1
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
2
|
Scatà C, Ferreira FC, Padilha MCSV, Carandina A, Asnaghi R, Bellocchi C, Tobaldini E, Montano N, Soares PPDS, Rodrigues GD. Blunted cardiac autonomic dynamics to active standing test in postmenopausal women. Front Cardiovasc Med 2024; 11:1402086. [PMID: 39228661 PMCID: PMC11368856 DOI: 10.3389/fcvm.2024.1402086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Although both aging and menopause influence cardiovascular autonomic control, the effect of menopause per se remains unclear. The current study was undertaken to test the hypothesis that post-menopausal women (PMW) have a blunted cardiovascular autonomic adjustment to active standing compared to pre-menopausal women. Thus, we compared the heart rate variability (HRV) indexes from supine (SUP) to orthostatic (ORT) positions among young women (YW), young men (YM), older men (OM), and PMW. Methods The participants rested for 10 min in SUP and then stood up and remained for 5 min in ORT. ECG was continuously recorded, and R-R time series of about 300 beats were analyzed using linear (spectral analysis) and non-linear (symbolic analysis) methods. The variation from SUP to ORT was calculated (Δ = ORT-SUP) for each HRV index. Results In SUP, no difference was found for any HRV index among groups. However, Δ0V% and ΔLFn (cardiac sympathetic modulation) were reduced in PWM compared to all groups (OM, YW, and YM), while Δ2UV% and ΔHFn (cardiac vagal modulation) were reduced in PMW than the younger group (YW and YM). No differences were found among the male groups (OM and YM). Discussion In light of our results, the cardiac autonomic dynamic response to orthostatic stress is blunted in post-menopausal women compared to younger women and older men, a finding that might be influenced not only by aging.
Collapse
Affiliation(s)
- Costanza Scatà
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felipe C. Ferreira
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | | | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Riccardo Asnaghi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Gabriel D. Rodrigues
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
3
|
Eraky AM, Yerramalla Y, Khan A, Mokhtar Y, Alamrosy M, Farag A, Wright A, Grounds M, Gregorich NM. Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature. Int J Mol Sci 2024; 25:8058. [PMID: 39125627 PMCID: PMC11311757 DOI: 10.3390/ijms25158058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The autonomic nervous system plays a key role in maintaining body hemostasis through both the sympathetic and parasympathetic nervous systems. Sympathetic overstimulation as a reflex to multiple pathologies, such as septic shock, brain injury, cardiogenic shock, and cardiac arrest, could be harmful and lead to autonomic and immunologic dysfunction. The continuous stimulation of the beta receptors on immune cells has an inhibitory effect on these cells and may lead to immunologic dysfunction through enhancing the production of anti-inflammatory cytokines, such as interleukin-10 (IL-10), and inhibiting the production of pro-inflammatory factors, such as interleukin-1B IL-1B and tissue necrotizing factor-alpha (TNF-alpha). Sympathetic overstimulation-induced autonomic dysfunction may also happen due to adrenergic receptor insensitivity or downregulation. Administering anti-adrenergic medication, such as beta-blockers, is a promising treatment to compensate against the undesired effects of adrenergic surge. Despite many misconceptions about beta-blockers, beta-blockers have shown a promising effect in decreasing mortality in patients with critical illness. In this review, we summarize the recently published articles that have discussed using beta-blockers as a promising treatment to decrease mortality in critically ill patients, such as patients with septic shock, traumatic brain injury, cardiogenic shock, acute decompensated heart failure, and electrical storm. We also discuss the potential pathophysiology of beta-blockers in various types of critical illness. More clinical trials are encouraged to evaluate the safety and effectiveness of beta-blockers in improving mortality among critically ill patients.
Collapse
Affiliation(s)
- Akram M. Eraky
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
- Medical Education Department, Kansas City University, Kansas City, MO 64106, USA
| | - Yashwanth Yerramalla
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Adnan Khan
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Yasser Mokhtar
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Mostafa Alamrosy
- Cardiology and Angiology Unit, Department of Clinical and Experimental Internal Medicine, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt;
| | - Amr Farag
- Critical Care Medicine, Portsmouth University Hospital, Portsmouth PO6 3LY, UK;
| | - Alisha Wright
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
| | - Matthew Grounds
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
| | - Nicole M. Gregorich
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| |
Collapse
|
4
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024:AD.2024.0570. [PMID: 39012663 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
|
5
|
Jiang H, Zhao S, Wu Q, Cao Y, Zhou W, Gong Y, Shao C, Chi A. Dragon boat exercise reshapes the temporal-spatial dynamics of the brain. PeerJ 2024; 12:e17623. [PMID: 38952974 PMCID: PMC11216202 DOI: 10.7717/peerj.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/02/2024] [Indexed: 07/03/2024] Open
Abstract
Although exercise training has been shown to enhance neurological function, there is a shortage of research on how exercise training affects the temporal-spatial synchronization properties of functional networks, which are crucial to the neurological system. This study recruited 23 professional and 24 amateur dragon boat racers to perform simulated paddling on ergometers while recording EEG. The spatiotemporal dynamics of the brain were analyzed using microstates and omega complexity. Temporal dynamics results showed that microstate D, which is associated with attentional networks, appeared significantly altered, with significantly higher duration, occurrence, and coverage in the professional group than in the amateur group. The transition probabilities of microstate D exhibited a similar pattern. The spatial dynamics results showed the professional group had lower brain complexity than the amateur group, with a significant decrease in omega complexity in the α (8-12 Hz) and β (13-30 Hz) bands. Dragon boat training may strengthen the attentive network and reduce the complexity of the brain. This study provides evidence that dragon boat exercise improves the efficiency of the cerebral functional networks on a spatiotemporal scale.
Collapse
Affiliation(s)
- Hongke Jiang
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Shanguang Zhao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Qianqian Wu
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Yingying Cao
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Wu Zhou
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Youwu Gong
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Changzhuan Shao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Aiping Chi
- School of Physical Education, Shaanxi Normal University, Xian, China
| |
Collapse
|
6
|
Tenberg A, Tahara N, Grewal A, Herrera A, Klein LM, Lebo R, Zink EK, Bahouth MN. Dysautonomia and activity in the early stroke recovery period. Neurol Sci 2024; 45:2505-2521. [PMID: 38246939 DOI: 10.1007/s10072-023-07289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Maintaining cerebral perfusion in the early stages of recovery after stroke is paramount. Autoregulatory function may be impaired during this period leaving cerebral perfusion directly reliant on intravascular volume and blood pressure (BP) with increased risk for expanding cerebral infarction during periods of low BP and hemorrhagic transformation during BP elevations. We suspected that dysautonomia is common during the acute period related to both pre-existing vascular risk factors and potentially independent of such conditions. Thus, we sought to understand the state of the science specific to dysautonomia and acute stroke. The scoping review search included multiple databases and key terms related to acute stroke and dysautonomia. The team employed a rigorous review process to identify, evaluate, and summarize relevant literature. We additionally summarized common clinical approaches used to detect dysautonomia at the bedside. The purpose of this scoping review is to understand the state of the science for the identification, treatment, and impact of dysautonomia on acute stroke patient outcomes. There is a high prevalence of dysautonomia among persons with stroke, though there is significant variability in the type of measures and definitions used to diagnose dysautonomia. While dysautonomia appears to be associated with poor functional outcome and post-stroke complications, there is a paucity of high-quality evidence, and generalizability is limited by heterogenous approaches to these studies. There is a need to establish common definitions, standard measurement tools, and a roadmap for incorporating these measures into clinical practice so that larger studies can be conducted.
Collapse
Affiliation(s)
- Amelia Tenberg
- Brain Rescue Unit, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe St; Phipps 486, Baltimore, MD, 21287, USA
| | - Nozomi Tahara
- Department of Neuroscience Nursing, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Amit Grewal
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alison Herrera
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lisa M Klein
- Department of Neuroscience Nursing, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Rachael Lebo
- Johns Hopkins School of Medicine Welch Medical Library, Baltimore, MD, USA
| | - Elizabeth K Zink
- Brain Rescue Unit, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe St; Phipps 486, Baltimore, MD, 21287, USA
- Department of Neuroscience Nursing, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Mona N Bahouth
- Brain Rescue Unit, Department of Neurology, Johns Hopkins School of Medicine, 600 N Wolfe St; Phipps 486, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Villagrán-García M, Farina A, Arzalluz-Luque J, Campetella L, Muñiz-Castrillo S, Benaiteau M, Peter E, Dumez P, Wucher V, Dhairi M, Picard G, Rafiq M, Psimaras D, Rogemond V, Joubert B, Honnorat J. Dysautonomia in anti-Hu paraneoplastic neurological syndromes. J Neurol 2024; 271:3359-3369. [PMID: 38494470 DOI: 10.1007/s00415-024-12278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Dysautonomia has been associated with paraneoplastic neurological syndrome (PNS)-related mortality in anti-Hu PNS, but its frequency and spectrum remain ill-defined. We describe anti-Hu patients with dysautonomia, estimate its frequency, and compare them to patients without dysautonomia. METHODS Patients with anti-Hu antibodies diagnosed in the study centre (1990-2022) were retrospectively reviewed; those with autonomic signs and symptoms were identified. RESULTS Among 477 anti-Hu patients, 126 (26%) had dysautonomia (the only PNS manifestation in 7/126, 6%); gastrointestinal (82/126, 65%), cardiovascular (64/126, 51%), urogenital (24/126, 19%), pupillomotor/secretomotor (each, 11/126, 9%), and central hypoventilation (10/126, 8%). Patients with isolated CNS involvement less frequently had gastrointestinal dysautonomia than those with peripheral (alone or combined with CNS) involvement (7/23, 30% vs. 31/44, 70% vs. 37/52, 71%; P = 0.002); while more frequently central hypoventilation (7/23, 30% vs. 1/44, 2.3% vs. 2/52, 4%; P < 0.001) and/or cardiovascular alterations (18/23, 78% vs. 20/44, 45% vs. 26/52, 50%; P = 0.055). Median [95% CI] overall survival was not significantly different between patients with (37 [17; 91] months) or without dysautonomia (28 [22; 39] months; P = 0.78). Cardiovascular dysautonomia (HR: 1.57, 95% CI [1.05; 2.36]; P = 0.030) and central hypoventilation (HR: 3.51, 95% CI [1.54; 8.01]; P = 0.003) were associated with a higher risk of death, and secretomotor dysautonomia a lower risk (HR: 0.28, 95% CI [0.09; 0.89]; P = 0.032). Patients with cardiovascular dysautonomia dying ≤ 1 year from clinical onset had severe CNS (21/27, 78%), frequently brainstem (13/27, 48%), involvement. DISCUSSION Anti-Hu PNS dysautonomia is rarely isolated, frequently gastrointestinal, cardiovascular and urogenital. CNS dysfunction, particularly brainstem, associates with lethal cardiovascular alterations and central hypoventilation, while peripheral involvement preferentially associates with gastrointestinal or secretomotor dysautonomia, being the latest more indolent.
Collapse
Affiliation(s)
- Macarena Villagrán-García
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
| | - Antonio Farina
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50139, Florence, Italy
| | - Joaquín Arzalluz-Luque
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- Department of Neurology, Hospital Universitario Virgen Macarena, 41009, Seville, Spain
| | - Lucia Campetella
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
| | - Sergio Muñiz-Castrillo
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Marie Benaiteau
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
| | - Elise Peter
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
| | - Pauline Dumez
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
| | - Valentin Wucher
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
| | - Maroua Dhairi
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
| | - Géraldine Picard
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
| | - Marie Rafiq
- Department of Neurology, University Hospital of Toulouse, 31300, Toulouse, France
| | - Dimitri Psimaras
- Neurology 2 Department Mazarin, AP-HP, Hospital Group Pitié-Salpêtrière, 75013, Paris, France
- Inserm, CNRS, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Véronique Rogemond
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
| | - Bastien Joubert
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France
| | - Jérôme Honnorat
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, 59 Bd Pinel, 69677, Bron Cedex, France.
- MeLiS-UCBL-CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008, Lyon, France.
| |
Collapse
|
8
|
Rashid A, Roatta S. Hemodynamic changes in the temporalis and masseter muscles during acute stress in healthy humans. Eur J Appl Physiol 2024; 124:1217-1226. [PMID: 37973651 PMCID: PMC10954966 DOI: 10.1007/s00421-023-05349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Autonomic control of orofacial areas is an integral part of the stress response, controlling functions such as pupil dilatation, salivation, and skin blood flow. However, the specific control of blood flow in head muscles during stress is unknown. This study aims to investigate the hemodynamic response of temporalis and masseter muscles in response to five different stressors. METHODS Sixteen healthy individuals were subjected to a randomized series of stressors, including cold pressor test, mental arithmetic test, apnea, isometric handgrip, and post-handgrip muscle ischemia, while in the sitting posture. Finger-pulse photoplethysmography was used to measure arterial blood pressure, heart rate, and cardiac output. Near-infrared spectroscopy was used to measure changes in tissue oxygenation and hemoglobin indices from the temporalis and masseter muscles. RESULTS All stressors effectively and significantly increased arterial blood pressure. Tissue oxygenation index significantly increased in both investigated head muscles during mental arithmetic test (temporalis: 4.22 ± 3.52%; masseter: 3.43 ± 3.63%) and isometric handgrip (temporalis: 3.45 ± 3.09%; masseter: 3.26 ± 3.07%), suggesting increased muscle blood flow. Neither the masseter nor the temporalis muscles evidenced a vasoconstrictive response to any of the stressors tested. CONCLUSION In the different conditions, temporalis and masseter muscles exhibited similar hemodynamic patterns of response, which do not include the marked vasoconstriction generally observed in limb muscles. The peculiar sympathetic control of head muscles is possibly related to the involvement of these muscles in aggressive/defensive reactions and/or to their unfavorable position with regard to hydrostatic blood levels.
Collapse
Affiliation(s)
- Anas Rashid
- Lab of Integrative Physiology, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Silvestro Roatta
- Lab of Integrative Physiology, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
9
|
Hof S, Lingens L, Michels M, Marcus C, Kuebart A, Herminghaus A, Bauer I, Picker O, Truse R, Vollmer C. Local carbachol application induces oral microvascular recruitment and improves gastric tissue oxygenation during hemorrhagic shock in dogs. Front Immunol 2024; 15:1369617. [PMID: 38566995 PMCID: PMC10985194 DOI: 10.3389/fimmu.2024.1369617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Hemorrhagic shock is characterized by derangements of the gastrointestinal microcirculation. Topical therapy with nitroglycerine or iloprost improves gastric tissue oxygenation but not regional perfusion, probably due to precapillary adrenergic innervation. Therefore, this study was designed to investigate the local effect of the parasympathomimetic carbachol alone and in combination with either nitroglycerine or iloprost on gastric and oral microcirculation during hemorrhagic shock. Methods In a cross-over design five female foxhounds were repeatedly randomized into six experimental groups. Carbachol, or carbachol in combination with either nitroglycerine or iloprost were applied topically to the oral and gastric mucosa. Saline, nitroglycerine, or iloprost application alone served as control groups. Then, a fixed-volume hemorrhage was induced by arterial blood withdrawal followed by blood retransfusion after 1h of shock. Gastric and oral microcirculation was determined using reflectance spectrophotometry and laser Doppler flowmetry. Oral microcirculation was visualized with videomicroscopy. Statistics: 2-way-ANOVA for repeated measurements and Bonferroni post-hoc analysis (mean ± SEM; p < 0.05). Results The induction of hemorrhage led to a decrease of gastric and oral tissue oxygenation, that was ameliorated by local carbachol and nitroglycerine application at the gastric mucosa. The sole use of local iloprost did not improve gastric tissue oxygenation but could be supplemented by local carbachol treatment. Adding carbachol to nitroglycerine did not further increase gastric tissue oxygenation. Gastric microvascular blood flow remained unchanged in all experimental groups. Oral microvascular blood flow, microvascular flow index and total vessel density decreased during shock. Local carbachol supply improved oral vessel density during shock and oral microvascular flow index in the late course of hemorrhage. Conclusion The specific effect of shifting the autonomous balance by local carbachol treatment on microcirculatory variables varies between parts of the gastrointestinal tract. Contrary to our expectations, the improvement of gastric tissue oxygenation by local carbachol or nitroglycerine application was not related to increased microvascular perfusion. When carbachol is used in combination with local vasodilators, the additional effect on gastric tissue oxygenation depends on the specific drug combination. Therefore, modulation of tissue oxygen consumption, mitochondrial function or alterations in regional blood flow distribution should be investigated.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rocha I, González-García M, Carrillo-Franco L, Dawid-Milner MS, López-González MV. Influence of Brainstem's Area A5 on Sympathetic Outflow and Cardiorespiratory Dynamics. BIOLOGY 2024; 13:161. [PMID: 38534431 DOI: 10.3390/biology13030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Area A5 is a noradrenergic cell group in the brain stem characterised by its important role in triggering sympathetic activity, exerting a profound influence on the sympathetic outflow, which is instrumental in the modulation of cardiovascular functions, stress responses and various other physiological processes that are crucial for adaptation and survival mechanisms. Understanding the role of area A5, therefore, not only provides insights into the basic functioning of the sympathetic nervous system but also sheds light on the neuronal basis of a number of autonomic responses. In this review, we look deeper into the specifics of area A5, exploring its anatomical connections, its neurochemical properties and the mechanisms by which it influences sympathetic nervous system activity and cardiorespiratory regulation and, thus, contributes to the overall dynamics of the autonomic function in regulating body homeostasis.
Collapse
Affiliation(s)
- Isabel Rocha
- Lisbon School of Medicine and CCUL@Rise, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Manuel Victor López-González
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
11
|
Villagrán-García M, Farina A, Campetella L, Arzalluz-Luque J, Honnorat J. Autonomic nervous system involvement in autoimmune encephalitis and paraneoplastic neurological syndromes. Rev Neurol (Paris) 2024; 180:107-116. [PMID: 38142198 DOI: 10.1016/j.neurol.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
In autoimmune neurological diseases, the autonomic nervous system can be the primary target of autoimmunity (e.g. autoimmune autonomic ganglionopathy), or, more frequently, be damaged together with other areas of the nervous system (e.g. Guillain-Barré syndrome). Patients with autoimmune encephalitis and paraneoplastic neurological syndromes (PNS) often develop dysautonomia; however, the frequency and spectrum of autonomic signs and symptoms remain ill defined except for those scenarios in which dysautonomia is a core feature of the disease. Such is the case of Lambert-Eaton myasthenic syndrome, Morvan syndrome or anti-NMDAR encephalitis; in the latter, patients with dysautonomia have been reported to carry a more severe disease and to retain higher disability than those without autonomic dysfunction. Likewise, the presence of autonomic involvement indicates a higher risk of death due to neurological cause in patients with anti-Hu PNS. However, in anti-Hu and other PNS, as well as in the context of immune checkpoint inhibitors' toxicities, the characterization of autonomic involvement is frequently overshadowed by the severity of other neurological symptoms and signs. When evaluated with tests specific for autonomic function, patients with autoimmune encephalitis or PNS usually show a more widespread autonomic involvement than clinically suggested, which may reflect a potential gap of care when it comes to diagnosing dysautonomia. This review aims to revise the autonomic involvement in patients with autoimmune encephalitis and PNS, using for that purpose an antibody-based approach. We also discuss and provide general recommendations for the evaluation and management of dysautonomia in these patients.
Collapse
Affiliation(s)
- M Villagrán-García
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, hôpital neurologique, Bron, France; Inserm U1314, MeLiS-UCBL-CNRS UMR 5284, University Claude-Bernard Lyon 1, Lyon, France
| | - A Farina
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, hôpital neurologique, Bron, France; Inserm U1314, MeLiS-UCBL-CNRS UMR 5284, University Claude-Bernard Lyon 1, Lyon, France; Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - L Campetella
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, hôpital neurologique, Bron, France; Inserm U1314, MeLiS-UCBL-CNRS UMR 5284, University Claude-Bernard Lyon 1, Lyon, France
| | - J Arzalluz-Luque
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, hôpital neurologique, Bron, France; Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Honnorat
- French Reference Centre on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, hôpital neurologique, Bron, France; Inserm U1314, MeLiS-UCBL-CNRS UMR 5284, University Claude-Bernard Lyon 1, Lyon, France.
| |
Collapse
|
12
|
Mao S, Xiao K, Zhou W, Xu H, Zhang S. The Impact of Hot Spring Hydrotherapy on Pain Perception and Dysfunction Severity in Patients with Chronic Low Back Pain: A Systematic Review and Meta-Analysis. J Pain Res 2023; 16:3925-3944. [PMID: 38026467 PMCID: PMC10658949 DOI: 10.2147/jpr.s438744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Background Chronic Low Back Pain (CLBP) is a prevalent global health issue, leading to prolonged discomfort and functional limitations. Hot spring hydrotherapy, which utilizes mineral-rich, warm spring water, offers a unique physical therapy that holds promise in alleviating CLBP symptoms. Objective This meta-analysis aims to assess the effectiveness of hot spring hydrotherapy in improving CLBP symptoms, encompassing pain intensity, functional disability, quality of life, and medication usage. Methods A systematic review and meta-analysis were conducted by searching relevant literature in multiple databases. Included studies compared hot spring hydrotherapy with control interventions or other treatments. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated for pain intensity, functional disability, medication usage, and quality of life. Results A total of 16 studies met the inclusion criteria, involving 1656 participants with chronic low back pain across various countries. The meta-analysis demonstrated that hot spring hydrotherapy was effective in reducing pain intensity (SMD = -0.901, 95% CI [-1.777, -0.025], P < 0.05) and improving functional disability (SMD = -3.236, 95% CI [-4.898, -1.575], P < 0.0001) in CLBP patients. Hot spring hydrotherapy also resulted in a significant reduction in medication usage (P < 0.05). Subgroup analysis showed that the effects of hot spring hydrotherapy were more pronounced in patients aged 60 and above, while no significant differences were observed in patients below 60 years of age, single hot Spring Hydrotherapy help improve patients' quality of life. Conclusion Hot spring hydrotherapy is an effective intervention for improving CLBP symptoms, including pain intensity, functional disability, and medication usage. It is particularly beneficial for CLBP patients aged 60 and above. These findings support the integration of hot spring hydrotherapy into the treatment approach for CLBP, although further research is needed to determine its efficacy in younger patients and to explore the underlying mechanisms of its therapeutic effects. Prospero Id CRD42023430860.
Collapse
Affiliation(s)
- Sujie Mao
- Discipline Construction Office, Nanjing Sport Institute, NanJing, Jiangsu, People’s Republic of China
| | - Kaiwen Xiao
- Discipline Construction Office, Nanjing Sport Institute, NanJing, Jiangsu, People’s Republic of China
| | - Wensheng Zhou
- Department of Physical Education, Jiangsu Second Normal University, Nanjing, JiangSu, People’s Republic of China
| | - Hong Xu
- Department of Physical Education, Nanjing Xiao-Zhuang University, Nanjing, JiangSu, People’s Republic of China
| | - Shikun Zhang
- Department of Police Physical Education, Jiangsu Police Institute, Nanjing, JiangSu, People’s Republic of China
| |
Collapse
|
13
|
Rach H, Reynaud E, Kilic-Huck U, Ruppert E, Comtet H, Roy de Belleplaine V, Fuchs F, Van Someren EJW, Geoffroy PA, Bourgin P. Pupillometry to differentiate idiopathic hypersomnia from narcolepsy type 1. J Sleep Res 2023; 32:e13885. [PMID: 37002816 DOI: 10.1111/jsr.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Idiopathic hypersomnia is poorly diagnosed in the absence of biomarkers to distinguish it from other central hypersomnia subtypes. Given that light plays a main role in the regulation of sleep and wake, we explored the retinal melanopsin-based pupil response in patients with idiopathic hypersomnia and narcolepsy type 1, and healthy subjects. Twenty-seven patients with narcolepsy type 1 (women 59%, 36 ± 11.5 years old), 36 patients with idiopathic hypersomnia (women 83%, 27.2 ± 7.2 years old) with long total sleep time (> 11/24 hr), and 43 controls (women 58%, 30.6 ± 9.3 years old) were included in this study. All underwent a pupillometry protocol to assess pupil diameter, and the relative post-illumination pupil response to assess melanopsin-driven pupil responses in the light non-visual input pathway. Differences between groups were assessed using logistic regressions adjusted on age and sex. We found that patients with narcolepsy type 1 had a smaller baseline pupil diameter as compared with idiopathic hypersomnia and controls (p < 0.05). In addition, both narcolepsy type 1 and idiopathic hypersomnia groups had a smaller relative post-illumination pupil response (respectively, 31.6 ± 13.9% and 33.2 ± 9.9%) as compared with controls (38.7 ± 9.7%), suggesting a reduced melanopsin-mediated pupil response in both types of central hypersomnia (p < 0.01). Both narcolepsy type 1 and idiopathic hypersomnia showed a smaller melanopsin-mediated pupil response, and narcolepsy type 1, unlike idiopathic hypersomnia, also displayed a smaller basal pupil diameter. Importantly, we found that the basal pupil size permitted to well discriminate idiopathic hypersomnia from narcolepsy type 1 with a specificity = 66.67% and a sensitivity = 72.22%. Pupillometry may aid to multi-feature differentiation of central hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eve Reynaud
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Ulker Kilic-Huck
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Henri Comtet
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Virginie Roy de Belleplaine
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Fanny Fuchs
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pierre A Geoffroy
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France
- Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| |
Collapse
|
14
|
Wolniczak E, Meyer F, Albrecht A. [The abdominal brain: neuroanatomic perspectives for the abdominal surgeon]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:1037-1045. [PMID: 37142237 DOI: 10.1055/a-2013-7633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The "abdominal brain" does not only consist of a separate enteric nervous system but also of bidirectional connections to the autonomous nerve system with parasympathicus und sympathicus as well as brain and spinal cord. Novel studies have shown that these connections can quickly transfer information on the ingested nutrients to the brain to conduct the feeling of hunger and more complex behaviour, such as "reward-related learning". However, even emotional experience, in particular, stress, has a strong impact onto the gastrointestinal system. The immune system, motility and barrier function of the gastrointestinal tract are modulated by the intestinal microbiota. Local bacteria may directly influence neuronal communication by released metabolic products and neuropeptides as well as may control inflammatory factors. Intensive research over the last 10 years was able to provide evidence that intestinal microbiota may affect emotional and cognitive aspects of our behaviour and, thus, it might be in the focus of numerous neuropsychiatric diseases, such as depressions and anxiety disorders.The presented review is to provide a short summary of the I): anatomic basics of the so-called gut-brain axis and II): modi of the bidirectional regulation. Through indirect connections to the limbic system, gut-brain axis can substantially influence stress and anxiety but also the pain processing. In addition, the role of microbiota is outlined and future paths are shown, e.g., how the (microbiota-)gut-brain axis may alter emotional experience, pain processing and intestinal function. Such associations are relevant for further development of visceral medicine, and, thus, also for the abdominal surgeon to derive future treatment concepts with interdisciplinary orientation.
Collapse
Affiliation(s)
- Erik Wolniczak
- Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
| | - Frank Meyer
- Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Deutschland
| | - Anne Albrecht
- Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
15
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
16
|
Catrambone V, Valenza G. Complex Brain-Heart Mapping in Mental and Physical Stress. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:495-504. [PMID: 37817820 PMCID: PMC10561752 DOI: 10.1109/jtehm.2023.3280974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/29/2023] [Accepted: 05/25/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE The central and autonomic nervous systems are deemed complex dynamic systems, wherein each system as a whole shows features that the individual system sub-components do not. They also continuously interact to maintain body homeostasis and appropriate react to endogenous and exogenous stimuli. Such interactions are comprehensively referred to functional brain-heart interplay (BHI). Nevertheless, it remains uncertain whether this interaction also exhibits complex characteristics, that is, whether the dynamics of the entire nervous system inherently demonstrate complex behavior, or if such complexity is solely a trait of the central and autonomic systems. Here, we performed complexity mapping of the BHI dynamics under mental and physical stress conditions. METHODS AND PROCEDURES Electroencephalographic and heart rate variability series were obtained from 56 healthy individuals performing mental arithmetic or cold-pressure tasks, and physiological series were properly combined to derive directional BHI series, whose complexity was quantified through fuzzy entropy. RESULTS The experimental results showed that BHI complexity is mainly modulated in the efferent functional direction from the brain to the heart, and mainly targets vagal oscillations during mental stress and sympathovagal oscillations during physical stress. CONCLUSION We conclude that the complexity of BHI mapping may provide insightful information on the dynamics of both central and autonomic activity, as well as on their continuous interaction. CLINICAL IMPACT This research enhances our comprehension of the reciprocal interactions between central and autonomic systems, potentially paving the way for more accurate diagnoses and targeted treatments of cardiovascular, neurological, and psychiatric disorders.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory, Bioengineering and Robotics Research Center E. Piaggio, and Department of Information EngineeringSchool of EngineeringUniversity of Pisa56126PisaItaly
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory, Bioengineering and Robotics Research Center E. Piaggio, and Department of Information EngineeringSchool of EngineeringUniversity of Pisa56126PisaItaly
| |
Collapse
|
17
|
Wu Q, Jiang H, Shao C, Zhang Y, Zhou W, Cao Y, Song J, Shi B, Chi A, Wang C. Characteristics of changes in the functional status of the brain before and after 1,000 m all-out paddling for different levels of dragon boat athletes. Front Psychol 2023; 14:1109949. [PMID: 37287781 PMCID: PMC10243504 DOI: 10.3389/fpsyg.2023.1109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/31/2023] [Indexed: 06/09/2023] Open
Abstract
Purposes Dragon boat is a traditional sport in China, but the brain function characteristics of dragon boat athletes are still unclear. Our purpose is to explore the changing characteristics of brain function of dragon boat athletes at different levels before and after exercise by monitoring the changes of EEG power spectrum and microstate of athletes before and after rowing. Methods Twenty-four expert dragon boat athletes and 25 novice dragon boat athletes were selected as test subjects to perform the 1,000 m all-out paddling exercise on a dragon boat dynamometer. Their resting EEG data was collected pre- and post-exercise, and the EEG data was pre-processed and then analyzed using power spectrum and microstate based on Matlab software. Results Post-Exercise, the Heart Rate peak (HR peak), Percentage of Heart Rate max (HR max), Rating of Perceived Exertion (RPE), and Exercise duration of the novice group were significantly higher than expert group (p < 0.01). Pre-exercise, the power spectral density values in the δ, α1, α2, and β1 bands were significantly higher in the expert group compared to the novice group (p < 0.05). Post-exercise, the power spectral density values in the δ, θ, and α1 bands were significantly lower in the expert group compared to the novice group (p < 0.05), the power spectral density values of α2, β1, and β2 bands were significantly higher (p < 0.05). The results of microstate analysis showed that the duration and contribution of microstate class D were significantly higher in the pre-exercise expert group compared to the novice group (p < 0.05), the transition probabilities of A → D, C → D, and D → A were significantly higher (p < 0.05). Post-exercise, the duration, and contribution of microstate class C in the expert group decreased significantly compared to the novice group (p < 0.05), the occurrence of microstate classes A and D were significantly higher (p < 0.05), the transition probability of A → B was significantly higher (p < 0.05), and the transition probabilities of C → D and D → C were significantly lower (p < 0.05). Conclusion The functional brain state of dragon boat athletes was characterized by expert athletes with closer synaptic connections of brain neurons and higher activation of the dorsal attention network in the resting state pre-exercise. There still had higher activation of cortical neurons after paddling exercise. Expert athletes can better adapt to acute full-speed oar training.
Collapse
Affiliation(s)
- Qianqian Wu
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Hongke Jiang
- Physical Education Department, Shanghai Maritime University, Shanghai, China
| | - Changzhuan Shao
- Physical Education Department, Shanghai Maritime University, Shanghai, China
| | - Yan Zhang
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Wu Zhou
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Yingying Cao
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Jing Song
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Bing Shi
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Aiping Chi
- School of Sports, Shaanxi Normal University, Xi’ an, China
| | - Chao Wang
- School of Sports, Shaanxi Normal University, Xi’ an, China
| |
Collapse
|
18
|
Kronsteiner B, Haberbusch M, Aigner P, Kramer AM, Pilz PM, Podesser BK, Kiss A, Moscato F. A novel ex-vivo isolated rabbit heart preparation to explore the cardiac effects of cervical and cardiac vagus nerve stimulation. Sci Rep 2023; 13:4214. [PMID: 36918673 PMCID: PMC10014867 DOI: 10.1038/s41598-023-31135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The cardiac responses to vagus nerve stimulation (VNS) are still not fully understood, partly due to uncontrollable confounders in the in-vivo experimental condition. Therefore, an ex-vivo Langendorff-perfused rabbit heart with intact vagal innervation is proposed to study VNS in absence of cofounding anesthetic or autonomic influences. The feasibility to evoke chronotropic responses through electrical stimulation ex-vivo was studied in innervated isolated rabbit hearts (n = 6). The general nerve excitability was assessed through the ability to evoke a heart rate (HR) reduction of at least 5 bpm (physiological threshold). The excitability was quantified as the charge needed for a 10-bpm HR reduction. The results were compared to a series of in-vivo experiments rabbits (n = 5). In the ex-vivo isolated heart, the baseline HR was about 20 bpm lower than in-vivo (158 ± 11 bpm vs 181 ± 19 bpm). Overall, the nerve remained excitable for about 5 h ex-vivo. The charges required to reduce HR by 5 bpm were 9 ± 6 µC and 549 ± 370 µC, ex-vivo and in-vivo, respectively. The charges needed for a 10-bpm HR reduction, normalized to the physiological threshold were 1.78 ± 0.8 and 1.22 ± 0.1, in-vivo and ex-vivo, respectively. Overall, the viability of this ex-vivo model to study the acute cardiac effects of VNS was demonstrated.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.
| | - Max Haberbusch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Anne-Margarethe Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Patrick M Pilz
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Engineering, Vienna, Austria
| |
Collapse
|
19
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
20
|
Rang Y, Liu H, Liu C. The mechanisms of learning and memory impairment caused by nonylphenol: a narrative review based on in vivo and in vitro studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5530-5539. [PMID: 36434456 DOI: 10.1007/s11356-022-24278-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Learning and memory play a fundamental role on brain cognitive functions which are crucial for human life. Nonylphenol (NP), a serious environmental pollutant over the world, is proven to be harmful for learning and memory mainly via diet exposure. Currently, besides the administrative restrictions for the use of NP, there are rarely other effective approaches against learning and memory impairment caused by NP. This review summarized the mechanisms underlying NP-induced learning and memory impairment according to in vivo and in vitro experiments. Based on the studies involved in behavior tests, these mechanisms were classified as oxidative stress, neurotransmitter disorder, synaptic plasticity impairment, and neuron injury. In addition, according to the studies which did not conduct behavior tests, the possible mechanisms underlying NP-induced learning and memory impairment were proposed as chronic inflammation and gut permeability increment. Furthermore, this review also revealed the demanding questions for the mechanism investigations and therapeutic methods. Notably, the summarized mechanisms might accelerate the prevention and remediation of NP-induced learning and memory impairment.
Collapse
Affiliation(s)
- Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
22
|
Langford JS, Tokita E, Martindale C, Millsap L, Hemp J, Pace LA, Cortez MM. Quantitative gastrointestinal function and corresponding symptom profiles in autonomic neuropathy. Front Neurol 2022; 13:1027348. [PMID: 36588909 PMCID: PMC9798202 DOI: 10.3389/fneur.2022.1027348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose Peripheral neuropathies with autonomic nervous system involvement are a recognized cause of gastrointestinal dysmotility for a wide spectrum of diseases. Recent advances in wireless motility capsule testing allow improved sampling of regional and whole gut motility to aid in the diagnosis of gastrointestinal motility disorders and may provide additional insight into segment-specific enteric involvement of peripheral neuropathies affecting autonomic nervous system function. Methods We utilized standardized autonomic nervous system (ANS) reflex assessment and wireless motility capsule testing to evaluate 20 individuals with idiopathic autonomic neuropathy and unexplained gastrointestinal symptoms. Additionally, we examined the relationship between quantifiable autonomic neuropathy and gastrointestinal dysmotility at specific neuroanatomical levels. Symptom profiles were evaluated using the 31-item Composite Autonomic Symptom Score questionnaire (COMPASS-31) and compared to wireless motility capsule data. Results We found that transit times were predominately abnormal (delayed) in the foregut (10 of 20; 50%), while contractility abnormalities were far more prominent in the hindgut (17 of 20; 85%), and that motility and symptom patterns, as assessed by the COMPASS-31 GI domain items, generally corresponded. Finally, we also found that there was neuroanatomical overlap in the presence of autonomic reflex abnormalities and WMC-based transit and/or contractility abnormalities. Conclusions We found that transit times were predominately abnormal in the foregut and midgut, while contractility abnormalities were far more prominent in the hindgut in individuals with idiopathic autonomic neuropathy. There was a high rate of agreement in segmental wireless motility capsule data with neuroanatomically corresponding standardized ANS function measures (e.g., cardiovagal, sudomotor, adrenergic). Expanded sudomotor testing, including additional neuroanatomical segments, could provide additional indirect assessment of visceral involvement in ANS dysfunction.
Collapse
Affiliation(s)
- Jordan S. Langford
- University of Utah School of Medicine, University of Utah, Salt Lake City, UT, United States,*Correspondence: Jordan S. Langford
| | - Eric Tokita
- University of Utah School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Cecilia Martindale
- Department of Neurology, Imaging and Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| | - Leah Millsap
- University of Utah School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - James Hemp
- Metrodora Institute, West Valley City, UT, United States
| | - Laura A. Pace
- Metrodora Institute, West Valley City, UT, United States
| | - Melissa M. Cortez
- Department of Neurology, Imaging and Neurosciences Center, University of Utah, Salt Lake City, UT, United States,Melissa M. Cortez
| |
Collapse
|
23
|
Kronsteiner B, Zopf LM, Heimel P, Oberoi G, Kramer AM, Slezak P, Weninger WJ, Podesser BK, Kiss A, Moscato F. Mapping the functional anatomy and topography of the cardiac autonomic innervation for selective cardiac neuromodulation using MicroCT. Front Cell Dev Biol 2022; 10:968870. [PMID: 36172280 PMCID: PMC9511100 DOI: 10.3389/fcell.2022.968870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 01/21/2023] Open
Abstract
Background: Vagus nerve stimulation (VNS) has gained great importance as a promising therapy for a myriad of diseases. Of particular interest is the therapy of cardiovascular diseases, such as heart failure or atrial fibrillation using selective cardiac VNS. However, there is still a lack of organ-specific anatomical knowledge about the fascicular anatomy and topography of the cardiac branch (CB), which diminishes the therapeutic possibilities for selective cardiac neuromodulation. Here, we established a topographical and anatomical map of the superior cardiac VN in two animal species to dissect cervical and cardiac VN morphology. Methods: Autonomic nerves including superior CBs were harvested from domestic pigs and New Zeeland rabbits followed by imaging with microcomputed tomography (µCT) and 3D rendering. The data were analyzed in terms of relevant topographical and anatomical parameters. Results: Our data showed that cardiac vagal fascicles remained separated from other VN fascicles up to 22.19 mm (IQR 14.02-41.30 mm) in pigs and 7.68 mm (IQR 4.06-12.77 mm) in rabbits from the CB point and then started merging with other fascicles. Exchanges of nerve fascicles between sympathetic trunk (ST) and VN were observed in 3 out of 11 nerves, which might cause additional unwanted effects in unselective VNS. Our 3D rendered digital model of the cardiac fascicles was generated showing that CB first remained on the medial side where it branched off the VN, as also shown in the µCT data of 11 pig nerves, and then migrated towards the ventromedial site the further it was traced cranially. Conclusion: Our data provided an anatomical map of the cardiac vagal branches including cervical VN and ST for future approaches of selective cardiac neurostimulation, indicating the best position of selective cardiac VNS just above the CB point.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Lydia M. Zopf
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Patrick Heimel
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Dental Clinic Vienna, Vienna, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Anne M. Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Paul Slezak
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang J. Weninger
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
24
|
Ottaviani MM, Macefield VG. Structure and Functions of the Vagus Nerve in Mammals. Compr Physiol 2022; 12:3989-4037. [PMID: 35950655 DOI: 10.1002/cphy.c210042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We review the structure and function of the vagus nerve, drawing on information obtained in humans and experimental animals. The vagus nerve is the largest and longest cranial nerve, supplying structures in the neck, thorax, and abdomen. It is also the only cranial nerve in which the vast majority of its innervation territory resides outside the head. While belonging to the parasympathetic division of the autonomic nervous system, the nerve is primarily sensory-it is dominated by sensory axons. We discuss the macroscopic and microscopic features of the nerve, including a detailed description of its extensive territory. Histochemical and genetic profiles of afferent and efferent axons are also detailed, as are the central nuclei involved in the processing of sensory information conveyed by the vagus nerve and the generation of motor (including parasympathetic) outflow via the vagus nerve. We provide a comprehensive review of the physiological roles of vagal sensory and motor neurons in control of the cardiovascular, respiratory, and gastrointestinal systems, and finish with a discussion on the interactions between the vagus nerve and the immune system. © 2022 American Physiological Society. Compr Physiol 12: 1-49, 2022.
Collapse
Affiliation(s)
- Matteo M Ottaviani
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.,Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Rodriguez GM, Gater DR. Neurogenic Bowel and Management after Spinal Cord Injury: A Narrative Review. J Pers Med 2022; 12:1141. [PMID: 35887638 PMCID: PMC9324073 DOI: 10.3390/jpm12071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
People with spinal cord injury (SCI) suffer from the sequela of neurogenic bowel and its disabling complications primarily constipation, fecal incontinence, and gastrointestinal (GI) symptoms. Neurogenic bowel is a functional bowel disorder with a spectrum of defecatory disorders as well as colonic and gastrointestinal motility dysfunction. This manuscript will review the anatomy and physiology of gastrointestinal innervation, as well as the pathophysiology associated with SCI. It will provide essential information on the recent guidelines for neurogenic bowel assessment and medical management. This will allow medical providers to partner with their patients to develop an individualized bowel plan utilizing a combination of various pharmacological, mechanical and surgical interventions that prevent complications and ensure successful management and compliance. For people with SCI and neurogenic bowel dysfunction, the fundamental goal is to maintain health and well-being, promote a good quality of life and support active, fulfilled lives in their homes and communities.
Collapse
Affiliation(s)
- Gianna M. Rodriguez
- Department of Physical Medicine and Rehabilitation, University of Michigan College of Medicine, Ann Arbor, MI 48108, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 2022; 12:jpm12071126. [PMID: 35887623 PMCID: PMC9323191 DOI: 10.3390/jpm12071126] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/25/2022] Open
Abstract
The spinal cord is a conduit within the central nervous system (CNS) that provides ongoing communication between the brain and the rest of the body, conveying complex sensory and motor information necessary for safety, movement, reflexes, and optimization of autonomic function. After a spinal cord injury (SCI), supraspinal influences on the spinal segmental control system and autonomic nervous system (ANS) are disrupted, leading to spastic paralysis, pain and dysesthesia, sympathetic blunting and parasympathetic dominance resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions and uncontrolled bowel, bladder, and sexual dysfunction. This article outlines the pathophysiology of traumatic SCI, current and emerging methods of classification, and its influence on sensory/motor function, and introduces the probable comorbidities associated with SCI that will be discussed in more detail in the accompanying manuscripts of this special issue.
Collapse
|
27
|
Sun W, Ueno D, Narumoto J. Brain Neural Underpinnings of Interoception and Decision-Making in Alzheimer's Disease: A Narrative Review. Front Neurosci 2022; 16:946136. [PMID: 35898412 PMCID: PMC9309692 DOI: 10.3389/fnins.2022.946136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
This study reviews recent literature on interoception directing decision-making in Alzheimer's disease (AD). According to the somatic marker hypothesis, signals from the internal body direct decision-making and involve the ventromedial prefrontal cortex (vmPFC). After reviewing relevant studies, we summarize the brain areas related to interoception and decision-making (e.g., vmPFC, hippocampus, amygdala, hypothalamus, anterior cingulate cortex, and insular cortex) and their roles in and relationships with AD pathology. Moreover, we outline the relationship among interoception, the autonomic nervous system, endocrine system, and AD pathology. We discuss that impaired interoception leads to decreased decision-making ability in people with AD from the perspective of brain neural underpinning. Additionally, we emphasize that anosognosia or reduced self-awareness and metacognition in AD are remarkably congruent with the malfunction of the autonomic nervous system regulating the interoceptive network. Furthermore, we propose that impaired interoception may contribute to a loss in the decision-making ability of patients with AD. However, there still exist empirical challenges in confirming this proposal. First, there has been no standardization for measuring or improving interoception to enhance decision-making ability in patients with AD. Future studies are required to better understand how AD pathology induces impairments in interoception and decision-making.
Collapse
|
28
|
Henke AM, Billington ZJ, Gater DR. Autonomic Dysfunction and Management after Spinal Cord Injury: A Narrative Review. J Pers Med 2022; 12:jpm12071110. [PMID: 35887607 PMCID: PMC9320320 DOI: 10.3390/jpm12071110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022] Open
Abstract
The autonomic nervous system (ANS), composed of the sympathetic and parasympathetic nervous systems, acts to maintain homeostasis in the body through autonomic influences on the smooth muscle, cardiac muscles, blood vessels, glands and organs of the body. The parasympathetic nervous system interacts via the cranial and sacral segments of the central nervous system, and the sympathetic nervous system arises from the T1–L2 spinal cord segments. After a spinal cord injury (SCI), supraspinal influence on the ANS is disrupted, leading to sympathetic blunting and parasympathetic dominance resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions and uncontrolled bowel, bladder, and sexual dysfunction. Further, afferent signals to the sympathetic cord elicit unabated reflex sympathetic outflow in response to noxious stimuli below the level of SCI. This article outlines the pathophysiology of SCI on the ANS, clinical ramifications of autonomic dysfunction, and the potential long-term sequelae of these influences following SCI.
Collapse
Affiliation(s)
- Austin M. Henke
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.H.); (Z.J.B.)
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Zackery J. Billington
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.H.); (Z.J.B.)
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.H.); (Z.J.B.)
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
29
|
Perez NE, Godbole NP, Amin K, Syan R, Gater DR. Neurogenic Bladder Physiology, Pathogenesis, and Management after Spinal Cord Injury. J Pers Med 2022; 12:968. [PMID: 35743752 PMCID: PMC9225534 DOI: 10.3390/jpm12060968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Urinary incontinence is common after spinal cord injury (SCI) due to loss of supraspinal coordination and unabated reflexes in both autonomic and somatic nervous systems; if unchecked, these disturbances can become life-threatening. This manuscript will review normal anatomy and physiology of the urinary system and discuss pathophysiology secondary to SCI. This includes a discussion of autonomic dysreflexia, as well as its diagnosis and management. The kidneys and the ureters, representing the upper urinary tract system, can be at risk related to dyssynergy between the urethral sphincters and high pressures that lead to potential vesicoureteral reflux, urinary tract infections, and calculi associated with neurogenic lower urinary tract dysfunction (NLUTD). Recent guidelines for diagnosis, evaluation, treatment and follow up of the neurogenic bladder will be reviewed and options provided for risk stratification and management. Mechanical, pharmacological, neurolysis and surgical management will be discussed.
Collapse
Affiliation(s)
| | | | - Katherine Amin
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Raveen Syan
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| |
Collapse
|
30
|
Li LM, Vichayanrat E, Del Giovane M, Lai HHL, Iodice V. Autonomic dysfunction after moderate-to-severe traumatic brain injury: symptom spectrum and clinical testing outcomes. BMJ Neurol Open 2022; 4:e000308. [PMID: 35530658 PMCID: PMC9039351 DOI: 10.1136/bmjno-2022-000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Background Survivors of moderate-to-severe traumatic brain injury (msTBI) frequently experience troublesome unexplained somatic symptoms. Autonomic dysfunction may contribute to these symptoms. However, there is no previous study of clinical subjective and objective autonomic dysfunction in msTBI. Methods We present results from two groups of patients with msTBI. The first, a case–control comparative study, comprises prospectively recruited msTBI outpatients, in whom we measured burden of autonomic symptoms using the Composite Autonomic Symptom Score (COMPASS31) questionnaire. The second, a descriptive case series, comprises retrospectively identified msTBI outpatients who had formal clinical autonomic function testing at a national referral autonomics unit. Results Group 1 comprises 39 patients with msTBI (10F:20M, median age 40 years, range 19–76), median time from injury 19 months (range 6–299) and 44 controls (22F:22M, median age 45, range 25–71). Patients had significantly higher mean weighted total COMPASS-31 score than controls (p<0.001), and higher gastrointestinal, orthostatic and secretomotor subscores (corrected p<0.05). Total COMPASS31 score inversely correlated with subjective rating of general health (p<0.001, rs=−0.84). Group 2 comprises 18 patients with msTBI (7F:11M, median age 44 years, range 21–64), median time from injury 57.5 months (range 2–416). Clinical autonomic function testing revealed a broad spectrum of autonomic dysfunction in 13/18 patients. Conclusions There is clinically relevant autonomic dysfunction after msTBI, even at the chronic stage. We advocate for routine enquiry about potential autonomic symptoms, and demonstrate the utility of formal autonomic testing in providing diagnoses. Larger prospective studies are warranted, which should explore the causes and clinical correlates of post-TBI autonomic dysfunction.
Collapse
Affiliation(s)
- Lucia M Li
- Division of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Ekawat Vichayanrat
- Autonomics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Martina Del Giovane
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Helen Hoi Lun Lai
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Valeria Iodice
- Autonomics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
31
|
Yao Y, Sun Z, Huang Y, Zhou X, Xia D. Restoration Algorithm-Based Ultrasound Image in Evaluating the Effect of Dexmedetomidine on Patients with Neurological Disorder Anesthetized by Sevoflurane. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1320893. [PMID: 35237336 PMCID: PMC8885248 DOI: 10.1155/2022/1320893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
The study focused on the application value of ultrasound images processed by restoration algorithm in evaluating the effect of dexmedetomidine in preventing neurological disorder in patients undergoing sevoflurane anesthesia. 90 patients undergoing tonsillectomy anesthesia were randomly divided into normal saline group, propofol group, and dexmedetomidine group. The ultrasound images were processed by restoration algorithm, and during the postoperative recovery period, ultrasound images were used to evaluate. The results showed that the original ultrasonic image was fuzzy and contained interference noise, and that the image optimized by restoration algorithm was clear, without excess noise, and the image quality was significantly improved. In the dexmedetomidine group, the extubation time was 10.6 ± 2.3 minutes, the recovery time was 8.4 ± 2.2 minutes, the average pain score during the recovery period was 2.6 ± 0.7, and the average agitation score was 7.2 ± 2.4. Of 30 patients, there were 13 cases with vertigo and 1 case with nausea and vomiting. The vascular ultrasound imaging showed that, in the dexmedetomidine group, the peak systolic velocities (PSV) of the bilateral vertebral arteries during the recovery period were 67.7 ± 14.3 and 67.9 ± 15.2 cm/s, respectively; the end-diastolic velocities (EDV) of the bilateral vertebral arteries were 27.8 ± 6.7 and 24.69 ± 5.9 cm/s, respectively; the PSV in bilateral internal carotid artery systolic peak velocities were 67.2 ± 13.9 and 67.8 ± 12.7 cm/s, respectively; the EDV in bilateral internal carotid arteries were 27.7 ± 5.3 and 26.9 ± 4.9 cm/s, respectively; bilateral vertebral artery resistance indexes (RIs) were 0.6 ± 0.02 and 0.71 ± 0.08, respectively; the bilateral internal carotid artery RIs were 0.57 ± 0.04 and 0.58 ± 0.06, respectively, all better than the normal saline group (12.1 ± 2.5 minutes, 10.1 ± 2.3 minutes, 3.9 ± 0.6, 10.6 ± 3.7, 15 cases, 11 cases, 81.5 ± 13.6, 80.7 ± 11.6 cm/s, 29.3 ± 6.8, 28.9 ± 6.7 cm/s, 74.3 ± 10.2, 73.9 ± 12.5 cm/s, 29.1 ± 4.3, 29 ± 4.5 cm/s, 0.84 ± 0.06, 0.83 ± 0.05, 0.8 ± 0.04, and 0.81 ± 0.05) and the propofol group (11.4 ± 2.1 minutes, 9.0 ± 2.1 minutes, 3.4 ± 0.8, 8.5 ± 2.3, 12 cases, 9 cases, 72.5 ± 12.9, 73.4 ± 11.8 cm/s, 28.6 ± 5.4, 26.5 ± 5.1 cm/s, 72.1 ± 11.4, 73.5 ± 10.6 cm/s, 28.8 ± 5.6, 27.3 ± 4.7 cm/s, 0.78 ± 0.07, 0.82 ± 0.06, 0.76 ± 0.03, and 0.78 ± 0.05), and the differences were statistically significant (P < 0.05). In conclusion, ultrasound images processed by restoration algorithm have high image quality and high resolution. The dexmedetomidine can prevent neurological disorder in patients with sevoflurane anesthesia and is suggested in postoperative rehabilitation.
Collapse
Affiliation(s)
- Yingying Yao
- Department of Anesthesiology, The First People's Hospital of Xuzhou, Xuzhou, 221000 Jiangsu, China
| | - Zhihui Sun
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, 211700 Jiangsu, China
| | - Yanming Huang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, 211700 Jiangsu, China
| | - Xiaoqin Zhou
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, 211700 Jiangsu, China
| | - Daolin Xia
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, 211700 Jiangsu, China
| |
Collapse
|
32
|
Salusin-β in Intermediate Dorsal Motor Nucleus of the Vagus Regulates Sympathetic-Parasympathetic Balance and Blood Pressure. Biomedicines 2021; 9:biomedicines9091118. [PMID: 34572305 PMCID: PMC8467440 DOI: 10.3390/biomedicines9091118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
The dorsal motor nucleus of the vagus (DMV) is known to control vagal activity. It is unknown whether the DMV regulates sympathetic activity and whether salusin-β in the DMV contributes to autonomic nervous activity. We investigated the roles of salusin-β in DMV in regulating sympathetic-parasympathetic balance and its underline mechanisms. Microinjections were carried out in the DMV and hypothalamic paraventricular nucleus (PVN) in male adult anesthetized rats. Renal sympathetic nerve activity (RSNA), blood pressure and heart rate were recorded. Immunohistochemistry for salusin-β and reactive oxidative species (ROS) production in the DMV were examined. Salusin-β was expressed in the intermediate DMV (iDMV). Salusin-β in the iDMV not only inhibited RSNA but also enhanced vagal activity and thereby reduced blood pressure and heart rate. The roles of salusin-β in causing vagal activation were mediated by NAD(P)H oxidase-dependent superoxide anion production in the iDMV. The roles of salusin-β in inhibiting RSNA were mediated by not only the NAD(P)H oxidase-originated superoxide anion production in the iDMV but also the γ-aminobutyric acid (GABA)A receptor activation in PVN. Moreover, endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting RSNA. These results indicate that salusin-β in the iDMV inhibits sympathetic activity and enhances vagal activity, and thereby reduces blood pressure and heart rate, which are mediated by NAD(P)H oxidase-dependent ROS production in the iDMV. Moreover, GABAA receptor in the PVN mediates the effect of salusin-β on sympathetic inhibition. Endogenous salusin-β and ROS production in the iDMV play a tonic role in inhibiting sympathetic activity.
Collapse
|
33
|
Abstract
Purpose of Review In this review article we will discuss the acute hypertensive response in the context of acute ischemic stroke and present the latest evidence-based concepts of the significance and management of the hemodynamic response in acute ischemic stroke. Recent Findings Acute hypertensive response is considered a common hemodynamic physiologic response in the early setting of an acute ischemic stroke. The significance of the acute hypertensive response is not entirely well understood. However, in certain types of acute ischemic strokes, the systemic elevation of the blood pressure helps to maintain the collateral blood flow in the penumbral ischemic tissue. The magnitude of the elevation of the systemic blood pressure that contributes to the maintenance of the collateral flow is not well established. The overcorrection of this physiologic hemodynamic response before an effective vessel recanalization takes place can carry a negative impact in the final clinical outcome. The significance of the persistence of the acute hypertensive response after an effective vessel recanalization is poorly understood, and it may negatively affect the final outcome due to reperfusion injury. Summary Acute hypertensive response is considered a common hemodynamic reaction of the cardiovascular system in the context of an acute ischemic stroke. The reaction is particularly common in acute brain embolic occlusion of large intracranial vessels. Its early management before, during, and immediately after arterial reperfusion has a repercussion in the final fate of the ischemic tissue and the clinical outcome.
Collapse
|
34
|
Matsui T, Hara K, Iwata M, Hojo S, Shitara N, Endo Y, Fukuoka H, Matsui M, Kawaguchi H. Possible involvement of the autonomic nervous system in cervical muscles of patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). BMC Musculoskelet Disord 2021; 22:419. [PMID: 33952227 PMCID: PMC8101228 DOI: 10.1186/s12891-021-04293-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) sometimes present with stiffness of the cervical muscles. To investigate the pathophysiology of ME/CFS, this observational study compared patients with versus without recovery from ME/CFS through local modulation of the cervical muscles. METHODS Over a period of 11 years, a total of 1226 inpatients with ME/CFS who did not respond to outpatient care were enrolled in this study. All patients received daily cervical muscle physical therapy during hospitalization. Self-rated records documenting the presence or absence of ME/CFS, as well as the representative eight symptoms that frequently accompany it at admission and discharge, were compared. Pupil diameter was also measured to examine autonomic nervous system function involvement. RESULTS The recovery rate of ME/CFS after local therapy was 55.5%, and did not differ significantly by sex, age strata, and hospitalization period. The recovery rates of the eight symptoms were variable (36.6-86.9%); however, those of ME/CFS in the symptom subpopulations were similar (52.3-55.8%). The recovery rates of all symptoms showed strong associations with that of ME/CFS (p < 0.001). The pupil diameter was more constricted in the ME/CFS-recovered patients than in the ME/CFS-unrecovered patients in the total population and the subpopulations stratified by sex, age, and hospitalization period. CONCLUSIONS There was a strong association between the recovery of ME/CFS and other related whole-body symptoms. The recovery of ME/CFS may be partly linked to amelioration of the autonomic nervous system in the cervical muscles. TRIAL REGISTRATION UMIN000036634 . Registered 1 May 2019 - Retrospectively registered.
Collapse
Affiliation(s)
- Takayoshi Matsui
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
- Matsui Hospital, Kan-nonji 739, Kagawa, Tokyo, 768-0013 Japan
| | - Kazuhiro Hara
- Matsui Hospital, Kan-nonji 739, Kagawa, Tokyo, 768-0013 Japan
| | - Makoto Iwata
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
| | - Shuntaro Hojo
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
| | - Nobuyuki Shitara
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
| | - Yuzo Endo
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
| | - Hideoki Fukuoka
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
| | - Masaki Matsui
- Matsui Hospital, Kan-nonji 739, Kagawa, Tokyo, 768-0013 Japan
| | - Hiroshi Kawaguchi
- Orthopaedics and Spine Department, Tokyo Neurological Center, Toranomon 4-1-17, Minato-ku, Tokyo, 105-0001 Japan
| |
Collapse
|
35
|
Kornum DS, Terkelsen AJ, Bertoli D, Klinge MW, Høyer KL, Kufaishi HHA, Borghammer P, Drewes AM, Brock C, Krogh K. Assessment of Gastrointestinal Autonomic Dysfunction: Present and Future Perspectives. J Clin Med 2021; 10:jcm10071392. [PMID: 33807256 PMCID: PMC8037288 DOI: 10.3390/jcm10071392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
The autonomic nervous system delicately regulates the function of several target organs, including the gastrointestinal tract. Thus, nerve lesions or other nerve pathologies may cause autonomic dysfunction (AD). Some of the most common causes of AD are diabetes mellitus and α-synucleinopathies such as Parkinson’s disease. Widespread dysmotility throughout the gastrointestinal tract is a common finding in AD, but no commercially available method exists for direct verification of enteric dysfunction. Thus, assessing segmental enteric physiological function is recommended to aid diagnostics and guide treatment. Several established assessment methods exist, but disadvantages such as lack of standardization, exposure to radiation, advanced data interpretation, or high cost, limit their utility. Emerging methods, including high-resolution colonic manometry, 3D-transit, advanced imaging methods, analysis of gut biopsies, and microbiota, may all assist in the evaluation of gastroenteropathy related to AD. This review provides an overview of established and emerging assessment methods of physiological function within the gut and assessment methods of autonomic neuropathy outside the gut, especially in regards to clinical performance, strengths, and limitations for each method.
Collapse
Affiliation(s)
- Ditte S. Kornum
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, DK8200 Aarhus, Denmark; (M.W.K.); (K.L.H.); (K.K.)
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, DK8200 Aarhus, Denmark
- Correspondence:
| | - Astrid J. Terkelsen
- Department of Neurology, Aarhus University Hospital, DK8200 Aarhus, Denmark;
| | - Davide Bertoli
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, DK9100 Aalborg, Denmark; (D.B.); (A.M.D.); (C.B.)
| | - Mette W. Klinge
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, DK8200 Aarhus, Denmark; (M.W.K.); (K.L.H.); (K.K.)
| | - Katrine L. Høyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, DK8200 Aarhus, Denmark; (M.W.K.); (K.L.H.); (K.K.)
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, DK8200 Aarhus, Denmark
| | - Huda H. A. Kufaishi
- Steno Diabetes Centre Copenhagen, Gentofte Hospital, DK2820 Gentofte, Denmark;
| | - Per Borghammer
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, DK8200 Aarhus, Denmark;
| | - Asbjørn M. Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, DK9100 Aalborg, Denmark; (D.B.); (A.M.D.); (C.B.)
- Steno Diabetes Centre North Jutland, Aalborg University Hospital, DK9100 Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, DK9100 Aalborg, Denmark; (D.B.); (A.M.D.); (C.B.)
- Steno Diabetes Centre North Jutland, Aalborg University Hospital, DK9100 Aalborg, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, DK8200 Aarhus, Denmark; (M.W.K.); (K.L.H.); (K.K.)
- Steno Diabetes Centre Aarhus, Aarhus University Hospital, DK8200 Aarhus, Denmark
| |
Collapse
|
36
|
Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms. BMC Musculoskelet Disord 2021; 22:274. [PMID: 33711976 PMCID: PMC7955618 DOI: 10.1186/s12891-021-04136-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Prolonged (excessive) sitting is detrimentally associated with cardiovascular, metabolic and mental health. Moreover, prolonged sitting has been associated with poor executive function, memory, attention and visuospatial skills, which are important cognitive aspects of work performance. Breaking up prolonged sitting with standing or light-intensity exercises at the workplace is recognized as a potential measure in improving cognition. However, preliminary evidence, primarily from acute laboratory experiments, has enabled formulating hypothesis on the possible mechanistic pathways. Hence, the aim of this mapping review is to gather preliminary evidence and substantiate possible physiological mechanisms underpinning the putative effects of breaking prolonged sitting on improving cognitive function among sedentary office workers. Mapping method We searched four databases to identify relevant studies that explored the effects of uninterrupted sitting on cognitive function. First, we introduce how prolonged sitting increases the risks of hyperglycemia, autonomic stability, inflammation, adverse hormonal changes and restrictions in cerebral blood flow (CBF) and alters cognitive function. Second, we elucidate the direct and indirect effects of breaking up prolonged sitting time that may prevent a decline in cognitive performance by influencing glycaemic variability, autonomic stability, hormones (brain derived neurotrophic factor, dopamine, serotonin), vascular functions, and CBF. We highlight the importance of breaking up prolonged sitting on metabolic, vascular and endocrine functions, which in turn may improve cognitive functions and eventually foster work productivity. Improved synaptic transmission or neuroplasticity due to increased brain glucose and mitochondrial metabolism, increased endothelial shear and CBF, increased brain neurotrophic factors (dopamine) and accelerated anti-inflammatory functions are some of the hypothetical mechanisms underpinning improved cognitive functions. Conclusion We postulate that improving cognitive function by breaking up prolonged sitting periods is biologically plausible with the myriad of (suggested) physiological mechanisms. Future experimental studies to ascertain the aforementioned hypothetical mechanisms and clinical trials to break sedentary behavior and improve cognitive functions in sedentary office workers are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04136-5.
Collapse
|
37
|
Phthalamide derivatives as ACE/AChE/BuChE inhibitors against cardiac hypertrophy: an in silico, in vitro, and in vivo modeling approach. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Crameri L, Hettiarachchi IT, Hanoun S. Effects of Dynamic Resilience on the Reactivity of Vagally Mediated Heart Rate Variability. Front Psychol 2021; 11:579210. [PMID: 33551903 PMCID: PMC7854534 DOI: 10.3389/fpsyg.2020.579210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Dynamic resilience is a novel concept that aims to quantify how individuals are coping while operating in dynamic and complex task environments. A recently developed dynamic resilience measure, derived through autoregressive modeling, offers an avenue toward dynamic resilience classification that may yield valuable information about working personnel for industries such as defense and elite sport. However, this measure classifies dynamic resilience based upon in-task performance rather than self-regulating cognitive structures; thereby, lacking any supported self-regulating cognitive links to the dynamic resilience framework. Vagally mediated heart rate variability (vmHRV) parameters are potential physiological measures that may offer an opportunity to link self-regulating cognitive structures to dynamic resilience given their supported connection to the self-regulation of stress. This study examines if dynamic resilience classifications reveal significant differences in vagal reactivity between higher, moderate and lower dynamic resilience groups, as participants engage in a dynamic, decision-making task. An amended Three Rs paradigm was implemented that examined vagal reactivity across six concurrent vmHRV reactivity segments consisting of lower and higher task load. Overall, the results supported significant differences between higher and moderate dynamic resilience groups' vagal reactivity but rejected significant differences between the lower dynamic resilience group. Additionally, differences in vagal reactivity across vmHRV reactivity segments within an amended Three Rs paradigm were partially supported. Together, these findings offer support toward linking dynamic resilience to temporal self-regulating cognitive structures that play a role in mediating physiological adaptations during task engagement.
Collapse
Affiliation(s)
- Luke Crameri
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC, Australia
| | | | | |
Collapse
|
39
|
Ueno D, Matsuoka T, Kato Y, Ayani N, Maeda S, Takeda M, Narumoto J. Individual Differences in Interoceptive Accuracy Are Correlated With Salience Network Connectivity in Older Adults. Front Aging Neurosci 2020; 12:592002. [PMID: 33335482 PMCID: PMC7736179 DOI: 10.3389/fnagi.2020.592002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Interoceptive accuracy refers to the ability to consciously perceive the physical condition of the inner body, including one’s heartbeat. In younger adults, interoceptive accuracy is correlated with insular and orbitofrontal cortical connectivity within the salience network (SN). As interoceptive accuracy and insular cortex volume are known to decrease with aging, we aimed to evaluate the correlation between SN connectivity and interoceptive accuracy in older adults. 27 older adults (mean age, 77.29 years, SD = 6.24; 19 female) underwent resting-state functional magnetic resonance imaging, followed by a heartbeat counting task and neuropsychological test. We evaluated the correlation between interoceptive accuracy and SN connectivity with age, sex, cognitive function, and total gray matter volume as covariates. Region of interest-to-region of interest analyses showed that interoceptive accuracy was positively correlated with the functional connectivity (FC) of the left rostral prefrontal cortex with the right insular, right orbitofrontal, and anterior cingulate cortices [F(6,16) = 4.52, false discovery rate (FDR)-corrected p < 0.05]. Moreover, interoceptive accuracy was negatively correlated to the FC of the left anterior insular cortex with right intra-calcarine and visual medial cortices (F(6,16) = 2.04, FDR-corrected p < 0.10). These findings suggest that coordination between systems, with a positive correlation between left rostral prefrontal cortex and the SN and a negative correlation between left insular cortex and vision-related exteroceptive brain regions, is important for maintaining interoceptive accuracy in older adults.
Collapse
Affiliation(s)
- Daisuke Ueno
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuka Kato
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobutaka Ayani
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saaya Maeda
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Minato Takeda
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
40
|
Park JW, Okamoto LE, Shibao CA, Biaggioni I. Pharmacologic treatment of orthostatic hypotension. Auton Neurosci 2020; 229:102721. [PMID: 32979782 DOI: 10.1016/j.autneu.2020.102721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022]
Abstract
Neurogenic orthostatic hypotension (OH) is a disabling disorder caused by impairment of the normal autonomic compensatory mechanisms that maintain upright blood pressure. Nonpharmacologic treatment is always the first step in the management of this condition, but a considerable number of patients will require pharmacologic therapies. Denervation hypersensitivity and impairment of baroreflex buffering makes these patients sensitive to small doses of pressor agents. Understanding the underlying pathophysiology can help in selecting between treatment options. In general, patients with low "sympathetic reserve", i.e., those with peripheral noradrenergic degeneration (pure autonomic failure, Parkinson's disease) and low plasma norepinephrine, tend to respond better to "norepinephrine replacers" (midodrine and droxidopa). On the other hand, patients with relatively preserved "sympathetic reserve", i.e., those with impaired central autonomic pathways but spared peripheral noradrenergic fibers (multiple system atrophy) and normal or slightly reduced plasma norepinephrine, tend to respond better to "norepinephrine enhancers" (pyridostigmine, atomoxetine, and yohimbine). There is, however, a spectrum of responses within these extremes, and treatment should be individualized. Other nonspecific treatments include fludrocortisone and octreotide. The presence of associated clinical conditions, such as supine hypertension, heart failure, postprandial hypotension, PD, MSA, and diabetes need to be considered in the pharmacologic management of these patients.
Collapse
Affiliation(s)
- Jin-Woo Park
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America; Institute for Inflammation Control, Korea University, Seoul, Republic of Korea
| | - Luis E Okamoto
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Cyndya A Shibao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Italo Biaggioni
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
41
|
A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior. Proc Natl Acad Sci U S A 2020; 117:15967-15976. [PMID: 32571909 DOI: 10.1073/pnas.2004914117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The insular cortex (INS) is extensively connected to the central nucleus of the amygdala (CEA), and both regions send convergent projections into the caudal lateral hypothalamus (LHA) encompassing the parasubthalamic nucleus (PSTN). However, the organization of the network between these structures has not been clearly delineated in the literature, although there has been an upsurge in functional studies related to these structures, especially with regard to the cognitive and psychopathological control of feeding. We conducted tract-tracing experiments from the INS and observed a pathway to the PSTN region that runs parallel to the canonical hyperdirect pathway from the isocortex to the subthalamic nucleus (STN) adjacent to the PSTN. In addition, an indirect pathway with a relay in the central amygdala was also observed that is similar in its structure to the classic indirect pathway of the basal ganglia that also targets the STN. C-Fos experiments showed that the PSTN complex reacts to neophobia and sickness induced by lipopolysaccharide or cisplatin. Chemogenetic (designer receptors exclusively activated by designer drugs [DREADD]) inhibition of tachykininergic neurons (Tac1) in the PSTN revealed that this nucleus gates a stop "no-eat" signal to refrain from feeding when the animal is subjected to sickness or exposed to a previously unknown source of food. Therefore, our anatomical findings in rats and mice indicate that the INS-PSTN network is organized in a similar manner as the hyperdirect and indirect basal ganglia circuitry. Functionally, the PSTN is involved in gating feeding behavior, which is conceptually homologous to the motor no-go response of the adjacent STN.
Collapse
|