1
|
Simonini C, Zucchi E, Martinelli I, Gianferrari G, Lunetta C, Sorarù G, Trojsi F, Pepe R, Piras R, Giacchino M, Banchelli F, Mandrioli J. Neurodegenerative and neuroinflammatory changes in SOD1-ALS patients receiving tofersen. Sci Rep 2025; 15:11034. [PMID: 40169784 PMCID: PMC11961715 DOI: 10.1038/s41598-025-94984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
The initiation of tofersen, a new specific antisense oligonucleotide (ASO) for SOD1 pathology, marked a significant turning point for SOD1-ALS patients. While clinical trials and early access program studies reported a significant reduction in plasma and cerebrospinal fluid (CSF) neurofilament levels, neuroinflammation following prolonged treatment was never assessed. In this multicenter study, we evaluated a cohort of 18 SOD1-ALS patients treated with tofersen, analyzing correlations between biomarkers of neurodegeneration/neuroinflammation and clinical variables indicative of disease progression. NfL, NfH, CHI3L1, and Serpina1 levels in serum and CSF were determined by semi-automated immunoassays (Ella™ technology). Generalized linear mixed models were employed to investigate longitudinal trends of these biomarkers. Our data highlighted a progressive decrease in CSF neurofilament levels during tofersen treatment (MR = 0.97, 95% CI 0.94-0.99, p = 0.006 and MR = 0.98, 95% CI 0.95-1.00, p = 0.076 for NfL and NfH in CSF, respectively). Conversely, CSF levels of SerpinA1 and CHI3L1 increased over time (MR = 1.12, 95% CI 1.08-1.16, p < 0.0001 and MR = 1.039, 95% CI 1.015-1.062, p = 0.001 for SerpinA1 and CHI3L1 in CSF, respectively), but these modifications were most apparent after six and twelve months of therapy, respectively. Disease progression rate did not correlate with these biomarker trends. We observed a significant decrease in neurofilament levels during Tofersen treatment, alongside an increase in neuroinflammatory markers, potentially linked to an immune response triggered by ASO treatment. Given the limited data on tofersen's long-term efficacy in ALS due to its recent introduction, identifying biomarkers that predict clinical outcomes such as diminished therapeutic response or adverse effects is crucial. These biomarkers may help to better understand the underlying pathomechanisms of ALS and tofersen's role in modulating disease progression.
Collapse
Affiliation(s)
- Cecilia Simonini
- Department of Neurosciences, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy.
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
| | - Ilaria Martinelli
- Department of Neurosciences, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Neurosciences, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Christian Lunetta
- Neurorehabilitation Department, Istituti Clinici Scientifici Maugeri IRCCS, Milan Institute, 20138, Milan, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Neuromuscular Center, University of Padua, Padua, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center, Luigi Vanvitelli Campania University, Naples, Italy
- First Division of Neurology and Neurophysiopathology, University Hospital, Luigi Vanvitelli Campania University, Naples, Italy
| | - Roberta Pepe
- Department of Advanced Medical and Surgical Sciences, MRI Research Center, Luigi Vanvitelli Campania University, Naples, Italy
| | - Rachele Piras
- Neurorehabilitation Department, Istituti Clinici Scientifici Maugeri IRCCS, Milan Institute, 20138, Milan, Italy
| | - Matteo Giacchino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Department of Neurosciences, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Benatar M, Robertson J, Andersen PM. Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention. Lancet Neurol 2025; 24:77-86. [PMID: 39706636 DOI: 10.1016/s1474-4422(24)00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
Pathogenic variants in the superoxide dismutase 1 (SOD1) gene were the first identified genetic cause of amyotrophic lateral sclerosis (ALS), in 1993. This discovery enabled the development of transgenic rodent models for studying the biology of SOD1 ALS. The understanding that SOD1 ALS is driven by a toxic gain-of-function mutation has led to therapeutic strategies that aim to lower concentrations of SOD1 protein, an endeavour that has been complicated by the phenotypic heterogeneity of SOD1 ALS. The successful development of genetically targeted therapies to reduce SOD1 expression, together with a better understanding of pre-symptomatic disease and the discovery of neurofilament light protein as a susceptibility/risk biomarker that predicts phenoconversion, has ushered in a new era of trials that aim to prevent clinically manifest SOD1 ALS. The 30-year journey from gene discovery to gene therapy has not only uncovered the pathophysiology of SOD1 ALS, but has also facilitated the development of biomarkers that should aid therapy development for all forms of ALS.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology and ALS Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Janice Robertson
- University of Toronto, Tanz Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | | |
Collapse
|
3
|
Moriyama H, Yokota T. Recent Progress of Antisense Oligonucleotide Therapy for Superoxide-Dismutase-1-Mutated Amyotrophic Lateral Sclerosis: Focus on Tofersen. Genes (Basel) 2024; 15:1342. [PMID: 39457466 PMCID: PMC11507444 DOI: 10.3390/genes15101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a refractory neurodegenerative disease characterized by the degeneration and loss of motor neurons, typically resulting in death within five years of onset. There have been few effective treatments, making the development of robust therapies an urgent challenge. Genetic mutations have been identified as contributors to ALS, with mutations in superoxide dismutase 1 (SOD1), which neutralizes the harmful reactive oxygen species superoxide, accounting for approximately 2% of all ALS cases. To counteract the toxic gain of function caused by SOD1 mutations, therapeutic strategies aimed at suppressing SOD1 gene expression have shown promise. Antisense oligonucleotide (ASO) is an artificially synthesized, short, single-stranded DNA/RNA molecule that binds to target RNA to alter gene expression, representing a next-generation therapeutic approach. In 2023, tofersen became the first ASO drug approved by the FDA for ALS. Administered intrathecally, tofersen specifically binds to SOD1 mRNA, inhibiting the production of toxic SOD1 protein, thereby improving biomarkers of ALS. The long-term efficacy and safety of tofersen require further validation, and the development of more optimized treatment protocols is essential. A series of studies and therapeutic developments related to SOD1 mutations have advanced the understanding of ALS pathophysiology and significantly contributed to treatment strategies for central nervous system disorders. This review focuses on an overview of SOD1 mutations and the development process of tofersen, aiming to deepen the understanding of advancements in ALS research and discuss future challenges and directions for ASO therapy.
Collapse
Affiliation(s)
- Hidenori Moriyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
5
|
de Holanda Paranhos L, Magalhães RSS, de Araújo Brasil A, Neto JRM, Ribeiro GD, Queiroz DD, Dos Santos VM, Eleutherio ECA. The familial amyotrophic lateral sclerosis-associated A4V SOD1 mutant is not able to regulate aerobic glycolysis. Biochim Biophys Acta Gen Subj 2024; 1868:130634. [PMID: 38788983 DOI: 10.1016/j.bbagen.2024.130634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Under certain stress conditions, astrocytes operate in aerobic glycolysis, a process controlled by pyruvate dehydrogenase (PDH) inhibition through its E1 α subunit (Pda1) phosphorylation. This supplies lactate to neurons, which save glucose to obtain NADPH to, among other roles, counteract reactive oxygen species. A failure in this metabolic cooperation causes severe damage to neurons. In this work, using humanized Saccharomyces cerevisiae cells in which its endogenous Cu/Zn Superoxide Dismutase (SOD1) was replaced by human ortholog, we investigated the role of human SOD1 (hSOD1) in aerobic glycolysis regulation and its implications to amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. Yeast cells ferment glucose even in the presence of oxygen and switch to respiratory metabolism after glucose exhaustion. However, like cells of SOD1-knockout strain, cells expressing A4V mutant of hSOD1 growing on glucose showed a respiratory phenotype, i.e., low glucose and high oxygen consumptions and low intracellular oxidation levels in response to peroxide stress, contrary to cells expressing wild-type (WT) SOD1 (yeast or human). The A4V mutation in hSOD1 is linked to ALS. In contrast to WT SOD1 strains, PDH activity of both sod1Δ and A4V hSOD1 cells did not change in response to a metabolic shift toward oxidative metabolism, which was associated to lower Pda1 phosphorylation levels under growth on glucose. Taken together, our results suggest that A4V mutant cannot regulate aerobic glycolysis via Pda1 phosphorylation the same way WT hSOD1, which might be linked to problems observed in the motor neurons of ALS patients with the SOD1 A4V mutation.
Collapse
Affiliation(s)
- Luan de Holanda Paranhos
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Aline de Araújo Brasil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Gabriela Delaqua Ribeiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Daniela Dias Queiroz
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Vanessa Mattos Dos Santos
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | |
Collapse
|
6
|
Liguori F, Alberti F, Amadio S, Angelini DF, Pilesi E, Vitale G, Tesoriere G, Borsellino G, Vernì F, Volonté C. Pan-neuronal expression of human mutant SOD1 in Drosophila impairs survival and motor performance, induces early neuroinflammation and chromosome aberrations. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167192. [PMID: 38657911 DOI: 10.1016/j.bbadis.2024.167192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Several mutations in the SOD1 gene encoding for the antioxidant enzyme Superoxide Dismutase 1, are associated with amyotrophic lateral sclerosis, a rare and devastating disease characterized by motor neuron degeneration and patients' death within 2-5 years from diagnosis. Motor neuron loss and related symptomatology manifest mostly in adult life and, to date, there is still a gap of knowledge on the precise cellular and molecular events preceding neurodegeneration. To deepen our awareness of the early phases of the disease, we leveraged two Drosophila melanogaster models pan-neuronally expressing either the mutation A4V or G85R of the human gene SOD1 (hSOD1A4V or hSOD1G85R). We demonstrate that pan-neuronal expression of the hSOD1A4V or hSOD1G85R pathogenic construct impairs survival and motor performance in transgenic flies. Moreover, protein and transcript analysis on fly heads indicates that mutant hSOD1 induction stimulates the glial marker Repo, up-regulates the IMD/Toll immune pathways through antimicrobial peptides and interferes with oxidative metabolism. Finally, cytological analysis of larval brains demonstrates hSOD1-induced chromosome aberrations. Of note, these parameters are found modulated in a timeframe when neurodegeneration is not detected. The novelty of our work is twofold: we have expressed for the first time hSOD1 mutations in all neurons of Drosophila and confirmed some ALS-related pathological phenotypes in these flies, confirming the power of SOD1 mutations in generating ALS-like phenotypes. Moreover, we have related SOD1 pathogenesis to chromosome aberrations and antimicrobial peptides up-regulation. These findings were unexplored in the SOD1-ALS field.
Collapse
Affiliation(s)
- Francesco Liguori
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy; Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy.
| | - Francesca Alberti
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Daniela Francesca Angelini
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppe Vitale
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Giulia Tesoriere
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Borsellino
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Volonté
- Experimental Neuroscience and Neurological Disease Models, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy; Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
7
|
Oliveira Santos M, de Carvalho M. Profiling tofersen as a treatment of superoxide dismutase 1 amyotrophic lateral sclerosis. Expert Rev Neurother 2024; 24:549-553. [PMID: 38758193 DOI: 10.1080/14737175.2024.2355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressive motor neuron disorder with a fatal outcome 3-5 years after disease onset due to respiratory complications. Superoxide dismutase 1 (SOD1) mutations are found in about 2% of all patients. Tofersen is a novel oligonucleotide antisense drug specifically developed to treat SOD1-ALS patients. AREAS COVERED Our review covers and discusses tofersen pharmacological properties and its phase I/II and III clinical trials results. Other available drugs and their limitations are also addressed. EXPERT OPINION VALOR study failed to meet the primary endpoint (change in the revised Amyotrophic Lateral Sclerosis Functional Rating Scale score from baseline to week 28, tofersen arm vs. placebo), but a significant reduction in plasma neurofilament light chain (NfL) levels was observed in tofersen arm (60% vs. 20%). PrefALS study has proposed plasma NfL has a potential biomarker for presymptomatic treatment, since it increases 6-12 months before phenoconversion. There is probably a delay between plasma NfL reduction and the clinical benefit. ATLAS study will allow more insights regarding tofersen clinical efficacy in disease progression rate, survival, and even disease onset delay in presymptomatic SOD1 carriers.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
8
|
Huang M, Liu YU, Yao X, Qin D, Su H. Variability in SOD1-associated amyotrophic lateral sclerosis: geographic patterns, clinical heterogeneity, molecular alterations, and therapeutic implications. Transl Neurodegener 2024; 13:28. [PMID: 38811997 PMCID: PMC11138100 DOI: 10.1186/s40035-024-00416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Miaodan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
9
|
Hoelzel C, Bai Y, Wang M, Liu Y, Zhang X. High-Fidelity Assay Based on Turn-Off Fluorescence to Detect the Perturbations of Cellular Proteostasis. ACS BIO & MED CHEM AU 2024; 4:111-118. [PMID: 38645930 PMCID: PMC11027126 DOI: 10.1021/acsbiomedchemau.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 04/23/2024]
Abstract
The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.
Collapse
Affiliation(s)
- Conner Hoelzel
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yulong Bai
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang
Province China
- Institute
of Natural Sciences, Westlake Institute for Advanced Study, Westlake
Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Mengdie Wang
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Yu Liu
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Xin Zhang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang
Province China
- Institute
of Natural Sciences, Westlake Institute for Advanced Study, Westlake
Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
10
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
12
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
13
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer's, Parkinson's, and Huntington's Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:10809. [PMID: 37445986 DOI: 10.3390/ijms241310809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodegenerative diseases are, according to recent studies, one of the main causes of disability and death worldwide. Interest in molecular genetics has started to experience exponential growth thanks to numerous advancements in technology, shifts in the understanding of the disease as a phenomenon, and the change in the perspective regarding gene editing and the advantages of this action. The aim of this paper is to analyze the newest approaches in genetics and molecular sciences regarding four of the most important neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We intend through this review to focus on the newest treatment, diagnosis, and predictions regarding this large group of diseases, in order to obtain a more accurate analysis and to identify the emerging signs that could lead to a better outcome in order to increase both the quality and the life span of the patient. Moreover, this review could provide evidence of future possible novel therapies that target the specific genes and that could be useful to be taken into consideration when the classical approaches fail to shed light.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia-Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Neurosurgery Department, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
14
|
Chen Z, Reynolds RH, Pardiñas AF, Gagliano Taliun SA, van Rheenen W, Lin K, Shatunov A, Gustavsson EK, Fogh I, Jones AR, Robberecht W, Corcia P, Chiò A, Shaw PJ, Morrison KE, Veldink JH, van den Berg LH, Shaw CE, Powell JF, Silani V, Hardy JA, Houlden H, Owen MJ, Turner MR, Ryten M, Al-Chalabi A. The contribution of Neanderthal introgression and natural selection to neurodegenerative diseases. Neurobiol Dis 2023; 180:106082. [PMID: 36925053 DOI: 10.1016/j.nbd.2023.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK; Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK.
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Sarah A Gagliano Taliun
- Department of Medicine & Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada; Montréal Heart Institute, Montréal, Québec, Canada
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Kuang Lin
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashley R Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wim Robberecht
- Department of Neurology, University Hospital Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease, Leuven, Belgium; Vesalius Research Center, Laboratory of Neurobiology, Leuven, Belgium
| | - Philippe Corcia
- ALS Center, Department of Neurology, CHRU Bretonneau, Tours, France
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy; Azienda Ospedaliera Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Pamela J Shaw
- Academic Neurology Unit, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Karen E Morrison
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John F Powell
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy; Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, 20122 Milano, Italy
| | - John A Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK; Reta Lila Weston Institute, Queen Square Institute of Neurology, UCL, London, UK; UK Dementia Research Institute, Queen Square Institute of Neurology, UCL, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, UCL, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
15
|
Marshall KL, Rajbhandari L, Venkatesan A, Maragakis NJ, Farah MH. Enhanced axonal regeneration of ALS patient iPSC-derived motor neurons harboring SOD1 A4V mutation. Sci Rep 2023; 13:5597. [PMID: 37020097 PMCID: PMC10076424 DOI: 10.1038/s41598-023-31720-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by degeneration of upper and lower motor neurons that leads to muscle weakness, paralysis, and death, but the effects of disease-causing mutations on axonal outgrowth of neurons derived from human induced pluripotent stem cells (iPSC)-derived motor neurons (hiPSC-MN) are poorly understood. The use of hiPSC-MN is a promising tool to develop more relevant models for target identification and drug development in ALS research, but questions remain concerning the effects of distinct disease-causing mutations on axon regeneration. Mutations in superoxide dismutase 1 (SOD1) were the first to be discovered in ALS patients. Here, we investigated the effect of the SOD1A4V mutation on axonal regeneration of hiPSC-MNs, utilizing compartmentalized microfluidic devices, which are powerful tools for studying hiPSC-MN distal axons. Surprisingly, SOD1+/A4V hiPSC-MNs regenerated axons more quickly following axotomy than those expressing the native form of SOD1. Though initial axon regrowth was not significantly different following axotomy, enhanced regeneration was apparent at later time points, indicating an increased rate of outgrowth. This regeneration model could be used to identify factors that enhance the rate of human axon regeneration.
Collapse
Affiliation(s)
- Katherine L Marshall
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Labchan Rajbhandari
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Arun Venkatesan
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Nicholas J Maragakis
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
17
|
Samanta N, Ruiz‐Blanco YB, Fetahaj Z, Gnutt D, Lantz C, Loo JA, Sanchez‐Garcia E, Ebbinghaus S. Superoxide Dismutase 1 Folding Stability as a Target for Molecular Tweezers in SOD1-Related Amyotrophic Lateral Sclerosis. Chembiochem 2022; 23:e202200396. [PMID: 36083789 PMCID: PMC9828543 DOI: 10.1002/cbic.202200396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Protein misfolding and aggregation are hallmarks of many severe neurodegenerative diseases including Alzheimer's, Parkinson's and Huntington's disease. As a supramolecular ligand that binds to lysine and arginine residues, the molecular tweezer CLR01 was found to modify the aggregation pathway of disease-relevant proteins in vitro and in vivo with beneficial effects on toxicity. However, the molecular mechanisms of how tweezers exert these effects remain mainly unknown, hampering further drug development. Here, we investigate the modulation mechanism of unfolding and aggregation pathways of SOD1, which are involved in amyotrophic lateral sclerosis (ALS), by CLR01. Using a truncated version of the wildtype SOD1 protein, SOD1bar , we show that CLR01 acts on the first step of the aggregation pathway, the unfolding of the SOD1 monomer. CLR01 increases, by ∼10 °C, the melting temperatures of the A4V and G41D SOD1 mutants, which are commonly observed mutations in familial ALS. Molecular dynamics simulations and binding free energy calculations as well as native mass spectrometry and mutational studies allowed us to identify K61 and K92 as binding sites for the tweezers to mediate the stability increase. The data suggest that the modulation of SOD1 conformational stability is a promising target for future developments of supramolecular ligands against neurodegenerative diseases.
Collapse
Affiliation(s)
- Nirnay Samanta
- Institute of Physical and Theoretical ChemistryTU Braunschweig38106BraunschweigGermany,Braunschweig Integrated Centre of Systems Biology (BRICS) 38106BraunschweigGermany
| | - Yasser B. Ruiz‐Blanco
- Computational Biochemistry, Center of Medical BiotechnologyUniversity of Duisburg-Essen45141EssenGermany
| | - Zamira Fetahaj
- Department of Physical Chemistry IIRuhr University44780BochumGermany
| | - David Gnutt
- Institute of Physical and Theoretical ChemistryTU Braunschweig38106BraunschweigGermany,Braunschweig Integrated Centre of Systems Biology (BRICS) 38106BraunschweigGermany,Department of Physical Chemistry IIRuhr University44780BochumGermany
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of California-Los Angeles90095Los Angeles, CAUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of California-Los Angeles90095Los Angeles, CAUSA
| | - Elsa Sanchez‐Garcia
- Computational Biochemistry, Center of Medical BiotechnologyUniversity of Duisburg-Essen45141EssenGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTU Braunschweig38106BraunschweigGermany,Braunschweig Integrated Centre of Systems Biology (BRICS) 38106BraunschweigGermany,Department of Physical Chemistry IIRuhr University44780BochumGermany
| |
Collapse
|
18
|
Xu F, Huang S, Li XY, Lin J, Feng X, Xie S, Wang Z, Li X, Zhu J, Lai H, Xu Y, Huang X, Yao X, Wang C. Identification of TARDBP Gly298Ser as a founder mutation for amyotrophic lateral sclerosis in Southern China. BMC Med Genomics 2022; 15:173. [PMID: 35932023 PMCID: PMC9356425 DOI: 10.1186/s12920-022-01327-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/30/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by predominant impairment of upper and lower motor neurons. Over 50 TARDBP mutations have been reported in both familial (FALS) and sporadic ALS (SALS). Some mutations in TARDBP, e.g. A382T and G294V, have genetic founder effects in certain geographic regions. However, such prevalence and founder effect have not been reported in Chinese. METHODS Whole-exome sequencing (WES) was performed in 16 Chinese FALS patients, followed by Sanger sequencing for the TARDBP p.Gly298Ser mutation (G298S) in 798 SALS patients and 1,325 controls. Haplotype analysis using microsatellites flanking TARDBP was conducted in the G298S-carrying patients and noncarriers. The geographic distribution and phenotypic correlation of the TARDBP mutations reported worldwide were reviewed. RESULTS WES detected the TARDBP G298S mutation in 8 FALS patients, and Sanger sequencing found additional 8 SALS cases, but no controls, carrying this mutation. All the 16 cases came from Southern China, and 7 of these patients shared the 117-286-257-145-246-270 allele for the D1S2736-D1S1151-D1S2667-D1S489-D1S434-D1S2697 markers, which was not found in the 92 non-carrier patients (0/92) (p < 0.0001) and 65 age-matched and neurologically normal individuals (0/65) (p < 0.0001). The A382T and G298S mutations were prevalent in Europeans and Eastern Asians, respectively. Additionally, carriers for the M337V mutation are dominated by bulbar onset with a long survival, whereas those for G298S are dominated by limb onset with a short survival. CONCLUSIONS Some prevalent TARDBP mutations are distributed in a geographic pattern and related to clinical profiles. TARDBP G298S mutation is a founder mutation in the Southern Chinese ALS population.
Collapse
Affiliation(s)
- Fanxi Xu
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Sen Huang
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xu-Ying Li
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China.,Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianing Lin
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiuli Feng
- National Human Genome Center in Beijing, Beijing, China
| | - Shu Xie
- National Human Genome Center in Beijing, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Xian Li
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Junge Zhu
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Hong Lai
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China
| | - Yanming Xu
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Xusheng Huang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Yao
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, No.45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
19
|
Hnath B, Dokholyan NV. Toxic SOD1 trimers are off-pathway in the formation of amyloid-like fibrils in ALS. Biophys J 2022; 121:2084-2095. [PMID: 35505609 DOI: 10.1016/j.bpj.2022.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulation of insoluble amyloid fibrils is widely studied as a critical factor in the pathology of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Misfolded Cu, Zn superoxide dismutase (SOD1) was the first protein linked to ALS, and non-native SOD1 trimeric oligomers were recently linked to cytotoxicity, while larger oligomers were protective to cells. The balance between trimers and larger aggregates in the process of SOD1 aggregation is, thus, a critical determinant of potential therapeutic approaches to treat ALS. Yet, it is unknown whether these trimeric oligomers are a necessary intermediate for larger aggregate formation or a distinct off-pathway species competing with fibril formation. Depending on the on- or off-pathway scenario of trimer formation, we expect drastically different therapeutic approaches. Here, we show that the toxic SOD1 trimer is an off-pathway intermediate competing with protective fibril formation. We design mutant SOD1 constructs that remain in a trimeric state (super stable trimers) and show that stabilizing the trimeric SOD1 prevents formation of fibrils in vitro and in a motor neuron like cell model (NSC-34). Using size exclusion chromatography, we track the aggregation kinetics of purified SOD1 and show direct competition of trimeric SOD1 with larger oligomer and fibril formation. Finally, we show the trimer is structurally independent of both larger soluble oligomers and insoluble fibrils using circular dichroism spectroscopy and limited proteolysis.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Theunissen F, Flynn LL, Anderton RS, Akkari PA. Short structural variants as informative genetic markers for ALS disease risk and progression. BMC Med 2022; 20:11. [PMID: 35034660 PMCID: PMC8762977 DOI: 10.1186/s12916-021-02206-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is considerable variability in disease progression for patients with amyotrophic lateral sclerosis (ALS) including the age of disease onset, site of disease onset, and survival time. There is growing evidence that short structural variations (SSVs) residing in frequently overlooked genomic regions can contribute to complex disease mechanisms and can explain, in part, the phenotypic variability in ALS patients. Here, we discuss SSVs recently characterized by our laboratory and how these discoveries integrate into the current literature on ALS, particularly in the context of application to future clinical trials. These markers may help to identify and differentiate patients for clinical trials that have a similar ALS disease mechanism(s), thereby reducing the impact of participant heterogeneity. As evidence accumulates for the genetic markers discovered in SQSTM1, SCAF4, and STMN2, we hope to improve the outcomes of future ALS clinical trials.
Collapse
Affiliation(s)
- Frances Theunissen
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.
| | - Loren L Flynn
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Black Swan Pharmaceuticals, Wake Forrest, NC, USA
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
- Faculty of Medicine, Nursing, Midwifery and Health Sciences, University of Notre Dame Australia, Fremantle, WA, 6160, Australia
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Black Swan Pharmaceuticals, Wake Forrest, NC, USA
- Division of Neurology, Duke University Medical Centre, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Berdyński M, Miszta P, Safranow K, Andersen PM, Morita M, Filipek S, Żekanowski C, Kuźma-Kozakiewicz M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 2022; 12:103. [PMID: 34996976 PMCID: PMC8742055 DOI: 10.1038/s41598-021-03891-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in superoxide dismutase 1 gene (SOD1) are linked to amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder predominantly affecting upper and lower motor neurons. The clinical phenotype of ALS shows inter- and intrafamilial heterogeneity. The aim of the study was to analyze the relations between individual SOD1 mutations and the clinical presentation using in silico methods to assess the SOD1 mutations severity. We identified SOD1 causative variants in a group of 915 prospectively tested consecutive Polish ALS patients from a neuromuscular clinical center, performed molecular modeling of mutated SOD1 proteins and in silico analysis of mutation impact on clinical phenotype and survival analysis of associations between mutations and hazard of clinical end-points. Fifteen SOD1 mutations were identified in 21.1% familial and 2.3% sporadic ALS cases. Their effects on SOD1 protein structure and functioning inferred from molecular modeling and in silico analyses correlate well with the clinical data. Molecular modeling results support the hypothesis that folding intermediates rather than mature SOD1 protein give rise to the source of cytotoxic conformations in ALS. Significant associations between type of mutation and clinical end-points were found.
Collapse
Affiliation(s)
- Mariusz Berdyński
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland. .,Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Powstańców Wlkp. Str., 70-111, Szczecin, Poland
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland. .,Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
22
|
Chen YP, Yu SH, Wei QQ, Cao B, Gu XJ, Chen XP, Song W, Zhao B, Wu Y, Sun MM, Liu FF, Hou YB, Ou RW, Zhang LY, Liu KC, Lin JY, Xu XR, Li CY, Yang J, Jiang Z, Liu J, Cheng YF, Xiao Y, Chen K, Feng F, Cai YY, Li SR, Hu T, Yuan XQ, Guo XY, Liu H, Han Q, Zhou QQ, Shao N, Li JP, Pan PL, Ma S, Shang HF. Role of genetics in amyotrophic lateral sclerosis: a large cohort study in Chinese mainland population. J Med Genet 2021; 59:840-849. [PMID: 34544842 PMCID: PMC9411893 DOI: 10.1136/jmedgenet-2021-107965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Background A large number of new causative and risk genes for amyotrophic lateral sclerosis (ALS) have been identified mostly in patients of European ancestry. In contrast, we know relatively little regarding the genetics of ALS in other ethnic populations. This study aims to provide a comprehensive analysis of the genetics of ALS in an unprecedented large cohort of Chinese mainland population and correlate with the clinical features of rare variants carriers. Methods A total of 1587 patients, including 64 familial ALS (FALS) and 1523 sporadic ALS (SALS), and 1866 in-house controls were analysed by whole-exome sequencing and/or testing for G4C2 repeats in C9orf72. Forty-one ALS-associated genes were analysed. Findings 155 patients, including 26 (40.6%) FALS and 129 (8.5%) SALS, carrying rare pathogenic/likely pathogenic (P/LP) variants of ALS causative genes were identified. SOD1 was the most common mutated gene, followed by C9orf72, FUS, NEK1, TARDBP and TBK1. By burden analysis, rare variants in SOD1, FUS and TARDBP contributed to the collective risk for ALS (p<2.5e-6) at the gene level, but at the allelic level TARDBP p.Gly294Val and FUS p.Arg521Cys and p.Arg521His were the most important single variants causing ALS. Clinically, P/LP variants in TARDBP and C9orf72 were associated with poor prognosis, in FUS linked with younger age of onset, and C9orf72 repeats tended to affect cognition. Conclusions Our data provide essential information for understanding the genetic and clinical features of ALS in China and for optimal design of genetic testing and evaluation of disease prognosis.
Collapse
Affiliation(s)
- Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Hui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, China
| | - Qian-Qian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Ming Sun
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, China
| | - Fei-Fei Liu
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, China
| | - Yan-Bing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ru-Wei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Kun-Cheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Yu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Ran Xu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Yu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang-Fan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Chen
- Department of Geriatrics, The Fourth Affiliated Hospital of Sichuan University, Chengdu, China
| | - Fei Feng
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ying-Ying Cai
- Department of Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shi-Rong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Hu
- Department of Neurology, The Affiliated Hospital of Sichuan Nursing Vocational College, Chengdu, China
| | - Xiao-Qin Yuan
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| | - Xiao-Yan Guo
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hui Liu
- Department of Neurodegenerative Disease, Hertie Institute for Clinical Brain Research, University of Tuebingen and DZNE, Tuebingen, Germany
| | - Qing Han
- Department of Neurology, Ningbo First Hospital & Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Qing-Qing Zhou
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Shao
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian-Peng Li
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ping-Lei Pan
- Department of Neurology, The Affiliated Yancheng Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Sha Ma
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Dangoumau A, Marouillat S, Coelho R, Wurmser F, Brulard C, Haouari S, Laumonnier F, Corcia P, Andres CR, Blasco H, Vourc’h P. Dysregulations of Expression of Genes of the Ubiquitin/SUMO Pathways in an In Vitro Model of Amyotrophic Lateral Sclerosis Combining Oxidative Stress and SOD1 Gene Mutation. Int J Mol Sci 2021; 22:ijms22041796. [PMID: 33670299 PMCID: PMC7918082 DOI: 10.3390/ijms22041796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates in affected motor neurons are a hallmark of amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to their formation remain incompletely understood. Oxidative stress associated with age, the major risk factor in ALS, contributes to this neurodegeneration in ALS. We show that several genes coding for enzymes of the ubiquitin and small ubiquitin-related modifier (SUMO) pathways exhibit altered expression in motor neuronal cells exposed to oxidative stress, such as the CCNF gene mutated in ALS patients. Eleven of these genes were further studied in conditions combining oxidative stress and the expression of an ALS related mutant of the superoxide dismutase 1 (SOD1) gene. We observed a combined effect of these two environmental and genetic factors on the expression of genes, such as Uhrf2, Rbx1, Kdm2b, Ube2d2, Xaf1, and Senp1. Overall, we identified dysregulations in the expression of enzymes of the ubiquitin and SUMO pathways that may be of interest to better understand the pathophysiology of ALS and to protect motor neurons from oxidative stress and genetic alterations.
Collapse
Affiliation(s)
- Audrey Dangoumau
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Sylviane Marouillat
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Roxane Coelho
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - François Wurmser
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | | | - Shanez Haouari
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Frédéric Laumonnier
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
| | - Philippe Corcia
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Neurologie, Centre de Référence sur la SLA, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR iBrain, Université de Tours, Inserm, 37000 Tours, France; (A.D.); (S.M.); (R.C.); (F.W.); (S.H.); (F.L.); (P.C.); (C.R.A.); (H.B.)
- UTTIL, CHRU de Tours, 37000 Tours, France;
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)-234-378-910
| |
Collapse
|
24
|
Dean KE, Shen B, Askin G, Schweitzer AD, Shahbazi M, Wang Y, Lange D, Tsiouris AJ. A specific biomarker for amyotrophic lateral sclerosis: Quantitative susceptibility mapping. Clin Imaging 2021; 75:125-130. [PMID: 33548870 DOI: 10.1016/j.clinimag.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Accurate and timely diagnosis of amyotrophic lateral sclerosis (ALS) is a diagnostic challenge given the lack of specific diagnostic and imaging biomarkers as well as the significant clinic overlap with mimic syndromes. We hypothesize that MR quantitative susceptibility mapping (QSM) can help differentiate ALS from mimic diagnoses. METHODS In a blinded retrospective study of MRIs with QSM from 2015 to 2018, we compared motor cortex susceptibility along the hand and face homunculi in ALS patients and patients with similar clinical presentations. Inclusion required a confirmed ALS or a mimic diagnosis. Comparative groups included age-matched patients with MRIs performed for non-motor neuron symptoms that were reported as normal or demonstrated leukoaraiosis. Quantitative susceptibility values were compared with ANOVA and Tukey-Kramer (post-hoc). ROC analysis and Youden's index were used to identify optimal cutoff values. RESULTS Fifty ALS, 35 mimic, and 70 non-motor neuron symptom patients (35 normal, 35 leukoaraiosis) were included. Hand and face homunculus mean susceptibility values were significantly higher in the ALS group compared to the mimic (p=0.001, p=0.004), leukoaraiosis (p<0.001, p=0.003), and normal (p<0.001, p<0.001) groups. ROC curve analysis comparing ALS to mimics resulted in an area under the curve of 0.71 and 0.67 for the hand and face homunculus measurements, respectively. In differentiating ALS from mimics, Youden's index showed 100% specificity and 36% sensitivity for hand homunculus measurements. CONCLUSIONS QSM has diagnostic potential in the assessment of suspected ALS patients, demonstrating very high specificity in differentiating ALS from mimic diagnoses.
Collapse
Affiliation(s)
- Kathryn E Dean
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA.
| | - Beiyi Shen
- Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Gulce Askin
- Department of Healthcare Policy & Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew D Schweitzer
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Mona Shahbazi
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
| | - Yi Wang
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Dale Lange
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
| | - Apostolos John Tsiouris
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Saeed M. Fractal genomics of SOD1 evolution. Immunogenetics 2020; 72:439-445. [PMID: 33237378 DOI: 10.1007/s00251-020-01184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
To understand the fundamental processes of gene evolution such as the impact of point mutations and segmental duplications on statistical topography, superoxide dismutase-1 (SOD1) orthologous sequences (n = 50) are studied. These demonstrate scale invariant self-similarity patterns and long-range correlations (LRCs) indicating fractal organization. Phylogenetic hierarchies change when SOD1 orthologs are grouped according to fractal measures, indicating that statistical topographies can be used to study gene evolution. Sliding window k-mer analysis show that majority of k-mers across all SOD1 orthologs are unique, with very few duplications. Orthologs from simpler species contribute minimally (< 1% of k-mers) to more complex species. Both simple and complex random processes fail to produce significant matching k-mer sequences for SOD1 orthologs. Point mutations causing amyotrophic lateral sclerosis do not impact the fractal organization of human SOD1. Hence, SOD1 did not evolve by a patchwork of repetitive sequences modified by point mutations. Moreover, fractal and other methods described here can be used to study the origin and evolution of genomes.
Collapse
|
26
|
Kuźma-Kozakiewicz M, Andersen PM, Elahi E, Alavi A, Sapp PC, Morita M, Żekanowski C, Berdyński M. Putative founder effect in the Polish, Iranian and United States populations for the L144S SOD1 mutation associated with slowly uniform phenotype of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:80-85. [PMID: 32777948 DOI: 10.1080/21678421.2020.1803359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mutations in SOD1 cause approximately 12-25% of familial ALS and ≈2% of apparently sporadic ALS cases. Clinical phenotypes linked to SOD1 mutations are heterogeneous and intra-familial variability of the clinical phenotype is frequently observed. SOD1 L144S mutation, identified also in Brazil, Iran and United States, is the second most frequent mutation among ALS patients in Poland. So far, 10 FALS pedigrees with SOD1 L144S mutation have been reported worldwide. The aim of the study was to establish the origin of SOD1 L144S mutation in geographically distinct populations. The clinical presentation of the Polish patients was compared with those from the previously reported populations (26 ever-reported patients). Clinically, L144S mutation is associated with both sporadic and familial ALS of relatively slow uniform course, a prevalent onset in the lower limbs, either classic or PMA presentation and a long survival time. Like in the case of other previously described SOD1 mutations, there was an intra-familial heterogeneity and reduced penetrance for ALS was observed. We propose that the L144S SOD1 mutation in the three studied populations has a common founder most likely of Polish origin.
Collapse
Affiliation(s)
- Magdalena Kuźma-Kozakiewicz
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland.,Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland
| | - Peter M Andersen
- Institute of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Elahe Elahi
- Faculty of Science, Tehran University, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Peter C Sapp
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shomotsuke, Japan, and
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz Berdyński
- Institute of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.,Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. NPJ Genom Med 2020; 5:32. [PMID: 32789025 PMCID: PMC7414871 DOI: 10.1038/s41525-020-00139-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterised by the loss of upper and lower motor neurons resulting in paralysis and eventual death. Approximately 10% of ALS cases have a family history of disease, while the remainder present as apparently sporadic cases. Heritability studies suggest a significant genetic component to sporadic ALS, and although most sporadic cases have an unknown genetic aetiology, some familial ALS mutations have also been found in sporadic cases. This suggests that some sporadic cases may be unrecognised familial cases with reduced disease penetrance in their ancestors. A powerful strategy to uncover a familial link is identity-by-descent (IBD) analysis, which detects genomic regions that have been inherited from a common ancestor. IBD analysis was performed on 83 Australian familial ALS cases from 25 families and three sporadic ALS cases, each of whom carried one of three SOD1 mutations (p.I114T, p.V149G and p.E101G). We defined five unique 350-SNP haplotypes that carry these mutations in our cohort, indicative of five founder events. This included two founder haplotypes that carry SOD1 p.I114T; linking familial and sporadic cases. We found that SOD1 p.E101G arose independently in each family that carries this mutation and linked two families that carry SOD1 p.V149G. The age of disease onset varied between cases that carried each SOD1 p.I114T haplotype. Linking families with identical ALS mutations allows for larger sample sizes and increased statistical power to identify putative phenotypic modifiers.
Collapse
|
28
|
Pytte J, Flynn LL, Anderton RS, Mastaglia FL, Theunissen F, James I, Pfaff A, Koks S, Saunders AM, Bedlack R, Burns DK, Lutz MW, Siddique N, Siddique T, Roses AD, Akkari PA. Disease-modifying effects of an SCAF4 structural variant in a predominantly SOD1 ALS cohort. Neurol Genet 2020; 6:e470. [PMID: 32754644 PMCID: PMC7357414 DOI: 10.1212/nxg.0000000000000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test the hypothesis that rs573116164 will have disease-modifying effects in patients with superoxide dismutase 1 (SOD1) familial amyotrophic lateral sclerosis (fALS), we characterized rs573116164 within a cohort of 190 patients with fALS and 560 healthy age-matched controls to assess the variant for association with various measures of disease. METHODS Using a previously described bioinformatics evaluation algorithm, a polymorphic short structural variant associated with SOD1 was identified according to its theoretical effect on gene expression. An 12-18 poly-T repeat (rs573116164) within the 3' untranslated region of serine and arginine rich proteins-related carboxy terminal domain associated factor 4 (SCAF4), a gene that is adjacent to SOD1, was assessed for disease association and influence on survival and age at onset in an fALS cohort using PCR, Sanger sequencing, and capillary separation techniques for allele detection. RESULTS In a North American cohort of predominantly SOD1 fALS patients (n =190) and age-matched healthy controls (n = 560), we showed that carriage of an 18T SCAF4 allele was associated with disease within this cohort (odds ratio [OR] 6.6; 95% confidence interval [CI] 3.9-11.2; p = 4.0e-11), but also within non-SOD1 cases (n = 27; OR 5.3; 95% CI 1.9-14.5; p = 0.0014). This finding suggests genetically SOD1-independent effects of SCAF4 on fALS susceptibility. Furthermore, carriage of an 18T allele was associated with a 26-month reduction in survival time (95% CI 6.6-40.8; p = 0.014), but did not affect age at onset of disease. CONCLUSIONS The findings in this fALS cohort suggest that rs573116164 could have SOD1-independent and broader relevance in ALS, warranting further investigation in other fALS and sporadic ALS cohorts, as well as studies of functional effects of the 18T variant on gene expression.
Collapse
Affiliation(s)
- Julia Pytte
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Loren L Flynn
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Frances Theunissen
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ian James
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Abigail Pfaff
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Sulev Koks
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ann M Saunders
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Richard Bedlack
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Daniel K Burns
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Michael W Lutz
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Nailah Siddique
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Teepu Siddique
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Allen D Roses
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - P Anthony Akkari
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| |
Collapse
|
29
|
Perri ER, Parakh S, Vidal M, Mehta P, Ma Y, Walker AK, Atkin JD. The Cysteine (Cys) Residues Cys-6 and Cys-111 in Mutant Superoxide Dismutase 1 (SOD1) A4V Are Required for Induction of Endoplasmic Reticulum Stress in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2020; 70:1357-1368. [PMID: 32445072 DOI: 10.1007/s12031-020-01551-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons. Between 12 and 20% of inherited cases and approximately 1-2% of all cases are caused by mutations in the gene encoding dismutase 1 (SOD1). Mutant SOD1 A4V (alanine to valine) induces endoplasmic reticulum (ER) stress, which is increasingly implicated as a pathway to motor neuron degeneration and death in ALS. However, it remains unclear how ER stress is induced by mutant SOD1 A4V. Previous studies have established that it is induced early in pathophysiology and it precedes the formation of mutant SOD1 inclusions. SOD1 contains four cysteine residues, two of which form an intra-subunit disulphide bond involving Cys-57 and Cys-146. The remaining two cysteines, Cys-6 and Cys-111, remain unpaired and have been implicated in mutant SOD1 aggregation. In this study, we examined the relationship between the SOD1 A4V cysteine residues and aggregation, ER stress induction and toxicity. We report here that mutation of Cys-6 and Cys-111 in mutant SOD1 A4V, but not Cys-57 or Cys-146, ameliorates ER stress, inclusion formation and apoptosis in neuronal cell lines. These results imply that protein misfolding, induced by Cys-6 and Cys-111, is required for these pathological events in neuronal cells.
Collapse
Affiliation(s)
- Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yi Ma
- Department of General Surgery, Monash Health, Melbourne, Victoria, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Department of General Surgery, Monash Health, Melbourne, Victoria, Australia.
| |
Collapse
|
30
|
Chantadul V, Wright GSA, Amporndanai K, Shahid M, Antonyuk SV, Washbourn G, Rogers M, Roberts N, Pye M, O'Neill PM, Hasnain SS. Ebselen as template for stabilization of A4V mutant dimer for motor neuron disease therapy. Commun Biol 2020; 3:97. [PMID: 32139772 PMCID: PMC7058017 DOI: 10.1038/s42003-020-0826-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Mutations to the gene encoding superoxide dismutase-1 (SOD1) were the first genetic elements discovered that cause motor neuron disease (MND). These mutations result in compromised SOD1 dimer stability, with one of the severest and most common mutations Ala4Val (A4V) displaying a propensity to monomerise and aggregate leading to neuronal death. We show that the clinically used ebselen and related analogues promote thermal stability of A4V SOD1 when binding to Cys111 only. We have developed a A4V SOD1 differential scanning fluorescence-based assay on a C6S mutation background that is effective in assessing suitability of compounds. Crystallographic data show that the selenium atom of these compounds binds covalently to A4V SOD1 at Cys111 at the dimer interface, resulting in stabilisation. This together with chemical amenability for hit expansion of ebselen and its on-target SOD1 pharmacological chaperone activity holds remarkable promise for structure-based therapeutics for MND using ebselen as a template.
Collapse
Affiliation(s)
- Varunya Chantadul
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Faculty of Dentistry, Department of Anatomy, Mahidol University, Bangkok, 10400, Thailand
| | - Gareth S A Wright
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kangsa Amporndanai
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Munazza Shahid
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Punjab, 54792, Pakistan
| | - Svetlana V Antonyuk
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gina Washbourn
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Michael Rogers
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Natalie Roberts
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Matthew Pye
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Faculty of Science and Engineering, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - S Samar Hasnain
- Faculty of Health and Life Sciences, Molecular Biophysics Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
31
|
Mutations in Superoxide Dismutase 1 (Sod1) Linked to Familial Amyotrophic Lateral Sclerosis Can Disrupt High-Affinity Zinc-Binding Promoted by the Copper Chaperone for Sod1 (Ccs). Molecules 2020; 25:molecules25051086. [PMID: 32121118 PMCID: PMC7179120 DOI: 10.3390/molecules25051086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023] Open
Abstract
Zinc (II) ions (hereafter simplified as zinc) are important for the structural and functional activity of many proteins. For Cu, Zn superoxide dismutase (Sod1), zinc stabilizes the native structure of each Sod1 monomer, promotes homo-dimerization and plays an important role in activity by "softening" the active site so that copper cycling between Cu(I) and Cu(II) can rapidly occur. Previously, we have reported that binding of Sod1 by its copper chaperone (Ccs) stabilizes a conformation of Sod1 that promotes site-specific high-affinity zinc binding. While there are a multitude of Sod1 mutations linked to the familial form of amyotrophic lateral sclerosis (fALS), characterizations by multiple research groups have been unable to realize strong commonalities among mutants. Here, we examine a set of fALS-linked Sod1 mutations that have been well-characterized and are known to possess variation in their biophysical characteristics. The zinc affinities of these mutants are evaluated here for the first time and then compared with the previously established value for wild-type Sod1 zinc affinity. Ccs does not have the same ability to promote zinc binding to these mutants as it does for the wild-type version of Sod1. Our data provides a deeper look into how (non)productive Sod1 maturation by Ccs may link a diverse set of fALS-Sod1 mutations.
Collapse
|
32
|
Garcia C, Vidal-Taboada JM, Syriani E, Salvado M, Morales M, Gamez J. Haplotype Analysis of the First A4V- SOD1 Spanish Family: Two Separate Founders or a Single Common Founder? Front Genet 2019; 10:1109. [PMID: 31781168 PMCID: PMC6857184 DOI: 10.3389/fgene.2019.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/16/2019] [Indexed: 12/02/2022] Open
Abstract
Despite the genetic heterogeneity reported in familial amyotrophic lateral sclerosis (ALS) (fALS), Cu/Zn superoxide-dismutase (SOD1) gene mutations are the second most common cause of the disease, accounting for around 20% of all families (ALS1) and isolated sporadic cases (sALS). At least 186 different mutations in the SOD1 gene have been reported to date. The possibility of a single founder and separate founders have been investigated for D90A (p.D91A) and A4V (p.A5V), the most common mutations worldwide. High-throughput single nucleotide polymorphism genotyping studies have suggested two founders for A4V (one for the Amerindian population and another for the European population) although the possibility that the two populations are descended from a single ancient founder cannot be ruled out. We used 15 genetic variants spanning the human chromosome 21 from the SOD1 gene to the SCAF4 gene, comparing them with the population reference panels, to demonstrate that the first A4V Spanish pedigree shared the genetic background reported in the European population.
Collapse
Affiliation(s)
- Cecilia Garcia
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Jose Manuel Vidal-Taboada
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Enrique Syriani
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Maria Salvado
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Miguel Morales
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Josep Gamez
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
33
|
Ricci C, Giannini F, Intini E, Battistini S. Genotype-phenotype correlation and evidence for a common ancestor in two Italian ALS patients with the D124G SOD1 mutation. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:611-614. [PMID: 31170830 DOI: 10.1080/21678421.2019.1621345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: To describe the phenotypic and genotypic features of two unrelated Italian amyotrophic lateral sclerosis (ALS) patients, a FALS case and an apparently sporadic case, carrying the same D124G SOD1 mutation. Since this mutation is very rare, previously reported in only one patient of unknown geographical origin, to look for a founder effect. Methods: Cases were classified based on the El Escorial revised criteria. Genomic DNA was isolated from whole blood samples and the coding region of the SOD1 gene was analyzed by polymerase chain reaction (PCR) and sequencing. For the haplotype analysis, genotyping was carried out using eight polymorphic markers flanking the SOD1 gene. Results: Both patients had a spinal onset in the lower limbs and progressive muscular atrophy (PMA) phenotype. The progression of the disease in our cases differed from that reported for PMA patients, characterized by a longer survival than the majority of ALS phenotypes, being more aggressive, in particular in the sporadic case (survival less than 1 year). Genotyping showed a shared haplotype for the D124G allele and the estimate of the mutation dating revealed that the mutation originated approximately 400 years ago. Conclusions: We have defined for the first time the clinical profile associated with the D124G mutation in SOD1 gene and provided evidence that this mutation in Italy originates from a common founder.
Collapse
Affiliation(s)
- Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena , Siena , Italy and
| | - Fabio Giannini
- Department of Medical, Surgical and Neurological Sciences, University of Siena , Siena , Italy and
| | - Enrica Intini
- Pneumology Unit, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Stefania Battistini
- Department of Medical, Surgical and Neurological Sciences, University of Siena , Siena , Italy and
| |
Collapse
|
34
|
Henderson RD, Garton FC, Kiernan MC, Turner MR, Eisen A. Human cerebral evolution and the clinical syndrome of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:570-575. [PMID: 29666205 PMCID: PMC6581076 DOI: 10.1136/jnnp-2017-317245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Andrew Eisen
- Division of Neurology Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Jung KH, Kim SF, Liu Y, Zhang X. A Fluorogenic
AggTag
Method Based on Halo‐ and SNAP‐Tags to Simultaneously Detect Aggregation of Two Proteins in Live Cells. Chembiochem 2019; 20:1078-1087. [DOI: 10.1002/cbic.201800782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kwan Ho Jung
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | - Sojung F. Kim
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | - Yu Liu
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
| | - Xin Zhang
- Department of ChemistryThe Pennsylvania State University University Park PA 16802 USA
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State University University Park PA 16802 USA
- The Huck Institutes of the Life SciencesThe Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
36
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
37
|
Theme 1 Genetics and genomics. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:91-111. [DOI: 10.1080/21678421.2018.1510210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Saeed M. Locus and gene-based GWAS meta-analysis identifies new diabetic nephropathy genes. Immunogenetics 2018; 70:347-353. [PMID: 29147756 DOI: 10.1007/s00251-017-1044-0/tables/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/02/2017] [Indexed: 05/22/2023]
Abstract
Objective Assimilation of SNPs Interacting in Synchrony (OASIS) is a locus-based clustering algorithm recently described that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders. Diabetic nephropathy (DN) is incompletely understood due to a paucity of genes identified despite several GWAS. OASIS was applied to three DN dbGAP GWAS datasets (4725 subjects; 1.06 million SNPs). OASIS identified 19 DN genes which were verified using single variant replication in a standard association study and gene-based analysis using GATES. CARS and FRMD3 were confirmed as DN genes, and five known diabetes-associated genes, viz. NLRP3, INPPL1, PIK3C2G, NRXN3, and TBC1D4, not previously identified using these datasets were discovered. Furthermore, three additional novel DN genes were found which replicated in two sets of analysis, viz. NTN1, EBF2, and DNAH11. Hence, composite analysis with OASIS, gene-based, and single variant association testing can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
39
|
Tang L, Ma Y, Liu X, Chen L, Fan D. Identification of an A4V SOD1 mutation in a Chinese patient with amyotrophic lateral sclerosis without the A4V founder effect common in North America. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:466-468. [PMID: 29564924 DOI: 10.1080/21678421.2018.1451895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We identified a missense alanine to valine mutation at codon 4 (A4V) in the Cu/Zn superoxide dismutase (SOD1) gene in a 51-year-old male of Chinese origin with familial amyotrophic lateral sclerosis (ALS). The patient displayed a typical A4V-related phenotype that included rapid progression and predominant lower motor neuron involvement. This patient is the first such carrier reported outside Caucasian ALS patients, despite the fact that A4V mutations account for up to 50% of all SOD1 mutations in North America. Further SNP analyses showed that the A4V patient of Chinese origin did not share the common founder effect observed in North America.
Collapse
Affiliation(s)
- Lu Tang
- a Department of Neurology , Peking University Third Hospital , Beijing , PR China
| | - Yan Ma
- a Department of Neurology , Peking University Third Hospital , Beijing , PR China
| | - Xiaolu Liu
- a Department of Neurology , Peking University Third Hospital , Beijing , PR China
| | - Lu Chen
- a Department of Neurology , Peking University Third Hospital , Beijing , PR China
| | - Dongsheng Fan
- a Department of Neurology , Peking University Third Hospital , Beijing , PR China
| |
Collapse
|
40
|
Schneider R, Weichert A, Rogaeva E, Robertson J, Keith J, Zinman L. Clinical Reasoning: A 42-year-old man with unilateral leg weakness. Neurology 2018; 90:e1085-e1090. [PMID: 29555890 DOI: 10.1212/wnl.0000000000005179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Raphael Schneider
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada.
| | - Anna Weichert
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Ekaterina Rogaeva
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Janice Robertson
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Julia Keith
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Lorne Zinman
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| |
Collapse
|
41
|
Yuan TA, Yourk V, Farhat A, Ziogas A, Meyskens FL, Anton-Culver H, Liu-Smith F. A Case-Control Study of the Genetic Variability in Reactive Oxygen Species-Metabolizing Enzymes in Melanoma Risk. Int J Mol Sci 2018; 19:ijms19010242. [PMID: 29342889 PMCID: PMC5796190 DOI: 10.3390/ijms19010242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that ultraviolet (UV)-induced chemiexcitation of melanin fragments leads to DNA damage; and chemiexcitation of melanin fragments requires reactive oxygen species (ROS), as ROS excite an electron in the melanin fragments. In addition, ROS also cause DNA damages on their own. We hypothesized that ROS producing and metabolizing enzymes were major contributors in UV-driven melanomas. In this case-control study of 349 participants, we genotyped 23 prioritized single nucleotide polymorphisms (SNPs) in nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4 (NOX1 and NOX4, respectively), CYBA, RAC1, superoxide dismutases (SOD1, SOD2, and SOD3) and catalase (CAT), and analyzed their associated melanoma risk. Five SNPs, namely rs1049255 (CYBA), rs4673 (CYBA), rs10951982 (RAC1), rs8031 (SOD2), and rs2536512 (SOD3), exhibited significant genotypic frequency differences between melanoma cases and healthy controls. In simple logistic regression, RAC1 rs10951982 (odds ratio (OR) 8.98, 95% confidence interval (CI): 5.08 to 16.44; p < 0.001) reached universal significance (p = 0.002) and the minor alleles were associated with increased risk of melanoma. In contrast, minor alleles in SOD2 rs8031 (OR 0.16, 95% CI: 0.06 to 0.39; p < 0.001) and SOD3 rs2536512 (OR 0.08, 95% CI: 0.01 to 0.31; p = 0.001) were associated with reduced risk of melanoma. In multivariate logistic regression, RAC1 rs10951982 (OR 6.15, 95% CI: 2.98 to 13.41; p < 0.001) remained significantly associated with increased risk of melanoma. Our results highlighted the importance of RAC1, SOD2, and SOD3 variants in the risk of melanoma.
Collapse
Affiliation(s)
- Tze-An Yuan
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA.
| | - Vandy Yourk
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA.
| | - Ali Farhat
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA.
| | - Argyrios Ziogas
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Frank L Meyskens
- Program in Public Health, University of California Irvine, Irvine, CA 92697, USA.
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA.
| | - Hoda Anton-Culver
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Feng Liu-Smith
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, Irvine, CA 92697, USA.
| |
Collapse
|
42
|
Saeed M. Locus and gene-based GWAS meta-analysis identifies new diabetic nephropathy genes. Immunogenetics 2017; 70:347-353. [PMID: 29147756 DOI: 10.1007/s00251-017-1044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Objective Assimilation of SNPs Interacting in Synchrony (OASIS) is a locus-based clustering algorithm recently described that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders. Diabetic nephropathy (DN) is incompletely understood due to a paucity of genes identified despite several GWAS. OASIS was applied to three DN dbGAP GWAS datasets (4725 subjects; 1.06 million SNPs). OASIS identified 19 DN genes which were verified using single variant replication in a standard association study and gene-based analysis using GATES. CARS and FRMD3 were confirmed as DN genes, and five known diabetes-associated genes, viz. NLRP3, INPPL1, PIK3C2G, NRXN3, and TBC1D4, not previously identified using these datasets were discovered. Furthermore, three additional novel DN genes were found which replicated in two sets of analysis, viz. NTN1, EBF2, and DNAH11. Hence, composite analysis with OASIS, gene-based, and single variant association testing can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
43
|
Madill M, McDonagh K, Ma J, Vajda A, McLoughlin P, O'Brien T, Hardiman O, Shen S. Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Mol Brain 2017; 10:22. [PMID: 28610619 PMCID: PMC5470320 DOI: 10.1186/s13041-017-0300-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis, a devastating neurodegenerative disease, is characterized by the progressive loss of motor neurons and the accumulation of misfolded protein aggregates. The latter suggests impaired proteostasis may be a key factor in disease pathogenesis, though the underlying mechanisms leading to the accumulation of aggregates is unclear. Further, recent studies have indicated that motor neuron cell death may be mediated by astrocytes. Herein we demonstrate that ALS patient iPSC-derived astrocytes modulate the autophagy pathway in a non-cell autonomous manner. We demonstrate cells treated with patient derived astrocyte conditioned medium demonstrate decreased expression of LC3-II, a key adapter protein required for the selective degradation of p62 and ubiquitinated proteins targeted for degradation. We observed an increased accumulation of p62 in cells treated with patient conditioned medium, with a concomitant increase in the expression of SOD1, a protein associated with the development of ALS. Activation of autophagic mechanisms with Rapamycin reduces the accumulation of p62 puncta in cells treated with patient conditioned medium. These data suggest that patient astrocytes may modulate motor neuron cell death by impairing autophagic mechanisms, and the autophagy pathway may be a useful target in the development of novel therapeutics.
Collapse
Affiliation(s)
- Martin Madill
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Katya McDonagh
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
| | - Alice Vajda
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Paul McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sanbing Shen
- Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
44
|
Saeed M. Novel linkage disequilibrium clustering algorithm identifies new lupus genes on meta-analysis of GWAS datasets. Immunogenetics 2017; 69:295-302. [PMID: 28246883 PMCID: PMC5400794 DOI: 10.1007/s00251-017-0976-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.
Collapse
Affiliation(s)
- Mohammad Saeed
- Department of Genomics, Arkana Laboratories, 10810 Executive Center Drive, Suite 100, Little Rock, AR, 72211, USA.
| |
Collapse
|
45
|
Haulcomb MM, Meadows RM, Miller WM, McMillan KP, Hilsmeyer MJ, Wang X, Beaulieu WT, Dickinson SL, Brown TJ, Sanders VM, Jones KJ. Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis. Neural Regen Res 2017; 12:1664-1679. [PMID: 29171432 PMCID: PMC5696848 DOI: 10.4103/1673-5374.217346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival. Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression. Use of the mSOD1G93A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients, while investigating underlying disease-induced changes. In the present study, we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom, resembling the common gait abnormality foot drop, along with an accompanying forelimb compensatory mechanism in the mSOD1G93A mouse. Following these initial changes, mSOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait. As the disease progressed, these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared. We next applied these initial findings to investigate the inherent variability in B6SJL mSOD1G93A survival. We identified four behavioral variables that, when combined in a cluster analysis, identified two subpopulations with different disease progression rates: a fast progression group and a slow progression group. This behavioral assessment paradigm, with its analytical approaches, provides a method for monitoring disease progression and detecting mSOD1 subgroups with different disease severities. This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression. Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.
Collapse
Affiliation(s)
- Melissa M Haulcomb
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Rena M Meadows
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN; Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Whitney M Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Kathryn P McMillan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - MeKenzie J Hilsmeyer
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xuefu Wang
- Department of Statistics, Indiana University, Bloomington, IN, USA
| | | | - Stephanie L Dickinson
- Department of Statistics, Indiana University, Bloomington, IN; Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Todd J Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Virginia M Sanders
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
46
|
Fujimaki N, Nishiya K, Miura T, Nakabayashi T. Acquisition of pro-oxidant activity of fALS-linked SOD1 mutants as revealed using circular dichroism and UV-resonance Raman spectroscopy. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Su X, Kang PB, Russell JA, Simmons Z. Ethical issues in the evaluation of adults with suspected genetic neuromuscular disorders. Muscle Nerve 2016; 54:997-1006. [PMID: 27615030 DOI: 10.1002/mus.25400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Genetic testing is rapidly becoming an increasingly significant part of the diagnostic armamentarium of neuromuscular clinicians. Although technically easy to order, the results of such testing, whether positive or negative, have potentially enormous consequences for the individual tested and for family members. As a result, ethical considerations must be in the forefront of the physician's agenda when obtaining genetic testing. Informed consent is an important starting point for discussions between physicians and patients, but the counseling embedded in the informed consent process must be an ongoing part of subsequent interactions, including return of results and follow-up. Patient autonomy, including the right to know and right not-to-know results, must be respected. Considerations of capacity, physician beneficence and nonmaleficence, and privacy all play roles in the process. Muscle Nerve 54: 997-1006, 2016.
Collapse
Affiliation(s)
- Xiaowei Su
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Peter B Kang
- Division of Pediatric Neurology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - James A Russell
- Section of Neurology, Lahey Hospital and Medical Center, Burlington, Massachusetts, USA
| | - Zachary Simmons
- Departments of Neurology and Humanities, Penn State Hershey Medical Center, 30 Hope Drive, Hershey, Pennsylvania, 17033, USA
| |
Collapse
|
48
|
Li HF, Wu ZY. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener 2016; 5:3. [PMID: 26843957 PMCID: PMC4738789 DOI: 10.1186/s40035-016-0050-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive neuronal loss and degeneration of upper motor neuron (UMN) and lower motor neuron (LMN). The clinical presentations of ALS are heterogeneous and there is no single test or procedure to establish the diagnosis of ALS. Most cases are diagnosed based on symptoms, physical signs, progression, EMG, and tests to exclude the overlapping conditions. Familial ALS represents about 5 ~ 10 % of ALS cases, whereas the vast majority of patients are sporadic. To date, more than 20 causative genes have been identified in hereditary ALS. Detecting the pathogenic mutations or risk variants for each ALS individual is challenging. However, ALS patients carrying some specific mutations or variant may exhibit subtly distinct clinical features. Unraveling the respective genotype-phenotype correlation has important implications for the genetic explanations. In this review, we will delineate the clinical features of ALS, outline the major ALS-related genes, and summarize the possible genotype-phenotype correlations of ALS.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| |
Collapse
|
49
|
Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6:171. [PMID: 26629397 PMCID: PMC4653353 DOI: 10.4103/2152-7806.169561] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease affecting motor neurons with an incidence of about 1/100,000. Most ALS cases are sporadic, but 5–10% of the cases are familial ALS. Both sporadic and familial ALS (FALS) are associated with degeneration of cortical and spinal motor neurons. The etiology of ALS remains unknown. However, mutations of superoxide dismutase 1 have been known as the most common cause of FALS. In this study, we provide a comprehensive review of ALS. We cover all aspects of the disease including epidemiology, comorbidities, environmental risk factor, molecular mechanism, genetic factors, symptoms, diagnostic, treatment, and even the available supplement and management of ALS. This will provide the reader with an advantage of receiving a broad range of information about the disease.
Collapse
Affiliation(s)
- Sara Zarei
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Karen Carr
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Luz Reiley
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Kelvin Diaz
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Orleiquis Guerra
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | | | - Wilfredo Pagani
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Daud Lodin
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Gloria Orozco
- Department of Medicine, San Juan Bautista School of Medicine, Caguas, USA
| | - Angel Chinea
- Neurologist, Caribbean Neurological Center, Caguas, USA
| |
Collapse
|
50
|
Shi Y, Acerson MJ, Shuford KL, Shaw BF. Voltage-Induced Misfolding of Zinc-Replete ALS Mutant Superoxide Dismutase-1. ACS Chem Neurosci 2015. [PMID: 26207449 DOI: 10.1021/acschemneuro.5b00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The monomerization of Cu, Zn superoxide dismutase (SOD1) is an early step along pathways of misfolding linked to amyotrophic lateral sclerosis (ALS). Monomerization requires the reversal of two post-translational modifications that are thermodynamically favorable: (i) dissociation of active-site metal ions and (ii) reduction of intramolecular disulfide bonds. This study found, using amide hydrogen/deuterium (H/D) exchange, capillary electrophoresis, and lysine-acetyl protein charge ladders, that ALS-linked A4V SOD1 rapidly monomerizes and partially unfolds in an external electric field (of physiological strength), without loss of metal ions, exposure to disulfide-reducing agents, or Joule heating. Voltage-induced monomerization was not observed for metal-free A4V SOD1, metal-free WT SOD1, or metal-loaded WT SOD1. Computational modeling suggested a mechanism for this counterintuitive effect: subunit macrodipoles of dimeric SOD1 are antiparallel and amplified 2-fold by metal coordination, which increases torque at the dimer interface as subunits rotate to align with the electric field.
Collapse
Affiliation(s)
- Yunhua Shi
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Mark J. Acerson
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kevin L. Shuford
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Bryan F. Shaw
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|