1
|
Gómez Hernández M, Soto-Ospina A, Osorio CA, Villegas-Lanau A. Structural Analysis of Variants of the Ferritin Light Chain Protein and Its Relationship with Neuroferritinopathy. ACS Chem Neurosci 2024; 15:4402-4417. [PMID: 39641997 DOI: 10.1021/acschemneuro.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Ferritin is a highly conserved spherical protein that stores iron and possesses triple and quadruple symmetry input ports. Additionally, it is composed of light chains that can be affected by post-translational mutations, reducing the iron storage capacity in the brain and leading to neuroferritinopathy, which is a rare disease with limited bioinformatics data. In this study, we analyzed the biochemical mechanism of different ferritin mutations reported in the literature, through the characterization and determination of the in silico structural model by searching databases, implementing bioinformatics programs such as Jalview, NetNGlyc 1.0, NetOGlyc 3.1, and three-dimensional structure predictors with machine learning such as Alphafold, demonstrating the generation of hairpin and steric hindrances that hinder the aggregation of subunits and changes in the size and arrangement of quadruple and triple entry holes of the A96T mutation compared to the wild-type protein, since in the quadruple entry hole, a decrease in area is observed compared to the wild-type protein and the triple entry hole has a decrease in distance measurements of 6.504 Å. This possibly affects the functionality of the protein, thus releasing high concentrations of iron in the brain and causing neurodegeneration.
Collapse
Affiliation(s)
- Madelin Gómez Hernández
- School of Microbiology, Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Medellín, Antioquia 050010, Colombia
| | - Alejandro Soto-Ospina
- Chemist from the University of Antioquia, Leader of the Food Research Group (GRIAL), Faculty of Engineering, Unilasallista University Corporation, Caldas, Associate researcher of Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Antioquia 50130, Colombia
| | - Cristian Andrés Osorio
- Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Medellín 050010, Colombia
| | - Andrés Villegas-Lanau
- Neuroscience Group of Antioquia (GNA) and Molecular Genetics Group (GENMOL), University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
2
|
Shieh JT, Tintos-Hernandez JA, Murali CN, Penon-Portmann M, Flores-Mendez M, Santana A, Bulos JA, Du K, Dupuis L, Damseh N, Mendoza-Londoño R, Berera C, Lee JC, Phillips JJ, Alves CAPF, Dmochowski IJ, Ortiz-González XR. Heterozygous nonsense variants in the ferritin heavy-chain gene FTH1 cause a neuroferritinopathy. HGG ADVANCES 2023; 4:100236. [PMID: 37660254 PMCID: PMC10510067 DOI: 10.1016/j.xhgg.2023.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Ferritin, the iron-storage protein, is composed of light- and heavy-chain subunits, encoded by FTL and FTH1, respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole-exome sequencing, with a recurrent variant (p.Phe171∗) identified in four unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia, and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminal variants in FTH1 truncate ferritin's E helix, altering the 4-fold symmetric pores of the heteropolymer, and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a disorder in the spectrum of NBIA. Targeted knockdown of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this pediatric neurodegenerative disorder.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Jesus A Tintos-Hernandez
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica Penon-Portmann
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marco Flores-Mendez
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Adrian Santana
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joshua A Bulos
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Nadirah Damseh
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londoño
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Camilla Berera
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Julieann C Lee
- Division of Neuropathology, Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joanna J Phillips
- Division of Neuropathology, Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - César A P F Alves
- Division of Neuroradiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epilepsy Neurogenetics Initiative (ENGIN), The Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Farhadieh ME, Ghaedi K. Analyzing alternative splicing in Alzheimer's disease postmortem brain: a cell-level perspective. Front Mol Neurosci 2023; 16:1237874. [PMID: 37799732 PMCID: PMC10548223 DOI: 10.3389/fnmol.2023.1237874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with no effective cure that attacks the brain's cells resulting in memory loss and changes in behavior and language skills. Alternative splicing is a highly regulated process influenced by specific cell types and has been implicated in age-related disorders such as neurodegenerative diseases. A comprehensive detection of alternative splicing events (ASEs) at the cellular level in postmortem brain tissue can provide valuable insights into AD pathology. Here, we provided cell-level ASEs in postmortem brain tissue by employing bioinformatics pipelines on a bulk RNA sequencing study sorted by cell types and two single-cell RNA sequencing studies from the prefrontal cortex. This comprehensive analysis revealed previously overlooked splicing and expression changes in AD patient brains. Among the observed alterations were changed in the splicing and expression of transcripts associated with chaperones, including CLU in astrocytes and excitatory neurons, PTGDS in astrocytes and endothelial cells, and HSP90AA1 in microglia and tauopathy-afflicted neurons, which were associated with differential expression of the splicing factor DDX5. In addition, novel, unknown transcripts were altered, and structural changes were observed in lncRNAs such as MEG3 in neurons. This work provides a novel strategy to identify the notable ASEs at the cell level in neurodegeneration, which revealed cell type-specific splicing changes in AD. This finding may contribute to interpreting associations between splicing and neurodegenerative disease outcomes.
Collapse
Affiliation(s)
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Shieh JT, Tintos-Hernández JA, Murali CN, Penon-Portmann M, Flores-Mendez M, Santana A, Bulos JA, Du K, Dupuis L, Damseh N, Mendoza-Londoño R, Berera C, Lee JC, Phillips JJ, Alves CAPF, Dmochowski IJ, Ortiz-González XR. Heterozygous Nonsense Variants in the Ferritin Heavy Chain Gene FTH1 Cause a Novel Pediatric Neuroferritinopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.30.23285099. [PMID: 36778397 PMCID: PMC9915813 DOI: 10.1101/2023.01.30.23285099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ferritin, the iron storage protein, is composed of light and heavy chain subunits, encoded by FTL and FTH1 , respectively. Heterozygous variants in FTL cause hereditary neuroferritinopathy, a type of neurodegeneration with brain iron accumulation (NBIA). Variants in FTH1 have not been previously associated with neurologic disease. We describe the clinical, neuroimaging, and neuropathology findings of five unrelated pediatric patients with de novo heterozygous FTH1 variants. Children presented with developmental delay, epilepsy, and progressive neurologic decline. Nonsense FTH1 variants were identified using whole exome sequencing, with a recurrent de novo variant (p.F171*) identified in three unrelated individuals. Neuroimaging revealed diffuse volume loss, features of pontocerebellar hypoplasia and iron accumulation in the basal ganglia. Neuropathology demonstrated widespread ferritin inclusions in the brain. Patient-derived fibroblasts were assayed for ferritin expression, susceptibility to iron accumulation, and oxidative stress. Variant FTH1 mRNA transcripts escape nonsense-mediated decay (NMD), and fibroblasts show elevated ferritin protein levels, markers of oxidative stress, and increased susceptibility to iron accumulation. C-terminus variants in FTH1 truncate ferritin's E-helix, altering the four-fold symmetric pores of the heteropolymer and likely diminish iron-storage capacity. FTH1 pathogenic variants appear to act by a dominant, toxic gain-of-function mechanism. The data support the conclusion that truncating variants in the last exon of FTH1 cause a novel disorder in the spectrum of NBIA. Targeted knock-down of mutant FTH1 transcript with antisense oligonucleotides rescues cellular phenotypes and suggests a potential therapeutic strategy for this novel pediatric neurodegenerative disorder.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143
- These authors contributed equally to this work
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- These authors contributed equally to this work
| | - Chaya N. Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Monica Penon-Portmann
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143
| | - Marco Flores-Mendez
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Adrian Santana
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Joshua A. Bulos
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Nadirah Damseh
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Roberto Mendoza-Londoño
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Camilla Berera
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco, CA, 94143
| | - Julieann C Lee
- Division of Neuropathology, Department of Pathology, University of California San Francisco, CA, 94143
| | - Joanna J Phillips
- Division of Neuropathology, Department of Pathology, University of California San Francisco, CA, 94143
- Department of Neurological Surgery, University of California San Francisco, CA, 94143
| | - César A P F Alves
- Division of Neuroradiology, Department of Pediatrics, The Children’s Hospital of Philadelphia
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Epilepsy Neurogenetics Initiative (ENGIN), The Children’s Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
5
|
Iftimovici A, Chaumette B, Duchesnay E, Krebs MO. Brain anomalies in early psychosis: From secondary to primary psychosis. Neurosci Biobehav Rev 2022; 138:104716. [PMID: 35661683 DOI: 10.1016/j.neubiorev.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Brain anomalies are frequently found in early psychoses. Although they may remain undetected for many years, their interpretation is critical for differential diagnosis. In secondary psychoses, their identification may allow specific management. They may also shed light on various pathophysiological aspects of primary psychoses. Here we reviewed cases of secondary psychoses associated with brain anomalies, reported over a 20-year period in adolescents and young adults aged 13-30 years old. We considered age at first psychotic symptoms, relevant medical history, the nature of psychiatric symptoms, clinical red flags, the nature of the brain anomaly reported, and the underlying disease. We discuss the relevance of each brain area in light of normal brain function, recent case-control studies, and postulated pathophysiology. We show that anomalies in all regions, whether diffuse, multifocal, or highly localized, may lead to psychosis, without necessarily being associated with non-psychiatric symptoms. This underlines the interest of neuroimaging in the initial workup, and supports the hypothesis of psychosis as a global network dysfunction that involves many different regions.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France; GHU Paris Psychiatrie et Neurosciences, Paris, France.
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
6
|
Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci 2021; 78:3355-3367. [PMID: 33439270 PMCID: PMC11072144 DOI: 10.1007/s00018-020-03747-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maddalena Ripamonti
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138, Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
7
|
A 3'-truncating FTL mutation associated with hypoferritinemia without neuroferritinopathy. Eur J Med Genet 2021; 64:104159. [PMID: 33548513 DOI: 10.1016/j.ejmg.2021.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/16/2021] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
Mutations in the gene for the ferritin light chain (FTL) often present with hypoferritinemia associated with progressive, late onset extrapyramidal dysfunction. However, it has been suggested that some FTL mutations may impact ferritin levels without any neurological manifestations. We report on a FTL mutation in a three generation family with autosomal dominant hypoferritinemia without neurodegeneration. The 4 year old proband was identified with longstanding history of hypoferritinemia without evidence of anemia. Brain MRI did not show any evidence of iron deposition. It was found that the patient's 19 month old sister, 30 year old mother and 58 year old maternal grandmother also had hypoferritinemia and normal iron levels. Over the next nine years, none of these persons had any evidence of neurological dysfunction, including movement disorders, gait disturbances, behavioral or psychiatric dysfunction. Whole exome sequencing revealed a heterozygous interstitial deletion of at least 5 kb within cytogenic band 19q13.33 involving exons 3 and 4 of FTL in all affected family members. This 3' FTL deletion is predicted to create a significantly truncated protein product. We conclude that haploinsufficiency of FTL may be associated with hypoferritinemia without neurological dysfunction.
Collapse
|
8
|
A unique mutation in the L ferritin coding sequence associated with low serum ferritin level in the presence of normal values of other iron parameters. Transfus Apher Sci 2020; 59:102764. [DOI: 10.1016/j.transci.2020.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
|
9
|
McNally JR, Mehlenbacher MR, Luscieti S, Smith GL, Reutovich AA, Maura P, Arosio P, Bou-Abdallah F. Mutant L-chain ferritins that cause neuroferritinopathy alter ferritin functionality and iron permeability. Metallomics 2020; 11:1635-1647. [PMID: 31513212 DOI: 10.1039/c9mt00154a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the iron storage and detoxification protein ferritin is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light). The two subunits co-assemble in various ratios, with a tissue specific distribution, to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunits possess ferroxidase centers that catalyze the rapid oxidation of ferrous ions, whereas the L-subunit does not have such centers and is believed to play an important role in electron transfer reactions that occur during the uptake and release of iron. Pathogenic mutations on the L-chain lead to neuroferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin inclusion bodies and iron in the central nervous system. Here, we have characterized the thermal stability, iron loading capacity, iron uptake, and iron release properties of ferritin heteropolymers carrying the three pathogenic L-ferritin mutants (L154fs, L167fs, and L148fs, which for simplicity we named Ln1, Ln2 and Ln3, respectively), and a non-pathogenic variant (L135P) bearing a single substitution on the 3-fold axes of L-subunits. The UV-Vis data show a similar iron loading capacity (ranging between 1800 to 2400 Fe(iii)/shell) for all ferritin samples examined in this study, with Ln2 holding the least amount of iron (i.e. 1800 Fe(iii)/shell). The three pathogenic L-ferritin mutants revealed higher rates of iron oxidation and iron release, suggesting that a few mutated L-chains on the heteropolymer have a significant effect on iron permeability through the ferritin shell. DSC thermograms showed a strong destabilization effect, the severity of which depends on the location of the frameshift mutations (i.e. wt heteropolymer ferritin ≅ homopolymer H-chain > L135P > Ln2 > Ln1 > Ln3). Variant L135P had only minor effects on the protein functionality and stability, suggesting that local melting of the 3-fold axes in this variant may not be responsible for neuroferritinopathy-like disorders. The data support the hypothesis that hereditary neuroferritinopathies are due to alterations of ferritin functionality and lower physical stability which correlate with the frameshifts introduced at the C-terminal sequence and explain the dominant transmission of the disorder.
Collapse
Affiliation(s)
- Justin R McNally
- Department of Chemistry, State University of New York, Potsdam, New York 13676, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rossi M, Farcy N, Starkstein SE, Merello M. Nosology and Phenomenology of Psychosis in Movement Disorders. Mov Disord Clin Pract 2020; 7:140-153. [PMID: 32071931 PMCID: PMC7011839 DOI: 10.1002/mdc3.12882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psychotic symptoms, such as delusions and hallucinations, are part of the clinical picture of several conditions presenting movement disorders. Phenomenology and epidemiology of psychosis in Parkinson's disease have received wide attention; however, the presence of psychosis in other movement disorders is, comparatively, less well known. OBJECTIVES To review psychotic symptoms present in different movement disorders. METHODS A comprehensive and structured literature search was performed to identify and analyze data on patients with movement disorders and comorbid psychosis. RESULTS In monogenic parkinsonisms, such as PARK-GBA, PARK-LRRK2, and PARK-SNCA, visual hallucinations related to dopamine replacement therapy are frequent as well as are delusions in PARK-LRRK2 and PARK-SNCA, but not in PARK-GBA. Different types of delusions and hallucinations are found in Huntington's disease and other choreic disorders. In Tourette's syndrome, paranoid delusions as well as visual, olfactory, and auditory hallucinations have been described, which usually develop after an average of 10 years of disease. Delusions in ataxias are more frequent in ATX-TBP, ATX-ATN1, and ATX-ATXN3, whereas it is rare in Friedreich's ataxia. Psychosis is also a prominent and frequent clinical feature in Fahr's disease, Wilson's disease, neurodegeneration with brain iron accumulation, and some lysosomal storage disorders, whereas it is uncommon in atypical parkinsonisms and dystonia. Psychosis usually occurs at late disease stages, but may appear as onset symptoms of the disease, especially in Wilson's disease, Huntington's disease, late-onset Tays-Sachs, and Niemann-Pick. CONCLUSION Psychosis is a frequent comorbidity in most hyper- and hypokinetic movement disorders. Appropriate recognition is relevant both in the early and late disease stages.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Pontificia Universidad Catolica Argentina (UCA)Buenos AiresArgentina
| | - Nicole Farcy
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Sergio E. Starkstein
- School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Pontificia Universidad Catolica Argentina (UCA)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
11
|
Muhoberac BB, Vidal R. Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration. Front Neurosci 2019; 13:1195. [PMID: 31920471 PMCID: PMC6917665 DOI: 10.3389/fnins.2019.01195] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular growth, function, and protection require proper iron management, and ferritin plays a crucial role as the major iron sequestration and storage protein. Ferritin is a 24 subunit spherical shell protein composed of both light (FTL) and heavy chain (FTH1) subunits, possessing complimentary iron-handling functions and forming three-fold and four-fold pores. Iron uptake through the three-fold pores is well-defined, but the unloading process somewhat less and generally focuses on lysosomal ferritin degradation although it may have an additional, energetically efficient pore mechanism. Hereditary Ferritinopathy (HF) or neuroferritinopathy is an autosomal dominant neurodegenerative disease caused by mutations in the FTL C-terminal sequence, which in turn cause disorder and unraveling at the four-fold pores allowing iron leakage and enhanced formation of toxic, improperly coordinated iron (ICI). Histopathologically, HF is characterized by iron deposition and formation of ferritin inclusion bodies (IBs) as the cells overexpress ferritin in an attempt to address iron accumulation while lacking the ability to clear ferritin and its aggregates. Overexpression and IB formation tax cells materially and energetically, i.e., their synthesis and disposal systems, and may hinder cellular transport and other spatially dependent functions. ICI causes cellular damage to proteins and lipids through reactive oxygen species (ROS) formation because of high levels of brain oxygen, reductants and metabolism, taxing cellular repair. Iron can cause protein aggregation both indirectly by ROS-induced protein modification and destabilization, and directly as with mutant ferritin through C-terminal bridging. Iron release and ferritin degradation are also linked to cellular misfunction through ferritinophagy, which can release sufficient iron to initiate the unique programmed cell death process ferroptosis causing ROS formation and lipid peroxidation. But IB buildup suggests suppressed ferritinophagy, with elevated iron from four-fold pore leakage together with ROS damage and stress leading to a long-term ferroptotic-like state in HF. Several of these processes have parallels in cell line and mouse models. This review addresses the roles of ferritin structure and function within the above-mentioned framework, as they relate to HF and associated disorders characterized by abnormal iron accumulation, protein aggregation, oxidative damage, and the resulting contributions to cumulative cellular stress and death.
Collapse
Affiliation(s)
- Barry B. Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana Alzheimer Disease Center, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Cruz-Rivera YE, Perez-Morales J, Santiago YM, Gonzalez VM, Morales L, Cabrera-Rios M, Isaza CE. A Selection of Important Genes and Their Correlated Behavior in Alzheimer's Disease. J Alzheimers Dis 2019; 65:193-205. [PMID: 30040709 PMCID: PMC6087431 DOI: 10.3233/jad-170799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2017, approximately 5 million Americans were living with Alzheimer’s disease (AD), and it is estimated that by 2050 this number could increase to 16 million. In this study, we apply mathematical optimization to approach microarray analysis to detect differentially expressed genes and determine the most correlated structure among their expression changes. The analysis of GSE4757 microarray dataset, which compares expression between AD neurons without neurofibrillary tangles (controls) and with neurofibrillary tangles (cases), was casted as a multiple criteria optimization (MCO) problem. Through the analysis it was possible to determine a series of Pareto efficient frontiers to find the most differentially expressed genes, which are here proposed as potential AD biomarkers. The Traveling Sales Problem (TSP) model was used to find the cyclical path of maximal correlation between the expression changes among the genes deemed important from the previous stage. This leads to a structure capable of guiding biological exploration with enhanced precision and repeatability. Ten genes were selected (FTL, GFAP, HNRNPA3, COX1, ND2, ND3, ND4, NUCKS1, RPL41, and RPS10) and their most correlated cyclic structure was found in our analyses. The biological functions of their products were found to be linked to inflammation and neurodegenerative diseases and some of them had not been reported for AD before. The TSP path connects genes coding for mitochondrial electron transfer proteins. Some of these proteins are closely related to other electron transport proteins already reported as important for AD.
Collapse
Affiliation(s)
- Yazeli E Cruz-Rivera
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Jaileene Perez-Morales
- Department of Basic Science-Biochemistry Division, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yaritza M Santiago
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Valerie M Gonzalez
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Luisa Morales
- Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Mauricio Cabrera-Rios
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Clara E Isaza
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico.,Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
13
|
Kuwata T, Okada Y, Yamamoto T, Sato D, Fujiwara K, Fukumura T, Ikeguchi M. Structure, Function, Folding, and Aggregation of a Neuroferritinopathy-Related Ferritin Variant. Biochemistry 2019; 58:2318-2325. [DOI: 10.1021/acs.biochem.8b01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takumi Kuwata
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yuta Okada
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Tomoki Yamamoto
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Daisuke Sato
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Takuma Fukumura
- EM Research and Development Department, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
14
|
Cadenas B, Fita-Torró J, Bermúdez-Cortés M, Hernandez-Rodriguez I, Fuster JL, Llinares ME, Galera AM, Romero JL, Pérez-Montero S, Tornador C, Sanchez M. L-Ferritin: One Gene, Five Diseases; from Hereditary Hyperferritinemia to Hypoferritinemia-Report of New Cases. Pharmaceuticals (Basel) 2019; 12:ph12010017. [PMID: 30678075 PMCID: PMC6469184 DOI: 10.3390/ph12010017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/13/2023] Open
Abstract
Ferritin is a multimeric protein composed of light (L-ferritin) and heavy (H-ferritin) subunits that binds and stores iron inside the cell. A variety of mutations have been reported in the L-ferritin subunit gene (FTL gene) that cause the following five diseases: (1) hereditary hyperferritinemia with cataract syndrome (HHCS), (2) neuroferritinopathy, a subtype of neurodegeneration with brain iron accumulation (NBIA), (3) benign hyperferritinemia, (4) L-ferritin deficiency with autosomal dominant inheritance, and (5) L-ferritin deficiency with autosomal recessive inheritance. Defects in the FTL gene lead to abnormally high levels of serum ferritin (hyperferritinemia) in HHCS and benign hyperferritinemia, while low levels (hypoferritinemia) are present in neuroferritinopathy and in autosomal dominant and recessive L-ferritin deficiency. Iron disturbances as well as neuromuscular and cognitive deficits are present in some, but not all, of these diseases. Here, we identified two novel FTL variants that cause dominant L-ferritin deficiency and HHCS (c.375+2T > A and 36_42delCAACAGT, respectively), and one previously reported variant (Met1Val) that causes dominant L-ferritin deficiency. Globally, genetic changes in the FTL gene are responsible for multiple phenotypes and an accurate diagnosis is useful for appropriate treatment. To help in this goal, we included a diagnostic algorithm for the detection of diseases caused by defects in FTL gene.
Collapse
Affiliation(s)
- Beatriz Cadenas
- Whole Genix SL., 08021 Barcelona, Spain.
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain.
- Experimental Sciences and Technology Department, Universitat de Vic-Universitat Central de Catalunya, 08500 Vic, Spain.
| | - Josep Fita-Torró
- BloodGenetics SL, Esplugues de Llobregat, 08950 Barcelona, Spain.
| | - Mar Bermúdez-Cortés
- Pediatric OncoHematology Service, Clinic University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain.
| | - Inés Hernandez-Rodriguez
- Hematology Service, University Hospital Germans Trias i Pujol (HGTiP), Institut Català d'Oncologia (ICO), Badalona, 08916 Barcelona, Spain.
| | - José Luis Fuster
- Pediatric OncoHematology Service, Clinic University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain.
| | - María Esther Llinares
- Pediatric OncoHematology Service, Clinic University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain.
| | - Ana María Galera
- Pediatric OncoHematology Service, Clinic University Hospital Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain.
| | - Julia Lee Romero
- Biomedical Engineering Department, University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Cristian Tornador
- Whole Genix SL., 08021 Barcelona, Spain.
- BloodGenetics SL, Esplugues de Llobregat, 08950 Barcelona, Spain.
| | - Mayka Sanchez
- BloodGenetics SL, Esplugues de Llobregat, 08950 Barcelona, Spain.
- Program of Predictive and Personalised Medicine of Cancer (PMPPC), Institut d'Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, 08916 Barcelona, Spain.
- Iron Metabolism: Regulation and Diseases Group, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08195 Barcelona, Spain.
| |
Collapse
|
15
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Diagnostics and Treatments of Iron-Related CNS Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:179-194. [PMID: 31456211 DOI: 10.1007/978-981-13-9589-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron has been proposed to be responsible for neuronal loss in several diseases of the central nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), stroke, Friedreich's ataxia (FRDA), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS). In many diseases, abnormal accumulation of brain iron in disease-affected area has been observed, without clear knowledge of the contribution of iron overload to pathogenesis. Recent evidences implicate that key proteins involved in the disease pathogenesis may also participate in cellular iron metabolism, suggesting that the imbalance of brain iron homeostasis is associated with the diseases. Considering the complicated regulation of iron homeostasis within the brain, a thorough understanding of the molecular events leading to this phenotype is still to be investigated. However, current understanding has already provided the basis for the diagnosis and treatment of iron-related CNS diseases, which will be reviewed here.
Collapse
|
17
|
Trakadis YJ, Fulginiti V, Walterfang M. Inborn errors of metabolism associated with psychosis: literature review and case-control study using exome data from 5090 adult individuals. J Inherit Metab Dis 2018; 41:613-621. [PMID: 28210873 DOI: 10.1007/s10545-017-0023-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/26/2023]
Abstract
A literature review was conducted, using the computerized "Online Mendelian Inheritance in Man" (OMIM) and PubMed, to identify inborn errors of metabolism (IEM) in which psychosis may be a predominant feature or the initial presenting symptom. Different combinations of the following keywords were searched using OMIM: "psychosis", "schizophrenia", or "hallucinations" and "metabolic", "inborn error of metabolism", "inborn errors of metabolism", "biochemical genetics", or "metabolic genetics". The OMIM search generated 126 OMIM entries, 40 of which were well known IEM. After removing IEM lacking evidence in PubMed for an association with psychosis, 29 OMIM entries were identified. Several of these IEM are treatable. They involve different small organelles (lysosomes, peroxisomes, mitochondria), iron or copper accumulation, as well as defects in other met-abolic pathways (e.g., defects leading to hyperammonemia or homocystinemia). A clinical checklist summarizing the key features of these conditions and a guide to clinical approach are provided. The genes corresponding to each of these con-ditions were identified. Whole exome data from 2545 adult cases with schizophrenia and 2545 unrelated controls, accessed via the Database of Genotypes and Phenotypes (dbGaP), were analyzed for rare functional variants in these genes. The odds ratio of having a rare functional variant in cases versus controls was calculated for each gene. Eight genes are significantly associated with schizophrenia (p < 0.05, OR >1) using an unselected group of adult patients with schizophrenia. Increased awareness of clinical clues for these IEM will optimize referrals and timely metabolic interventions.
Collapse
Affiliation(s)
- Yannis J Trakadis
- Department of Medical Genetics, McGill University Health Centre, Room A04.3140, 1001 Boul. Decarie, Montreal, QC, Canada, H4A 3J1.
| | - Vanessa Fulginiti
- Department of Medical Genetics, McGill University Health Centre, Room A04.3140, 1001 Boul. Decarie, Montreal, QC, Canada, H4A 3J1
| | - Mark Walterfang
- Department of Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Abstract
Neurodegeneration with brain iron accumulation (NBIA) describes a heterogeneous group of inherited rare clinical and genetic entities. Clinical core symptoms comprise a combination of early-onset dystonia, pyramidal and extrapyramidal signs with ataxia, cognitive decline, behavioral abnormalities, and retinal and axonal neuropathy variably accompanying these core features. Increased nonphysiologic, nonaging-associated brain iron, most pronounced in the basal ganglia, is often termed the unifying characteristic of these clinically variable disorders, though occurrence and extent can be fluctuating or even absent. Neuropathologically, NBIA disorders usually are associated with widespread axonal spheroids and local iron accumulation in the basal ganglia. Postmortem, Lewy body, TDP-43, or tau pathology has been observed. Genetics have fostered ongoing progress in elucidating underlying pathophysiologic mechanisms of NBIA disorders. Ten associated genes have been established, with many more being suggested as new technologies and data emerge. Clinically, certain symptom combinations can suggest a specific genetic defect. Genetic tests, combined with postmortem neuropathology, usually make for the final disease confirmation. Despite these advances, treatment to date remains mainly symptomatic. This chapter reviews the established genetic defects leading to different NBIA subtypes, highlights phenotypic presentations to direct genetic testing, and briefly discusses the scarce available treatment options and upcoming challenges and future hopes of the field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany.
| | - Henry Houlden
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
19
|
Ni W, Li HF, Zheng YC, Wu ZY. FTL mutation in a Chinese pedigree with neuroferritinopathy. NEUROLOGY-GENETICS 2016; 2:e74. [PMID: 27158664 PMCID: PMC4851275 DOI: 10.1212/nxg.0000000000000074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital (W.N., H.-F.L., Z.-Y.W.), and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine; and The High School Affiliated to Fudan University-WLSA Fudan Academy (Y.-C.Z.), Shanghai, China
| | - Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital (W.N., H.-F.L., Z.-Y.W.), and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine; and The High School Affiliated to Fudan University-WLSA Fudan Academy (Y.-C.Z.), Shanghai, China
| | - Yi-Cen Zheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital (W.N., H.-F.L., Z.-Y.W.), and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine; and The High School Affiliated to Fudan University-WLSA Fudan Academy (Y.-C.Z.), Shanghai, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital (W.N., H.-F.L., Z.-Y.W.), and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine; and The High School Affiliated to Fudan University-WLSA Fudan Academy (Y.-C.Z.), Shanghai, China
| |
Collapse
|
20
|
Kumar N, Rizek P, Jog M. Neuroferritinopathy: Pathophysiology, Presentation, Differential Diagnoses and Management. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:355. [PMID: 27022507 PMCID: PMC4795517 DOI: 10.7916/d8kk9bhf] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
Background Neuroferritinopathy (NF) is a rare autosomal dominant disease caused by
mutations in the ferritin light chain 1 (FTL1) gene
leading to abnormal excessive iron accumulation in the brain, predominantly in the
basal ganglia. Methods A literature search was performed on Pubmed, for English-language articles,
utilizing the terms iron metabolism, neurodegeneration with brain iron
accumulation, and NF. The relevant articles were reviewed with a focus on the
pathophysiology, clinical presentation, differential diagnoses, and management of
NF. Results There have been nine reported mutations worldwide in the FTL1
gene in 90 patients, the most common mutation being 460InsA. Chorea and dystonia
are the most common presenting symptoms in NF. There are specific features, which
appear to depend upon the genetic mutation. We discuss the occurrence of specific
mutations in various regions along with their associated presenting phenomenology.
We have compared and contrasted the commonly occurring syndromes in the
differential diagnosis of NF to guide the clinician. Discussion NF must be considered in patients presenting clinically as a progressive movement
disorder with variable phenotype and imaging evidence of iron deposition within
the brain, decreased serum ferritin, and negative genetic testing for other more
common movement disorders such as Huntington’s disease. In the absence of a
disease-specific treatment, symptomatic drug therapy for specific movement
disorders may be used, although with variable success.
Collapse
Affiliation(s)
- Niraj Kumar
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Philippe Rizek
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
21
|
Neuroferritinopathy: From ferritin structure modification to pathogenetic mechanism. Neurobiol Dis 2015; 81:134-43. [PMID: 25772441 PMCID: PMC4642653 DOI: 10.1016/j.nbd.2015.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/23/2022] Open
Abstract
Neuroferritinopathy is a rare, late-onset, dominantly inherited movement disorder caused by mutations in L-ferritin gene. It is characterized by iron and ferritin aggregate accumulation in brain, normal or low serum ferritin levels and high variable clinical feature. To date, nine causative mutations have been identified and eight of them are frameshift mutations determined by nucleotide(s) insertion in the exon 4 of L-ferritin gene altering the structural conformation of the C-terminus of the L-ferritin subunit. Acting in a dominant negative manner, mutations are responsible for an impairment of the iron storage efficiency of ferritin molecule. Here, we review the main characteristics of neuroferritinopathy and present a computational analysis of some representative recently defined mutations with the purpose to gain new information about the pathogenetic mechanism of the disorder. This is particularly important as neuroferritinopathy can be considered an interesting model to study the relationship between iron, oxidative stress and neurodegeneration.
Collapse
|
22
|
Behavioral characterization of mouse models of neuroferritinopathy. PLoS One 2015; 10:e0118990. [PMID: 25689865 PMCID: PMC4331086 DOI: 10.1371/journal.pone.0118990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/08/2015] [Indexed: 01/02/2023] Open
Abstract
Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets.
Collapse
|
23
|
Maccarinelli F, Pagani A, Cozzi A, Codazzi F, Di Giacomo G, Capoccia S, Rapino S, Finazzi D, Politi LS, Cirulli F, Giorgio M, Cremona O, Grohovaz F, Levi S. A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiol Dis 2014; 81:119-33. [PMID: 25447222 PMCID: PMC4642750 DOI: 10.1016/j.nbd.2014.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/05/2023] Open
Abstract
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. We developed two new neuroferritinopathy mice models (NF). NF brains are characterized by iron/ferritin accumulation and oxidative damage. NF brains show granules of lipofuscine associated with iron. A mechanism of lipofuscine formation is proposed. NF mice show impaired motor coordination increasing with age.
Collapse
Affiliation(s)
| | - Antonella Pagani
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Anna Cozzi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Franca Codazzi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Sara Capoccia
- Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rapino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Francesca Cirulli
- Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Fabio Grohovaz
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy.
| | - Sonia Levi
- San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
24
|
Levi S, Finazzi D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 2014; 5:99. [PMID: 24847269 PMCID: PMC4019866 DOI: 10.3389/fphar.2014.00099] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/17/2014] [Indexed: 12/21/2022] Open
Abstract
Perturbation of iron distribution is observed in many neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease, but the comprehension of the metal role in the development and progression of such disorders is still very limited. The combination of more powerful brain imaging techniques and faster genomic DNA sequencing procedures has allowed the description of a set of genetic disorders characterized by a constant and often early accumulation of iron in specific brain regions and the identification of the associated genes; these disorders are now collectively included in the category of neurodegeneration with brain iron accumulation (NBIA). So far 10 different genetic forms have been described but this number is likely to increase in short time. Two forms are linked to mutations in genes directly involved in iron metabolism: neuroferritinopathy, associated to mutations in the FTL gene and aceruloplasminemia, where the ceruloplasmin gene product is defective. In the other forms the connection with iron metabolism is not evident at all and the genetic data let infer the involvement of other pathways: Pank2, Pla2G6, C19orf12, COASY, and FA2H genes seem to be related to lipid metabolism and to mitochondria functioning, WDR45 and ATP13A2 genes are implicated in lysosomal and autophagosome activity, while the C2orf37 gene encodes a nucleolar protein of unknown function. There is much hope in the scientific community that the study of the NBIA forms may provide important insight as to the link between brain iron metabolism and neurodegenerative mechanisms and eventually pave the way for new therapeutic avenues also for the more common neurodegenerative disorders. In this work, we will review the most recent findings in the molecular mechanisms underlining the most common forms of NBIA and analyze their possible link with brain iron metabolism.
Collapse
Affiliation(s)
- Sonia Levi
- Proteomic of Iron Metabolism, Vita-Salute San Raffaele University Milano, Italy ; San Raffaele Scientific Institute Milano, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy ; Spedali Civili di Brescia Brescia, Italy
| |
Collapse
|
25
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The differential diagnosis of chorea syndromes may be complex and includes various genetic disorders such as Huntington's disease and mimicking disorders called Huntington's disease-like (HDL) phenotypes. To familiarize clinicians with these (in some cases very rare) conditions we will summarize the main characteristics. RECENT FINDINGS HDL disorders are rare and account for about 1% of cases presenting with a Huntington's disease phenotype. They share overlapping clinical features, so making the diagnosis purely on clinical grounds may be challenging, however presence of certain characteristics may be a clue (e.g. prominent orofacial involvement in neuroferritinopathy etc.), Information of ethnic descent will also guide genetic work-up [HDL2 in Black Africans; dentatorubral-pallidoluysian atrophy (DRPLA) in Japanese etc.], Huntington's disease, the classical HDL disorders (except HDL3) and DRPLA are repeat disorders with anticipation effect and age-dependent phenotype in some, but genetic underpinnings may be more complicated in the other chorea syndromes. SUMMARY With advances in genetics more and more rare diseases are disentangled, allowing molecular diagnoses in a growing number of choreic patients. Hopefully, with better understanding of their pathophysiology we are moving towards mechanistic therapies.
Collapse
|
27
|
Nigral iron elevation is an invariable feature of Parkinson's disease and is a sufficient cause of neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:581256. [PMID: 24527451 PMCID: PMC3914334 DOI: 10.1155/2014/581256] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits accompanying degeneration of substantia nigra pars compactor (SNc) neurons. Although familial forms of the disease exist, the cause of sporadic PD is unknown. Symptomatic treatments are available for PD, but there are no disease modifying therapies. While the neurodegenerative processes in PD may be multifactorial, this paper will review the evidence that prooxidant iron elevation in the SNc is an invariable feature of sporadic and familial PD forms, participates in the disease mechanism, and presents as a tractable target for a disease modifying therapy.
Collapse
|
28
|
Hayhow BD, Hassan I, Looi JCL, Gaillard F, Velakoulis D, Walterfang M. The neuropsychiatry of hyperkinetic movement disorders: insights from neuroimaging into the neural circuit bases of dysfunction. Tremor Other Hyperkinet Mov (N Y) 2013; 3:tre-03-175-4242-1. [PMID: 24032090 PMCID: PMC3760049 DOI: 10.7916/d8sn07pk] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/08/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness. METHODS We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1) reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2) correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias. CONCLUSIONS Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.
Collapse
Affiliation(s)
- Bradleigh D. Hayhow
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Islam Hassan
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
| | - Jeffrey C. L. Looi
- Academic Unit of Psychiatry & Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia
| | | | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, Australia
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, Australia
| |
Collapse
|
29
|
Keogh MJ, Singh B, Chinnery PF. Early neuropsychiatry features in neuroferritinopathy. Mov Disord 2013; 28:1310-3. [PMID: 23436236 DOI: 10.1002/mds.25371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 12/04/2012] [Accepted: 12/21/2012] [Indexed: 11/09/2022] Open
|
30
|
Muhoberac BB, Vidal R. Abnormal iron homeostasis and neurodegeneration. Front Aging Neurosci 2013; 5:32. [PMID: 23908629 PMCID: PMC3726993 DOI: 10.3389/fnagi.2013.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/22/2013] [Indexed: 01/23/2023] Open
Abstract
Abnormal iron metabolism is observed in many neurodegenerative diseases, however, only two have shown dysregulation of brain iron homeostasis as the primary cause of neurodegeneration. Herein, we review one of these - hereditary ferritinopathy (HF) or neuroferritinopathy, which is an autosomal dominant, adult onset degenerative disease caused by mutations in the ferritin light chain (FTL) gene. HF has a clinical phenotype characterized by a progressive movement disorder, behavioral disturbances, and cognitive impairment. The main pathologic findings are cystic cavitation of the basal ganglia, the presence of ferritin inclusion bodies (IBs), and substantial iron deposition. Mutant FTL subunits have altered sequence and length but assemble into soluble 24-mers that are ultrastructurally indistinguishable from those of the wild type. Crystallography shows substantial localized disruption of the normally tiny 4-fold pores between the ferritin subunits because of unraveling of the C-termini into multiple polypeptide conformations. This structural alteration causes attenuated net iron incorporation leading to cellular iron mishandling, ferritin aggregation, and oxidative damage at physiological concentrations of iron and ascorbate. A transgenic murine model parallels several features of HF, including a progressive neurological phenotype, ferritin IB formation, and misregulation of iron metabolism. These studies provide a working hypothesis for the pathogenesis of HF by implicating (1) a loss of normal ferritin function that triggers iron accumulation and overproduction of ferritin polypeptides, and (2) a gain of toxic function through radical production, ferritin aggregation, and oxidative stress. Importantly, the finding that ferritin aggregation can be reversed by iron chelators and oxidative damage can be inhibited by radical trapping may be used for clinical investigation. This work provides new insights into the role of abnormal iron metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Barry B Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA
| | | |
Collapse
|
31
|
Fatima Z, Ishigame K, Araki T. Case 193: Neuroferritinopathy—A Brain Iron Accumulation and Neurodegenerative Disorder. Radiology 2013; 267:650-5. [DOI: 10.1148/radiol.13111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Keogh MJ, Morris CM, Chinnery PF. Neuroferritinopathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:91-123. [DOI: 10.1016/b978-0-12-410502-7.00006-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Lehn A, Boyle R, Brown H, Airey C, Mellick G. Neuroferritinopathy. Parkinsonism Relat Disord 2012; 18:909-15. [PMID: 22818529 DOI: 10.1016/j.parkreldis.2012.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
Abstract
Neuroferritinopathy is an autosomal dominantly inherited disorder caused by mutations in the gene encoding the ferritin light chain polypeptide. It leads to iron deposition particularly in the cerebellum, basal ganglia and motor cortex. The disease becomes clinically apparent in adulthood mainly with extrapyramidal signs and progresses slowly over decades. Patients usually have intact cognition until the very late stages of this disorder. Neuroimaging is the most helpful investigation and shows a very distinctive picture. So far no medication has been shown to have a disease-modifying effect. We present five new cases of this condition and review the current understanding of the pathogenesis and its clinical findings.
Collapse
Affiliation(s)
- Alexander Lehn
- Department of Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
34
|
Iron dysregulation in movement disorders. Neurobiol Dis 2012; 46:1-18. [DOI: 10.1016/j.nbd.2011.12.054] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 01/04/2023] Open
|
35
|
Keogh MJ, Jonas P, Coulthard A, Chinnery PF, Burn J. Neuroferritinopathy: a new inborn error of iron metabolism. Neurogenetics 2012; 13:93-6. [PMID: 22278127 PMCID: PMC4038507 DOI: 10.1007/s10048-011-0310-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/13/2011] [Indexed: 11/25/2022]
Abstract
Neuroferritinopathy is an autosomal dominant progressive movement disorder which occurs due to mutations in the ferritin light chain gene (FTL1). It presents in mid-adult life and is the only autosomal dominant disease in a group of conditions termed neurodegeneration with brain iron accumulation (NBIA). We performed brain MRI scans on 12 asymptomatic descendants of known mutation carriers. All three harbouring the pathogenic c.460InsA mutation showed iron deposition; these findings show pathological iron accumulation begins in early childhood which is of major importance in understanding and developing treatment for NBIA.
Collapse
Affiliation(s)
- Michael J Keogh
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ, UK
| | | | | | | | | |
Collapse
|
36
|
MRI findings in neuroferritinopathy. Neurol Res Int 2011; 2012:197438. [PMID: 21808735 PMCID: PMC3142777 DOI: 10.1155/2012/197438] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/10/2011] [Accepted: 05/23/2011] [Indexed: 01/19/2023] Open
Abstract
Neuroferritinopathy is a neurodegenerative disease which
demonstrates brain iron accumulation caused by the mutations in
the ferritin light chain gene. On brain MRI in
neuroferritinopathy, iron deposits are observed as low-intensity
areas on T2WI and as signal loss on T2∗WI. On T2WI, hyperintense
abnormalities reflecting tissue edema and gliosis are also seen.
Another characteristic finding is the presence of symmetrical
cystic changes in the basal ganglia, which are seen in the
advanced stages of this disorder. Atrophy is sometimes noted in
the cerebellar and cerebral cortices. The variety in the MRI
findings is specific to neuroferritinopathy. Based on observations
of an excessive iron content in patients with chronic neurologic
disorders, such as Parkinson disease and Alzheimer disease, the
presence of excess iron is therefore recognized as a major risk
factor for neurodegenerative diseases. The future development of
multimodal and advanced MRI techniques is thus expected to play an
important role in accurately measuring the brain iron content and
thereby further elucidating the neurodegenerative process.
Collapse
|
37
|
Mcneill A, Chinnery PF. Neurodegeneration with brain iron accumulation. HANDBOOK OF CLINICAL NEUROLOGY 2011; 100:161-72. [DOI: 10.1016/b978-0-444-52014-2.00009-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
38
|
Abstract
Huntington's disease (HD) is caused by a triplet repeat expansion in the IT15 gene on chromosome 4 encoding huntingtin. Gene mutations are found in about 99% of cases, with symptoms and signs suggestive of HD. This implies the existence of other causes of this syndrome, and, in recent years, several other distinct genetic disorders have been identified that can present with a clinical picture indistinguishable from HD, termed HD-like (HDL) syndromes. So far, four genes associated with HDL syndromes have been identified, including the prion protein gene (HDL1), the junctophilin 3 gene (HDL2) and, the gene encoding the TATA box-binding protein (HDL4). In addition, a single family with a recessively inherited HD phenocopy, the exact genetic basis of which is currently unknown (HDL3), has been described. These disorders, however, account for only a small proportion of HDL cases, and the list of HDL genes and conditions is set to grow. In this article, we review the currently identified HD phenocopy disorders and discuss clinical clues to facilitate further investigations. We will concentrate on the four so-called HDL syndromes mentioned above. Other genetic choreatic syndromes such as dentatorubral-pallidoluysian atrophy, neuroferritinopathy, pantothenate kinase-associated neurodegeneration, and chorea-acanthocytosis are also briefly discussed.
Collapse
Affiliation(s)
- Susanne A Schneider
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.
| | | |
Collapse
|
39
|
Horowski S, Zettl UK, Benecke R, Walter U. Sonographic basal ganglia alterations are related to non-motor symptoms in multiple sclerosis. J Neurol 2010; 258:195-202. [DOI: 10.1007/s00415-010-5707-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
40
|
Arosio P, Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta Gen Subj 2010; 1800:783-92. [PMID: 20176086 DOI: 10.1016/j.bbagen.2010.02.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/10/2010] [Accepted: 02/15/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ferritin structure is designed to maintain large amounts of iron in a compact and bioavailable form in solution. All ferritins induce fast Fe(II) oxidation in a reaction catalyzed by a ferroxidase center that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction, and thus have anti-oxidant effects. Cytosolic ferritins are composed of the H- and L-chains, whose expression are regulated by iron at a post-transcriptional level and by oxidative stress at a transcriptional level. The regulation of mitochondrial ferritin expression is presently unclear. SCOPE OF REVIEW The scope of the review is to update recent progress regarding the role of ferritins in the regulation of cellular iron and in the response to oxidative stress with particular attention paid to the new roles described for cytosolic ferritins, to genetic disorders caused by mutations of the ferritin L-chain, and new findings on mitochondrial ferritin. MAJOR CONCLUSIONS The new data on the adult conditional knockout (KO) mice for the H-chain and on the hereditary ferritinopathies with mutations that reduce ferritin functionality strongly indicate that the major role of ferritins is to protect from the oxidative damage caused by iron deregulation. In addition, the study of mitochondrial ferritin, which is not iron-regulated, indicates that it participates in the protection against oxidative damage, particularly in cells with high oxidative activity. GENERAL SIGNIFICANCE Ferritins have a central role in the protection against oxidative damage, but they are also involved in non-iron-dependent processes.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Chemistry, Faculty of Medicine, University of Brescia, Viale Europa 11, 25125 Brescia, Italy.
| | | |
Collapse
|
41
|
Luscieti S, Santambrogio P, Langlois d'Estaintot B, Granier T, Cozzi A, Poli M, Gallois B, Finazzi D, Cattaneo A, Levi S, Arosio P. Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation. J Biol Chem 2010; 285:11948-57. [PMID: 20159981 DOI: 10.1074/jbc.m109.096404] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nucleotide insertions that modify the C terminus of ferritin light chain (FTL) cause neurodegenerative movement disorders named neuroferritinopathies, which are inherited with dominant transmission. The disorders are characterized by abnormal brain iron accumulation. Here we describe the biochemical and crystallographic characterization of pathogenic FTL mutant p.Phe167SerfsX26 showing that it is a functional ferritin with an altered conformation of the C terminus. Moreover we analyze functional and stability properties of ferritin heteropolymers made of 20-23 H-chains and 1-4 L-chains with representative pathogenic mutations or the last 10-28 residues truncated. All the heteropolymers containing the pathogenic or truncated mutants had a strongly reduced capacity to incorporate iron, both when expressed in Escherichia coli, and in vitro when iron was supplied as Fe(III) in the presence of ascorbate. The mutations also reduced the physical stability of the heteropolymers. The data indicate that even a few mutated L-chains are sufficient to alter the permeability of 1-2 of the 6 hydrophobic channels and modify ferritin capacity to incorporate iron. The dominant-negative action of the mutations explains the dominant transmission of the disorder. The data support the hypothesis that hereditary ferritinopathies are due to alterations of ferritin functionality and provide new input on the mechanism of the function of isoferritins.
Collapse
Affiliation(s)
- Sara Luscieti
- Dipartimento Materno Infantile e Tecnologie Biomediche, Università di Brescia, viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Baraibar MA, Muhoberac BB, Garringer HJ, Hurley TD, Vidal R. Unraveling of the E-helices and disruption of 4-fold pores are associated with iron mishandling in a mutant ferritin causing neurodegeneration. J Biol Chem 2009; 285:1950-6. [PMID: 19923220 DOI: 10.1074/jbc.m109.042986] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length. The structure was determined and refined to 2.85 A resolution and was very similar to the wild type between residues Ile-5 and Arg-154. However, instead of the E-helices normally present in wild type ferritin, the C-terminal sequences of all 24 mutant subunits showed substantial amounts of disorder, leading to multiple C-terminal polypeptide conformations and a large disruption of the normally tiny 4-fold axis pores. Functional studies underscored the importance of the mutant C-terminal sequence in iron-induced precipitation and revealed iron mishandling by soluble mutant FTL homopolymers in that only wild type incorporated iron when in direct competition in solution with mutant ferritin. Even without competition, the amount of iron incorporation over the first few minutes differed severalfold. Our data suggest that disruption at the 4-fold pores may lead to direct iron mishandling through attenuated iron incorporation by the soluble form of mutant ferritin and that the disordered C-terminal polypeptides may play a major role in iron-induced precipitation and formation of ferritin inclusion bodies in hereditary ferritinopathy.
Collapse
Affiliation(s)
- Martin A Baraibar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
43
|
Ohta E, Nagasaka T, Shindo K, Toma S, Nagasaka K, Miwa M, Takiyama Y, Shiozawa Z. [Clinical features of neuroferritinopathy]. Rinsho Shinkeigaku 2009; 49:254-61. [PMID: 19594102 DOI: 10.5692/clinicalneurol.49.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuroferritinopathy is an autosomal dominant basal ganglia disease with iron accumulation caused by a mutation of the gene encoding ferritin light polypeptide (FTL). Six pathogenic mutations in the FTL gene have so far been reported. One such mutation was found in a Japanese family, thus suggesting that a new mutation in the FTL gene can therefore occur anywhere in the world. The typical clinical features of neuroferritinopathy are dystonia (especially orofacial dystonia related to speech and leading to dysarthrophonia) and involuntary movement, but such features vary greatly among the affected individuals. The findings of excess iron storage and cystic changes involving the globus pallidus and the putamen on brain MRI. and low serum ferritin levels are characteristic in neuroferritinopathy. Brain histochemistry shows abnormal aggregates of ferritin and iron throughout the central nervous system. Iron atoms are stored in the central cavity of the ferritin polymer and the E-helices of ferritin play an important role in maintaining the central cavity. A mutation in exon 4 of the FTL gene is known to alter the structure of E-helices, thereby leading to the release of free iron and excessive oxidative stress. Iron depletion therapy by iron chelation in symptomatic patients has not been shown to be beneficial, however before the nset of clinical symptoms, such a treatment strategy may still have some benefit. Neuroferritinopathy should therefore be considered in all patients presenting with basal ganglia disorders of unknown origin. These characteristic MRI findings may help to differentiate neuroferritinopathy from other diseases showing similar clinical features.
Collapse
Affiliation(s)
- Emiko Ohta
- Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cozzi A, Rovelli E, Frizzale G, Campanella A, Amendola M, Arosio P, Levi S. Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy. Neurobiol Dis 2009; 37:77-85. [PMID: 19781644 DOI: 10.1016/j.nbd.2009.09.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022] Open
Abstract
Neuroferritinopathies are dominantly inherited movement disorders associated with nucleotide insertions in the L-ferritin gene that modify the protein's C-terminus. The insertions alter physical and functional properties of the ferritins, causing an imbalance in brain iron homeostasis. We describe the effects produced by the over-expression in HeLa and neuroblastoma SH-SY5Y cells of two pathogenic L-ferritin variants, 460InsA and 498InsTC. Both peptides co-assembled with endogenous ferritins, producing molecules with reduced iron incorporation capacity, acting in a dominant negative manner. The cells showed an increase in cell death and a decrease in proteasomal activity. The formation of iron-ferritin aggregates became evident after 10 days of variant expression and was not associated with increased cell death. The addition of iron chelators or antioxidants restored proteasomal activity and reduced aggregate formation. The data indicate that cellular iron imbalance and oxidative damage are primary causes of cell death, while aggregate formation is a secondary effect.
Collapse
Affiliation(s)
- Anna Cozzi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Serum ferritin level changes in children with sickle cell disease on chronic blood transfusion are nonlinear and are associated with iron load and liver injury. Blood 2009; 114:4632-8. [PMID: 19721013 DOI: 10.1182/blood-2009-02-203323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic blood transfusion is increasingly indicated in patients with sickle cell disease. Measuring resulting iron overload remains a challenge. Children without viral hepatitis enrolled in 2 trials for stroke prevention were examined for iron overload (STOP and STOP2; n = 271). Most received desferrioxamine chelation. Serum ferritin (SF) changes appeared nonlinear compared with prechelation estimated transfusion iron load (TIL) or with liver iron concentrations (LICs). Averaged correlation coefficient between SF and TIL (patients/observations, 26 of 164) was r = 0.70; between SF and LIC (patients/observations, 33 of 47) was r = 0.55. In mixed models, SF was associated with LIC (P = .006), alanine transaminase (P = .025), and weight (P = .026). Most patients with SF between 750 and 1500 ng/mL had a TIL between 25 and 100 mg/kg (72.8% +/- 5.9%; patients/observations, 24 of 50) or an LIC between 2.5 and 10 mg/g dry liver weight (75% +/- 0%; patients/observations, 8 of 9). Most patients with SF of 3000 ng/mL or greater had a TIL of 100 mg/kg or greater (95.3% +/- 6.7%; patients/observations, 7 of 16) or an LIC of 10 mg/g dry liver weight or greater (87.7% +/- 4.3%; patients/observations, 11 of 18). Although SF changes are nonlinear, levels less than 1500 ng/mL indicated mostly acceptable iron overload; levels of 3000 ng/mL or greater were specific for significant iron overload and were associated with liver injury. However, to determine accurately iron overload in patients with intermediately elevated SF levels, other methods are required. These trials are registered at www.clinicaltrials.gov as #NCT00000592 and #NCT00006182.
Collapse
|
46
|
Ory-Magne F, Brefel-Courbon C, Payoux P, Debruxelles S, Sibon I, Goizet C, Labauge P, Menegon P, Uro-Coste E, Ghetti B, Delisle MB, Vidal R, Rascol O. Clinical phenotype and neuroimaging findings in a French family with hereditary ferritinopathy (FTL498-499InsTC). Mov Disord 2009; 24:1676-83. [DOI: 10.1002/mds.22669] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Kubota A, Hida A, Ichikawa Y, Momose Y, Goto J, Igeta Y, Hashida H, Yoshida K, Ikeda SI, Kanazawa I, Tsuji S. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord 2009; 24:441-5. [PMID: 19117339 DOI: 10.1002/mds.22435] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuroferritinopathy is a hereditary neurodegenerative disorder caused by mutations in the ferritin light chain gene (FTL1). The cardinal features are progressive movement disturbance, hypoferritinemia, and iron deposition in the brain. To date, five mutations have been described in Caucasian and Japanese families, but the genotype-phenotype correlations remain to be established. We identified a novel FTL1 mutation (exon 4, c.641/642, 4-nucletotide duplication) in a Japanese family and compared the clinical traits with those previously reported. All mutations but one are insertions in exon 4, resulting in frameshifts. Clinical features are similar among patients with the same mutations. Middle-age onset chorea is common in patients with insertions in the 5' portion of exon 4 including our cases, whereas patients with insertions in the 3' portion of exon 4 develop early-onset tremor, suggesting genotype-phenotype correlations. In this family, male predominance and normal serum ferritin levels are characteristic.
Collapse
Affiliation(s)
- Akatsuki Kubota
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jellinger KA. Recent advances in our understanding of neurodegeneration. J Neural Transm (Vienna) 2009; 116:1111-62. [DOI: 10.1007/s00702-009-0240-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
|
49
|
Brefel-Courbon C, Fabre N, Ory F, Slaoui T, Goizet C, Labauge P, Rascol O. Familial dystonia, parkinsonism, ataxia and dementia. Mov Disord 2008. [DOI: 10.3109/9780203008454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Baraibar MA, Barbeito AG, Muhoberac BB, Vidal R. Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration. J Biol Chem 2008; 283:31679-89. [PMID: 18755684 PMCID: PMC2581579 DOI: 10.1074/jbc.m805532200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/26/2008] [Indexed: 11/06/2022] Open
Abstract
Nucleotide insertions in the ferritin light chain (FTL) polypeptide gene cause hereditary ferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin and iron in the central nervous system. Here we describe for the first time the protein structure and iron storage function of the FTL mutant p.Phe167SerfsX26 (MT-FTL), which has a C terminus altered in sequence and extended in length. MT-FTL polypeptides assembled spontaneously into soluble, spherical 24-mers that were ultrastructurally indistinguishable from those of the wild type. Far-UV CD showed a decrease in alpha-helical content, and 8-anilino-1-naphthalenesulfonate fluorescence revealed the appearance of hydrophobic binding sites. Near-UV CD and proteolysis studies suggested little or no structural alteration outside of the C-terminal region. In contrast to wild type, MT-FTL homopolymers precipitated at much lower iron loading, had a diminished capacity to incorporate iron, and were less thermostable. However, precipitation was significantly reversed by addition of iron chelators both in vitro and in vivo. Our results reveal substantial protein conformational changes localized at the 4-fold pore of MT-FTL homopolymers and imply that the C terminus of the MT-FTL polypeptide plays an important role in ferritin solubility, stability, and iron management. We propose that the protrusion of some portion of the C terminus above the spherical shell allows it to cross-link with other mutant polypeptides through iron bridging, leading to enhanced mutant precipitation by iron. Our data suggest that hereditary ferritinopathy pathogenesis is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates.
Collapse
Affiliation(s)
- Martin A Baraibar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|