Hence, pharmaceutical industries have started exploring LoC assays in the two of the most challenging areas: accurate in vitro-in vivo extrapolation (IVIVE) of hepatic drug clearance and drug-induced liver injury. We examine the joint efforts of commercial chip manufacturers and pharmaceutical companies to present an up-to-date overview of the adoption of LoC technology in the drug discovery. Further, several roadblocks are identified to the rapid adoption of LoC assays in the current drug development framework. Finally, we discuss some of the underexplored application areas of LoC models, where conventional 2D hepatic models are deemed unsuitable. These include clearance prediction of metabolically stable compounds, immune-mediated drug-induced liver injury (DILI) predictions, bioavailability prediction with gut-liver systems, hepatic clearance prediction of drugs given during pregnancy, and dose adjustment studies in disease conditions. We conclude the review by discussing the importance of PBPK modeling with LoC, digital twins, and AI/ML integration with LoC.
Collapse
Affiliation(s)
- Viraj Mehta
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Guruswamy Karnam
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| | - Vamsi Madgula
- Organoid Technology Lab, DMPK Department, Sai Life Sciences, Hyderabad, 500078, India
| |
Collapse
|
9
|
Kuzin M, Haen E, Kuzo N, Endres K, Hiemke C, Paulzen M, Schoretsanitis G. Assessing Pharmacokinetic Correlates of Escitalopram-Related Adverse Drug Reactions. Ther Drug Monit 2024; 46:246-251. [PMID: 38377253 PMCID: PMC10930353 DOI: 10.1097/ftd.0000000000001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND To assess the pharmacokinetic correlates of reported adverse drug reactions (ADRs) under antidepressant treatment with escitalopram (ESC) using a large therapeutic drug monitoring database. METHODS A large naturalistic sample of inpatients and outpatients prescribed ESC was analyzed. ADRs were classified using the Udvalg for Kliniske Undersogelser side effect rating scale. We compared ESC-treated patients with (n = 35) and without ADRs (n = 273) using ESC plasma concentrations as the primary outcome. We also compared ADR rates in the 2 groups based on 2 cut-off ESC levels reflecting the recommended upper thresholds of the therapeutic reference range of 80 ng/mL, suggested by the consensus therapeutic drug monitoring guidelines, and 40 ng/mL, based on recent meta-analysis data. The effects of age, sex, smoking, daily ESC dose, plasma concentrations, and concentrations corrected for daily dose were included in a binary logistic regression model to predict ADRs. RESULTS No differences in clinical, demographic, or pharmacokinetic parameters were observed between patients with and without ADRs ( P > 0.05). Patients with ESC-related ADRs were more frequently diagnosed with psychotic disorders than those without (25% vs. 7.1%, P = 0.004). None of the variables was associated with ADR risk. Overall, ADR rates were not significantly different in patients above versus below thresholds of ESC concentrations (ESC concentrations >40 [n = 59] vs. ≤40 ng/mL [n = 249] and >80 [n = 8] vs. ≤80 ng/mL [n = 300]; P = 0.56 and P = 1.0, respectively). CONCLUSIONS No distinct pharmacokinetic patterns underlying ESC-associated ADRs were observed. Further studies with more specific assessments of ADRs in larger cohorts are required to better identify potential underlying patterns.
Collapse
Affiliation(s)
- Maxim Kuzin
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See/Zurich, Switzerland;
- Department of Basic and Clinical Sciences at the Medical School, University of Nicosia, Nicosia, Cyprus
| | - Ekkehard Haen
- Clinical Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany;
- Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany;
- Clinical Pharmacology, Institute AGATE gGmbH, Pentling, Germany;
| | - Nazar Kuzo
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland;
| | - Katharina Endres
- Clinical Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany;
- Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany;
- Clinical Pharmacology, Institute AGATE gGmbH, Pentling, Germany;
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Mainz, Germany;
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany;
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany;
- JARA—Translational Brain Medicine, Jülich, Germany;
- Alexianer Hospital Aachen, Aachen, Germany;
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland;
- Department of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York; and
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
| |
Collapse
|
10
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Ali M, Xu C, Nawaz S, Ahmed AE, Hina Q, Li K. Anti-Cryptosporidial Drug-Discovery Challenges and Existing Therapeutic Avenues: A "One-Health" Concern. Life (Basel) 2024; 14:80. [PMID: 38255695 PMCID: PMC10820218 DOI: 10.3390/life14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Cryptosporidiosis is the leading cause of life-threatening diarrheal infection, especially in infants. Oocysts contaminate the environment, and also, being a zoonotic disease, cryptosporidiosis is a threat to One Health. Nitazoxanide is the only FDA-approved drug, effective only in immunocompetent adults, and is not safe for infants. The absence of mitochondria and apicoplast, the presence of an electron-dense band (ED band), hindrances in its genetic and phenotypic manipulations, and its unique position inside the host cell are some challenges to the anti-cryptosporidial drug-discovery process. However, many compounds, including herbal products, have shown efficacy against Cryptosporidium during in vitro and in vivo trials. Still, the "drug of choice" against this protozoan parasite, especially in immunocompromised individuals and infants, has not yet been explored. The One-Health approach addresses this issue, focusing on the intersection of animal, human, and environmental health. The objective of this review is to provide knowledge about novel anti-cryptosporidial drug targets, available treatment options with associated limitations, and possible future shifts toward natural products to treat cryptosporidiosis. The current review is organized to address the treatment and prevention of cryptosporidiosis. An anti-cryptosporidial drug that is effective in immunocompromised individuals and infants is a necessity of our time.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (C.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Zhang S, Wang T, Feng Y, Li F, Qu A, Guan X, Wang H, Xu D. Pregnenolone 16α-carbonitrile negatively regulates hippocampal cytochrome P450 enzymes and ameliorates phenytoin-induced hippocampal neurotoxicity. J Pharm Anal 2023; 13:1510-1525. [PMID: 38223454 PMCID: PMC10785155 DOI: 10.1016/j.jpha.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 01/16/2024] Open
Abstract
The central nervous system is susceptible to the modulation of various neurophysiological processes by the cytochrome P450 enzyme (CYP), which plays a crucial role in the metabolism of neurosteroids. The antiepileptic drug phenytoin (PHT) has been observed to induce neuronal side effects in patients, which could be attributed to its induction of CYP expression and testosterone (TES) metabolism in the hippocampus. While pregnane X receptor (PXR) is widely known for its regulatory function of CYPs in the liver, we have discovered that the treatment of mice with pregnenolone 16α-carbonitrile (PCN), a PXR agonist, has differential effects on CYP expression in the liver and hippocampus. Specifically, the PCN treatment resulted in the induction of cytochrome P450, family 3, subfamily a, polypeptide 11 (CYP3A11), and CYP2B10 expression in the liver, while suppressing their expression in the hippocampus. Functionally, the PCN treatment protected mice from PHT-induced hippocampal nerve injury, which was accompanied by the inhibition of TES metabolism in the hippocampus. Mechanistically, we found that the inhibition of hippocampal CYP expression and attenuation of PHT-induced neurotoxicity by PCN were glucocorticoid receptor dependent, rather than PXR independent, as demonstrated by genetic and pharmacological models. In conclusion, our study provides evidence that PCN can negatively regulate hippocampal CYP expression and attenuate PHT-induced hippocampal neurotoxicity independently of PXR. Our findings suggest that glucocorticoids may be a potential therapeutic strategy for managing the neuronal side effects of PHT.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Ye Feng
- Department of Endocrinology and Metabolic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fei Li
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100069, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
14
|
Schoretsanitis G, Strømmen M, Krabseth HM, Helland A, Spigset O. Effects of Sleeve Gastrectomy and Roux-en-Y Gastric Bypass on Escitalopram Pharmacokinetics: A Cohort Study. Ther Drug Monit 2023; 45:805-812. [PMID: 37363832 PMCID: PMC10635340 DOI: 10.1097/ftd.0000000000001114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Changes in the gastrointestinal physiology after bariatric surgery may affect the pharmacokinetics of medications. Data on the impact of different surgical techniques on the pharmacokinetics of commonly prescribed antidepressants such as escitalopram are limited. METHODS This case-only prospective study investigated escitalopram-treated patients who underwent bariatric surgery at hospitals in Central Norway. Escitalopram concentrations were assessed using serial blood samples obtained during a dose interval of 24 hours preoperatively and at 1, 6, and 12 months, postoperatively. The primary outcomes were changes in the area under the time-concentration curve (AUC 0-24 ) with secondary outcomes, including full pharmacokinetic profiling. We performed repeated-measures analysis of variance for the AUC 0-24 and secondary outcomes. RESULTS Escitalopram-treated obese patients who underwent sleeve gastrectomy (n = 5) and Roux-en-Y gastric bypass (n = 4) were included. Compared with preoperative baseline, dose-adjusted AUC 0-24 values were within ±20% at all time points, postoperatively in the sleeve gastrectomy and oux-en-Y gastric bypass groups, with the largest changes occurring 1 month postoperatively (+14.5 and +17.2%, respectively). No statistically significant changes in any pharmacokinetic variables over time were reported; however, there was a trend toward increased maximum concentrations after surgery ( P = 0.069). CONCLUSIONS Our findings suggest that bariatric surgery has no systematic effect on the pharmacokinetics of escitalopram. However, because of the substantial interindividual variation, therapeutic drug monitoring can be considered to guide postoperative dose adjustments.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York
- Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Magnus Strømmen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Obesity Research, Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway; and
| | - Hege-Merete Krabseth
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Arne Helland
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Olav Spigset
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Andrade C. Therapeutic Compatibility of Orally Administered Racemic Ketamine with Modafinil, a CYP3A4 Enzyme Inducer, in Treatment-Refractory Major Depressive Disorder. Indian J Psychol Med 2023; 45:651-653. [PMID: 38545532 PMCID: PMC10964878 DOI: 10.1177/02537176231160264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/23/2024] Open
Affiliation(s)
- Chittaranjan Andrade
- Dept. of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Lim H, Seo Y, Kwon D, Kang S, Yu J, Park H, Lee SD, Lee T. Recent Progress in Diatom Biosilica: A Natural Nanoporous Silica Material as Sustained Release Carrier. Pharmaceutics 2023; 15:2434. [PMID: 37896194 PMCID: PMC10609864 DOI: 10.3390/pharmaceutics15102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
A drug delivery system (DDS) is a useful technology that efficiently delivers a target drug to a patient's specific diseased tissue with minimal side effects. DDS is a convergence of several areas of study, comprising pharmacy, medicine, biotechnology, and chemistry fields. In the traditional pharmacological concept, developing drugs for disease treatment has been the primary research field of pharmacology. The significance of DDS in delivering drugs with optimal formulation to target areas to increase bioavailability and minimize side effects has been recently highlighted. In addition, since the burst release found in various DDS platforms can reduce drug delivery efficiency due to unpredictable drug loss, many recent DDS studies have focused on developing carriers with a sustained release. Among various drug carriers, mesoporous silica DDS (MS-DDS) is applied to various drug administration routes, based on its sustained releases, nanosized porous structures, and excellent solubility for poorly soluble drugs. However, the synthesized MS-DDS has caused complications such as toxicity in the body, long-term accumulation, and poor excretion ability owing to acid treatment-centered manufacturing methods. Therefore, biosilica obtained from diatoms, as a natural MS-DDS, has recently emerged as an alternative to synthesized MS-DDS. This natural silica carrier is an optimal DDS platform because culturing diatoms is easy, and the silica can be separated from diatoms using a simple treatment. In this review, we discuss the manufacturing methods and applications to various disease models based on the advantages of biosilica.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Daeryul Kwon
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Sang Deuk Lee
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| |
Collapse
|
17
|
Martinez-Lomeli J, Deol P, Deans JR, Jiang T, Ruegger P, Borneman J, Sladek FM. Impact of Various High Fat Diets on Gene Expression and the Microbiome Across the Mouse Intestines. RESEARCH SQUARE 2023:rs.3.rs-3401763. [PMID: 37886485 PMCID: PMC10602159 DOI: 10.21203/rs.3.rs-3401763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
High fat diets (HFDs) have been linked to several diseases including obesity, diabetes, fatty liver, inflammatory bowel disease (IBD) and colon cancer. In this study, we examined the impact on intestinal gene expression of three isocaloric HFDs that differed only in their fatty acid composition - coconut oil (saturated fats), conventional soybean oil (polyunsaturated fats) and a genetically modified soybean oil (monounsaturated fats). Four functionally distinct segments of the mouse intestinal tract were analyzed using RNA-seq - duodenum, jejunum, terminal ileum and proximal colon. We found considerable dysregulation of genes in multiple tissues with the different diets, including those encoding nuclear receptors and genes involved in xenobiotic and drug metabolism, epithelial barrier function, IBD and colon cancer as well as genes associated with the microbiome and COVID-19. Network analysis shows that genes involved in metabolism tend to be upregulated by the HFDs while genes related to the immune system are downregulated; neurotransmitter signaling was also dysregulated by the HFDs. Genomic sequencing also revealed a microbiome altered by the HFDs. This study highlights the potential impact of different HFDs on gut health with implications for the organism as a whole and will serve as a reference for gene expression along the length of the intestines.
Collapse
|
18
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
19
|
Morgan K, Morley SD, Raja AK, Vandeputte M, Samuel K, Waterfall M, Homer NZM, Hayes PC, Fallowfield JA, Plevris JN. Metabolism of Acetaminophen by Enteric Epithelial Cells Mitigates Hepatocellular Toxicity In Vitro. J Clin Med 2023; 12:3995. [PMID: 37373688 DOI: 10.3390/jcm12123995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The gut-liver axis is defined by dietary and environmental communication between the gut, microbiome and the liver with its redox and immune systems, the overactivation of which can lead to hepatic injury. We used media preconditioning to mimic some aspects of the enterohepatic circulation by treating the human Caco-2 intestinal epithelial cell line with 5, 10 and 20 mM paracetamol (N-acetyl-para-aminophenol; APAP) for 24 h, after which cell culture supernatants were transferred to differentiated human hepatic HepaRG cells for a further 24 h. Cell viability was assessed by mitochondrial function and ATP production, while membrane integrity was monitored by cellular-based impedance. Metabolism by Caco-2 cells was determined by liquid chromatography with tandem mass spectrometry. Caco-2 cell viability was not affected by APAP, while cell membrane integrity and tight junctions were maintained and became tighter with increasing APAP concentrations, suggesting a reduction in the permeability of the intestinal epithelium. During 24 h incubation, Caco-2 cells metabolised 64-68% of APAP, leaving 32-36% of intact starting compound to be transferred to HepaRG cells. When cultured with Caco-2-preconditioned medium, HepaRG cells also showed no loss of cell viability or membrane integrity, completely in contrast to direct treatment with APAP, which resulted in a rapid loss of cell viability and membrane integrity and, ultimately, cell death. Thus, the pre-metabolism of APAP could mitigate previously observed hepatotoxicity to hepatic tight junctions caused by direct exposure to APAP. These observations could have important implications for the direct exposure of hepatic parenchyma to APAP, administered via the intravenous route.
Collapse
Affiliation(s)
- Katie Morgan
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Steven D Morley
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Arslan K Raja
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Martin Vandeputte
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Kay Samuel
- Scottish Blood Transfusion Service, Jack Copland Centre, 52 Research Avenue North, Edinburgh EH14 4BE, UK
| | - Martin Waterfall
- Flow Cytometry Facility, Ashworth Laboratories, Institute of Immunology & Infection Research, The University of Edinburgh, The Kings Buildings, Edinburgh EH9 3FL, UK
| | - Natalie Z M Homer
- Mass Spectrometry Facility, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Peter C Hayes
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jonathan A Fallowfield
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Institute for Regeneration and Repair, Edinburgh BioQuarter, The University of Edinburgh, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - John N Plevris
- Hepatology Laboratory, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
20
|
Ashraf M, Ahammad SZ, Chakma S. Advancements in the dominion of fate and transport of pharmaceuticals and personal care products in the environment-a bibliometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64313-64341. [PMID: 37067715 PMCID: PMC10108824 DOI: 10.1007/s11356-023-26796-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The study on the fate and transport of Pharmaceuticals and Personal Care Products, PPCPs (FTP) in the environment, has received particular attention for over two decades. The PPCPs threaten ecology and human health even at low concentrations due to their synergistic effects and long-range transport. The research aims to provide an inclusive map of the scientific background of FTP research over the last 25 years, from 1996 to 2020, to identify the main characteristics, evolution, salient research themes, trends, and research hotspots in the field of interest. Bibliometric networks were synthesized and analyzed for 577 journal articles extracted from the Scopus database. Consequently, seven major themes of FTP research were identified as follows: (i) PPCPs category; (ii) hazardous effects; (iii) occurrence of PPCPs; (iv) PPCPs in organisms; (v) remediation; (vi) FTP-governing processes; and (vii) assessment in the environment. The themes gave an in-depth picture of the sources of PPCPs and their transport and fate processes in the environment, which originated from sewage treatment plants and transported further to sediment/soils/groundwater/oceans that act as the PPCPs' major sink. The article provided a rigorous analysis of the research landscape in the FTP study conducted during the specified years. The prominent research themes, content analysis, and research hotspots identified in the study may serve as the basis of real-time guidance to lead future research areas and a prior review for policymakers and practitioners.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| |
Collapse
|
21
|
Britza SM, Musgrave IF, Farrington R, Byard RW. Intestinal epithelial damage due to herbal compounds - an in vitro study. Drug Chem Toxicol 2023; 46:247-255. [PMID: 34979837 DOI: 10.1080/01480545.2021.2021929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial injury from herbal products has rarely been reported, despite the gut being the first point of contact for oral preparations. These products often consist of multiple herbs, thereby potentially exposing consumers to higher levels of reactive phytochemicals than predicted due to pharmacokinetic interactions. The phytochemical coumarin, found in many herbal products, may be taken in combination with herbal medicines containing astragalosides and atractylenolides, purported cytochrome P450 (CYP) modulators. As herbal use increases, the need to predict interactions in multiple at-risk organ systems is becoming critical. Hence, to determine whether certain herbal preparations containing coumarin may cause damage to the intestinal epithelium, Caco2 cells were exposed to common phytochemicals. Coumarin, astragaloside IV (AST-IV) or atractylenolide I (ATR-I) solutions were exposed to Caco2 cultures in increasing concentrations, individually or combined. Coumarin produced a significant concentration-dependant fall in cell viability that was potentiated when CYP enzymes were induced with rifampicin and incubated with CYP3A4 inhibitor econazole, suggesting a role for other CYP enzymes generating toxic metabolites. ATR-I alone produced no toxicity in uninduced cells but showed significant toxicity in rifampicin-induced cells. ATR-I had no effect on coumarin-induced toxicity. AST-IV was nontoxic alone but produced significant toxicity when combined with nontoxic concentrations of coumarin. The combination of coumarin, ATR-I and AST-IV was significantly toxic, but no synergistic interaction was seen. This investigation was conducted to determine the likelihood for intestinal-based interactions, with the results demonstrating coumarin is potentially toxic to intestinal epithelium, and combinations with other phytochemicals can potentiate this toxicity.
Collapse
Affiliation(s)
- Susan M Britza
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Rachael Farrington
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia
| | - Roger W Byard
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia.,Forensic Science South Australia, Adelaide, South Australia
| |
Collapse
|
22
|
Han M, Xu J, Lin Y. Approaches of formulation bridging in support of orally administered drug product development. Int J Pharm 2022; 629:122380. [DOI: 10.1016/j.ijpharm.2022.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
23
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
24
|
Husain I, Dale OR, Manda V, Ali Z, Gurley BJ, Chittiboyina AG, Khan IA, Khan SI. Bulbine natalensis (currently Bulbine latifolia) and select bulbine knipholones modulate the activity of AhR, CYP1A2, CYP2B6, and P-gp. PLANTA MEDICA 2022; 88:975-984. [PMID: 34359083 DOI: 10.1055/a-1557-2113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulbine natalensis, an emerging medicinal herb on the global market with androgenic properties, is often formulated in dietary supplements that promote perceived sexual enhancement. However, to date, comprehensive safety studies of B. natalensis are lacking, particularly those related to its herb-drug interaction potential. The purpose of this study was to assess the inductive and inhibitory effects of extracts and pure compounds of B. natalensis on human cytochrome P-450 isozymes in vitro. Our findings demonstrated that both water and methanolic extracts of B. natalensis as well as knipholone, bulbine-knipholone, and 6'-O-methylknipholone dose-dependently increased mRNA expression encoded by CYP2B6, CYP1A2, and ABCB1 genes. Functional analyses showed that water (60 to 2.20 µg/mL) and methanolic (30 to 3.75 µg/mL) extracts and knipholones (10 to 0.33 µM) increased CYP2B6 and CYP1A2 activity in a dose-dependent manner. Additionally, water extract (60 µg/mL), methanolic extract (30 µg/mL), and knipholone (10 µM) caused activation of the aryl hydrocarbon receptor up to 11.1 ± 0.7, 8.9 ± 0.6, and 7.1 ± 2.0-fold, respectively. Furthermore, inhibition studies revealed that methanolic extract attenuated the activity of metabolically active CYP1A2 (IC50, 22.6 ± 0.4 µg/mL) and CYP2B6 (IC50, 34.2 ± 6.6 µg/mL) proteins, whereas water extracts had no inhibitory effect on either isoform. These findings suggest that chronic consumption of B. natalensis may affect normal homeostasis of select CYPs with subsequent risks for HDIs when concomitantly ingested with conventional medications that are substrates of CYP2B6 and CYP1A2. However, more in-depth translational studies are required to validate our current findings and their clinical relevance.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Vamshi Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, United States
| |
Collapse
|
25
|
Loos NHC, Beijnen JH, Schinkel AH. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism? Int J Mol Sci 2022; 23:ijms23179866. [PMID: 36077262 PMCID: PMC9456214 DOI: 10.3390/ijms23179866] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid or nirmatrelvir/ritonavir). Despite its clinical importance, the exact mechanism of ritonavir-mediated CYP3A4 inactivation is still not fully understood. Nonetheless, ritonavir is clearly a potent mechanism-based inactivator, which irreversibly blocks CYP3A4. Here, we discuss four fundamentally different mechanisms proposed for this irreversible inactivation/inhibition, namely the (I) formation of a metabolic-intermediate complex (MIC), tightly coordinating to the heme group; (II) strong ligation of unmodified ritonavir to the heme iron; (III) heme destruction; and (IV) covalent attachment of a reactive ritonavir intermediate to the CYP3A4 apoprotein. Ritonavir further appears to inactivate CYP3A4 and CYP3A5 with similar potency, which is important since ritonavir is applied in patients of all ethnicities. Although it is currently not possible to conclude what the primary mechanism of action in vivo is, it is unlikely that any of the proposed mechanisms are fundamentally wrong. We, therefore, propose that ritonavir markedly inactivates CYP3A through a mixed set of mechanisms. This functional redundancy may well contribute to its overall inhibitory efficacy.
Collapse
Affiliation(s)
- Nancy H. C. Loos
- The Netherlands Cancer Institute, Division of Pharmacology, 1066 CX Amsterdam, The Netherlands
| | - Jos H. Beijnen
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, 3584 CS Utrecht, The Netherlands
- The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, 1066 CX Amsterdam, The Netherlands
| | - Alfred H. Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-205122046
| |
Collapse
|
26
|
Shinya K, Nishimura Y, Ryu K, Sambe T, Fujishiro M, Nakauchi A, Kashiwabuchi Y, Iwase M, Chokki H, Kurata N, Matsuyama T, Kiuchi Y. Short-term administration of Polypodium leucotomos extract does not inhibit CYP3A4-mediated metabolism of midazolam in healthy subjects: an open-label, two-period, fixed-sequence study. Int J Dermatol 2022; 62:694-699. [PMID: 35751767 DOI: 10.1111/ijd.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
The extract of Polypodium leucotomos is used as a dietary supplement for its ultraviolet radiation-protective properties. Polypodium leucotomos extract reportedly inhibits CYP3A, which is important for drug metabolism in vitro in human microsomes and in vivo in rats. In this study, we explored the inhibitory effect of the P. leucotomos extract on CYP3A4-mediated midazolam metabolism in humans. This open-label, two-period, fixed-sequence study was performed on six healthy, Japanese, male volunteers. During period 1 (control), midazolam (1 mg) was orally administered. After a wash-out period of at least 5 days, period 2 was initiated. Subjects ingested P. leucotomos extract (240 mg) once in the morning and once at noon on the day before midazolam administration, and once the next morning (thrice overall). Midazolam was administered as in period 1. Blood samples were regularly collected for 8 hours after drug administration, and serum midazolam concentration was determined by ultra-fast liquid chromatography-tandem mass spectrometry. The pharmacokinetic parameters of midazolam were calculated and compared between the two periods. The area under the concentration-time curve was 19.18 ± 3.65 ng h/ml, maximum serum concentration was 7.81 ± 1.25 ng/ml, and half-life was 2.32 ± 0.35 hours during period 2. These parameters did not differ from those recorded in period 1 (area under the concentration-time curve: 18.74 ± 2.97 ng h/ml, maximum serum concentration: 8.78 ± 1.67 ng/ml, half-life: 2.52 ± 0.52 h). Therefore, short-term oral administration of P. leucotomos extract did not cause food-drug interactions mediated by CYP3A4 inhibition in humans.
Collapse
Affiliation(s)
- Koichiro Shinya
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan.,Pharmacological Research Center, Showa University School of Medicine, Tokyo, Japan.,Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Nishimura
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan.,Pharmacological Research Center, Showa University School of Medicine, Tokyo, Japan
| | - Kakei Ryu
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, Tokyo, Japan
| | - Takehiko Sambe
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Masaya Fujishiro
- Department of Legal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Akihiro Nakauchi
- Department of Legal Medicine, Showa University School of Medicine, Tokyo, Japan.,Faculty of Numazu Human Care, Tohto University, Shizuoka, Japan
| | - Yumika Kashiwabuchi
- Pharmacological Research Center, Showa University School of Medicine, Tokyo, Japan
| | - Mariko Iwase
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan.,Pharmacological Research Center, Showa University School of Medicine, Tokyo, Japan
| | - Hirokazu Chokki
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan.,Pharmacological Research Center, Showa University School of Medicine, Tokyo, Japan
| | - Norimitsu Kurata
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Takaaki Matsuyama
- Department of Legal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan.,Pharmacological Research Center, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
ABCB1 restricts brain accumulation of the novel RORγ agonist cintirorgon, while OATP1A/1B and CYP3A limit its oral availability. Eur J Pharm Biopharm 2022; 177:135-146. [DOI: 10.1016/j.ejpb.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
|
28
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Alvarez-Buylla A, Payne CY, Vidoudez C, Trauger SA, O’Connell LA. Molecular physiology of pumiliotoxin sequestration in a poison frog. PLoS One 2022; 17:e0264540. [PMID: 35275922 PMCID: PMC8916643 DOI: 10.1371/journal.pone.0264540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Poison frogs bioaccumulate alkaloids for chemical defense from their arthropod diet. Although many alkaloids are accumulated without modification, some poison frog species can metabolize pumiliotoxin (PTX 251D) into the more potent allopumiliotoxin (aPTX 267A). Despite extensive research characterizing the chemical arsenal of poison frogs, the physiological mechanisms involved in the sequestration and metabolism of individual alkaloids remain unclear. We first performed a feeding experiment with the Dyeing poison frog (Dendrobates tinctorius) to ask if this species can metabolize PTX 251D into aPTX 267A and what gene expression changes are associated with PTX 251D exposure in the intestines, liver, and skin. We found that D. tinctorius can metabolize PTX 251D into aPTX 267A, and that PTX 251D exposure changed the expression level of genes involved in immune system function and small molecule metabolism and transport. To better understand the functional significance of these changes in gene expression, we then conducted a series of high-throughput screens to determine the molecular targets of PTX 251D and identify potential proteins responsible for metabolism of PTX 251D into aPTX 267A. Although screens of PTX 251D binding human voltage-gated ion channels and G-protein coupled receptors were inconclusive, we identified human CYP2D6 as a rapid metabolizer of PTX 251D in a cytochrome P450 screen. Furthermore, a CYP2D6-like gene had increased expression in the intestines of animals fed PTX, suggesting this protein may be involved in PTX metabolism. These results show that individual alkaloids can modify gene expression across tissues, including genes involved in alkaloid metabolism. More broadly, this work suggests that specific alkaloid classes in wild diets may induce physiological changes for targeted accumulation and metabolism.
Collapse
Affiliation(s)
- Aurora Alvarez-Buylla
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Cheyenne Y. Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sunia A. Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, Massachusetts, United States of America
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rachmale M, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery. Drug Metab Rev 2022; 54:101-119. [PMID: 35254954 DOI: 10.1080/03602532.2022.2048007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Induction of drug-metabolizing enzymes and efflux transporters (DMET) through activation of pregnane x receptor (PXR) is the primary factor involved in almost all bioavailability and drug resistance-related problems of anticancer drugs. PXR is a transcriptional regulator of many metabolizing enzymes and efflux transporters proteins like p-glycoprotein (p-gp), multidrug resistant protein 1 and 2 (MRP 1 and 2), and breast cancer resistant protein (BCRP), etc. Several anticancer drugs are potent activators of PXR receptors and can modulate the gene expression of DMET proteins. Involvement of anticancer drugs in transcriptional regulation of DMET can prompt increased metabolism and efflux of their own or other co-administered drugs, which leads to poor site-specific bioavailability and increased drug resistance. In this review, we have discussed several novel strategies to evade drug-induced PXR activation and p-gp efflux including assessment of PXR ligand and p-gp substrate at early stages of drug discovery. Additionally, we have critically discussed the chemical structure and drug delivery-based approaches to avoid PXR binding and inhibit the p-gp activity of the drugs at their target sites.
Collapse
Affiliation(s)
- Megha Rachmale
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
31
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
32
|
Rodrigues D, Herpers B, Ferreira S, Jo H, Fisher C, Coyle L, Chung SW, Kleinjans JCS, Jennen DGJ, de Kok TM. A Transcriptomic Approach to Elucidate the Mechanisms of Gefitinib-Induced Toxicity in Healthy Human Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23042213. [PMID: 35216325 PMCID: PMC8876167 DOI: 10.3390/ijms23042213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Gefitinib is a tyrosine kinase inhibitor (TKI) that selectively inhibits the epidermal growth factor receptor (EGFR), hampering cell growth and proliferation. Due to its action, gefitinib has been used in the treatment of cancers that present abnormally increased expression of EGFR. However, side effects from gefitinib therapy may occur, among which diarrhoea is most common, that can lead to interruption of the planned therapy in the more severe cases. The mechanisms underlying intestinal toxicity induced by gefitinib are not well understood. Therefore, this study aims at providing insight into these mechanisms based on transcriptomic responses induced in vitro. A 3D culture of healthy human colon and small intestine (SI) organoids was exposed to 0.1, 1, 10 and 30 µM of gefitinib, for a maximum of three days. These drug concentrations were selected using physiologically-based pharmacokinetic simulation considering patient dosing regimens. Samples were used for the analysis of viability and caspase 3/7 activation, image-based analysis of structural changes, as well as RNA isolation and sequencing via high-throughput techniques. Differential gene expression analysis showed that gefitinib perturbed signal transduction pathways, apoptosis, cell cycle, FOXO-mediated transcription, p53 signalling pathway, and metabolic pathways. Remarkably, opposite expression patterns of genes associated with metabolism of lipids and cholesterol biosynthesis were observed in colon versus SI organoids in response to gefitinib. These differences in the organoids’ responses could be linked to increased activated protein kinase (AMPK) activity in colon, which can influence the sensitivity of the colon to the drug. Therefore, this study sheds light on how gefitinib induces toxicity in intestinal organoids and provides an avenue towards the development of a potential tool for drug screening and development.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
- Correspondence:
| | - Bram Herpers
- Crown Bioscience Netherlands B.V., J.H. Oortweg 21, 2333 CH Leiden, The Netherlands;
| | - Sofia Ferreira
- Simcyp Division, Certara UK Limited, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Heeseung Jo
- Simcyp Division, Certara UK Limited, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Ciarán Fisher
- Simcyp Division, Certara UK Limited, Sheffield S1 2BJ, UK; (S.F.); (H.J.); (C.F.)
| | - Luke Coyle
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Seung-Wook Chung
- Boehringer Ingelheim International GmbH, Pharmaceuticals Inc., Ridgefield, CT 06877, USA; (L.C.); (S.-W.C.)
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.C.S.K.); (D.G.J.J.); (T.M.d.K.)
| |
Collapse
|
33
|
Burclaff J, Bliton RJ, Breau KA, Ok MT, Gomez-Martinez I, Ranek JS, Bhatt AP, Purvis JE, Woosley JT, Magness ST. A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics. Cell Mol Gastroenterol Hepatol 2022; 13:1554-1589. [PMID: 35176508 PMCID: PMC9043569 DOI: 10.1016/j.jcmgh.2022.02.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings. METHODS A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings. RESULTS Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses. CONCLUSIONS Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.
Collapse
Affiliation(s)
- Joseph Burclaff
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meryem T Ok
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Ismael Gomez-Martinez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jolene S Ranek
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aadra P Bhatt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeremy E Purvis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John T Woosley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
34
|
Sensitive UHPLC-MS/MS quantification method for 4β- and 4α-hydroxycholesterol in human plasma for accurate CYP3A phenotyping. J Lipid Res 2022; 63:100184. [PMID: 35181316 PMCID: PMC8953653 DOI: 10.1016/j.jlr.2022.100184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
4β-Hydroxycholesterol (4β-OHC) is formed by CYP3A4 and CYP3A5 and has drawn attention as an endogenous phenotyping probe for CYP3A activity. However, 4β-OHC is also increased by cholesterol autooxidation occurring in vitro due to dysregulated storage and in vivo by oxidative stress or inflammation, independent of CYP3A activity. 4α-hydroxycholesterol (4α-OHC), a stereoisomer of 4β-OHC, is also formed via autooxidation of cholesterol, not by CYP3A, and thus may have clinical potential in reflecting the state of cholesterol autooxidation. In this study, we establish a sensitive method for simultaneous quantification of 4β-OHC and 4α-OHC in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Plasma samples were prepared by saponification, two-step liquid-liquid extraction, and derivatization using picolinic acid. Intense [M+H]+ signals for 4β-OHC and 4α-OHC di-picolinyl esters were monitored using electrospray ionization. The assay fulfilled the requirements of the US Food and Drug Administration guidance for bioanalytical method validation, with a lower limit of quantification of 0.5 ng/mL for both 4β-OHC and 4α-OHC. Apparent recovery rates from human plasma ranged from 88.2% to 101.5% for 4β-OHC, and 91.8% to 114.9% for 4α-OHC. Additionally, matrix effects varied between 86.2% and 117.6% for 4β-OHC, and between 89.5% and 116.9% for 4α-OHC. Plasma 4β-OHC and 4α-OHC concentrations in healthy volunteers, stage 3-5 chronic kidney disease (CKD) patients, and stage 5D CKD patients as measured by the validated assay were within the calibration ranges in all samples. We propose this novel quantification method may contribute to accurate evaluation of in vivo CYP3A activity.
Collapse
|
35
|
Helmer E, Willson A, Brearley C, Westerhof M, Delage S, Shaw I, Cooke R, Sidhu S. Pharmacokinetics and Metabolism of Ziritaxestat (GLPG1690) in Healthy Male Volunteers Following Intravenous and Oral Administration. Clin Pharmacol Drug Dev 2022; 11:246-256. [PMID: 34633152 PMCID: PMC9292235 DOI: 10.1002/cpdd.1021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022]
Abstract
Ziritaxestat is a novel inhibitor of autotaxin, an enzyme responsible for the production of lysophosphatidic acid, the downstream signaling of which mediates responses to tissue injury and has been implicated in the pathogenesis of fibrotic conditions such as idiopathic pulmonary fibrosis and systemic sclerosis. This study (Clinical Trial Registration: NCT03787186) was designed to assess the absorption, distribution, metabolism, and excretion of orally administered 600-mg ziritaxestat labeled with a carbon-14 tracer (14 C-ziritaxestat). To understand the absolute bioavailability of ziritaxestat, an intravenous 100-μg microdose, labeled with a microtracer amount of 14 C radiation, was administered in a separate part of the study, following an unlabeled 600-mg therapeutic oral dose of ziritaxestat. Six healthy male subjects completed each study part. The majority of the labeled oral dose was recovered in feces (77%), with a total mass balance of 84%. The absolute bioavailability of ziritaxestat was 54%. Ziritaxestat was the main (76%) circulating drug-related product. There were 7 treatment-emergent adverse events, all of which were considered mild and not considered to be related to the study drug.
Collapse
|
36
|
[Drug-drug interactions of tyrosine kinase inhibitors in treatment of non-small-cell lung carcinoma]. Bull Cancer 2022; 109:358-381. [PMID: 35105467 DOI: 10.1016/j.bulcan.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
The development of tyrosine kinase inhibitors has revolutionized the treatment strategy in patients with non-small cell lung cancer with activating EGFR mutations, ALK or ROS-1 gene rearrangements. The Food and Drug Administration and European Medicines Agency have approved several inhibitors for the treatment of non-small cell lung cancer : five tyrosine kinase inhibitors targeting EGFR (erlotinib, gefitinib, afatinib, osimertinib and dacomitinib) and six tyrosine kinase inhibitors targeting ALK (crizotinib, céritinib, alectinib, brigatinib, lorlatinib and entrectinib). Interestingly, these tyrosine kinase inhibitor treatments are administered orally. While this route of administration improves the treatment flexibility and provides a comfortable and preferable option for patients, it also increases the risk of drug-drug interactions. The latter may result in changes in pharmacokinetics or pharmacodynamics of the tyrosine kinase inhibitors or their concomitant treatments, with subsequent risks of increasing their toxicity and/or reducing their effectiveness. This review provides an overview of drug-drug interactions with tyrosine kinase inhibitors targeting EGFR and ALK, as well as practical recommendations to guide oncologists and clinical pharmacists in the process of managing drug-drug interactions during the treatment of non-small cell lung cancer with tyrosine kinase inhibitors.
Collapse
|
37
|
Agwunobi DO, Li M, Wang N, Chang G, Zhang X, Xue X, Yu Z, Wang H, Liu J. Proteomic analysis suggests that monoterpenes in lemongrass disrupt Ca 2+ homeostasis in Haemaphysalis longicornis leading to mitochondrial depolarization and cytotoxicity. Proteomics 2022; 22:e2100156. [PMID: 34997954 DOI: 10.1002/pmic.202100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Complex mixtures of bioactive ingredients in plant essential oils present complex chemistries which involve different modes of action. An increasing body of scientific reports has recently focused on the acaricidal activities of plant essential oils attributed to their monoterpene components, but information about their underlying molecular mechanism of action is scarce. Here, after the chemical analysis of lemongrass oil, a proteomic analysis of the ovary, salivary gland, and midgut of Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil was performed via data-independent acquisition mass spectrometry (DIA-MS) technology to further elucidate the molecular mechanisms involved. Pathway analysis reveals the activation of metabolic pathways mediated by oxidoreductases and transferases. Furthermore, the upregulation of various calcium-associated proteins and the upregulation of cytochrome c1, cytochrome c oxidase polypeptide IV, and programmed cell death protein 6-like isoform X1 suggest a cytotoxic mode of action via the formation of reactive oxygen species (ROS), mitochondrial Ca2+ overload, mitochondrial uncoupling, and depolarization, and ATP depletion leading to either apoptotic or necrotic death. Morphological alterations observed after the RNAi of a major detoxification enzyme (glutathione S-transferase) merit further investigation. Hence, the cytotoxic mode of action exhibited by C. citratus oil could be vital for the development of eco-friendly acaricide.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaojing Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaomin Xue
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
38
|
Ashmawy SM, Eltahan DA, Osman MA, Essa EA. Influence of Piperine and Omeprazole on The Regional Absorption of Daclatasvir from Rabbit Intestine. Biopharm Drug Dispos 2022; 43:33-44. [PMID: 34997607 DOI: 10.1002/bdd.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022]
Abstract
The study assessed the site dependent intestinal absorption of daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on daclatasvir absorption from jejunum and ileum was tested. The results showed that daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of daclatasvir from both small and large intestinal segments. Significant enhancement in daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Dina A Eltahan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| |
Collapse
|
39
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
40
|
Urgaonkar S, Nosol K, Said AM, Nasief NN, Bu Y, Locher KP, Lau JYN, Smolinski MP. Discovery and Characterization of Potent Dual P-Glycoprotein and CYP3A4 Inhibitors: Design, Synthesis, Cryo-EM Analysis, and Biological Evaluations. J Med Chem 2021; 65:191-216. [PMID: 34928144 DOI: 10.1021/acs.jmedchem.1c01272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp. The structure guided us to prudently decorate the encequidar scaffold with CYP3A4 pharmacophores, leading to the identification of several analogues with dual potency against P-gp and CYP3A4. In vivo, dual P-gp and CYP3A4 inhibitor 3a improved the oral absorption of docetaxel by 3-fold as compared to vehicle, while 3a itself remained poorly absorbed.
Collapse
Affiliation(s)
- Sameer Urgaonkar
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ahmed M Said
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Nader N Nasief
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Yahao Bu
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Johnson Y N Lau
- Athenex Inc., Conventus Building, Buffalo, New York 14203, United States
| | | |
Collapse
|
41
|
Zhang C, Li Y, Yin C, Zheng J, Liu G. In vitro study on the effect of peucedanol on the activity of cytochrome P450 enzymes. PHARMACEUTICAL BIOLOGY 2021; 59:935-940. [PMID: 35294326 PMCID: PMC8274509 DOI: 10.1080/13880209.2021.1944223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Peucedanol is a major extract of Peucedanum japonicum Thunb. (Apiaceae) roots, which is a commonly used herb in paediatrics. Its interaction with cytochrome P450 enzymes (CYP450s) would lead to adverse effects or even failure of therapy. OBJECTIVE The interaction between peucedanol and CYP450s was investigated. MATERIALS AND METHODS Peucedanol (0, 2.5, 5, 10, 25, 50, and 100 μM) was incubated with eight human liver CYP isoforms (CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1), in pooled human liver microsomes (HLMs) for 30 min with specific inhibitors as positive controls and untreated HLMs as negative controls. The enzyme kinetics and time-dependent study (0, 5, 10, 15, and 30 min) were performed to obtain corresponding parameters in vitro. RESULTS Peucedanol significantly inhibited the activity of CYP1A2, 2D6, and 3A4 in a dose-dependent manner with IC50 values of 6.03, 13.57, and 7.58 μM, respectively. Peucedanol served as a non-competitive inhibitor of CYP3A4 with a Ki value of 4.07 μM and a competitive inhibitor of CYP1A2 and 2D6 with a Ki values of 3.39 and 6.77 μM, respectively. Moreover, the inhibition of CYP3A4 was time-dependent with the Ki/Kinact value of 5.44/0.046 min/μM. DISCUSSION AND CONCLUSIONS In vitro inhibitory effect of peucedanol on the activity of CYP1A2, 2A6, and 3A4 was reported in this study. As these CYPs are involved in the metabolism of various drugs, these results implied potential drug-drug interactions between peucedanol and drugs metabolized by CYP1A2, 2D6, and 3A4, which needs further in vivo validation.
Collapse
Affiliation(s)
- Cun Zhang
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, China
| | - Yongwei Li
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, China
| | - Changlong Yin
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, China
| | - Jie Zheng
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, China
| | - Guozhi Liu
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, China
| |
Collapse
|
42
|
Zhou Y, Xian Q, Wei H, Zhou J, Li S, Yang J, Zhou X, Li Y. Agrimoniin inhibits the activity of CYP1A2, 2D6, and 3A4 in human liver microsomes. Xenobiotica 2021; 51:1360-1365. [PMID: 34806927 DOI: 10.1080/00498254.2021.2009592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The effect of agrimoniin on the activity of cytochrome P450 (CYP450) enzymes would induce drug-drug interaction, which leads to adverse effects or even failure of therapy.Agrimoniin was incubated with the specific substrates of eight human liver CYP isoforms in pooled human liver microsomes. The enzyme kinetics and time-dependent study were performed to obtain kinetic parameters and characteristics in vitro.Agrimoniin significantly inhibited the activity of CYP1A2, 2D6, and 3A4 in a dose-dependent manner with IC50 values of 6.26, 9.35, and 8.30 μM, respectively. Agrimoniin served as a non-competitive inhibitor of CYP3A4 and a competitive inhibitor of CYP1A2 and 2D6. Moreover, the incubation time also significantly affected the inhibition of CYP3A4.In vitro inhibitory effect of agrimoniin on the activity of CYP1A2, 2A6, and 3A4 was reported in this study. The potential drug-drug interactions between agrimoniin and drugs metabolised by CYP1A2, 2D6, and 3A4 should be paid special attention.
Collapse
Affiliation(s)
- Yanqing Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Qian Xian
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Haimin Wei
- Department of Clinical Oncology, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Shengjian Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Junwei Yang
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xuedong Zhou
- Clinical research center, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yamei Li
- Clinical research center, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
43
|
Luan X, Zhao Y, Bu N, Chen Y, Chen N. DEC1 negatively regulates CYP2B6 expression by binding to the CYP2B6 promoter region ascribed to IL-6-induced downregulation of CYP2B6 expression in HeLa cells. Xenobiotica 2021; 51:1343-1351. [PMID: 34758708 DOI: 10.1080/00498254.2021.2004335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 superfamily (CYPs) is a group of metabolic enzymes involved in drug biotransformation/metabolism. It is the most important drug metabolic enzyme; however, its mechanism of action remains unclear.We investigated the expression of CYP2B6 in HeLa cells induced by interleukin-6 (IL-6) and explored the relationship between differentially expressed chondrocytes 1 (DEC1) and CYP2B6 via luciferase reporter, chromatin immunoprecipitation (ChIP) and ELISA assays.We observed the expression of CYP2B6 in HeLa cells exhibited a time-dependent decrease under the effect of IL-6, and the expression of CYP2B6 down-regulated by IL-6was negatively correlated with DEC1. After overexpression or knockdown of DEC1 in HeLa cells, the expression of CYP2B6 decreased or increased. The luciferase reporter assay and ChIP assay confirmed that DEC1 inhibited the expression of CYP2B6 by binding to the CYP2B6 promoter. ELISA results showed that high expression of DEC1 or low expression of CYP2B6 can promote the secretion of IL-6 in HeLa cells, and the secreted IL-6 can continually downregulate the expression of CYP2B6 in HeLa cells.Our results indicate that DEC1/CYP2B6 pathway in the inflammatory environment of tumours, and this provides a small amount of theoretical basis for the study of genes encoding drug-metabolising enzymes.
Collapse
Affiliation(s)
- Xiaofei Luan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Zhao
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Na Bu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Nan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
44
|
Franco YL, Da Silva L, Cristofoletti R. Navigating Through Cell-Based In vitro Models Available for Prediction of Intestinal Permeability and Metabolism: Are We Ready for 3D? AAPS J 2021; 24:2. [PMID: 34811603 PMCID: PMC8925318 DOI: 10.1208/s12248-021-00665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023] Open
Abstract
Traditionally, in vitro studies to quantify the
intestinal permeability of drugs have relied on two-dimensional cell culture models using human colorectal carcinoma cell lines, namely Caco-2, HT 29 and T84 cells. Although these models have been commonly used for high-throughput screening of xenobiotics in preclinical studies, they do not fully recapitulate the morphology and functionality of enterocytes found in the human intestine in vivo. Efforts to improve the physiological and functional relevance of in vitro intestinal models have led to the development of enteroids/intestinal organoids and microphysiological systems. These models leverage advances in three-dimensional cell culture techniques and stem cell technology (in addition to microfluidics for microphysiological systems), to mimic the architecture and microenvironment of the in vivo intestine more accurately. In this commentary, we will discuss the advantages and limitations of these established and emerging intestinal models, as well as their current and potential future applications for the pre-clinical assessment of oral therapies.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Lais Da Silva
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA.
| |
Collapse
|
45
|
Dey P, Chaudhuri SR, Efferth T, Pal S. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radic Biol Med 2021; 176:265-285. [PMID: 34610364 DOI: 10.1016/j.freeradbiomed.2021.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
The role of the intestine in human health and disease has historically been neglected and was mostly attributed to digestive and absorptive functions. In the past two decades, however, discoveries related to human nutrition and intestinal host-microbe reciprocal interaction have established the essential role of intestinal health in the pathogenesis of chronic diseases and the overall wellbeing. That transfer of gut microbiota could be a means of disease phenotype transfer has revolutionized our understanding of chronic disease pathogenesis. This narrative review highlights the major concepts related to intestinal microbiota, metabolism, and metabolome (3M) that have facilitated our fundamental understanding of the association between the intestine, and human health and disease. In line with increased interest of microbiota-dependent modulation of human health by dietary phytochemicals, we have also discussed the emerging concepts beyond the phytochemical bioactivities which emphasizes the integral role of microbial metabolites of parent phytochemicals at extraintestinal tissues. Finally, this review concludes with challenges and future prospects in defining the 3M interactions and has emphasized the fact that, it takes 'guts' to stay healthy.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Sirshendu Pal
- Mukherjee Hospital, Mitra's Clinic and Nursing Home, Siliguri, West Bengal, India
| |
Collapse
|
46
|
Li W, Sparidans RW, Lebre MC, Beijnen JH, Schinkel AH. ABCB1 and ABCG2 Control Brain Accumulation and Intestinal Disposition of the Novel ROS1/TRK/ALK Inhibitor Repotrectinib, While OATP1A/1B, ABCG2, and CYP3A Limit Its Oral Availability. Pharmaceutics 2021; 13:pharmaceutics13111761. [PMID: 34834176 PMCID: PMC8619046 DOI: 10.3390/pharmaceutics13111761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Repotrectinib shows high activity against ROS1/TRK/ALK fusion-positive cancers in preclinical studies. We explored the roles of multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporter(s), and the CYP3A complex in pharmacokinetics and tissue distribution of repotrectinib in genetically modified mouse models. In vitro, human ABCB1 and ABCG2, and mouse Abcg2 efficiently transported repotrectinib with efflux transport ratios of 13.5, 5.6, and 40, respectively. Oral repotrectinib (10 mg/kg) showed higher plasma exposures in Abcg2-deficient mouse strains. Brain-to-plasma ratios were increased in Abcb1a/1b−/− (4.1-fold) and Abcb1a/1b;Abcg2−/− (14.2-fold) compared to wild-type mice, but not in single Abcg2−/− mice. Small intestinal content recovery of repotrectinib was decreased 4.9-fold in Abcb1a/1b−/− and 13.6-fold in Abcb1a/1b;Abcg2−/− mice. Intriguingly, Abcb1a/1b;Abcg2−/− mice displayed transient, mild, likely CNS-localized toxicity. Oatp1a/1b deficiency caused a 2.3-fold increased oral availability and corresponding decrease in liver distribution of repotrectinib. In Cyp3a−/− mice, repotrectinib plasma AUC0–h was 2.3-fold increased, and subsequently reduced 2.0-fold in humanized CYP3A4 transgenic mice. Collectively, Abcb1 and Abcg2 restrict repotrectinib brain accumulation and possibly toxicity, and control its intestinal disposition. Abcg2 also limits repotrectinib oral availability. Oatp1a/1b mediates repotrectinib liver uptake, thus reducing its systemic exposure. Systemic exposure of repotrectinib is also substantially limited by CYP3A activity. These insights may be useful to optimize the therapeutic application of repotrectinib.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
| | - Rolf W. Sparidans
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands;
| | - Maria C. Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
| | - Jos H. Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
- Division of Pharmacoepidemiology & Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H. Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (W.L.); (M.C.L.); (J.H.B.)
- Alfred H. Schinkel, Schinkel Group, Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-512-2046; Fax: +31-20-512-1792
| |
Collapse
|
47
|
Possible Role of Cytochrome P450 1B1 in the Mechanism of Gemcitabine Resistance in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101396. [PMID: 34680513 PMCID: PMC8533121 DOI: 10.3390/biomedicines9101396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Patient-derived xenograft models reportedly represent original tumor morphology and gene mutation profiles. In addition, patient-derived xenografts are expected to recapitulate the parental tumor drug responses. In this study, we analyzed the pathways involved in gemcitabine resistance using patient-derived xenograft models of pancreatic cancer. The patient-derived xenograft models were established using samples from patients with pancreatic cancer. The models were treated with gemcitabine to better understand the mechanism of resistance to this anti-cancer drug. We performed comparative gene analysis through the next-generation sequencing of tumor tissues from gemcitabine-treated or non-treated patient-derived xenograft mice and gene set enrichment analysis to analyze mRNA profiling data. Pathway analysis of gemcitabine-treated patient-derived xenografts disclosed the upregulation of multiple gene sets and identified several specific gene pathways that could potentially be related to gemcitabine resistance in pancreatic cancer. Further, we conducted an in vitro analysis to validate these results. The mRNA expression of cytochrome P450 1B1 and cytochrome P450 2A6 was upregulated in a concentration-dependent manner following gemcitabine treatment. Moreover, the sensitivity to gemcitabine increased, and viable cells were decreased by the cytochrome P450 1B1 inhibitor, indicating that the cytochrome P450 1B1 pathway may be related to gemcitabine resistance in pancreatic cancer.
Collapse
|
48
|
Jakate A, Boinpally R, Butler M, Ankrom W, Dockendorf MF, Periclou A. Effects of CYP3A4 and P-glycoprotein inhibition or induction on the pharmacokinetics of ubrogepant in healthy adults: Two phase 1, open-label, fixed-sequence, single-center, crossover trials. CEPHALALGIA REPORTS 2021. [DOI: 10.1177/25158163211037344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Ubrogepant is metabolized by cytochrome P450 3A4 (CYP3A4) and is a P-glycoprotein (P-gp) substrate. Objective: To assess effects of multiple-dose moderate-strong CYP3A4 and strong P-gp inhibitors and inducers on ubrogepant pharmacokinetic (PK) parameters. Methods: Two phase 1, open-label, fixed-sequence, single-center, crossover trials enrolled healthy adults to receive ubrogepant 20 mg with/without verapamil 240 mg (a moderate CYP3A4 inhibitor) or ketoconazole 400 mg (a strong CYP3A4 and P-gp transporter inhibitor) (Study A), or ubrogepant 100 mg with/without rifampin 600 mg (a strong CYP3A4 inducer and P-gp inducer) (Study B). Outcomes included ubrogepant PK parameters (area under plasma concentration-time curve, time 0 through infinity [AUC0-∞], peak plasma concentration [Cmax]), and safety (treatment-emergent adverse events [TEAEs]). PK parameters were compared between ubrogepant with/without coadministered medications using linear mixed-effects models. Cmax and AUC0-∞ least-squares geometric mean ratios (GMR) of ubrogepant with/without coadministration were constructed. Results: Twelve participants enrolled in Study A and 30 in Study B. AUC0-∞ and Cmax GMR (90% CI) were 3.53 (3.32–3.75) and 2.80 (2.48–3.15), respectively, for ubrogepant with verapamil; 9.65 (7.27–12.81) and 5.32 (4.19–6.76) with ketoconazole; and 0.22 (0.20–0.24) and 0.31 (0.27–0.36) with rifampin. TEAEs were predominantly mild; no treatment-related serious TEAEs or TEAE-related discontinuations occurred. Conclusion: The PK of ubrogepant were significantly affected by the concomitant use of CYP3A4 moderate-strong inhibitors and strong inducers.
Collapse
Affiliation(s)
| | | | | | - Wendy Ankrom
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Marissa F Dockendorf
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
49
|
Suroowan S, Abdallah HH, Mahomoodally MF. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches. Food Chem Toxicol 2021; 156:112432. [PMID: 34293424 DOI: 10.1016/j.fct.2021.112432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/05/2023]
Abstract
Herbals in the form of medicine are employed extensively around the world. Herbal and conventional medicine combination is a potentially dangerous practice mainly in comorbid, hepato insufficient and frail patients leading to perilous herb-drug interactions (HDI) and toxicity. This study features potential HDI of 15 globally famous plant species through data mining and computational methods. Several plant species were found to mimic warfarin. Phytochemicals from M. charantia induced hypoglycemica. M. chamomila and G. biloba possessed anticoagulant activities. S. hispanica reduces postprandial glycemia. R. officinalis has been reported to inhibit the efflux of anticancer substrates while A. sativum can boost the clearance of anticancer agents. P. ginseng can alter blood coagulation. A cross link of the biological and in silico data revealed that a plethora of herbal metabolites such as ursolic and rosmarinic acid among others are possible/probable inhibitors of specific CYP450 enzymes. Consequently, plant species/metabolites with a given pharmacological property/metabolizing enzyme should not be mixed with drugs having the same pharmacological property/metabolizing enzyme. Even if combined with drugs, herbal medicines must be used at low doses for a short period of time and under the supervision of a healthcare professional to avoid potential adverse and toxic effects.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Hassan Hadi Abdallah
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbīl, Iraq
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
50
|
Innos J, Hickey MA. Using Rotenone to Model Parkinson's Disease in Mice: A Review of the Role of Pharmacokinetics. Chem Res Toxicol 2021; 34:1223-1239. [PMID: 33961406 DOI: 10.1021/acs.chemrestox.0c00522] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a naturally occurring toxin that inhibits complex I of the mitochondrial electron transport chain. Several epidemiological studies have shown an increased risk of Parkinson's disease (PD) in individuals exposed chronically to rotenone, and it has received great attention for its ability to reproduce many critical features of PD in animal models. Laboratory studies of rotenone have repeatedly shown that it induces in vivo substantia nigra dopaminergic cell loss, a hallmark of PD neuropathology. Additionally, rotenone induces in vivo aggregation of α-synuclein, the major component of Lewy bodies and Lewy neurites found in the brain of PD patients and another hallmark of PD neuropathology. Some in vivo rotenone models also reproduce peripheral signs of PD, such as reduced intestinal motility and peripheral α-synuclein aggregation, both of which are thought to precede classical signs of PD in humans, such as cogwheel rigidity, bradykinesia, and resting tremor. Nevertheless, variability has been noted in cohorts of animals exposed to the same rotenone exposure regimen and also between cohorts exposed to similar doses of rotenone. Low doses, administered chronically, may reproduce PD symptoms and neuropathology more faithfully than excessively high doses, but overlap between toxicity and parkinsonian motor phenotypes makes it difficult to separate if behavior is examined in isolation. Rotenone degrades when exposed to light or water, and choice of vehicle may affect outcome. Rotenone is metabolized extensively in vivo, and choice of route of exposure influences greatly the dose used. However, male rodents may be capable of greater metabolism of rotenone, which could therefore reduce their total body exposure when compared with female rodents. The pharmacokinetics of rotenone has been studied extensively, over many decades. Here, we review these pharmacokinetics and models of PD using this important piscicide.
Collapse
Affiliation(s)
- Jürgen Innos
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| | - Miriam A Hickey
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|