1
|
Kim S, Kim JS, Lee SH, Kim JM, Na S, Choi JH, Kim HJ. Intellectual Disability in Episodic Ataxia Type 2: Beyond Paroxysmal Vertigo and Ataxia. J Clin Neurol 2024; 20:563-570. [PMID: 39505308 PMCID: PMC11543395 DOI: 10.3988/jcn.2024.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Episodic ataxia type 2 (EA2) is characterized by recurrent vertigo and ataxia due to mutations in CACNA1A that encodes the α1A-subunit of the P/Q-type voltage-gated calcium channel. This study aimed to determine intellectual function in EA2. METHODS During 2019-2023, 13 patients (6 males, age range=10-52 years, median age=29 years) with a genetically confirmed diagnosis of EA2 had their intellectual function evaluated using the Korean versions of the Wechsler Intelligence Scales (version IV) for adults or children in 3 referral-based university hospitals in South Korea. RESULTS The full-scale intelligence quotients (FSIQs) among the 13 patients were below the average (90-109) in 11, low average (80-89) in 5 (38.5%), borderline (70-79) in 1 (7.7%), and indicated intellectual disability (≤69) in 5 (38.5%). These patterns of cognitive impairments were observed in all four of the following subtests: verbal comprehension, perceptual reasoning, working memory, and processing speed. The FSIQ was not correlated with the ages at onset for vertigo and ataxia (Pearson correlation: p=0.40). CONCLUSIONS Patients with EA2 may have hidden intellectual disabilities even without a history of epilepsy or administration of antiepileptic drugs, and should be considered for genetic counseling and therapeutic interventions. Given the availability of medication to control episodic vertigo and ataxia, early diagnosis and management are important in preventing irreversible brain dysfunction in EA2.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Soo Kim
- Department of Neurology, College of Medicine, Seoul National University, Seoul, Korea
- Department of Neurology, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-Han Lee
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Myung Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyo-Jung Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
2
|
Vogt L, Quiroz V, Ebrahimi-Fakhari D. Emerging therapies for childhood-onset movement disorders. Curr Opin Pediatr 2024; 36:331-341. [PMID: 38655812 PMCID: PMC11047116 DOI: 10.1097/mop.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.
Collapse
Affiliation(s)
- Lindsey Vogt
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto Ontario, Canada
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Feil K, Rattay TW, Adeyemi AK, Goldschagg N, Strupp ML. [What's behind cerebellar dizziness? - News on diagnosis and therapy]. Laryngorhinootologie 2024; 103:337-343. [PMID: 37989215 DOI: 10.1055/a-2192-7278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Vertigo and dizziness comprise a multisensory and multidisciplinary syndrome of different etiologies. The term "cerebellar vertigo and dizziness" comprises a heterogenous group of disorders with clinical signs of cerebellar dysfunction and is caused by vestibulo-cerebellar, vestibulo-spinal or cerebellar systems. About 10 % of patients in an outpatient clinic for vertigo and balance disorders suffer from cerebellar vertigo and dizziness. According to the course of the symptoms, one can considers 3 types: permanent complaints, recurrent episodes of vertigo and balance disorders, or an acute onset of complaints. The most common diagnoses in patients with cerebellar vertigo and dizziness were as follows: degenerative disease, hereditary forms and acquired forms. In a subgroup of patients with cerebellar vertigo, central cerebellar oculomotor dysfunction is indeed the only clinical correlate of the described symptoms. 81 % of patients with cerebellar vertigo suffer from permanent, persistent vertigo and dizziness, 31 % from vertigo attacks, and 21 % from both. Typical clinical cerebellar signs, including gait and limb ataxia or dysarthria, were found less frequently. Key to diagnosis is a focused history as well as a thorough clinical examination with particular attention to oculomotor function. Regarding oculomotor examination, the most common findings were saccadic smooth pursuit, gaze-evoked nystagmus, provocation nystagmus, rebound nystagmus, central fixation nystagmus, most commonly downbeat nystagmus, and disturbances of saccades. Thus, oculomotor examination is very sensitive in diagnosing cerebellar vertigo and dizziness, but not specific in distinguishing different etiologies. Laboratory examinations using posturography and a standardized gait analysis can support the diagnosis, but also help to estimate the risk of falls and to quantify the course and possible symptomatic treatment effects. Patients with cerebellar vertigo and dizziness should receive multimodal treatment.
Collapse
Affiliation(s)
- Katharina Feil
- Schwerpunkt neurovaskuläre Erkrankungen, Neurologische Universitätsklinik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Tim W Rattay
- Schwerpunkt neurodegenerative Erkrankungen, Neurologische Universitätsklinik, Universitätsklinikum Tübingen, Tübingen, Germany
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen
| | - Adedolapo Kamaldeen Adeyemi
- Schwerpunkt neurovaskuläre Erkrankungen, Neurologische Universitätsklinik, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Nicolina Goldschagg
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
- Deutsches Schwindel- und Gleichgewichtszentrum, DSGZ, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael Leo Strupp
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
- Deutsches Schwindel- und Gleichgewichtszentrum, DSGZ, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
4
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
5
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
6
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
7
|
Gray MM, Naik A, Ebner TJ, Carter RE. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. DYSTONIA 2023; 2:10974. [PMID: 37800168 PMCID: PMC10554815 DOI: 10.3389/dyst.2023.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.
Collapse
Affiliation(s)
- Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Parvez MSA, Ohtsuki G. Acute Cerebellar Inflammation and Related Ataxia: Mechanisms and Pathophysiology. Brain Sci 2022; 12:367. [PMID: 35326323 PMCID: PMC8946185 DOI: 10.3390/brainsci12030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The cerebellum governs motor coordination and motor learning. Infection with external microorganisms, such as viruses, bacteria, and fungi, induces the release and production of inflammatory mediators, which drive acute cerebellar inflammation. The clinical observation of acute cerebellitis is associated with the emergence of cerebellar ataxia. In our animal model of the acute inflammation of the cerebellar cortex, animals did not show any ataxia but hyperexcitability in the cerebellar cortex and depression-like behaviors. In contrast, animal models with neurodegeneration of the cerebellar Purkinje cells and hypoexcitability of the neurons show cerebellar ataxia. The suppression of the Ca2+-activated K+ channels in vivo is associated with a type of ataxia. Therefore, there is a gap in our interpretation between the very early phase of cerebellar inflammation and the emergence of cerebellar ataxia. In this review, we discuss the hypothesized scenario concerning the emergence of cerebellar ataxia. First, compared with genetically induced cerebellar ataxias, we introduce infection and inflammation in the cerebellum via aberrant immunity and glial responses. Especially, we focus on infections with cytomegalovirus, influenza virus, dengue virus, and SARS-CoV-2, potential relevance to mitochondrial DNA, and autoimmunity in infection. Second, we review neurophysiological modulation (intrinsic excitability, excitatory, and inhibitory synaptic transmission) by inflammatory mediators and aberrant immunity. Next, we discuss the cerebellar circuit dysfunction (presumably, via maintaining the homeostatic property). Lastly, we propose the mechanism of the cerebellar ataxia and possible treatments for the ataxia in the cerebellar inflammation.
Collapse
Affiliation(s)
- Md. Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
| |
Collapse
|
10
|
Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur J Med Genet 2022; 65:104450. [DOI: 10.1016/j.ejmg.2022.104450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 01/25/2023]
|
11
|
Malamud E, Otallah SI. Use of Dalfampridine in a Young Child with Episodic Ataxia Type 2. Child Neurol Open 2022; 9:2329048X221075447. [PMID: 35127965 PMCID: PMC8811424 DOI: 10.1177/2329048x221075447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is a rare autosomal dominant disorder associated with mutations of the CACNA1A gene. 1 Because there is no curative therapy available, EA2 is typically managed symptomatically. First line treatment has typically been with acetazolamide. 2 Dalfampridine has also been noted to decrease the frequency and duration of ataxic attacks in patients ranging in age from adolescence through adulthood. 3 , 4 The efficacy and dosing of dalfampridine has not yet been studied in younger pediatric populations. The lack of published experience in younger children can and has led to these patients going without potentially safe and effective treatment. Thus, we describe an 8-year-old girl with EA2 and a confirmed CACNA1A gene mutation whose symptoms had been previously unrelieved by acetazolamide. She was subsequently trialed on dalfampridine and experienced symptomatic relief at a dose of 0.3 mg/kg.
Collapse
Affiliation(s)
| | - Scott I. Otallah
- Division of Pediatric Neurology, Department of Neurology, Atrium Health Wake Forest Baptist, Medical Center Boulevard, JT9, Winston-Salem, NC
| |
Collapse
|
12
|
Niu X, Yang Y, Chen Y, Cheng M, Liu M, Ding C, Tian X, Yang Z, Jiang Y, Zhang Y. Genotype-phenotype correlation of CACNA1A variants in children with epilepsy. Dev Med Child Neurol 2022; 64:105-111. [PMID: 34263451 DOI: 10.1111/dmcn.14985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 01/12/2023]
Abstract
AIM To explore the genotypes and phenotypes of CACNA1A variants in children with epilepsy. METHOD Eighteen children (six males, 12 females) with CACNA1A variants were identified using next-generation sequencing. RESULTS There were 14 missense variants, two nonsense variants, one frameshift variant, and one splice site variant. Sixteen variants were de novo. Age at seizure onset ranged from 1 day to 8 years; median age was 8 months. Multiple seizure types were observed, including focal, generalized tonic-clonic, myoclonic, and absence seizures, as well as epileptic spasms and tonic seizures. Focal motor status epilepticus occurred in 10 individuals and generalized motor status epilepticus occurred in two individuals. All 18 children showed developmental delay. Focal motor status epilepticus resulted in cerebral atrophy in five individuals, mainly on the contralateral side. Interictal electroencephalogram showed focal discharges in 12 individuals, whereas five individuals had generalized discharges. Three individuals were seizure-free, whereas 15 still had seizures and five had recurrent status epilepticus at last follow-up. INTERPRETATION Most children with epilepsy and CACNA1A variants had early seizure onset and developmental delay. Focal seizure was the most common seizure type. Most patients experienced status epilepticus. Unilateral cerebral atrophy could occur after focal motor status epilepticus. Patients with CACNA1A variants located in the transmembrane region may be at high risk of status epilepticus.
Collapse
Affiliation(s)
- Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ming Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Manickam AH, Ramasamy S. Mutations in the Voltage Dependent Calcium Channel CACNA1A (P/Q type alpha 1A subunit) Causing Neurological Disorders - An Overview. Neurol India 2021; 69:808-816. [PMID: 34507393 DOI: 10.4103/0028-3886.325378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The voltage-dependent calcium channel α1 subunit (CACNA1A) gene plays a major role in neuronal communication. Mutation in this gene results in altered Ca2+ ion influx that modify the neurotransmitter release resulting in the development of various neurological disorders like hemiplegic migraine with cortical spreading depression, epilepsy, episodic ataxia type 2, and spinocerebellar ataxia type 6. Objective This review aimed in portraying the frequent mutations in CACNA1A gene causing hemiplegic migraine with cortical spreading depression, epilepsy, episodic ataxia type 2 and spinocerebellar ataxia type 6. Methodology A systematic search has been adopted in various databases using the keywords "Calcium channel," "migraine," "epilepsy," "episodic ataxia," and "spinocerebellar ataxia" for writing this review that collectively focuses on mutations in the CACNA1A gene causing the common neurological diseases from 1975 to 2019. Conclusion Every type of mutation has its own signature in gene functioning and understanding them might aid knowing more in disease progression.
Collapse
Affiliation(s)
- Agaath Hedina Manickam
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Sivasamy Ramasamy
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Muth C, Teufel J, Schöls L, Synofzik M, Franke C, Timmann D, Mansmann U, Strupp M. Fampridine and Acetazolamide in EA2 and Related Familial EA: A Prospective Randomized Placebo-Controlled Trial. Neurol Clin Pract 2021; 11:e438-e446. [PMID: 34484942 DOI: 10.1212/cpj.0000000000001017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 11/15/2022]
Abstract
Objective To determine the efficacy and safety of the treatment with prolonged-release 4-aminopyridine (fampridine) and acetazolamide for patients with episodic ataxia type 2 (EA2), patients with EA2 were treated with a random sequence of fampridine, acetazolamide, and placebo in a 3-period crossover trial. Methods A total of 30 patients with EA2 (8 female; aged 20-71 years; 18 genetically confirmed, 4 with a positive family history, 8 with the clinical diagnosis) were enrolled in this phase III, randomized, double-blind, placebo-controlled, 3-period crossover trial. Each period lasted 12 weeks with a 4-week washout period. Each patient received a random sequence of 20 mg/d fampridine, 750 mg/d acetazolamide, and placebo. The primary end point was the number of attacks during the last 30 days within the 12-week treatment period. Participants, caregivers, and those assessing the outcomes were blinded to the intervention. Results Compared with placebo, fampridine reduced the number of attacks to 63% (95% CI 54%-74%) and acetazolamide to 52% (95% CI 46%-60%). A total of 39 (26.5%) adverse events were observed under treatment with fampridine (mostly tingling paresthesia and fatigue), 66 (44.9%) happened under acetazolamide (mostly taste disturbance and gastrointestinal complaints), and 42 (28.6%) under placebo (mostly gastrointestinal complaints). Conclusion Both fampridine and acetazolamide significantly reduce the number of attacks in patients with EA2 and related EA in comparison to placebo. Fampridine 10 mg twice daily had fewer side effects than acetazolamide 250 mg 3 times daily. The trial was registered with DRKS.de (DRKS00005258) and EudraCT (2013-000107-17). This study was supported by the Federal Ministry of Education and Research (BMBF) (grant number 01EO0901). Fampridine (study medication) was provided by Biogen Idec. Classification of Evidence Class II evidence.
Collapse
Affiliation(s)
- Carolin Muth
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Julian Teufel
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Ludger Schöls
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Matthis Synofzik
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Christiana Franke
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Dagmar Timmann
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Ulrich Mansmann
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders (DSGZ) (CM, JT, M. Strupp), Ludwig Maximilians University, Munich, LMU University Hospital, Campus Grosshadern; Department of Neurology and Hertie-Institute for Clinical Brain Research (LS, M. Synofzik), Eberhard Karls University and German Center for Neurodegenerative Diseases (DZNE), Tübingen; Department of Neurology (CF), Charité-Universitätsmedizin Berlin, Berlin, Germany, Formerly Department of Neurology, University of Dresden; Department of Neurology (DT), Essen University Hospital, University of Duisburg-Essen; and Department of Medical Information Sciences (UM), Biometry, and Epidemiology (IBE), Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
15
|
Na S, Kim T. Efficacy of levetiracetam in patients with episodic ataxia type 2 caused by CACNA1A mutation: three case reports. Neurol Sci 2021; 42:3897-3899. [PMID: 34085110 DOI: 10.1007/s10072-021-05368-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/29/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Taewon Kim
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
16
|
Harvey S, King MD, Gorman KM. Paroxysmal Movement Disorders. Front Neurol 2021; 12:659064. [PMID: 34177764 PMCID: PMC8232056 DOI: 10.3389/fneur.2021.659064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal movement disorders (PxMDs) are a clinical and genetically heterogeneous group of movement disorders characterized by episodic involuntary movements (dystonia, dyskinesia, chorea and/or ataxia). Historically, PxMDs were classified clinically (triggers and characteristics of the movements) and this directed single-gene testing. With the advent of next-generation sequencing (NGS), how we classify and investigate PxMDs has been transformed. Next-generation sequencing has enabled new gene discovery (RHOBTB2, TBC1D24), expansion of phenotypes in known PxMDs genes and a better understanding of disease mechanisms. However, PxMDs exhibit phenotypic pleiotropy and genetic heterogeneity, making it challenging to predict genotype based on the clinical phenotype. For example, paroxysmal kinesigenic dyskinesia is most commonly associated with variants in PRRT2 but also variants identified in PNKD, SCN8A, and SCL2A1. There are no radiological or biochemical biomarkers to differentiate genetic causes. Even with NGS, diagnosis rates are variable, ranging from 11 to 51% depending on the cohort studied and technology employed. Thus, a large proportion of patients remain undiagnosed compared to other neurological disorders such as epilepsy, highlighting the need for further genomic research in PxMDs. Whole-genome sequencing, deep-sequencing, copy number variant analysis, detection of deep-intronic variants, mosaicism and repeat expansions, will improve diagnostic rates. Identifying the underlying genetic cause has a significant impact on patient care, modification of treatment, long-term prognostication and genetic counseling. This paper provides an update on the genetics of PxMDs, description of PxMDs classified according to causative gene rather than clinical phenotype, highlighting key clinical features and providing an algorithm for genetic testing of PxMDs.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This article provides an overview of the numerous causes of vertigo and dizziness that are due to central nervous system (CNS) pathology and guides clinicians in formulating a differential diagnosis and treating patients with CNS causes of vertigo. RECENT FINDINGS Specific autoimmune vestibulocerebellar syndromes may now be tested for, and this article discusses the antibodies known to cause such syndromes. Superficial siderosis can be more accurately diagnosed with imaging studies, and treatment using iron chelation has recently been studied but has not yet been established as an effective treatment. Central autonomic network damage in the brain can cause central orthostatic hypotension in some neurodegenerative diseases, and medication has been approved for treatment. SUMMARY CNS causes of vertigo are numerous and important for clinicians to recognize. Examination findings are still an extremely valuable way to diagnose central vertigo; therefore, learning how to differentiate central from peripheral vertigo based on examination is an important skill. CNS causes of vertigo often have available treatments.
Collapse
|
18
|
Indelicato E, Boesch S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front Neurol 2021; 12:639994. [PMID: 33737904 PMCID: PMC7960780 DOI: 10.3389/fneur.2021.639994] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.
Collapse
Affiliation(s)
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 2021; 12:1295. [PMID: 33637754 PMCID: PMC7910465 DOI: 10.1038/s41467-021-21417-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.
Collapse
Affiliation(s)
- Lauren N. Miterko
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Tao Lin
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Joy Zhou
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Meike E. van der Heijden
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Jaclyn Beckinghausen
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Joshua J. White
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Roy V. Sillitoe
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
20
|
Indelicato E, Unterberger I, Nachbauer W, Eigentler A, Amprosi M, Zeiner F, Haberlandt E, Kaml M, Gizewski E, Boesch S. The electrophysiological footprint of CACNA1A disorders. J Neurol 2021; 268:2493-2505. [PMID: 33544220 PMCID: PMC8217028 DOI: 10.1007/s00415-021-10415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/14/2022]
Abstract
Objectives CACNA1A variants underlie three neurological disorders: familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). EEG is applied to study their episodic manifestations, but findings in the intervals did not gain attention up to date. Methods We analyzed repeated EEG recordings performed between 1994 and 2019 in a large cohort of genetically confirmed CACNA1A patients. EEG findings were compared with those of CACNA1A-negative phenocopies. A review of the related literature was performed. Results 85 EEG recordings from 38 patients (19 EA2, 14 FHM1, 5 SCA6) were analyzed. Baseline EEG was abnormal in 55% of cases (12 EA2, 9 FHM1). The most common finding was a lateralized intermittent slowing, mainly affecting the temporal region. Slowing was more pronounced after a recent attack but was consistently detected in the majority of patients also during the follow-up. Interictal epileptic discharges (IEDs) were detected in eight patients (7 EA2,1 FHM1). EEG abnormalities and especially IEDs were significantly associated with younger age at examination (16 ± 9 vs 43 ± 21 years in those without epileptic changes, p = 0.003) and with earlier onset of disease (1 (1–2) vs 12 (5–45) years, p = 0.0009). EEG findings in CACNA1A-negative phenocopies (n = 15) were largely unremarkable (p = 0.03 in the comparison with CACNA1A patients). Conclusions EEG abnormalities between attacks are highly prevalent in episodic CACNA1A disorders and especially associated with younger age at examination and earlier disease onset. Our findings underpin an age-dependent effect of CACNA1A variants, with a more severe impairment when P/Q channel dysfunction manifests early in life.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Iris Unterberger
- Epileptology Division, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andreas Eigentler
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Fiona Zeiner
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Edda Haberlandt
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pediatrics, City Hospital, Dornbirn, Austria
| | - Manuela Kaml
- Epileptology Division, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Shaikh AG, Manto M. Genome-Wide Association Study Points New Direction for Downbeat Nystagmus Research. THE CEREBELLUM 2020; 19:345-347. [PMID: 32253642 DOI: 10.1007/s12311-020-01128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aasef G Shaikh
- Neurological Institute, University Hospitals Cleveland, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, Cleveland, OH, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Neurology Service and Daroff-Dell'Osso Ocular Motility Laboratory, Louis Stokes Cleveland Medical Center, Cleveland, OH, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium.,University of Mons, Mons, Belgium
| |
Collapse
|
22
|
De Giglio L, Cortese F, Pennisi EM. Aminopiridines in the treatment of multiple sclerosis and other neurological disorders. Neurodegener Dis Manag 2020; 10:409-423. [PMID: 33054615 DOI: 10.2217/nmt-2020-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Symptomatic treatment has a great relevance for the management of patients with neurologic diseases, since it reduces disease burden and improves quality of life. Aminopyridines (APs) are a group of potassium (K+) channel blocking agents that exert their activity both at central nervous system level and on neuromuscular junction. This review describes the use of APs for the symptomatic treatment of neurological conditions. We will describe trials leading to the approval of the extended-release 4-aminopyridine for MS and evidence in support of the use in other neurological diseases.
Collapse
Affiliation(s)
- Laura De Giglio
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| | - Francesca Cortese
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| | - Elena Maria Pennisi
- Department of Medicine, San Filippo Neri Hospital, Neurology Unit, Rome, Italy
| |
Collapse
|
23
|
Penkava J, Ledderose S, Chahrokh-Zadeh S, Munzig A, Eulenburg Z, Huppert D, Strupp M, Becker-Bense S. A novel pathogenic CACNA1A variant causing episodic ataxia type 2 (EA2) spectrum phenotype in four family members and a novel combined therapy. J Neurol 2020; 267:181-184. [PMID: 32910250 PMCID: PMC7718184 DOI: 10.1007/s00415-020-10190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Josef Penkava
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.
| | - S Ledderose
- Department of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S Chahrokh-Zadeh
- Center for Human Genetics and Laboratory Diagnostics (CHGLD), Martinsried, Germany
| | - A Munzig
- Center for Human Genetics and Laboratory Diagnostics (CHGLD), Martinsried, Germany
| | - Zu Eulenburg
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - D Huppert
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - M Strupp
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S Becker-Bense
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
24
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
25
|
Cook AA, Fields E, Watt AJ. Losing the Beat: Contribution of Purkinje Cell Firing Dysfunction to Disease, and Its Reversal. Neuroscience 2020; 462:247-261. [PMID: 32554108 DOI: 10.1016/j.neuroscience.2020.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The cerebellum is a brain structure that is highly interconnected with other brain regions. There are many contributing factors to cerebellar-related brain disease, such as altered afferent input, local connectivity, and/or cerebellar output. Purkinje cells (PC) are the principle cells of the cerebellar cortex, and fire intrinsically; that is, they fire spontaneous action potentials at high frequencies. This review paper focuses on PC intrinsic firing activity, which is altered in multiple neurological diseases, including ataxia, Huntington Disease (HD) and autism spectrum disorder (ASD). Notably, there are several cases where interventions that restore or rescue PC intrinsic activity also improve impaired behavior in these mouse models of disease. These findings suggest that rescuing PC firing deficits themselves may be sufficient to improve impairment in cerebellar-related behavior in disease. We propose that restoring PC intrinsic firing represents a good target for drug development that might be of therapeutic use for several disorders.
Collapse
Affiliation(s)
- Anna A Cook
- Department of Biology, McGill University, Montreal, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, Canada.
| |
Collapse
|
26
|
The neurological update: therapies for cerebellar ataxias in 2020. J Neurol 2020; 267:1211-1220. [DOI: 10.1007/s00415-020-09717-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/18/2020] [Indexed: 12/28/2022]
|
27
|
Recent Advances in the Treatment of Cerebellar Disorders. Brain Sci 2019; 10:brainsci10010011. [PMID: 31878024 PMCID: PMC7017280 DOI: 10.3390/brainsci10010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Various etiopathologies affect the cerebellum, resulting in the development of cerebellar ataxias (CAs), a heterogeneous group of disorders characterized clinically by movement incoordination, affective dysregulation, and cognitive dysmetria. Recent progress in clinical and basic research has opened the door of the ‘‘era of therapy” of CAs. The therapeutic rationale of cerebellar diseases takes into account the capacity of the cerebellum to compensate for pathology and restoration, which is collectively termed cerebellar reserve. In general, treatments of CAs are classified into two categories: cause-cure treatments, aimed at arresting disease progression, and neuromodulation therapies, aimed at potentiating cerebellar reserve. Both forms of therapies should be introduced as soon as possible, at a time where cerebellar reserve is still preserved. Clinical studies have established evidence-based cause-cure treatments for metabolic and immune-mediated CAs. Elaborate protocols of rehabilitation and non-invasive cerebellar stimulation facilitate cerebellar reserve, leading to recovery in the case of controllable pathologies (metabolic and immune-mediated CAs) and delay of disease progression in the case of uncontrollable pathologies (degenerative CAs). Furthermore, recent advances in molecular biology have encouraged the development of new forms of therapies: the molecular targeting therapy, which manipulates impaired RNA or proteins, and the neurotransplantation therapy, which delays cell degeneration and facilitates compensatory functions. The present review focuses on the therapeutic rationales of these recently developed therapeutic modalities, highlighting the underlying pathogenesis.
Collapse
|
28
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
29
|
Impact of 4-aminopyridine on vestibulo-ocular reflex performance. J Neurol 2019; 266:93-100. [PMID: 31270663 DOI: 10.1007/s00415-019-09452-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Abstract
Vestibulo-ocular reflexes (VOR) are mediated by frequency-tuned pathways that separately transform the different dynamic and static aspects of head motion/position-related sensory signals into extraocular motor commands. Voltage-dependent potassium conductances such as those formed by Kv1.1 are important for the ability of VOR circuit elements to encode highly transient motion components. Here we describe the impact of the Kv1.1 channel blocker 4-aminopyridine (4-AP) on spontaneous and motion-evoked discharge of superior oblique motoneurons. Spike activity was recorded from the motor nerve in isolated preparations of Xenopus laevis tadpoles. Under static conditions, bath application of 1-10 µM 4-AP increased the spontaneous firing rate and provoked repetitive bursts of spikes. During motion stimulation 4-AP also augmented and delayed the peak firing rate suggesting that this drug affects the magnitude and timing of vestibular-evoked eye movements. The exclusive Kv1.1 expression in thick vestibular afferent fibers in larval Xenopus at this developmental stage suggests that the altered extraocular motor output in the presence of 4-AP mainly derives from a firing rate increase of irregular firing vestibular afferents that propagates along the VOR circuitry. Clinically and pharmacologically, the observed 4-AP-mediated increase of peripheral vestibular input under resting and dynamic conditions can contribute to the observed therapeutic effects of 4-AP in downbeat and upbeat nystagmus as well as episodic ataxia type 2, by an indirect increase of cerebellar Purkinje cell discharge.
Collapse
|
30
|
Zwergal A, Strupp M, Brandt T. Advances in pharmacotherapy of vestibular and ocular motor disorders. Expert Opin Pharmacother 2019; 20:1267-1276. [PMID: 31030580 DOI: 10.1080/14656566.2019.1610386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Vertigo and dizziness are common chief complaints of vestibular and ocular motor disorders (lifetime prevalence 30%). Treatment relies on physical, pharmacological, psychological and rarely surgical approaches. Eight groups of drugs are currently used in vestibular and ocular motor disorders, namely anti-vertiginous, anti-inflammatory, anti-menière's, anti-migrainous medications, anti-depressants, anti-convulsants, aminopyridines and agents that enhance vestibular plasticity. AREAS COVERED The purpose of this review is to summarize the pharmacological characteristics and clinical applications of medications that are used for peripheral, central and functional vestibular and ocular motor disorders. The level of evidence for the respective drugs is described alongside the pathophysiological premises supporting their use. The authors place particular focus on translation and back-translation in vestibular pharmacological research and the repurposing of known drugs for new indications and rare disorders. EXPERT OPINION The use of drugs in vestibular and ocular motor disorders is often based on open-label, non-controlled studies and expert opinion. In the future, strong evidence derived from RCTs is needed to support the effectiveness and tolerability of these therapies in well-defined vestibular and ocular motor disorders. Vestibular pharmacological research must be guided by a better understanding of the molecular targets relevant in the pathophysiology of vestibular and ocular motor disorders.
Collapse
Affiliation(s)
- Andreas Zwergal
- a Department of Neurology , University Hospital LMU , Munich , Germany.,b German Center for Vertigo and Balance Disorders , DSGZ, LMU Munich , Munich , Germany
| | - Michael Strupp
- a Department of Neurology , University Hospital LMU , Munich , Germany.,b German Center for Vertigo and Balance Disorders , DSGZ, LMU Munich , Munich , Germany
| | - Thomas Brandt
- b German Center for Vertigo and Balance Disorders , DSGZ, LMU Munich , Munich , Germany.,c Clinical Neurosciences , LMU Munich , Munich , Germany
| |
Collapse
|
31
|
Kalla R, Strupp M. Aminopyridines and Acetyl-DL-leucine: New Therapies in Cerebellar Disorders. Curr Neuropharmacol 2019; 17:7-13. [PMID: 30182858 PMCID: PMC6341500 DOI: 10.2174/1570159x16666180905093535] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cerebellar ataxia is a frequent and often disabling syndrome severely impairing motor functioning and quality of life. Patients suffer from reduced mobility, and restricted autonomy, experiencing an even lower quality of life than, e.g., stroke survivors. Aminopyridines have been demonstrated viable for the symptomatic treatment of certain forms of cerebellar ataxia. This article will give an outline of the present pharmacotherapy of different cerebellar disorders. As a current key-therapy for the treatment of downbeat nystagmus 4-aminopyridine (4-AP) is suggested for the treatment of downbeat nystagmus (5-10 mg Twice a day [TID]), a frequent type of persisting nystagmus, due to a compromise of the vestibulo-cerebellum. Studies with animals have demonstrated, that a nonselective blockage of voltage-gated potassium channels (mainly Kv1.5) increases Purkinje- cell (PC) excitability. In episodic ataxia type 2 (EA2), which is frequently caused by mutations of the PQ-calcium channel, the efficacy of 4-AP (5-10 mg TID) has been shown in a randomized controlled trial (RCT). 4-AP was well tolerated in the recommended dosages. 4-AP was also effective in elevating symptoms in cerebellar gait ataxia of different etiologies (2 case series). A new treatment option for cerebellar disease is the amino-acid acetyl-DL-leucine, which has significantly improved cerebellar symptoms in three case series. There are on-going randomized controlled trials for cerebellar ataxia (acetyl-DL-leucine vs placebo; ALCAT), cerebellar gait disorders (SR-form of 4-AP vs placebo; FACEG) and EA2 (sustained-release/SR-form of 4-AP vs acetazolamide vs placebo; EAT2TREAT), which will provide new insights into the pharmacological treatment of cerebellar disorders.
Collapse
Affiliation(s)
- Roger Kalla
- Department of Neurology, University Hospital Bern, Bern, Switzerland.,Department of Neurology, German Center for Vertigo and Balance Disorders, and Institute for Clinical Neurosciences, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Michael Strupp
- Department of Neurology, German Center for Vertigo and Balance Disorders, and Institute for Clinical Neurosciences, University Hospital Munich, Campus Grosshadern, Munich, Germany
| |
Collapse
|
32
|
Feil K, Strobl R, Schindler A, Krafczyk S, Goldschagg N, Frenzel C, Glaser M, Schöberl F, Zwergal A, Strupp M. What Is Behind Cerebellar Vertigo and Dizziness? THE CEREBELLUM 2018; 18:320-332. [DOI: 10.1007/s12311-018-0992-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Pilotto F, Saxena S. Epidemiology of inherited cerebellar ataxias and challenges in clinical research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18785258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Regenerative Neuroscience Cluster, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Vijayakumar A, Arjun P, Sinthiya A, Duraipandiyan V, Al-Dhabi NA. Synthesis, Crystal Structure, and Free Radical Scavenging Activity of 4-Aminopyridinium 3,5-Dinitrobenzoate. CRYSTALLOGR REP+ 2018. [DOI: 10.1134/s1063774517070318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Abstract
Primary episodic ataxias (EAs) are a group of dominantly inherited disorders characterized by transient recurrent incoordination and truncal instability, often triggered by physical exertion and emotional stress, variably associated with progressive baseline ataxia. There are now eight designated subtypes based largely on genetic loci. Mutations have been identified in multiple individuals and families with EA1, EA2, and EA6, mostly with onset before adulthood. EA1 and EA2 are prototypical neurologic channelopathies. EA1 is caused by heterozygous mutations in KCNA1, which encodes the α1 subunit of a neuronal voltage-gated potassium channel, Kv1.1. EA2, the most common and best characterized, is caused by heterozygous mutations in CACNA1A, which encodes the α1A subunit of a neuronal voltage-gated calcium channel, Cav2.1. EA6 is caused by heterozygous mutations in SLC1A3, which encodes a subunit of a glial excitatory amino acid transporter, EAAT1. The other EA subtypes were defined in single families awaiting gene identification and further confirmation. This chapter focuses on the best-characterized EA syndromes, the clinical assessment and genetic diagnosis of EA, and the management of EA, as well as newly recognized allelic disorders that have greatly expanded the clinical spectrum of EA2. Illustrative cases are discussed, with a focus on sporadic patients with congenital features without episodic ataxia who present diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Joanna C Jen
- Departments of Neurology, Otolaryngology, and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Jijun Wan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
36
|
Abstract
The familial episodic ataxias (EAs) are prototypical channelopathies in the central nervous system clinically characterized by attacks of imbalance and incoordination variably associated with progressive ataxia and variable interictal features. EA1, EA2, and EA6 are caused by mutations in ion channel- and transporter-encoding genes that regulate neuronal excitability and neurotransmission.
Collapse
Affiliation(s)
- Joanna C Jen
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| | - Jijun Wan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
37
|
Abbasi S, Abbasi A, Sarbaz Y, Janahmadi M. Power Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated. Basic Clin Neurosci 2017; 8:61-68. [PMID: 28446951 PMCID: PMC5396175 DOI: 10.15412/j.bcn.03080108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acetylpyridine (3-AP), neurotoxin agent, treated alone and riluzole plus 3-AP treated were investigated to determine changes in the firing properties. Difference in the power spectra of tonic and burst firing was assessed. Furthermore, the role of calcium-activated potassium channels in the power spectra was evaluated. Methods: Analysis was performed using Matlab. Power spectral density (PSD) of PCs output were obtained. Peak frequencies were extracted from the spectrum and statistical comparisons were done. In addition, a multi-compartment computational model of a Purkinje cell was used. This computational stimulation allowed us to study the changes in the power spectral density of the PC output as a result of alteration in ion channels. Results: Spectral analysis showed that in the spectrum of tonic and burst firing pattern only high sodium frequency and low calcium frequency was seen, respectively. In addition, there was a significant difference between the frequency components of PCs firing obtained from normal, ataxia and riluzole treated rats. Results indicated that sodium firing frequency of normal, ataxic and treated PCs occurred in approximate frequency of 22.53±5.49, 6.46±0.23, and 31.34±4.07 Hz, respectively; and calcium frequency occurred in frequency of 4.22±2.02, 1.52±1.19, and 3.88±1.37 Hz, respectively. The simulation results demonstrated that blockade of calcium-activated potassium channels in the PC model changed the PSD of the PC model firing activity. This change was similar to PSD changes in ataxia condition. Conclusion: These alterations in the spectrum of PC output may be a basis for developing possible new treatment strategies to improve cerebellar ataxia.
Collapse
Affiliation(s)
- Samira Abbasi
- Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Ataollah Abbasi
- Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Yashar Sarbaz
- Department of Mechatronics, School of Engineering- Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Strupp M, Teufel J, Zwergal A, Schniepp R, Khodakhah K, Feil K. Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract 2016; 7:65-76. [PMID: 28243504 DOI: 10.1212/cpj.0000000000000321] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW To identify the different indications for the treatment of neurologic disorders with the potassium channel blockers 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP). RECENT FINDINGS 4-AP is an effective symptomatic treatment for downbeat nystagmus (DBN), episodic ataxia type 2 (EA2) (5-10 mg TID), and impaired gait in multiple sclerosis (MS) (10 mg BID). 3,4-DAP (5 mg/d-20 mg TID) improves symptoms in Lambert-Eaton myasthenic syndrome (LEMS) (randomized placebo-controlled trials for all 4 entities). 4-AP may also be effective in cerebellar gait ataxia of different etiologies (2 case series), upbeat nystagmus, and limb ataxia in MS (single cases). In the recommended dosages, they are well tolerated. The assumed mode of action is a blockade of mainly Kv1.5: in DBN, this increases the excitability of Purkinje cells (PC), and in EA2, restores the precision of resting discharge of PC. In MS, 4-AP improves the conduction of action potentials in demyelinated axons, and in LEMS, 3,4-DAP facilitates the transmission at the neuromuscular endplate by prolonging the action potential duration. SUMMARY There is sufficient evidence that APs are indicated for the symptomatic treatment of DBN, EA2, gait ataxia due to MS and cerebellar disorders, and LEMS with a reasonable risk-benefit profile.
Collapse
Affiliation(s)
- Michael Strupp
- University Hospital (MS, JT, AZ, RS, KF), Munich, Germany; and Albert Einstein College of Medicine (KK), New York, NY
| | - Julian Teufel
- University Hospital (MS, JT, AZ, RS, KF), Munich, Germany; and Albert Einstein College of Medicine (KK), New York, NY
| | - Andreas Zwergal
- University Hospital (MS, JT, AZ, RS, KF), Munich, Germany; and Albert Einstein College of Medicine (KK), New York, NY
| | - Roman Schniepp
- University Hospital (MS, JT, AZ, RS, KF), Munich, Germany; and Albert Einstein College of Medicine (KK), New York, NY
| | - Kamran Khodakhah
- University Hospital (MS, JT, AZ, RS, KF), Munich, Germany; and Albert Einstein College of Medicine (KK), New York, NY
| | - Katharina Feil
- University Hospital (MS, JT, AZ, RS, KF), Munich, Germany; and Albert Einstein College of Medicine (KK), New York, NY
| |
Collapse
|
39
|
Choi KD, Choi JH. Episodic Ataxias: Clinical and Genetic Features. J Mov Disord 2016; 9:129-35. [PMID: 27667184 PMCID: PMC5035943 DOI: 10.14802/jmd.16028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/24/2022] Open
Abstract
Episodic ataxia (EA) is a clinically heterogeneous group of disorders that are characterized by recurrent spells of truncal ataxia and incoordination lasting minutes to hours. Most have an autosomal dominant inheritance pattern. To date, 8 subtypes have been defined according to clinical and genetic characteristics, and five genes are known to be linked to EAs. Both EA1 and EA2, which are caused by mutations in KCNA1 and CACNA1A, account for the majority of EA, but many patients with no identified mutations still exhibit EA-like clinical features. Furthermore, genetically confirmed EAs have mostly been identified in Caucasian families. In this article, we review the current knowledge on the clinical and genetic characteristics of EAs. Additionally, we summarize the phenotypic features of the genetically confirmed EA2 families in Korea.
Collapse
Affiliation(s)
- Kwang-Dong Choi
- Department of Neurology, College of Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
40
|
Jayabal S, Chang HHV, Cullen KE, Watt AJ. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Sci Rep 2016; 6:29489. [PMID: 27381005 PMCID: PMC4933933 DOI: 10.1038/srep29489] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/17/2016] [Indexed: 12/02/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA684Q/+) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA684Q/84Q) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA684Q/84Q mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6.
Collapse
Affiliation(s)
- Sriram Jayabal
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, H3G 0B1, Canada
| | | | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, H3G 1Y6, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, H3G 0B1, Canada
| |
Collapse
|
41
|
Mitoma H, Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord 2016; 9:396-413. [PMID: 27582895 DOI: 10.1177/1756285616648940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cerebellar ataxias represent a group of heterogeneous disorders impacting on activities of daily living and quality of life. Various therapies have been proposed to improve symptoms in cerebellar ataxias. This review examines the physiological background of the various treatments currently administered worldwide. We analyze the mechanisms of action of drugs with a focus on aminopyridines and other antiataxic medications, of noninvasive cerebellar stimulation, and of motor rehabilitation. Considering the cerebellum as a controller, we propose the novel concept of 'restorable stage'. Because of its unique anatomical architecture and its diffuse connectivity in particular with the cerebral cortex, keeping in mind the anatomophysiology of the cerebellar circuitry is a necessary step to understand the rationale of therapies of cerebellar ataxias and develop novel therapeutic tools.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, 6-7-1 Nishi-shinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Mario Manto
- Unité d'Etude du Mouvement (UEM), FNRS, Neurologie ULB-Erasme, Brussels, Belgium Université de Mons, Mons, Belgium
| |
Collapse
|
42
|
Haghdoost-Yazdi H, Piri H, Faraji A, Fraidouni N, Dargahi T, Mahmudi M, Alipour Heidari M. Pretreatment with potassium channel blockers of 4-aminopyridine and tetraethylammonium attenuates behavioural symptoms of Parkinsonism induced by intrastriatal injection of 6-hydroxydopamine; the role of lipid peroxidation. Neurol Res 2016; 38:294-300. [DOI: 10.1080/01616412.2015.1114290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Kalla R, Teufel J, Feil K, Muth C, Strupp M. Update on the pharmacotherapy of cerebellar and central vestibular disorders. J Neurol 2016; 263 Suppl 1:S24-9. [PMID: 27083881 PMCID: PMC4833819 DOI: 10.1007/s00415-015-7987-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 01/02/2023]
Abstract
An overview of the current pharmacotherapy of central vestibular syndromes and the most common forms of central nystagmus as well as cerebellar disorders is given. 4-aminopyridine (4-AP) is recommended for the treatment of downbeat nystagmus, a frequent form of acquired persisting fixation nystagmus, and upbeat nystagmus. Animal studies showed that this non-selective blocker of voltage-gated potassium channels increases Purkinje cell excitability and normalizes the irregular firing rate, so that the inhibitory influence of the cerebellar cortex on vestibular and deep cerebellar nuclei is restored. The efficacy of 4-AP in episodic ataxia type 2, which is most often caused by mutations of the PQ-calcium channel, was demonstrated in a randomized controlled trial. It was also shown in an animal model (the tottering mouse) of episodic ataxia type 2. In a case series, chlorzoxazone, a non-selective activator of small-conductance calcium-activated potassium channels, was shown to reduce the DBN. The efficacy of acetyl-DL-leucine as a potential new symptomatic treatment for cerebellar diseases has been demonstrated in three case series. The ongoing randomized controlled trials on episodic ataxia type 2 (sustained-release form of 4-aminopyridine vs. acetazolamide vs. placebo; EAT2TREAT), vestibular migraine with metoprolol (PROVEMIG-trial), cerebellar gait disorders (sustained-release form of 4-aminopyridine vs. placebo; FACEG) and cerebellar ataxia (acetyl-DL-leucine vs. placebo; ALCAT) will provide new insights into the pharmacotherapy of cerebellar and central vestibular disorders.
Collapse
Affiliation(s)
- Roger Kalla
- Division of Cognitive and Restorative Neurology, Department of Neurology, University Hospital Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Julian Teufel
- Department of Neurology and German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Katharina Feil
- Department of Neurology and German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Caroline Muth
- Department of Neurology and German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Michael Strupp
- Division of Cognitive and Restorative Neurology, Department of Neurology, University Hospital Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| |
Collapse
|
44
|
Tomlinson SE, Tan SV, Burke D, Labrum RW, Haworth A, Gibbons VS, Sweeney MG, Griggs RC, Kullmann DM, Bostock H, Hanna MG. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2. Brain 2016; 139:380-91. [PMID: 26912519 PMCID: PMC4795516 DOI: 10.1093/brain/awv380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.
Collapse
Affiliation(s)
- Susan E Tomlinson
- 1 Sydney Medical School, University of Sydney, Australia 2 Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | - S Veronica Tan
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK
| | - David Burke
- 1 Sydney Medical School, University of Sydney, Australia 4 Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Robyn W Labrum
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | - Andrea Haworth
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | | | - Mary G Sweeney
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | | | - Dimitri M Kullmann
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | - Hugh Bostock
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK
| | - Michael G Hanna
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| |
Collapse
|
45
|
Maksemous N, Roy B, Smith RA, Griffiths LR. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2. Mol Genet Genomic Med 2016; 4:211-22. [PMID: 27066515 PMCID: PMC4799871 DOI: 10.1002/mgg3.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/11/2022] Open
Abstract
Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.
Collapse
Affiliation(s)
- Neven Maksemous
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| | - Bishakha Roy
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| | - Robert A Smith
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| | - Lyn R Griffiths
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| |
Collapse
|
46
|
Strupp M, Dieterich M, Zwergal A, Brandt T. [Peripheral, central and functional vertigo syndromes]. DER NERVENARZT 2015; 86:1573-84; quiz 1585-6. [PMID: 26643594 DOI: 10.1007/s00115-015-4425-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Depending on the temporal course, three forms of vertigo syndrome can be differentiated: 1) vertigo attacks, e.g. benign paroxysmal positional vertigo (BPPV), Menière's disease and vestibular migraine, 2) acute spontaneous vertigo lasting for days, e.g. acute unilateral vestibulopathy, brainstem or cerebellar infarction and 3) symptoms lasting for months or years, e.g. bilateral vestibulopathy and functional vertigo. The specific therapy of the various syndromes is based on three principles: 1) physical treatment with liberatory maneuvers for BPPV and balance training for vestibular deficits, 2) pharmacotherapy, e.g. for acute unilateral vestibulopathy (corticosteroids) and Menière's disease (transtympanic administration of gentamicin or steroids and high-dose betahistine therapy); placebo-controlled pharmacotherapy studies are currently being carried out for acute unilateral vestibulopathy, vestibular paroxysmia, prophylaxis of BPPV, vestibular migraine, episodic ataxia type 2 and cerebellar ataxia; 3) psychotherapy for functional dizziness.
Collapse
Affiliation(s)
- M Strupp
- Neurologische Klinik, Klinikum der Universität München, Campus Großhadern, Marchioninistr. 15, 81377, München, Deutschland. .,Deutsches Schwindel- und Gleichgewichtszentrum, Klinikum der Universität München, Campus Großhadern, München, Deutschland.
| | - M Dieterich
- Neurologische Klinik, Klinikum der Universität München, Campus Großhadern, Marchioninistr. 15, 81377, München, Deutschland.,Deutsches Schwindel- und Gleichgewichtszentrum, Klinikum der Universität München, Campus Großhadern, München, Deutschland.,SyNergy, Munich Cluster for Systems Neurology, München, Deutschland
| | - A Zwergal
- Neurologische Klinik, Klinikum der Universität München, Campus Großhadern, Marchioninistr. 15, 81377, München, Deutschland.,Deutsches Schwindel- und Gleichgewichtszentrum, Klinikum der Universität München, Campus Großhadern, München, Deutschland
| | - T Brandt
- Deutsches Schwindel- und Gleichgewichtszentrum, Klinikum der Universität München, Campus Großhadern, München, Deutschland.,Institut für Klinische Neurowissenschaften, Klinikum der Universität München, Campus Großhadern, München, Deutschland
| |
Collapse
|
47
|
Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J Neurol 2015; 263:334-343. [PMID: 26645390 DOI: 10.1007/s00415-015-7984-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
Mutations in SCN2A cause epilepsy syndromes of variable severity including neonatal-infantile seizures. In one case, we previously described additional childhood-onset episodic ataxia. Here, we corroborate and detail the latter phenotype in three further cases. We describe the clinical characteristics, identify the causative SCN2A mutations and determine their functional consequences using whole-cell patch-clamping in mammalian cells. In total, four probands presented with neonatal-onset seizures remitting after five to 13 months. In early childhood, they started to experience repeated episodes of ataxia, accompanied in part by headache or back pain lasting minutes to several hours. In two of the new cases, we detected the novel mutation p.Arg1882Gly. While this mutation occurred de novo in both patients, one of them carries an additional known variant on the same SCN2A allele, inherited from the unaffected father (p.Gly1522Ala). Whereas p.Arg1882Gly alone shifted the activation curve by -4 mV, the combination of both variants did not affect activation, but caused a depolarizing shift of voltage-dependent inactivation, and a significant increase in Na(+) current density and protein production. p.Gly1522Ala alone did not change channel gating. The third new proband carries the same de novo SCN2A gain-of-function mutation as our first published case (p.Ala263Val). Our findings broaden the clinical spectrum observed with SCN2A gain-of-function mutations, showing that fairly different biophysical mechanisms can cause a convergent clinical phenotype of neonatal seizures and later onset episodic ataxia.
Collapse
|
48
|
Feil K, Bremova T, Muth C, Schniepp R, Teufel J, Strupp M. Update on the Pharmacotherapy of Cerebellar Ataxia and Nystagmus. THE CEREBELLUM 2015; 15:38-42. [DOI: 10.1007/s12311-015-0733-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
|
50
|
Strupp M, Zwergal A, Feil K, Bremova T, Brandt T. Pharmacotherapy of vestibular and cerebellar disorders and downbeat nystagmus: translational and back-translational research. Ann N Y Acad Sci 2015; 1343:27-36. [PMID: 25903394 DOI: 10.1111/nyas.12774] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There are currently eight groups of drugs for the pharmacotherapy of vertigo, nystagmus, and cerebellar disorders: antiemetics; anti-inflammatories, antimenieres, and antimigraineous medications; antidepressants, anticonvulsants, aminopyridines, and acetyl-DL-leucine ("the eight A's"). In acute unilateral vestibulopathy, corticosteroids improve the recovery of peripheral vestibular function, but there is not sufficient current evidence for a general recommendation. There is also insufficient evidence that 48 or 144 mg/day betahistine has an effect in Ménière's disease. Therefore, higher dosages are currently recommended; in animal studies, it was shown that betahistine increases cochlear blood flow. In vestibular paroxysmia, oxcarbazepine was effective (one yet not randomized controlled trial (RCT)). Aminopyridines are recommended for the treatment of downbeat nystagmus (two RCTs) and episodic ataxia type 2 (EA2, one RCT). There are so far no RCTs on vestibular migraine, so currently no treatment can be recommended. Acetyl-dl-leucine improves cerebellar ataxia (three observational studies); it also accelerates central compensation in an animal model of acute unilateral lesion, but RCTs were negative. There are ongoing RCTs on vestibular paroxysmia with carbamazepine (VESPA), acute unilateral vestibulopathy with betahistine (BETAVEST), vestibular migraine with metoprolol (PROVEMIG), benign paroxysmal positional vertigo with vitamin D (VitD@BPPV), EA2 with 4-aminopyridine versus acetazolamide (EAT-2-TREAT), and cerebellar ataxias with acetyl-DL-leucine (ALCAT).
Collapse
Affiliation(s)
- Michael Strupp
- Department of Neurology, German Center for Vertigo and Balance Disorders and Institute for Clinical Neurosciences, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | | | | | | | | |
Collapse
|