1
|
Sequeira RC, Godad A. Novel insights into famotidine as a GSK-3β inhibitor: An explorative study in aluminium chloride-induced Alzheimer's disease rat model. Behav Brain Res 2025; 476:115270. [PMID: 39317263 DOI: 10.1016/j.bbr.2024.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disease, presents a substantial global health challenge. This study explored the potential therapeutic role of famotidine, a histamine (H2) receptor antagonist, as a glycogen synthase kinase-3β (GSK-3β) inhibitor in the context of AD induced by aluminium chloride (AlCl3) in a rat model. The intricate relationship between GSK-3β dysregulation and AD pathogenesis, particularly in amyloid-β (Aβ) production, formed the basis for investigating famotidine's efficacy. Molecular modelling revealed famotidine's efficient binding to GSK-3β, suggesting inhibitory potential. In behavioural assessments, famotidine-treated groups exhibited dose-dependent improvements in Morris Water Maze, Novel Object Recognition, and Y-Maze tests, comparable to the standard Rivastigmine tartrate group. Biochemical analyses showed that famotidine inhibits acetylcholinesterase, decreases lipid peroxidation, increases antioxidant activity, and mitigates oxidative stress. Moreover, famotidine significantly lowered the levels of GSK-3β, IL-6, and Aβ(1-42). The neuroprotective effects of famotidine were further supported by histopathological analysis. This comprehensive investigation underscores famotidine's potential as a GSK-3β inhibitor, providing insights into its therapeutic impact on AD induced by AlCl3. The study offers a promising avenue for repurposing famotidine due to its established safety profile and widespread availability, highlighting its potential in addressing the formidable challenge of AD.
Collapse
Affiliation(s)
- Ronnita C Sequeira
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Angel Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra 400056, India; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
2
|
Liang Y, Yang X, Jin J, Huang J, Wang Z, Zuo C, Wang S, Wang Q, Zhang X. Dietary selenium intake, hypertension and cognitive function among US adults, NHANES 2011-2014. Sci Rep 2024; 14:25346. [PMID: 39455607 PMCID: PMC11512037 DOI: 10.1038/s41598-024-75652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Dietary selenium intake and hypertension were associated with cognitive function, but it was limitedly understood whether the effect of selenium intake on cognitive function in older adults was modified by hypertension status. A total of 2416 participants aged ≥ 60 years old from the National Health and Nutrition Examination Survey in 2011-2014 were involved in this study. Selenium intake from foods was estimated using two non-consecutive 24-hour dietary recalls. Blood pressure was measured by trained personnel or physicians at a mobile testing center. Cognitive function was measured by Registry for Alzheimer's disease (CERAD), the Animal Fluency test (AFT), and Digit Symbol Substitution Test (DSST). Among 2,416 participants, we found that higher dietary intake of selenium was associated with higher score on most tests (CERAD: Total Score: P for trend = 0.01; AFT: P for trend = 0.01; DSST: P for trend = 0.02) and hypertension was associated with lower score on each test (CEARD: Total Score (β = - 0.87, P = 0.03), CERAD: Delayed Recall Score (β = - 0.37, P = 0.04), AFT (β = - 0.88, P = 0.03), and DSST (β = - 2.72, P = 0.02). The interaction of hypertension status and dietary selenium intake on CERAD-immediate (P for interaction = 0.02) and DSST (P for interaction = 0.04) were statistical significance. In addition, hypertension did not mediate the association between dietary selenium intake and the four dimensions of cognition. The findings suggest that in older adults with hypertension, higher dietary selenium intake is associated with improved cognitive function, implying a potential nutritional strategy for preventing cognitive impairment in this population.
Collapse
Affiliation(s)
- Yekun Liang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinyu Yang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingyu Jin
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingda Huang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, Chin, China
| | - Zihao Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Cheng Zuo
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Quanwei Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Chen F, Chen J, Liu P, Huang Y. The role of composite dietary antioxidants in elderly cognitive function: insights from NHANES. Front Nutr 2024; 11:1455975. [PMID: 39483780 PMCID: PMC11526803 DOI: 10.3389/fnut.2024.1455975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
Objective This study investigates the relationship between the Composite Dietary Antioxidant Index (CDAI) and cognitive function among elderly individuals, aiming to understand how increased antioxidant intake affects cognitive abilities in an aging population. Methods Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014, we analyzed a sample of 2,516 participants aged 60 and above. Cognitive performance was assessed using the CERAD Word Learning and Recall Test, the Animal Fluency Test, and the Digit Symbol Substitution Test. Multivariable regression models were adjusted for demographic, dietary, and health-related factors to explore the association between CDAI scores and cognitive outcomes. Results The regression analyses showed a statistically significant positive association between higher CDAI scores and cognitive performance across several tests. Specifically, increments in CDAI were associated with increased scores in the CERAD Word Learning Test: Score 1 (β = 0.04, 95% CI [0.03, 0.06]), Score 2 (β = 0.04, 95% CI [0.02, 0.05]), Score 3 (β = 0.04, 95% CI [0.02, 0.06]), and the Delayed Recall Test (β = 0.04, 95% CI [0.01, 0.06]). Additionally, significant improvements were observed in the Animal Fluency Test (β = 0.19, 95% CI [0.14, 0.24]) and the Digit Symbol Test (β = 0.55, 95% CI [0.39, 0.71]). Subgroup analyses further highlighted that higher CDAI scores conferred more pronounced cognitive benefits in women, individuals aged 80 and above, Non-Hispanic Black people, and those with lower educational levels, suggesting that dietary antioxidants might be particularly beneficial in these groups. Conclusion An antioxidant-rich diet may represent a viable intervention to mitigate age-related cognitive decline, supporting cognitive health in the elderly. These results underscore the potential public health implications of dietary recommendations aimed at increasing antioxidant consumption among older adults. Further studies are necessary to confirm these findings and to investigate the underlying mechanisms in detail.
Collapse
Affiliation(s)
- Fangsen Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Junhan Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peitian Liu
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yanling Huang
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Preeti K, Sood A, Fernandes V, Khan I, Khatri DK, Singh SB. Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment. Mol Neurobiol 2024; 61:6217-6244. [PMID: 38285288 DOI: 10.1007/s12035-024-03933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-β (p < 0.001) compared to normal control. The IFN-β/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-β expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1β mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.
Collapse
Affiliation(s)
- Kumari Preeti
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, 400056, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
5
|
Yilmazer UT, Pehlivan B, Guney S, Yar-Saglam AS, Balabanli B, Kaltalioglu K, Coskun-Cevher S. The combined effect of morin and hesperidin on memory ability and oxidative/nitrosative stress in a streptozotocin-induced rat model of Alzheimer's disease. Behav Brain Res 2024; 471:115131. [PMID: 38942085 DOI: 10.1016/j.bbr.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Alzheimer's disease (AD), the most frequent neurodegenerative disease within dementias, affects the CNS, leading to gradual memory issues and cognitive dysfunction. Oxidative stress in AD contributes to ongoing neuronal loss and hastens disease progression. Notably, the potent antioxidant compounds morin and hesperidin have demonstrated significant effectiveness in addressing oxidative stress. This study explores the impact of morin and hesperidin on behavior and oxidative stress in the streptozotocin (STZ)-induced AD rat model. The experiment involved five groups: control, STZ, STZ+morin, STZ+hesperidin, and STZ+morin+hesperidin. The rat model of AD was created by injecting STZ with the stereotaxic surgery. Morin and hesperidin were applied to the groups for 7-days. After the applications, the Morris water maze (MWM) and novel object recognition (NOR) tests were used and the rats were sacrificed. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NOx), and protein carbonyl (PC) levels were measured. In the STZ group, the levels of NOx and PC exhibited a noteworthy increase compared to the control. Conversely, the application of morin and/or hesperidin treatments reduced NOx and PC levels compared to the STZ group. The co-administration of morin and hesperidin improved the antioxidant status and decreased lipid peroxidation in STZ-induced rats. In the STZ group, serum advanced oxidation protein products (AOPP) levels were statistically elevated compared to the control. However, in the treatment groups, morin and/or hesperidin successfully decreased AOPP levels to those observed in the control. The combined use of these flavonoids may have a neuroprotective effect regarding memory problems and decreasing oxidative/nitrosative stress.
Collapse
Affiliation(s)
| | - Bilge Pehlivan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Sevin Guney
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Atiye Seda Yar-Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Barbaros Balabanli
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | | | - Sule Coskun-Cevher
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
| |
Collapse
|
6
|
Ghasemi SG, Khoshrou A, Kakhki S, Shirinzadeh Feizabadi A, Masoudi M, Bagherifar F, Beheshti F. Ascorbic Acid Supplementation Improves Adolescent Stress-induced Cognitive Impairment Through Restoration of Behavioral, Biochemical and Electrophysiological Alterations in Male Rats. Neuroscience 2024; 549:55-64. [PMID: 38718917 DOI: 10.1016/j.neuroscience.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
The present research study aimed to investigate the role of Ascorbic acid (AA) on synaptic plasticity, learning, and memory impairment induced by unpredicted chronic mild stress (CUMS) in adolescent male rats. Adolescent male rats were divided into: 1) vehicle, 2) CUMS, 3-5) CUMS plus various doses of AA by oral gavage (CUMS-10/100/400 mg/kg), and 6) AA400 mg/kg by oral gavage. In Morris Water Maze, the time latency decreased, while the time spent in the target quadrant increased in CUMS group treated with AA at the dose of 400 mg/kg. In passive avoidance, the latency of entering into the dark chamber decreased in CUMS group treated with AA (400 mg/kg). In biochemical test results, nitrite and MDA significantly decreased, while thiol content, SOD, and catalase activity in CUMS group that received AA400mg/kg was increased. IL-10, BDNF and Ki67 increased, while TNF-a and AChE activity were decreased in CUMS group treated with AA simultaneously. The results of our study showed that chronic stress during adolescence could cause learning and memory disorders as well as synaptic plasticity. In addition, we showed that AA can prevent this problem by reducing oxidative stress, inflammation, increasing the amount of BDNF, and neurogenesis.
Collapse
Affiliation(s)
- Sima Gul Ghasemi
- Pharmacological Research Center of Medicinal Plant, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Atefeh Shirinzadeh Feizabadi
- Department of Medical Anesthesiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Faezeh Bagherifar
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
7
|
Su H, Masters CL, Bush AI, Barnham KJ, Reid GE, Vella LJ. Exploring the significance of lipids in Alzheimer's disease and the potential of extracellular vesicles. Proteomics 2024; 24:e2300063. [PMID: 37654087 DOI: 10.1002/pmic.202300063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin J Barnham
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura J Vella
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
9
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Zhou JC, Li HL, Zhou Y, Li XT, Yang ZY, Tohda C, Komatsu K, Piao XH, Ge YW. The roles of natural triterpenoid saponins against Alzheimer's disease. Phytother Res 2023; 37:5017-5040. [PMID: 37491018 DOI: 10.1002/ptr.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.
Collapse
Affiliation(s)
- Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer's disease. Ageing Res Rev 2023; 90:102033. [PMID: 37595640 DOI: 10.1016/j.arr.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aβ) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, β-secretase (BACE1), Glycogen synthase kinase 3β (GSK-3β) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aβ production, GSK-3β is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3β and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
13
|
Cazzaro S, Woo JAA, Wang X, Liu T, Rego S, Kee TR, Koh Y, Vázquez-Rosa E, Pieper AA, Kang DE. Slingshot homolog-1-mediated Nrf2 sequestration tips the balance from neuroprotection to neurodegeneration in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2217128120. [PMID: 37463212 PMCID: PMC10374160 DOI: 10.1073/pnas.2217128120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-β accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Jung-A A. Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Tian Liu
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Shanon Rego
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Teresa R. Kee
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Molecular Medicine, University of South Florida Health College of Medicine, Tampa, FL33620
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
- Brain Health Medicines, Center Harrington Discovery Institute, Cleveland, OH44106
| | - David E. Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH44106
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH44106
| |
Collapse
|
14
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
15
|
McGregor L, Soler-López M. Structural basis of bioenergetic protein complexes in Alzheimer's disease pathogenesis. Curr Opin Struct Biol 2023; 80:102573. [DOI: 10.1016/j.sbi.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
16
|
Chadwick W, Maudsley S, Hull W, Havolli E, Boshoff E, Hill MDW, Goetghebeur PJD, Harrison DC, Nizami S, Bedford DC, Coope G, Real K, Thiemermann C, Maycox P, Carlton M, Cole SL. The oDGal Mouse: A Novel, Physiologically Relevant Rodent Model of Sporadic Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24086953. [PMID: 37108119 PMCID: PMC10138655 DOI: 10.3390/ijms24086953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.
Collapse
Affiliation(s)
- Wayne Chadwick
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2000 Antwerp, Belgium
| | - William Hull
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Centre for Translational Medicine and Therapeutics, Queen Mary University of London, London E1 4NS, UK
| | - Enes Havolli
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Eugene Boshoff
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Mark D W Hill
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | | | - David C Harrison
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Sohaib Nizami
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - David C Bedford
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Gareth Coope
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Katia Real
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Centre for Translational Medicine and Therapeutics, Queen Mary University of London, London E1 4NS, UK
| | - Peter Maycox
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Mark Carlton
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| | - Sarah L Cole
- Takeda Cambridge, 418 Cambridge Science Park, Cambridge CB4 0PZ, UK
| |
Collapse
|
17
|
Xie D, Deng T, Zhai Z, Qin T, Song C, Xu Y, Sun T. Moschus exerted protective activity against H 2O 2-induced cell injury in PC12 cells through regulating Nrf-2/ARE signaling pathways. Biomed Pharmacother 2023; 159:114290. [PMID: 36708701 DOI: 10.1016/j.biopha.2023.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to brain diseases. Using Chinese herbal medicine may be beneficial for treating and preventing AD. As a rare and valuable animal medicine, Moschus possesses antioxidant and antiapoptotic efficacy and is extensively applied for treating unconsciousness, stroke, coma, and cerebrovascular diseases. We aim to evaluate whether Moschus protects PC12 cells from hydrogen peroxide (H2O2)-induced cellular injury. The chemical constituents of Moschus are analyzed by GC-MS assay. The cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) levels, oxidative stress-related indicators, and apoptotic proteins are determined. Through GC-MS analysis, nineteen active contents were identified. The cell viability loss, lactate dehydrogenase releases, MMP levels, ROS productions, and Malondialdehyde (MDA) activities decreased, and BAX, Caspase-3, and Kelch-like ECH-associated protein 1 expression also significantly down-regulated and heme oxygenase 1, nuclear factor erythroid-2-related factor 2 (Nrf-2), and quinine oxidoreductase 1 expression upregulated after pretreatment of Moschus. The result indicated Moschus has neuroprotective activity in relieving H2O2-induced cellular damage, and the potential mechanism might be associated with regulating the Nrf-2/ARE signaling pathway. A more in-depth and comprehensive understanding of Moschus in the pathogenesis of AD will provide a fundamental basis for in vivo AD animal model research, which may be able to provide further insights and new targets for AD therapy.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting Deng
- Jintang Second People' s Hospital, Chengdu 610404, China.
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
18
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Oxidative Stress in Brain in Amnestic Mild Cognitive Impairment. Antioxidants (Basel) 2023; 12:antiox12020462. [PMID: 36830020 PMCID: PMC9952700 DOI: 10.3390/antiox12020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Amnestic mild cognitive impairment (MCI), arguably the earliest clinical stage of Alzheimer disease (AD), is characterized by normal activities of daily living but with memory issues but no dementia. Oxidative stress, with consequent damaged key proteins and lipids, are prominent even in this early state of AD. This review article outlines oxidative stress in MCI and how this can account for neuronal loss and potential therapeutic strategies to slow progression to AD.
Collapse
|
20
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
21
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Ablinger I, Dressel K, Rott T, Lauer AA, Tiemann M, Batista JP, Taddey T, Grimm HS, Grimm MOW. Interdisciplinary Approaches to Deal with Alzheimer's Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022; 10:2922. [PMID: 36428494 PMCID: PMC9687885 DOI: 10.3390/biomedicines10112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Ablinger
- Speech and Language Therapy, Campus Bonn, SRH University of Applied Health Sciences, 53111 Bonn, Germany
| | - Katharina Dressel
- Speech and Language Therapy, Campus Düsseldorf, SRH University of Applied Health Sciences, 40210 Düsseldorf, Germany
| | - Thea Rott
- Interdisciplinary Periodontology and Prevention, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Anna Andrea Lauer
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Michael Tiemann
- Sport Science, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - João Pedro Batista
- Sport Science and Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tim Taddey
- Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Heike Sabine Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
23
|
Lanznaster D, Dingeo G, Samey RA, Emond P, Blasco H. Metabolomics as a Crucial Tool to Develop New Therapeutic Strategies for Neurodegenerative Diseases. Metabolites 2022; 12:864. [PMID: 36144268 PMCID: PMC9503806 DOI: 10.3390/metabo12090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's (AD), Parkinson's (PD), and amyotrophic lateral sclerosis (ALS), share common pathological mechanisms, including metabolism alterations. However, their specific neuronal cell types affected and molecular biomarkers suggest that there are both common and specific alterations regarding metabolite levels. In this review, we were interested in identifying metabolite alterations that have been reported in preclinical models of NDs and that have also been documented as altered in NDs patients. Such alterations could represent interesting targets for the development of targeted therapy. Importantly, the translation of such findings from preclinical to clinical studies is primordial for the study of possible therapeutic agents. We found that N-acetyl-aspartate (NAA), myo-inositol, and glutamate are commonly altered in the three NDs investigated here. We also found other metabolites commonly altered in both AD and PD. In this review, we discuss the studies reporting such alterations and the possible pathological mechanism underlying them. Finally, we discuss clinical trials that have attempted to develop treatments targeting such alterations. We conclude that the treatment combination of both common and differential alterations would increase the chances of patients having access to efficient treatments for each ND.
Collapse
|
24
|
Zha Y, Jin Y, Wang X, Chen L, Zhang X, Wang M. Long-term maintenance of synaptic plasticity by Fullerenol Ameliorates lead-induced-impaired learning and memory in vivo. J Nanobiotechnology 2022; 20:348. [PMID: 35909130 PMCID: PMC9341061 DOI: 10.1186/s12951-022-01550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Fullerenol, a functional and water-soluble fullerene derivative, plays an important role in antioxidant, antitumor and antivirus, implying its enormous potential in biomedical applications. However, the in vivo performance of fullerenol remains largely unclear. We aimed to investigate the effect of fullerenol (i.p., 5 mg/kg) on the impaired hippocampus in a rat model of lead exposure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a kind of newly developed soft-ionization mass spectrometry technology. In the present study, an innovative strategy for biological distribution analysis using MALDI-TOF-MS confirmed that fullerenol could across the blood-brain barrier and accumulate in the brain. Results from behavioral tests showed that a low dose of fullerenol could improve the impaired learning and memory induced by lead. Furthermore, electrophysiology examinations indicated that this potential repair effect of fullerenol was mainly due to the long-term changes in hippocampal synaptic plasticity, with enhancement lasting for more than 2-3 h. In addition, morphological observations and biochemistry analyses manifested that the long-term change in synaptic efficacy was accompanied by some structural alteration in synaptic connection. Our study demonstrates the therapeutic feature of fullerenol will be beneficial to the discovery and development as a new drug and lays a solid foundation for further biomedical applications of nanomedicines.
Collapse
Affiliation(s)
- Yingying Zha
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Xinxing Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lin Chen
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xulai Zhang
- Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, 230022, Anhui, China.
| | - Ming Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
25
|
Dysfunction of Mitochondria in Alzheimer’s Disease: ANT and VDAC Interact with Toxic Proteins and Aid to Determine the Fate of Brain Cells. Int J Mol Sci 2022; 23:ijms23147722. [PMID: 35887070 PMCID: PMC9316216 DOI: 10.3390/ijms23147722] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD), certainly the most widespread proteinopathy, has as classical neuropathological hallmarks, two groups of protein aggregates: senile plaques and neurofibrillary tangles. However, the research interest is rapidly gaining ground in a better understanding of other pathological features, first, of all the mitochondrial dysfunctions. Several pieces of evidence support the hypothesis that abnormal mitochondrial function may trigger aberrant processing of amyloid progenitor protein or tau and thus neurodegeneration. Here, our aim is to emphasize the role played by two ‘bioenergetic’ proteins inserted in the mitochondrial membranes, inner and outer, respectively, that is, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), in the progression of AD. To perform this, we will magnify the ANT and VDAC defects, which are measurable hallmarks of mitochondrial dysfunction, and collect all the existing information on their interaction with toxic Alzheimer’s proteins. The pathological convergence of tau and amyloid β-peptide (Aβ) on mitochondria may finally explain why the therapeutic strategies used against the toxic forms of Aβ or tau have not given promising results separately. Furthermore, the crucial role of ANT-1 and VDAC impairment in the onset/progression of AD opens a window for new therapeutic strategies aimed at preserving/improving mitochondrial function, which is suspected to be the driving force leading to plaque and tangle deposition in AD.
Collapse
|
26
|
Shirsat-John P, Saldanha T, Kolhe S, Ziyaurrahman AR. Antiamnesic effect of Mesua ferrea (L.) flowers on scopolamine-induced memory impairment and oxidative stress in rats. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Carrillo C, Nieto G, Martínez-Zamora L, Ros G, Kamiloglu S, Munekata PES, Pateiro M, Lorenzo JM, Fernández-López J, Viuda-Martos M, Pérez-Álvarez JÁ, Barba FJ. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6864-6883. [PMID: 35040324 PMCID: PMC9204822 DOI: 10.1021/acs.jafc.1c07208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The current increased industrial food production has led to a significant rise in the amount of food waste generated. These food wastes, especially fruit and vegetable byproducts, are good sources of natural pigments, such as anthocyanins, betalains, carotenoids, and chlorophylls, with both coloring and health-related properties. Therefore, recovery of natural pigments from food wastes is important for both economic and environmental reasons. Conventional methods that are used to extract natural pigments from food wastes are time-consuming, expensive, and unsustainable. In addition, natural pigments are sensitive to high temperatures and prolonged processing times that are applied during conventional treatments. In this sense, the present review provides an elucidation of the latest research on the extraction of pigments from the agri-food industry and how their consumption may improve human health.
Collapse
Affiliation(s)
- Celia Carrillo
- Nutrición
y Bromatología, Facultad de Ciencias, Universidad de Burgos, E-09001 Burgos, Spain
| | - Gema Nieto
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Lorena Martínez-Zamora
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Gaspar Ros
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Senem Kamiloglu
- Department
of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
- Science
and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Paulo E. S. Munekata
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Mirian Pateiro
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M. Lorenzo
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
- Área
de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Juana Fernández-López
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Francisco J. Barba
- Nutrition
and Food Science Area, Preventive Medicine and Public Health, Food
Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
28
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
29
|
Rummel NG, Butterfield DA. Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid Redox Signal 2022; 36:1289-1305. [PMID: 34416829 PMCID: PMC9229240 DOI: 10.1089/ars.2021.0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Alzheimer disease (AD) is an all-too-common condition in the aging population. However, aging does not automatically equal neurodegeneration and memory decline. Recent Advances: This review article involves metabolic changes in the AD brain that are related to oxidative stress. Selected pathways are identified as potential targets for intervention in AD. Critical Issues: One of the main factors of AD is the oxidative imbalance within the central nervous system, causing a disruption in metabolic processes. Reactive oxygen species (ROS) are a natural consequence of many cellular processes, especially those associated with mitochondria, such as the electron transport chain. Some ROS, when kept under control and maintained at reasonable levels, often play roles in cell signaling. The cellular damage of ROS arises when oxidative imbalance occurs, in which case ROS are not controlled, leading to a myriad of alterations in cellular metabolic processes. These altered pathways include, among others, dysfunctional glycolysis, calcium regulation, lipid metabolism, mitochondrial processes, and mammalian target of rapamycin pathway dysregulation. Future Directions: Understanding how ROS can lead to these alterations can, ideally, elucidate therapeutic options for retarding AD progression in the aging population. Antioxid. Redox Signal. 36, 1289-1305.
Collapse
Affiliation(s)
- Nicole G Rummel
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Okazawa H, Ikawa M, Tsujikawa T, Mori T, Makino A, Kiyono Y, Nakamoto Y, Kosaka H, Yoneda M. Cerebral Oxidative Stress in Early Alzheimer's Disease Evaluated by 64Cu-ATSM PET/MRI: A Preliminary Study. Antioxidants (Basel) 2022; 11:1022. [PMID: 35624886 PMCID: PMC9138060 DOI: 10.3390/antiox11051022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress imaging using diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) was applied to the evaluation of patients with early Alzheimer's disease (eAD). Ten eAD patients (72 ± 9 years) and 10 age-matched healthy controls (HCs) (73 ± 9 years) participated in this study. They underwent dynamic PET/MRI using 11C-PiB and 64Cu-ATSM with multiple MRI sequences. To evaluate cerebral oxidative stress, three parameters of 64Cu-ATSM PET were compared: standardized uptake value (SUV), tracer influx rate (Kin), and a rate constant k3. The input functions were estimated by the image-derived input function method. The relative differences were analyzed by statistical parametric mapping (SPM) using SUV and Kin images. All eAD patients had positive and HC subjects had negative PiB accumulation, and MMSE scores were significantly different between them. The 64Cu-ATSM accumulation tended to be higher in eAD than in HCs for both SUV and Kin. When comparing absolute values, eAD patients had a greater Kin in the posterior cingulate cortex and a greater k3 in the hippocampus compared with lobar cortical values of HCs. In SPM analysis, eAD had an increased left operculum and decreased bilateral hippocampus and anterior cingulate cortex compared to HCs. 64Cu-ATSM PET/MRI and tracer kinetic analysis elucidated cerebral oxidative stress in the eAD patients, particularly in the cingulate cortex and hippocampus.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
31
|
Mandal PK, Dwivedi D, Shukla D, Samkaria A, Roy RG, Arora Y, Jindal K. Interplay Between Hippocampal Glutathione Depletion and pH Increment in Alzheimer’s Disease. J Alzheimers Dis 2022; 88:1-6. [DOI: 10.3233/jad-215729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxidative stress (OS) is a critical factor in the pathogenesis of Alzheimer’s disease (AD). Elevated OS in AD lowers the level of glutathione (GSH), a brain antioxidant. Currently, GSH is under examination in the clinical population for understanding its association with oxidative load in AD research. Significant depletion in hippocampal GSH, as observed using in vivo magnetic resonance spectroscopy (MRS), reportedly correlates with cognitive impairment in AD. Alterations in cellular-energy metabolism and increased hippocampal pH have also been reported in AD. Hence, this combined molecular interplay between hippocampal GSH and pH must be studied longitudinally for advancing AD research. Herein, we propose a schematic model depicting the molecular events in AD pathogenesis and provide a possible link between OS, GSH depletion, and pH alterations in the hippocampus. The model would further potentiate the need for in vivo longitudinal studies to confirm the interlinked mechanism between OS, hippocampal GSH depletion, and pH increment in an AD patient brain.
Collapse
Affiliation(s)
- Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia
| | - Divya Dwivedi
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Deepika Shukla
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Komal Jindal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
32
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
33
|
Tamer SA, Koyuncuoğlu T, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Nesfatin-1 ameliorates oxidative brain damage and memory impairment in rats induced with a single acute epileptic seizure. Life Sci 2022; 294:120376. [DOI: 10.1016/j.lfs.2022.120376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
34
|
Mesa-Herrera F, Marín R, Torrealba E, Díaz M. Multivariate Assessment of Lipoxidative Metabolites, Trace Biometals, and Antioxidant and Detoxifying Activities in the Cerebrospinal Fluid Define a Fingerprint of Preclinical Stages of Alzheimer’s Disease. J Alzheimers Dis 2022; 86:387-402. [DOI: 10.3233/jad-215437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: There exists considerable interest in the identification of molecular traits during early stages of Alzheimer’s disease (AD). Mild cognitive impairment (MCI) is considered the closest prodromal stage of AD, and to develop gradually from earlier stages although not always progresses to AD. Classical cerebrospinal fluid (CSF) AD biomarkers, amyloid-β peptides and tau/p-tau proteins, have been measured in prodromal stages yet results are heterogeneous and far from conclusive. Therefore, there exists a pressing need to identify a neurochemical signature for prodromal stages and to predict which cases might progress to AD. Objective: Exploring potential CSF biomarkers related to brain oxidative and inorganic biochemistry during prodromal stages of the disease. Methods: We have analyzed CSF levels of lipoxidative markers (MDA and 8-isoF2α), biometals (Cu, Zn, Se, Mn, and Fe), iron-transport protein transferrin (TFER), antioxidant enzymes (SOD and GPx4), detoxifying enzymes (GST and BuChE), as well as classical amyloid-β and total and phosphorylated tau, in cognitively healthy controls, patients with MCI, and subjects exhibiting subjective memory complaints (SMC). Results: Inter-group differences for several variables exhibit differentiable trends along the HC ⟶ SMC ⟶ MCI sequence. More interestingly, the combination of Se, Cu, Zn, SOD, TFER, and GST variables allow differentiable fingerprints for control subjects and each prodromal stage. Further, multivariate scores correlate positively with neurocognitive In-Out test, hence with both episodic memory decline and prediction to dementia. Conclusion: We conclude that changes in the CSF biochemistry related to brain oxidative defense and neurometallomics might provide more powerful and accurate diagnostic tools in preclinical stages of AD.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Health Sciences School, Universidad de La Laguna, Spain
- Associate Research Unit ULL-CSIC Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Tenerife, Spain
| | - Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Mario Díaz
- Department of Physics, Faculty of Sciences, Universidad de La Laguna, Spain
- IUETSP (Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias), Universidad de La Laguna, Spain
| |
Collapse
|
35
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
36
|
Wright JR, Deen QFE, Stevenson A, Telford-Cooke LL, Parker C, Martin-Ruiz C, Steinert JR, Kalaria RN, Mukaetova-Ladinska EB. Plasma Myeloperoxidase as a Potential Biomarker of Patient Response to Anti-Dementia Treatment in Alzheimer's Disease. J Alzheimers Dis 2022; 89:1483-1492. [PMID: 36057826 DOI: 10.3233/jad-220642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Myeloperoxidase (MPO), a neutrophil-derived pro-inflammatory protein, co-localizes with amyloid-β (Aβ) plaques in Alzheimer's disease (AD). Anti-dementia treatment may facilitate efflux of Aβ and associated plaque proteins from the brain to the peripheral circulation, therefore providing potential biomarkers for the monitoring of donor response to drug treatment. OBJECTIVE We investigated the diagnostic utility of MPO as a biomarker of AD, and how anti-dementia treatment alters plasma MPO concentration. METHODS Thirty-two AD patients were recruited, and plasma collected pre-drug administration (baseline), and 1- and 6-months post-treatment. All patients received cholinesterase inhibitors (ChEIs). At baseline and 6 months, patients underwent neuropsychological assessment. Forty-nine elderly healthy individuals with normal cognitive status served as controls. Plasma MPO concentration was measured by ELISA. RESULTS AD drug naïve patients had similar plasma MPO concentration to their control counterparts (p > 0.05). Baseline MPO levels positively correlated with Neuropsychiatric Inventory score (r = 0.5080; p = 0.011) and carer distress (r = 0.5022; p = 0.012). Following 1-month ChEI treatment, 84.4% of AD patients exhibited increased plasma MPO levels (p < 0.001), which decreased at 6 months (p < 0.001). MPO concentration at 1 month was greatest in AD patients whose memory deteriorated during the study period (p = 0.028), and for AD patients with deterioration in Cornell assessment score (p = 0.044). CONCLUSION Whereas baseline MPO levels did not differentiate between healthy and AD populations, baseline MPO positively correlated with initial Neuropsychiatric Inventory evaluation. Post-treatment, transient MPO upregulation in ChEI-treated patients may reflect worse therapeutic outcome. Further studies are required to assess the potential of plasma MPO as an AD therapeutic biomarker.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Quazi Fahm E Deen
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anna Stevenson
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Craig Parker
- BioScreening Core Facility-CAV, Newcastle University, Newcastle, UK
| | | | - Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, UK
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Elizabeta B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- The Evington Centre, Leicester General Hospital, Leicester, UK
| |
Collapse
|
37
|
Olayinka JN, Eduviere A, Adeoluwa O, Akinluyi E, Obisesan A, Akawa O, Adebanjo A. Quercetin mitigates scopolamine-induced memory dysfunction: impact on oxidative stress and cholinergic mechanisms. Metab Brain Dis 2022; 37:265-277. [PMID: 34751893 DOI: 10.1007/s11011-021-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
Despite the promising neuroprotective activities of quercetin (QT), its' effect on cholinergic neurotransmission needs further elucidation. In this study, we explored the impact of QT on oxidative stress and cholinergic neurotransmission with emphasis on the possible involvement of choline acetyltransferase (ChAT) as a potential mechanism of QT on memory function at the hippocampal sub-regions and prefrontal cortex of mice brains. Mice were administered orally with QT (12.5 and 25 mg/kg) alone or in combination with SC (3 mg/kg, intraperitoneally) once daily for seven consecutive days. Thirty minutes after the last treatment, memory function was assessed using the Y-maze test. Levels of biomarkers of oxidative stress and acetylcholinesterase (AChE) activity were determined using a microplate reader. ChAT activity was determined by immunohistochemistry. QT pretreatment enhanced memory performance and reversed scopolamine (SC)-induced memory impairment in the Y-maze test. QT also reduced malondialdehyde and nitrite levels in mice brains. Glutathione levels were increased in mice brains as a result of QT administration. Levels of antioxidant enzymes (superoxide dismutase and catalase) were significantly increased in the mice brains, but AChE activity was reduced by QT. The activity of ChAT was significantly enhanced by QT in the hippocampal sub-regions and the prefrontal cortex of the mice brains. This study has shown that QT mitigated SC-induced memory dysfunction by inhibiting oxidative stress and AChE activity. Also, QT enhanced ChAT activity, particularly in the hippocampal sub-regions and the prefrontal cortex. These mechanisms, may be possible means through which QT improves memory performance.
Collapse
Affiliation(s)
- Juliet N Olayinka
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Anthony Eduviere
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Olusegun Adeoluwa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Abiola Obisesan
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Oluwole Akawa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe- Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adeshina Adebanjo
- Department of Civil Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
38
|
Cheng KC, Cheung CHA, Chiang HC. Early Aβ42 Exposure Causes Learning Impairment in Later Life. Aging Dis 2022; 13:868-883. [PMID: 35656119 PMCID: PMC9116909 DOI: 10.14336/ad.2021.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
Amyloid cascade hypothesis proposes that amyloid β (Aβ) accumulation is the initiator and major contributor to the development of Alzheimer’s disease (AD). However, this hypothesis has recently been challenged by clinical studies showing that reduction of Aβ accumulation in the brain does not accompany with cognitive improvement, suggesting that therapeutically targeting Aβ in the brain may not be sufficient for restoring cognitive function. Since the molecular mechanism underlying the progressive development of cognitive impairment after Aβ clearance is largely unknown, the reason of why there is no behavioral improvement after Aβ clearance remains elusive. In the current study, we demonstrated that transient Aβ expression caused learning deficit in later life, despite the accumulated Aβ was soon being removed after the expression. Early Aβ exposure decreased the cellular expression of XBP1 and both the antioxidants, catalase, and dPrx5, which made cells more vulnerable to oxidative stress in later life. Early induction of XBP1, catalase, and dPrx5 prevented the overproduction of ROS, improved the learning performance, and preserved the viability of cells in the later life with the early Aβ induction. Treating the early Aβ exposed flies with antioxidants such as vitamin E, melatonin and lipoic acid, after the removal of Aβ also preserved the learning ability in later life. Taken together, we demonstrated that early and transient Aβ exposure can have a profound impact on animal behavior in later life and also revealed the cellular and molecular mechanism underlying the development of learning impairment by the early and transient Aβ exposure.
Collapse
Affiliation(s)
- Kuan-Chung Cheng
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Correspondence should be addressed to: Dr. Hsueh-Cheng Chiang, Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan. E-mail: .
| |
Collapse
|
39
|
Sanchez-Roman I, Ferrando B, Holst CM, Mengel-From J, Rasmussen SH, Thinggaard M, Bohr VA, Christensen K, Stevnsner T. Molecular markers of DNA repair and brain metabolism correlate with cognition in centenarians. GeroScience 2021; 44:103-125. [PMID: 34966960 DOI: 10.1007/s11357-021-00502-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress is an important factor in age-associated neurodegeneration. Accordingly, mitochondrial dysfunction and genomic instability have been considered as key hallmarks of aging and have important roles in age-associated cognitive decline and neurodegenerative disorders. In order to evaluate whether maintenance of cognitive abilities at very old age is associated with key hallmarks of aging, we measured mitochondrial bioenergetics, mitochondrial DNA copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians in a Danish 1915 birth cohort (n = 120). Also, the circulating levels of brain-derived neurotrophic factor, NAD+ /NADH and carbonylated proteins were measured in plasma of the centenarians and correlated to cognitive capacity. Mitochondrial respiration was well preserved in the centenarian cohort when compared to young individuals (21-35 years of age, n = 33). When correlating cognitive performance of the centenarians with mitochondrial function such as basal respiration, ATP production, reserve capacity and maximal respiration, no overall correlations were observed, but when stratifying by sex, inverse associations were observed in the males (p < 0.05). Centenarians with the most severe cognitive impairment displayed the lowest activity of the central DNA repair enzyme, APE1 (p < 0.05). A positive correlation between cognitive capacity and levels of NAD+ /NADH was observed (p < 0.05), which may be because NAD+ /NADH consuming enzyme activities strive to reduce the oxidative DNA damage load. Also, circulating protein carbonylation was lowest in centenarians with highest cognitive capacity (p < 0.05). An opposite trend was observed for levels of brain-derived neurotrophic factor (p = 0.17). Our results suggest that maintenance of cognitive capacity at very old age may be associated with cellular mechanisms related to oxidative stress and DNA metabolism.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Ferrando
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
| | - Camilla Myrup Holst
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Aging Research Center, Aarhus, Denmark
| | - Jonas Mengel-From
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Signe Høi Rasmussen
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
- Department of Geriatrics, Odense University Hospital, Svendborg, Denmark
| | - Mikael Thinggaard
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Vilhelm A Bohr
- Danish Aging Research Center, Aarhus, Denmark
- National Institute On Aging, NIH, Baltimore, MD, USA
| | - Kaare Christensen
- Danish Aging Research Center, Aarhus, Denmark
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, Odense, Denmark
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Danish Aging Research Center, Aarhus, Denmark.
| |
Collapse
|
40
|
Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021; 26:molecules26247658. [PMID: 34946740 PMCID: PMC8706440 DOI: 10.3390/molecules26247658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
| | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417466191, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, 00185 Rome, Italy;
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran; (S.G.); (M.R.)
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
- Correspondence: (M.H.-R.); (A.A.M.-M.); Tel.: +98-21-6111-3214 (M.H.-R.); +98-21-6111-3381 (A.A.M.-M.); Fax: +98-21-6697-1941 (M.H.-R.); +98-21-6640-4680 (A.A.M.-M.)
| |
Collapse
|
41
|
Butterfield DA. Ubiquitin carboxyl-terminal hydrolase L-1 in brain: Focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med 2021; 177:278-286. [PMID: 34737037 PMCID: PMC8684818 DOI: 10.1016/j.freeradbiomed.2021.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Neurons must remove aggregated, damaged proteins in order to survive. Among the ways of facilitating this protein quality control is the ubiquitin-proteasomal system (UPS). Aggregated, damaged proteins are targeted for destruction by the UPS by acquiring a polymer of ubiquitin residues that serves as a signal for transport to the UPS. However, before this protein degradation can occur, the polyubiquitin chain must be removed, one residue at a time, a reaction facilitated by the enzyme, ubiquitin C-terminal hydrolase (UCH-L1). In Alzheimer disease brain, this normally abundant protein is both of lower levels and oxidatively and nitrosatively modified than in control brain. This causes diminished function of the pleiotropic UCH-L1 enzyme with consequent pathological alterations in AD brain, and the author asserts the oxidative and nitrosative alterations of UCH-L1 are major contributors to mechanisms of neuronal death in this devastating dementing disorder and its earlier stage, mild cognitive impairment (MCI). This review paper outlines these findings in AD and MCI brain.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
42
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
43
|
Shukla D, Mandal PK, Mishra R, Punjabi K, Dwivedi D, Tripathi M, Badhautia V. Hippocampal Glutathione Depletion and pH Increment in Alzheimer's Disease: An in vivo MRS Study. J Alzheimers Dis 2021; 84:1139-1152. [PMID: 34633325 DOI: 10.3233/jad-215032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxidative stress plays a major role in Alzheimer's disease (AD) pathogenesis, and thus, antioxidant glutathione (GSH) has been actively investigated in mitigating the oxidative load. Significant hippocampal GSH depletion has been correlated with cognitive impairment in AD. Furthermore, postmortem studies indicated alterations in cellular-energy metabolism and hippocampal pH change toward alkalinity in AD. OBJECTIVE Concurrent analysis of hippocampal GSH and pH interplay in vivo on the same individual is quite unclear and hence requires investigation to understand the pathological events in AD. METHODS Total 39 healthy old (HO), 22 mild cognitive impairment (MCI), and 37 AD patients were recruited for hippocampal GSH using 1H-MRS MEGA-PRESS and pH using 2D 31P-MRSI with dual tuned (1H/31P) transmit/receive volume head coil on 3T-Philips scanner. All MRS data processing using KALPANA package and statistical analysis were performed MedCalc, respectively and NINS-STAT package. RESULTS Significant GSH depletion in the left and right hippocampus (LH and RH) among MCI and AD study groups as compared to HO was observed, whereas pH increased significantly in the LH region between HO and AD. Hippocampal GSH level negatively correlated with pH in both patient groups. The ROC analysis on the combined effect of GSH and pH in both hippocampal regions give accuracy for MCI (LH: 78.27%; RH: 86.96%) and AD (LH: 88%; RH: 78.26%) groups differentiating from HO. CONCLUSION Outcomes from this study provide further insights to metabolic alterations in terms of concurrent assessment of hippocampal GSH and pH levels in AD pathogenesis, aiding in early diagnosis of MCI and AD.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, VIC, Australia
| | - Ritwick Mishra
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Khushboo Punjabi
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Divya Dwivedi
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Badhautia
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
44
|
Yao SM, Zheng PP, He W, Cai JP, Wang H, Yang JF. Urinary 8-OxoGsn as a Potential Indicator of Mild Cognitive Impairment in Frail Patients With Cardiovascular Disease. Front Aging Neurosci 2021; 13:672548. [PMID: 34531733 PMCID: PMC8439254 DOI: 10.3389/fnagi.2021.672548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/04/2021] [Indexed: 01/29/2023] Open
Abstract
Oxidative RNA damage has been found to be associated with age-related diseases and 8-oxo-7,8-dihydroguanosine (8-oxoGsn) is a typical marker of oxidative modification of RNA. Urine tests are a feasible non-invasive diagnostic modality. The present study aimed to assess whether the measurement of urinary 8-oxoGsn could represent a potential early maker in mild cognitive impairment (MCI) of frail patients with cardiovascular disease (CVD). In this cross-sectional study performed in China from September 2018 to February 2019. Urinary 8-oxoGsn was measured in frail (Fried phenotype: 3–5) in patients with CVD and was adjusted by urinary creatinine (Cre) levels. Cognitive function was assessed by the Chinese version of the Mini-Mental State Examination (MMSE) and participants were classified into non-MCI (≥24) and MCI (<24) groups. Univariate and multivariate logistic regression models were used to determine the relationship between 8-oxoGsn/Cre and MCI. Receiver operating characteristic (ROC) curve analysis was used to assess the 8-oxoGsn/Cre ratio in relation to MCI in frail patients with CVD. A total of 106 elderly patients were enrolled in this study. The mean age of participants was 77.9 ± 6.8 years, the overall prevalence of MCI was 22.6% (24/106), and 57.5% (61/106) of participants were women. In the multivariate logistic regression analysis, urinary 8-oxoGsn/Cre was independently associated with MCI (odds ratio [OR] = 1.769, 95% confidence interval [CI] = 1.234–2.536, P = 0.002), after adjusting for age, sex, education level, marital status, and serum prealbumin levels. The area under the ROC curve was 0.786 (0.679–0.893) (P < 0.001), and the optimal cut-off value was 4.22 μmol/mol. The urinary 8-oxoGsn/Cre ratio showed a sensitivity of 87.5% and a specificity of 69.5%. The present study suggests the urinary 8-oxoGsn/Cre ratio may be a useful indicator for the early screening of MCI in frail patients with CVD.
Collapse
Affiliation(s)
- Si-Min Yao
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University Fifth School of Clinical Medicine. No. 1, Beijing, China
| | - Pei-Pei Zheng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University Fifth School of Clinical Medicine. No. 1, Beijing, China
| | - Wei He
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Ping Cai
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hua Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie-Fu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Ahn YJ, Kim H. Lutein as a Modulator of Oxidative Stress-Mediated Inflammatory Diseases. Antioxidants (Basel) 2021; 10:antiox10091448. [PMID: 34573081 PMCID: PMC8470349 DOI: 10.3390/antiox10091448] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Lutein is a xanthophyll carotenoid obtained from various foods, such as dark green leafy vegetables and egg yolk. Lutein has antioxidant activity and scavenges reactive oxygen species such as singlet oxygen and lipid peroxy radicals. Oxidative stress activates inflammatory mediators, leading to the development of metabolic and inflammatory diseases. Thus, recent basic and clinical studies have investigated the anti-inflammatory effects of lutein based on its antioxidant activity and modulation of oxidant-sensitive inflammatory signaling pathways. Lutein suppresses activation of nuclear factor-kB and signal transducer and activator of transcription 3, and induction of inflammatory cytokines (interleukin-1β, interleukin-6, monocyte chemoattratant protein-1, tumor necrosis factor-α) and inflammatory enzymes (cyclooxygenase-2, inducible nitric oxide synthase). It also maintains the content of endogenous antioxidant (glutathione) and activates nuclear factor erythroid 2–related factor 2 (Nrf2) and Nrf2 signaling-related antioxidant enzymes (hemeoxygenase-1, NAD(P)H: quinone oxidoreductase 1, glutathione-s-transferase, glutathione peroxidase, superoxide dismutase, catalase). In this review, we have discussed the current knowledge regarding the anti-inflammatory function of lutein against inflammatory diseases in various organs, including neurodegenerative disorders, eye diseases, diabetic retinopathy, osteoporosis, cardiovascular diseases, skin diseases, liver injury, obesity, and colon diseases.
Collapse
Affiliation(s)
| | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
46
|
Chiang TI, Yu YH, Lin CH, Lane HY. Novel Biomarkers of Alzheimer's Disease: Based Upon N-methyl-D-aspartate Receptor Hypoactivation and Oxidative Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:423-433. [PMID: 34294612 PMCID: PMC8316669 DOI: 10.9758/cpn.2021.19.3.423] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Early detection and prevention of Alzheimer’s disease (AD) is important. The current treatment for early AD is acetylcholine esterase inhibitors (AChEIs); however, the efficacy is poor. Besides, AChEI did not show efficacy in mild cognitive impairment (MCI). Beta-amyloid (Aβ) deposits have been regarded to be highly related to the pathogenesis of AD. However, many clinical trials aiming at the clearance of Aβ deposits failed to improve the cognitive decline of AD, even at its early phase. There should be other important mechanisms unproven in the course of AD and MCI. Feasible biomarkers for the diagnosis and treatment response of AD are lacking to date. The N-methyl-D-aspartate receptor (NMDAR) activation plays an important role in learning and memory. On the other hand, oxidative stress has been regarded to contribute to aging with the assumption that free radicals damage cell constituents and connective tissues. Our recent study found that an NMDAR enhancer, sodium benzoate (the pivotal inhibitor of D-amino acid oxidase [DAAO]), improved the cognitive and global function of patients with early-phase AD. Further, we found that peripheral DAAO levels were higher in patients with MCI and AD than healthy controls. We also found that sodium benzoate was able to change the activity of antioxidant. These pieces of evidence suggest that the NMDAR function is associated with anti-oxidation, and have potential to be biomarkers for the diagnosis and treatment response of AD.
Collapse
Affiliation(s)
- Ting-I Chiang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hsiang Yu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Mancini G, Dias C, Lourenço CF, Laranjinha J, de Bem A, Ledo A. A High Fat/Cholesterol Diet Recapitulates Some Alzheimer's Disease-Like Features in Mice: Focus on Hippocampal Mitochondrial Dysfunction. J Alzheimers Dis 2021; 82:1619-1633. [PMID: 34219714 DOI: 10.3233/jad-210122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ample evidence from clinical and pre-clinical studies suggests mid-life hypercholesterolemia as a risk factor for developing Alzheimer's disease (AD) at a later age. Hypercholesterolemia induced by dietary habits can lead to vascular perturbations that increase the risk of developing sporadic AD. OBJECTIVE To investigate the effects of a high fat/cholesterol diet (HFCD) as a risk factor for AD by using a rodent model of AD and its correspondent control (healthy animals). METHODS We compared the effect of a HFCD in normal mice (non-transgenic mice, NTg) and the triple transgenic mouse model of AD (3xTgAD). We evaluated cognitive performance in relation to changes in oxidative metabolism and neuron-derived nitric oxide (•NO) concentration dynamics in hippocampal slices as well as histochemical staining of markers of the neurovascular unit. RESULTS In NTg, the HFCD produced only moderate hypercholesterolemia but significant decline in spatial memory was observed. A tendency for decrease in •NO production was accompanied by compromised mitochondrial function with decrease in spare respiratory capacity. In 3xTgAD mice, a robust increase in plasma cholesterol levels with the HFCD did not worsen cognitive performance but did induce compromise of mitochondrial function and significantly decreased •NO production. We found increased staining of biomarkers for astrocyte endfeet and endothelial cells in 3xTgAD hippocampi, which was further increased by the HFCD. CONCLUSION A short term (8 weeks) intervention with HFCD can produce an AD-like phenotype even in the absence of overt systemic hypercholesterolemia and highlights mitochondrial dysfunction as a link between hypercholesterolemia and sporadic AD.
Collapse
Affiliation(s)
- Gianni Mancini
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Candida Dias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Catia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joao Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Andreza de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
48
|
The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules 2021; 26:molecules26164913. [PMID: 34443494 PMCID: PMC8400259 DOI: 10.3390/molecules26164913] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.
Collapse
|
49
|
Elesawy BH, Alsanie WF, Algahtany MA, Al-Ashkhari JM, Alyarobi AK, Sakr HF. Whole and refined grains change behavior and reduce brain derived neurotrophic factor and neurotrophin-3 in rats. J Food Biochem 2021; 45:e13867. [PMID: 34278588 DOI: 10.1111/jfbc.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
In most of the world, wheat is one of the main staple foods, and is also widely used in livestock feed. In the current study, we investigated the effects of wheat grain consumption on the rat behavior and neurogenesis markers. Thirty male rats were divided into three equal groups (n = 10). Group 1 was the control group fed with chow diet (Carbohydrates 63%, fat 13% and protein 24%), the Group 2 rats were fed with whole grains and the Group 3 rats were fed with refined grains. After 12 weeks, we measured the hippocampal and prefrontal cortical brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 5-hydroxytryptamine, dopamine, norepinephrine, malondialdehyde (MDA) and reduced glutathione (GSH) levels. Also, we evaluated the rat behavior by forced swimming test (FST) and elevated plus maze (EPM) test. Additionally, we measured serum level of glucose, lipid profile, insulin and cortisol. Weight gain at the end of the study was measured in each group. The rats on a diet of whole and refined grains had low BDNF, NT-3, norepinephrine, dopamine and serotonin significantly (p < .01) in both the hippocampus and prefrontal cortex as compared to control rats. Moreover, the MDA increased significantly with significant reduction in GSH versus the control rats. Moreover, in response to grain consumption, the performance in FST showed a significant (p < .01) shortage in the latency of the attempts to escape as well as a significant prolongation (p < .01) in behavioral immobility as compared to control rats with significant (p < .05) prolongation in time spent in closed arm in EPM. An exclusive diet of either whole or refined grain in a rat model induced anxiety and depressive behaviors and negatively affected the BDNF and NT-3 and modulated the level of the neurotransmitters with significant shift in their behavior. PRACTICAL APPLICATIONS: Grains are considered the major caloric source all over the world that may predispose to the development of chronic diseases. In this research, we evaluated the role of grains in modulating the rate of production of neurogenic factors in rats.
Collapse
Affiliation(s)
- Basem H Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mubarak Ali Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Jawaher M Al-Ashkhari
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aya K Alyarobi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Hussein F Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura, University, Mansoura, Egypt
| |
Collapse
|
50
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and cognitive decline: MRI and cellular evidence. Ann N Y Acad Sci 2021; 1500:17-33. [PMID: 34114212 DOI: 10.1111/nyas.14617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Extensive evidence supports the association between age-related hearing loss (ARHL) and cognitive decline. It is, however, unknown whether a causal relationship exists between these two, or whether they both result from shared mechanisms. This paper intends to study this relationship through a comprehensive review of MRI findings as well as evidence of cellular alterations. Our review of structural MRI studies demonstrates that ARHL is independently linked to accelerated atrophy of total and regional brain volumes and reduced white matter integrity. Resting-state and task-based fMRI studies on ARHL also show changes in spontaneous neural activity and brain functional connectivity; and alterations in brain areas supporting auditory, language, cognitive, and affective processing independent of age, respectively. Although MRI findings support a causal relationship between ARHL and cognitive decline, the contribution of potential shared mechanisms should also be considered. In this regard, the review of cellular evidence indicates their role as possible common mechanisms underlying both age-related changes in hearing and cognition. Considering existing evidence, no single hypothesis can explain the link between ARHL and cognitive decline, and the contribution of both causal (i.e., the sensory hypothesis) and shared (i.e., the common cause hypothesis) mechanisms is expected.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|