1
|
Nho K, Risacher SL, Apostolova LG, Bice PJ, Brosch JR, Deardorff R, Faber K, Farlow MR, Foroud T, Gao S, Rosewood T, Kim JP, Nudelman K, Yu M, Aisen P, Sperling R, Hooli B, Shcherbinin S, Svaldi D, Jack CR, Jagust WJ, Landau S, Vasanthakumar A, Waring JF, Doré V, Laws SM, Masters CL, Porter T, Rowe CC, Villemagne VL, Dumitrescu L, Hohman TJ, Libby JB, Mormino E, Buckley RF, Johnson K, Yang HS, Petersen RC, Ramanan VK, Ertekin-Taner N, Vemuri P, Cohen AD, Fan KH, Kamboh MI, Lopez OL, Bennett DA, Ali M, Benzinger T, Cruchaga C, Hobbs D, De Jager PL, Fujita M, Jadhav V, Lamb BT, Tsai AP, Castanho I, Mill J, Weiner MW, Saykin AJ. CYP1B1-RMDN2 Alzheimer's disease endophenotype locus identified for cerebral tau PET. Nat Commun 2024; 15:8251. [PMID: 39304655 PMCID: PMC11415491 DOI: 10.1038/s41467-024-52298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Determining the genetic architecture of Alzheimer's disease pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we perform a genome-wide association study of cortical tau quantified by positron emission tomography in 3046 participants from 12 independent studies. The CYP1B1-RMDN2 locus is associated with tau deposition. The most significant signal is at rs2113389, explaining 4.3% of the variation in cortical tau, while APOE4 rs429358 accounts for 3.6%. rs2113389 is associated with higher tau and faster cognitive decline. Additive effects, but no interactions, are observed between rs2113389 and diagnosis, APOE4, and amyloid beta positivity. CYP1B1 expression is upregulated in AD. rs2113389 is associated with higher CYP1B1 expression and methylation levels. Mouse model studies provide additional functional evidence for a relationship between CYP1B1 and tau deposition but not amyloid beta. These results provide insight into the genetic basis of cerebral tau deposition and support novel pathways for therapeutic development in AD.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of BioHealth Informatics, Indiana University, Indianapolis, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Paula J Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Kelley Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Tatiana Foroud
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, USA
| | - Thea Rosewood
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Jun Pyo Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Kelly Nudelman
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, USA
| | - Meichen Yu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Paul Aisen
- Department of Neurology, Keck School of Medicine, University of Southern California, San Diego, USA
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | | | | | | - William J Jagust
- UC Berkeley Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, USA
| | - Susan Landau
- UC Berkeley Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, USA
| | | | | | - Vincent Doré
- CSIRO Health and Biosecurity, Melbourne, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
| | - Simon M Laws
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Australia
| | - Tenielle Porter
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Logan Dumitrescu
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, USA
| | - Julia B Libby
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA
| | - Elizabeth Mormino
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Keith Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | | | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic, Jacksonville, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, USA
| | | | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, USA
| | - Diana Hobbs
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Vaishnavi Jadhav
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Bruce T Lamb
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Andy P Tsai
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, USA
| | - Isabel Castanho
- Department for Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jonathan Mill
- Department for Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, USA
- Department of Veterans Affairs Medical Center, San Francisco, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
2
|
Sarparast M, Hinman J, Pourmand E, Vonarx D, Ramirez L, Ma W, Liachko NF, Alan JK, Lee KSS. Cytochrome P450 and Epoxide Hydrolase Metabolites in Aβ and tau-induced Neurodegeneration: Insights from Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560527. [PMID: 37873467 PMCID: PMC10592936 DOI: 10.1101/2023.10.02.560527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This study aims to uncover potent cytochrome P450 (CYP) and epoxide hydrolase (EH) metabolites implicated in Aβ and/or tau-induced neurodegeneration, independent of neuroinflammation, by utilizing Caenorhabditis elegans (C. elegans) as a model organism. Our research reveals that Aβ and/or tau expression in C. elegans disrupts the oxylipin profile, and epoxide hydrolase inhibition alleviates the ensuing neurodegeneration, likely through elevating the epoxy-to-hydroxy ratio of various CYP-EH metabolites. In addition, our results indicated that the Aβ and tau likely affect the CYP-EH metabolism of PUFA through different mechanism. These findings emphasize the intriguing relationship between lipid metabolites and neurodegenerations, in particular, those linked to Aβ and/or tau aggregation. Furthermore, our investigation sheds light on the crucial and captivating role of CYP PUFA metabolites in C. elegans physiology, opening up possibilities for broader implications in mammalian and human contexts.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer Hinman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Derek Vonarx
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Leslie Ramirez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Wenjuan Ma
- Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterrans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jamie K. Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Nho K, Risacher SL, Apostolova L, Bice PJ, Brosch J, Deardorff R, Faber K, Farlow MR, Foroud T, Gao S, Rosewood T, Kim JP, Nudelman K, Yu M, Aisen P, Sperling R, Hooli B, Shcherbinin S, Svaldi D, Jack CR, Jagust WJ, Landau S, Vasanthakumar A, Waring JF, Doré V, Laws SM, Masters CL, Porter T, Rowe CC, Villemagne VL, Dumitrescu L, Hohman TJ, Libby JB, Mormino E, Buckley RF, Johnson K, Yang HS, Petersen RC, Ramanan VK, Vemuri P, Cohen AD, Fan KH, Kamboh MI, Lopez OL, Bennett DA, Ali M, Benzinger T, Cruchaga C, Hobbs D, De Jager PL, Fujita M, Jadhav V, Lamb BT, Tsai AP, Castanho I, Mill J, Weiner MW, Saykin AJ. Novel CYP1B1-RMDN2 Alzheimer's disease locus identified by genome-wide association analysis of cerebral tau deposition on PET. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286048. [PMID: 36993271 PMCID: PMC10055458 DOI: 10.1101/2023.02.27.23286048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Determining the genetic architecture of Alzheimer's disease (AD) pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we performed a genome-wide association study of cortical tau quantified by positron emission tomography in 3,136 participants from 12 independent studies. The CYP1B1-RMDN2 locus was associated with tau deposition. The most significant signal was at rs2113389, which explained 4.3% of the variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. rs2113389 was associated with higher tau and faster cognitive decline. Additive effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4 , and Aβ positivity. CYP1B1 expression was upregulated in AD. rs2113389 was associated with higher CYP1B1 expression and methylation levels. Mouse model studies provided additional functional evidence for a relationship between CYP1B1 and tau deposition but not Aβ. These results may provide insight into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD.
Collapse
|
4
|
Bahado-Singh RO, Vishweswaraiah S, Turkoglu O, Graham SF, Radhakrishna U. Alzheimer's Precision Neurology: Epigenetics of Cytochrome P450 Genes in Circulating Cell-Free DNA for Disease Prediction and Mechanism. Int J Mol Sci 2023; 24:ijms24032876. [PMID: 36769199 PMCID: PMC9917756 DOI: 10.3390/ijms24032876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Precision neurology combines high-throughput technologies and statistical modeling to identify novel disease pathways and predictive biomarkers in Alzheimer's disease (AD). Brain cytochrome P450 (CYP) genes are major regulators of cholesterol, sex hormone, and xenobiotic metabolism, and they could play important roles in neurodegenerative disorders. Increasing evidence suggests that epigenetic factors contribute to AD development. We evaluated cytosine ('CpG')-based DNA methylation changes in AD using circulating cell-free DNA (cfDNA), to which neuronal cells are known to contribute. We investigated CYP-based mechanisms for AD pathogenesis and epigenetic biomarkers for disease detection. We performed a case-control study using 25 patients with AD and 23 cognitively healthy controls using the cfDNA of CYP genes. We performed a logistic regression analysis using the MetaboAnalyst software computer program and a molecular pathway analysis based on epigenetically altered CYP genes using the Cytoscape program. We identified 130 significantly (false discovery rate correction q-value < 0.05) differentially methylated CpG sites within the CYP genes. The top two differentially methylated genes identified were CYP51A1 and CYP2S1. The significant molecular pathways that were perturbed in AD cfDNA were (i) androgen and estrogen biosynthesis and metabolism, (ii) C21 steroid hormone biosynthesis and metabolism, and (iii) arachidonic acid metabolism. Existing evidence suggests a potential role of each of these biochemical pathways in AD pathogenesis. Next, we randomly divided the study group into discovery and validation sub-sets, each consisting of patients with AD and control patients. Regression models for AD prediction based on CYP CpG methylation markers were developed in the discovery or training group and tested in the independent validation group. The CYP biomarkers achieved a high predictive accuracy. After a 10-fold cross-validation, the combination of cg17852385/cg23101118 + cg14355428/cg22536554 achieved an AUC (95% CI) of 0.928 (0.787~1.00), with 100% sensitivity and 92.3% specificity for AD detection in the discovery group. The performance remained high in the independent validation or test group, achieving an AUC (95% CI) of 0.942 (0.905~0.979) with a 90% sensitivity and specificity. Our findings suggest that the epigenetic modification of CYP genes may play an important role in AD pathogenesis and that circulating CYP-based cfDNA biomarkers have the potential to accurately and non-invasively detect AD.
Collapse
Affiliation(s)
- Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
- Correspondence: (S.F.G.); (U.R.)
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Royal Oak, MI 48309, USA
- Correspondence: (S.F.G.); (U.R.)
| |
Collapse
|
5
|
Jamshidnejad-Tosaramandani T, Kashanian S, Al-Sabri MH, Kročianová D, Clemensson LE, Gentreau M, Schiöth HB. Statins and cognition: Modifying factors and possible underlying mechanisms. Front Aging Neurosci 2022; 14:968039. [PMID: 36046494 PMCID: PMC9421063 DOI: 10.3389/fnagi.2022.968039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Statins are a class of widely prescribed drugs used to reduce low-density lipoprotein cholesterol (LDL-C) and important to prevent cardiovascular diseases (CVD). Most statin users are older adults with CVD, who are also at high risk of cognitive decline. It has been suggested that statins can alter cognitive performance, although their positive or negative effects are still debated. With more than 200 million people on statin therapy worldwide, it is crucial to understand the reasons behind discrepancies in the results of these studies. Here, we review the effects of statins on cognitive function and their association with different etiologies of dementia, and particularly, Alzheimer's disease (AD). First, we summarized the main individual and statin-related factors that could modify the cognitive effects of statins. Second, we proposed the underlying mechanisms for the protective and adverse effects of statins on cognitive performance. Finally, we discussed potential causes of discrepancies between studies and suggested approaches to improve future studies assessing the impact of statins on dementia risk and cognitive function.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah, Iran
| | - Mohamed H. Al-Sabri
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniela Kročianová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Laura E. Clemensson
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Levy JP, Bezgin G, Savard M, Pascoal TA, Finger E, Laforce R, Sonnen JA, Soucy JP, Gauthier S, Rosa-Neto P, Ducharme S. 18F-MK-6240 tau-PET in genetic frontotemporal dementia. Brain 2021; 145:1763-1772. [PMID: 34664612 PMCID: PMC9166561 DOI: 10.1093/brain/awab392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient’s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer’s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer’s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer’s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer’s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability.
Collapse
Affiliation(s)
- Jake P Levy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Parkwood Institute, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques du CHU de Québec, Faculté de Médecine, Université Laval, QC, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Douglas Mental Health University Institute, Department of Psychiatry, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
7
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
8
|
Barthold D, Joyce G, Diaz Brinton R, Wharton W, Kehoe PG, Zissimopoulos J. Association of combination statin and antihypertensive therapy with reduced Alzheimer's disease and related dementia risk. PLoS One 2020; 15:e0229541. [PMID: 32130251 PMCID: PMC7055882 DOI: 10.1371/journal.pone.0229541] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperlipidemia and hypertension are modifiable risk factors for Alzheimer's disease and related dementias (ADRD). Approximately 25% of adults over age 65 use both antihypertensives (AHTs) and statins for these conditions. While a growing body of evidence found statins and AHTs are independently associated with lower ADRD risk, no evidence exists on simultaneous use for different drug class combinations and ADRD risk. Our primary objective was to compare ADRD risk associated with concurrent use of different combinations of statins and antihypertensives. METHODS In a retrospective cohort study (2007-2014), we analyzed 694,672 Medicare beneficiaries in the United States (2,017,786 person-years) who concurrently used both statins and AHTs. Using logistic regression adjusting for age, socioeconomic status and comorbidities, we quantified incident ADRD diagnosis associated with concurrent use of different statin molecules (atorvastatin, pravastatin, rosuvastatin, and simvastatin) and AHT drug classes (two renin-angiotensin system (RAS)-acting AHTs, angiotensin converting enzyme inhibitors (ACEIs) or angiotensin-II receptor blockers (ARBs), vs non-RAS-acting AHTs). FINDINGS Pravastatin or rosuvastatin combined with RAS-acting AHTs reduce risk of ADRD relative to any statin combined with non-RAS-acting AHTs: ACEI+pravastatin odds ratio (OR) = 0.942 (CI: 0.899-0.986, p = 0.011), ACEI+rosuvastatin OR = 0.841 (CI: 0.794-0.892, p<0.001), ARB+pravastatin OR = 0.794 (CI: 0.748-0.843, p<0.001), ARB+rosuvastatin OR = 0.818 (CI: 0.765-0.874, p<0.001). ARBs combined with atorvastatin and simvastatin are associated with smaller reductions in risk, and ACEI with no risk reduction, compared to when combined with pravastatin or rosuvastatin. Among Hispanics, no combination of statins and RAS-acting AHTs reduces risk relative to combinations of statins and non-RAS-acting AHTs. Among blacks using ACEI+rosuvastatin, ADRD odds were 33% lower compared to blacks using other statins combined with non-RAS-acting AHTs (OR = 0.672 (CI: 0.548-0.825, p<0.001)). CONCLUSION Among older Americans, use of pravastatin and rosuvastatin to treat hyperlipidemia is less common than use of simvastatin and atorvastatin, however, in combination with RAS-acting AHTs, particularly ARBs, they may be more effective at reducing risk of ADRD. The number of Americans with ADRD may be reduced with drug treatments for vascular health that also confer effects on ADRD.
Collapse
Affiliation(s)
- Douglas Barthold
- Department of Pharmacy, The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Geoffrey Joyce
- School of Pharmacy, Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, United States of America
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tuscon, AZ, United States of America
| | - Whitney Wharton
- School of Nursing, Emory University, Atlanta, GA, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrick Gavin Kehoe
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Julie Zissimopoulos
- Price School of Public Policy, Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
9
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 696] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|