1
|
Lin X, Xu Y, Zhen Z, Xiao K, Chen X, Yang J, Guan H, Shi Q, Dong X, Wang J, Guo Y. Case Report: Genetic Creutzfeldt–Jakob Disease With a G114V Mutation and One Octapeptide Repeat Deletion as a Mimic of Frontotemporal Dementia. Front Neurol 2022; 13:888309. [PMID: 35812092 PMCID: PMC9263511 DOI: 10.3389/fneur.2022.888309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic Creutzfeldt–Jakob disease (gCJD) characterized by mutations in the prion protein (PrP) gene (PRNP) contributes to approximately 10–15% of the overall human prion diseases. Here, we report a rare mutation in the PRNP gene in a Han-Chinese family. A 36-year-old man initiated with anxiety and depression followed by progressive dementia, cogwheel-like rigidity combined with tremors, and he was diagnosed with frontotemporal lobar dementia in the first 2 years. The disease progression was relatively slow, and the patient developed into akinetic mutism in 4 years. To characterize the disease, following the pedigree studies, neuropsychological examination, neuroimaging studies, real-time quaking-induced conversion (RT-QuIC) examination, and so on were conducted. We eventually identified a rare mutation of G114V combined with one octapeptide repeats deletion (1-ORPD) in the PrP in the patient by DNA sequencing. In addition, the same mutation and deletion were subsequently identified in the patient's mother without any syndromes. His maternal grandmother had a late onset of the disease in her 60s. Given that 1-OPRD has never been reported in human prion disease before, our first report that both G114V mutation and 1-OPRD appear in the family would forward our understanding of the etiological mechanisms of the gCJD.
Collapse
Affiliation(s)
- Xue Lin
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Puren Hospital, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Zhen
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Neurology, People's Hospital of Beijing Daxing District, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xu Chen
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yanjun Guo
| | - Yanjun Guo
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Jiawei Wang
| |
Collapse
|
2
|
Alshaikh JT, Qin K, Zhao L, Mastrianni JA. A novel PRNP-G131R variant associated with familial prion disease. Neurol Genet 2020; 6:e454. [PMID: 32637633 PMCID: PMC7323476 DOI: 10.1212/nxg.0000000000000454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2019] [Accepted: 05/11/2020] [Indexed: 12/03/2022]
Affiliation(s)
- Jumana T Alshaikh
- Department of Neurology (J.T.A., K.Q., L.Z., J.A.M.), University of Chicago, IL; and Department of Neurology (J.T.A.), Johns Hopkins University, Baltimore, MD
- Dr. Alshaikh is now with the University of Chicago
| | - Kefeng Qin
- Department of Neurology (J.T.A., K.Q., L.Z., J.A.M.), University of Chicago, IL; and Department of Neurology (J.T.A.), Johns Hopkins University, Baltimore, MD
- Dr. Alshaikh is now with the University of Chicago
| | - Lili Zhao
- Department of Neurology (J.T.A., K.Q., L.Z., J.A.M.), University of Chicago, IL; and Department of Neurology (J.T.A.), Johns Hopkins University, Baltimore, MD
- Dr. Alshaikh is now with the University of Chicago
| | - James A Mastrianni
- Department of Neurology (J.T.A., K.Q., L.Z., J.A.M.), University of Chicago, IL; and Department of Neurology (J.T.A.), Johns Hopkins University, Baltimore, MD
- Dr. Alshaikh is now with the University of Chicago
| |
Collapse
|
3
|
Caughey B, Kraus A. Transmissibility versus Pathogenicity of Self-Propagating Protein Aggregates. Viruses 2019; 11:E1044. [PMID: 31717531 PMCID: PMC6893620 DOI: 10.3390/v11111044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The prion-like spreading and accumulation of specific protein aggregates appear to be central to the pathogenesis of many human diseases, including Alzheimer's and Parkinson's. Accumulating evidence indicates that inoculation of tissue extracts from diseased individuals into suitable experimental animals can in many cases induce the aggregation of the disease-associated protein, as well as related pathological lesions. These findings, together with the history of the prion field, have raised the questions about whether such disease-associated protein aggregates are transmissible between humans by casual or iatrogenic routes, and, if so, do they propagate enough in the new host to cause disease? These practical considerations are important because real, and perhaps even only imagined, risks of human-to-human transmission of diseases such as Alzheimer's and Parkinson's may force costly changes in clinical practice that, in turn, are likely to have unintended consequences. The prion field has taught us that a single protein, PrP, can aggregate into forms that can propagate exponentially in vitro, but range from being innocuous to deadly when injected into experimental animals in ways that depend strongly on factors such as conformational subtleties, routes of inoculation, and host responses. In assessing the hazards posed by various disease-associated, self-propagating protein aggregates, it is imperative to consider both their actual transmissibilities and the pathological consequences of their propagation, if any, in recipient hosts.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Bagyinszky E, Yang Y, Giau VV, Youn YC, An SSA, Kim S. Novel prion mutation (p.Tyr225Cys) in a Korean patient with atypical Creutzfeldt-Jakob disease. Clin Interv Aging 2019; 14:1387-1397. [PMID: 31447551 PMCID: PMC6683949 DOI: 10.2147/cia.s210909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: A novel prion variant, PRNP p.Tyr225Cys (c.674A>G; p.Y225C), was identified in an atypical Creutzfeldt–Jakob disease (CJD) patient. The patient had a 5-year history of progressive cognitive impairment with speech and gait disturbances. From the basic neurological examination at his first hospital visit, rigidity and myoclonic jerks in all limbs were observed without focal weakness. Electroencephalogram showed the diffuse slow continuous delta activity in the bilateral cerebral hemisphere. Magnetic resonance imaging revealed abnormalities in the brain, such as cortical signal changes and edema in the frontotemporoparietal lobes and the basal ganglia. Cerebrospinal fluid 14–3-3 protein analysis showed a weakly positive signal. Family history remained unclear, but the patient’s mother and sister were diagnosed with cognitive impairment but both refused genetic testing. Methods: Targeted next generation sequencing (NGS) was performed on 50 genes, involved in different neurodegeneratives diseases, such as Alzheimer's, Parkinson's, frontotemporal dementia or prion diseases. In silico analyses and structure predictions were performed on the potential patohgenic mutations. Results: NGS and standard sequencing revealed the novel PRNP p.Tyr225Cys mutation in the patient. Structure predictions revealed that this may make the helix more flexible. In addition, the extra cysteine residue in TM-III of prion protein may result in disturbances of natural disulfide bond. Conclusion: Hence, the pathogenicity of PRNP p.Tyr225Cys was not fully confirmed at present, and its penetrance was suggested to be low. However, its possible pathogenic nature in prion diseases cannot be ignored, since Tyr/Cys exchange could disturb the helix dynamics and contribute to conformational alteration and disease progression.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Sungnam, Korea
| | - YoungSoon Yang
- Department of Neurology, Veteran Health Service Medical Center, Seoul, Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon University, Sungnam, Korea
| | - Young Chul Youn
- Department of Neurology, Chungang University Hospital, Chungang University, Seoul, Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Sungnam, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine Seoul National University Bundang Hospital, Sungnam, Korea
| |
Collapse
|
5
|
Glatzel M, Sigurdson CJ. Recent advances on the molecular pathogenesis of prion diseases. Brain Pathol 2019; 29:245-247. [PMID: 30588674 DOI: 10.1111/bpa.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
6
|
Nascent β Structure in the Elongated Hydrophobic Region of a Gerstmann-Sträussler-Scheinker PrP Allele. J Mol Biol 2019; 431:2599-2611. [PMID: 31034890 DOI: 10.1016/j.jmb.2019.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/23/2022]
Abstract
Prion diseases are neurodegenerative disorders caused by the misfolding of the cellular prion protein (PrPC). Gerstmann-Sträussler-Scheinker syndrome is an inherited prion disease with one early-onset allele (HRdup) containing an eight-amino-acid insertion; this LGGLGGYV insert is positioned after valine 129 (human PrPC sequence) in a hydrophobic tract in the natively disordered region. Here we have characterized the structure and explored the molecular motions and dynamics of HRdup PrP and a control allele. High-resolution NMR data suggest that the core of HRdup has a canonical PrPC structure, yet a nascent β-structure is observed in the flexible elongated hydrophobic region of HRdup. In addition, using mouse PrPC sequence, we observed that a methionine/valine polymorphism at codon 128 (equivalent of methionine/valine 129 in human sequence) and oligomerization caused by high protein concentration affects conformational exchange dynamics at residue G130. We hypothesize that with the β-structure at the N-terminus, the hydrophobic region of HRdup can adopt a fully extended configuration and fold back to form an extended β-sheet with the existing β-sheet. We propose that these structures are early chemical events in disease pathogenesis.
Collapse
|