1
|
Millward JM, Pilgrim E, Baumann M, Wendel EM, El Naggar I, Bertolini A, Bartels F, Finke C, Paul F, Niendorf T, Rostásy K, Waiczies S. Distinguishing Transient From Persistent Brain Structural Changes in Pediatric Patients With Acute Disseminated Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200337. [PMID: 39715470 DOI: 10.1212/nxi.0000000000200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Pediatric patients with acute disseminated encephalomyelitis (ADEM) are at risk of impaired brain growth, with long-term neuropsychiatric consequences. We previously reported transient expansions of cerebral ventricle volume (VV) in experimental autoimmune encephalomyelitis, which subsequently normalized. In this study, we investigated changes in VV in ADEM in relation to other brain structures and clinical outcomes. METHODS We investigated brain MRI scans acquired in routine clinical practice from a multicenter cohort of 61 pediatric patients with ADEM, of whom 39 were myelin oligodendrocyte glycoprotein (MOG) antibody-positive. Patients were compared with 1,219 pediatric healthy controls (HCs). Volumes of multiple brain structures were computed using a contrast-agnostic machine learning-based tool and analyzed with mixed-effect models regarding other clinical parameters. RESULTS Patients with ADEM had larger VV than HCs at initial clinical presentation, before immune therapy. Most of the patients showed further VV increases within 2 months after disease onset. Patients had smaller brain volumes than HCs, with specific reductions in deep gray matter structures. These changes were more pronounced in MOG antibody-negative patients.Of the patients with more than 2 MRI scans, 12 of 22 resolved their VV expansion back to within 15% of baseline values while 10 of 22 had persistently increased VV at the last available MRI within 1 year from onset. Patients with persistent VV expansion had greater reductions in volumes of other brain structures at the last MRI than patients whose VV resolved and were more likely to have residual neurologic signs. The VV resolving and nonresolving patients did not differ regarding age, sex, elevated CSF cell counts at baseline, or occurrence of relapses. However, patients with a larger magnitude of VV expansion-≥90% of baseline volume-were more likely to be in the nonresolving group. DISCUSSION We could distinguish between 2 outcomes of VV changes in ADEM: one in which the VV expanded but ultimately returned to normal and one in which the expansions continued after disease onset and treatment but failed to resolve. The latter was associated with reduced brain volume, particularly in deep gray matter structures. This highlights the necessity for patients with ADEM to undergo regular MRI scans to assess whether developing VV expansions indicate a greater risk of permanent brain atrophy.
Collapse
Affiliation(s)
- Jason Michael Millward
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Elias Pilgrim
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Baumann
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Eva-Maria Wendel
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Ines El Naggar
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Annikki Bertolini
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Frederik Bartels
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Carsten Finke
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Friedemann Paul
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Thoralf Niendorf
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Kevin Rostásy
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Sonia Waiczies
- From the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.); Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; Division of Paediatric Neurology, Department of Paediatrics I, Medical University of Innsbruck, Austria; Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart; Department of Paediatric Neurology, Children's Hospital Datteln, Witten/Herdecke University and Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
2
|
Mirmosayyeb O, Yazdan Panah M, Moases Ghaffary E, Vaheb S, Ghoshouni H, Shaygannejad V, Pinter NK. Magnetic resonance imaging-based biomarkers of multiple sclerosis and neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. J Neurol 2024; 272:77. [PMID: 39680165 DOI: 10.1007/s00415-024-12827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND/OBJECTIVE Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are neuroinflammatory conditions with overlapping clinical and imaging features. Distinguishing between these diseases is crucial for appropriate diagnosis and management. Magnetic resonance imaging (MRI) may have the potential to differentiate these disorders. Nonetheless, studies exhibit inconsistencies regarding which MRI measurements most effectively distinguish between these disorders. Hence, this review aimed to evaluate the differences in MRI volumetry between people with MS (PwMS) and people with NMOSD (PwNMOSD). METHODS A systematic search was conducted across PubMed/MEDLINE, Embase, Scopus, and Web of Science up to May 12, 2024, to identify studies assessing conventional and volumetric MRI in PwMS and PwNMOSD. The standard mean difference (SMD) of MRI measurements and its 95% confidence interval (CI) were estimated using R version 4.4.0 with a random-effects model. RESULTS Forty-eight original studies that assessed conventional MRI measurements in 2592 PwMS and 1979 PwNMOSD were included. The meta-analysis revealed that PwMS had significantly higher T2 lesion volume (SMD = 1.51, 95% CI: 0.53 to 2.48, p = 0.002) and T1 lesion count (SMD = 1.08, 95% CI: 0.56 to 1.6, p < 0.001) than PwNMOSD. PwMS also exhibited significantly reduced thalamic volume (SMD = -1.26, 95% CI: -1.8 to -0.73, p < 0.001) and grey matter volume (GMV) (SMD = -0.65, 95% CI: -0.92 to -0.37, p < 0.001). Other MRI volumetry, such as the brain and putamen volumes, showed more pronounced atrophy in PwMS. CONCLUSION Significant differences in MRI volumetry between MS and NMOSD highlight the potential of MRI as a critical diagnostic tool. These findings emphasize the need for standardized MRI protocols and advanced imaging techniques to enhance diagnostic accuracy and clinical management of these conditions.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nandor K Pinter
- Department of Radiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Maggi P, Absinta M. Emerging MRI biomarkers for the diagnosis of multiple sclerosis. Mult Scler 2024; 30:1704-1713. [PMID: 39511991 DOI: 10.1177/13524585241293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The need to improve diagnostic precision in multiple sclerosis (MS) is widely recognized. In recent years, several novel magnetic resonance imaging (MRI) biomarkers have been proposed to enhance diagnostic specificity and reduce misdiagnosis. Some of these imaging biomarkers are deemed highly specific for MS and are likely ready to enter the MS diagnostic work-up, while others are still in their exploratory phase. In addition, new synthetic MRI contrasts and artificial intelligence-based diagnostic algorithms are being tested to reduce the time burden related to imaging data acquisition and analysis. In this review, we summarize the most recent advancement in the field, focusing on the adoption of these novel MRI biomarkers-whether used alone or in combination-for the differential diagnosis of MS.
Collapse
Affiliation(s)
- Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
4
|
Bergsland N, Dwyer MG, Zivadinov R. Imaging the Choroid Plexus. Mult Scler 2024; 30:24-29. [PMID: 39658900 DOI: 10.1177/13524585241292965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The choroid plexus (CP), a highly vascularized structure within the ventricles of the brain, has come under increased scrutiny over the last several years as potentially having a role in the pathophysiology of multiple sclerosis (MS). Originally consider as being only responsible for the production of cerebrospinal fluid, it is now widely recognized that the CP is also involved in immunosurveillance and immune cell trafficking. Histopathology studies have found several immunological changes in donor tissue, including the accumulation of inflammatory cells. These findings have been corroborated by animal studies combining immunohistopathology and magnetic resonance imaging (MRI), showing dynamic changes in CP volume that track immune cell infiltration into the CP itself. Subsequent in vivo studies in persons with MS using MRI have suggested that while CP volume increases very early in the disease, CP inflammation continues to have a role throughout later stages as well. Together with recent advances in image processing methods, the analysis of prospective studies as well as existing datasets will help shed further light on the underlying pathophysiological changes within the CP. Such studies are needed to better understand if the CP may represent a novel therapeutic target to ultimately impact the evolution of the disease.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Bravi B, Paolini M, Maccario M, Milano C, Raffaelli L, Melloni EMT, Zanardi R, Colombo C, Benedetti F. Abnormal choroid plexus, hippocampus, and lateral ventricles volumes as markers of treatment-resistant major depressive disorder. Psychiatry Clin Neurosci 2024. [PMID: 39563010 DOI: 10.1111/pcn.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
AIM One-third of patients with major depressive disorder (MDD) do not achieve full remission and have high relapse rates even after treatment, leading to increased medical costs and reduced quality of life and health status. The possible specificity of treatment-resistant depression (TRD) neurobiology is still under investigation, with risk factors such as higher inflammatory markers being identified. Given recent findings on the role of choroid plexus (ChP) in neuroinflammation and hippocampus in treatment response, the aim of the present study was to evaluate inflammatory- and trophic-related differences in these regions along with ventricular volumes among patients with treatment-sensitive depression (TSD), TRD, and healthy controls (HCs). METHODS ChP, hippocampal, and ventricular volumes were assessed in 197 patients with MDD and 58 age- and sex-matched HCs. Volumes were estimated using FreeSurfer 7.2. Treatment resistance status was defined as failure to respond to at least two separate antidepressant treatments. Region of interest volumes were then compared among groups. RESULTS We found higher ChP volumes in patients with TRD compared with patients with TSD and HCs. Our results also showed lower hippocampal volumes and higher lateral ventricular volumes in TRD compared with both patients without TRD and HCs. CONCLUSIONS These findings corroborate the link between TRD and neuroinflammation, as ChP volume could be considered a putative marker of central immune activity. The lack of significant differences in all of the region of interest volumes between patients with TSD and HCs may highlight the specificity of these features to TRD, possibly providing new insights into the specific neurobiological underpinnings of this condition.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Melania Maccario
- University Vita-Salute San Raffaele, Milan, Italy
- Mood Disorders Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Milano
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Raffaelli
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Maria Teresa Melloni
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
| | - Raffaella Zanardi
- University Vita-Salute San Raffaele, Milan, Italy
- Mood Disorders Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milan, Italy
- Mood Disorders Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Hospital, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Grasso EA, Bloy L, Kaplan P, Bar-Or A, Yeh EA, Arnold DL, Narayanan S, Marrie RA, Fadda G, Banwell BL. Choroid Plexus Volume in Pediatric-Onset Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200319. [PMID: 39442038 PMCID: PMC11502105 DOI: 10.1212/nxi.0000000000200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Recent studies suggest that the choroid plexus (CP) may function as a site of access of inflammatory cells into the CNS in multiple sclerosis (MS). Pediatric-onset MS (POMS) is characterized by a high inflammatory burden, as evidenced by a high relapse rate and volume of T2 lesions, making patients with POMS an informative population to evaluate choroid plexus volume (CPV). The objectives of the study were (1) to evaluate CPV at symptom onset in participants with POMS compared with healthy controls (HCs); (2) to evaluate changes in CPV in the first year of disease in participants with POMS; and (3) to evaluate associations between CPV, brain volumes, relapse activity, and disability in participants with POMS. METHODS Baseline 1.5T MRI scans were acquired from 23 participants with POMS and 23 age-matched and sex-matched HCs; 18 participants with POMS also had 12-month follow-up MRI scans. The CP of the lateral ventricles was segmented manually. CP and brain structure volumes were normalized for total intracranial volume. The number of relapses, T2 and gadolinium-enhancing T1 lesion counts, and Expanded Disability Status Scale (EDSS) scores at 12 months were also analyzed. Baseline CPVs were compared between groups using the Wilcoxon exact test, and CPV change from baseline to 12 months in participants with POMS was compared using the Wilcoxon signed-rank test. The relationship between CPV and brain volumetric measures, T2 lesion volumes, lesion count, number of relapses, and EDSS scores was assessed through Spearman correlation. RESULTS The median normalized CPV was 1.51 × 10-3 (interquartile range [IQR]: 1.32-1.76) in POMS baseline scans and 1.21 × 10-3 (IQR: 1.1-1.47) in HC scans (p = 0.001). CPV did not significantly change at 12 months in the 18 participants with POMS with follow-up scans (p = 0.352). CPV in participants with POMS and HCs correlated with lateral ventricular volume (p = 0.012 for both groups) but did not correlate with brain and T2 lesion volumes or lesion count at baseline, nor with relapse activity or EDSS scores at 12 months in participants with POMS. DISCUSSION CPV measured at baseline is greater in participants with POMS than in HCs. Baseline CPV did not predict higher disease activity or worse neurologic outcomes over 1 year. While higher CPV may be an early feature of inflammation in MS, its strong correlation with ventricular volumes could also reflect enlargement secondary to the mechanical attachment of CP to the ventricular wall.
Collapse
Affiliation(s)
- Eleonora A Grasso
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Luke Bloy
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Phillip Kaplan
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Amit Bar-Or
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - E Ann Yeh
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas L Arnold
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sridar Narayanan
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ruth Ann Marrie
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Giulia Fadda
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Brenda L Banwell
- From the Departments of Neurology (E.A.G., P.K., B.L.B.), Radiology (L.B.), Children's Hospital of Philadelphia, PA; Department of Neurology (A.B.-O.), University of Pennsylvania, PA; Division of Neurology (E.A.Y.), The Hospital for Sick Children, Toronto, Canada; McConnell Brain Imaging Centre (D.L.A.), Montreal Neurological Institute, Montreal, Canada; Department of Neurology (S.N.), McGill University, Montreal, Canada; Departments of Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Department of Medicine (G.F.), University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
7
|
Kolahi S, Zarei D, Issaiy M, Shakiba M, Azizi N, Firouznia K. Choroid plexus volume changes in multiple sclerosis: insights from a systematic review and meta-analysis of magnetic resonance imaging studies. Neuroradiology 2024; 66:1869-1886. [PMID: 39105769 DOI: 10.1007/s00234-024-03439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Multiple sclerosis (MS) is a chronic autoimmune disease characterized by the destruction of the myelin sheath within the central nervous system. The etiology of MS involves a complex interplay of genetic, environmental, and immunological factors. Recent studies indicated the potential role of the choroid plexus (CP) in the pathogenesis and progression of MS. This systematic review aims to assess existing research on the volume alterations of the CP in MS patients compared to the normal population. METHODS A comprehensive search was conducted across databases including PubMed, Embase, Scopus, and Web of Science up to June 2024. Data from the included studies were synthesized using a meta-analytical approach with a random-effects model, assessing heterogeneity with the I2 and Tau-squared indices. RESULTS We included 17 studies in this systematic review. The meta-analysis, which included data from eight studies reporting CP volume relative to TIV, found a statistically significant increase in CP volume in MS patients compared to healthy controls (HCs). The SMD was 0.77 (95% CI: 0.61 to 0.93), indicating a large effect size. This analysis showed no heterogeneity (I² = 0%). A separate meta-analysis was conducted using five studies that reported CP volume as normalized volume, resulting in an SMD of 0.63 (95% CI: 0.2-1.06). CONCLUSION This study demonstrates an increase in CP volume among MS patients compared to HCs, implying the potential involvement of CP in MS pathogenesis and/or progression. These results show that CP might serve as a radiological indicator in the diagnosis and prognosis of MS.
Collapse
Affiliation(s)
- Shahriar Kolahi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Diana Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbod Issaiy
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Madjid Shakiba
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Visani V, Veronese M, Pizzini FB, Colombi A, Natale V, Marjin C, Tamanti A, Schubert JJ, Althubaity N, Bedmar-Gómez I, Harrison NA, Bullmore ET, Turkheimer FE, Calabrese M, Castellaro M. ASCHOPLEX: A generalizable approach for the automatic segmentation of choroid plexus. Comput Biol Med 2024; 182:109164. [PMID: 39326265 DOI: 10.1016/j.compbiomed.2024.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The Choroid Plexus (ChP) plays a vital role in brain homeostasis, serving as part of the Blood-Cerebrospinal Fluid Barrier, contributing to brain clearance pathways and being the main source of cerebrospinal fluid. Since the involvement of ChP in neurological and psychiatric disorders is not entirely established and currently under investigation, accurate and reproducible segmentation of this brain structure on large cohorts remains challenging. This paper presents ASCHOPLEX, a deep-learning tool for the automated segmentation of human ChP from structural MRI data that integrates existing software architectures like 3D UNet, UNETR, and DynUNet to deliver accurate ChP volume estimates. METHODS Here we trained ASCHOPLEX on 128 T1-w MRI images comprising both controls and patients with Multiple Sclerosis. ASCHOPLEX's performances were evaluated using traditional segmentation metrics; manual segmentation by experts served as ground truth. To overcome the generalizability problem that affects data-driven approaches, an additional fine-tuning procedure (ASCHOPLEXtune) was implemented on 77 T1-w PET/MRI images of both controls and depressed patients. RESULTS ASCHOPLEX showed superior performance compared to commonly used methods like FreeSurfer and Gaussian Mixture Model both in terms of Dice Coefficient (ASCHOPLEX 0.80, ASCHOPLEXtune 0.78) and estimated ChP volume error (ASCHOPLEX 9.22%, ASCHOPLEXtune 9.23%). CONCLUSION These results highlight the high accuracy, reliability, and reproducibility of ASCHOPLEX ChP segmentations.
Collapse
Affiliation(s)
- Valentina Visani
- Department of Information Engineering, University of Padova, Padova, Italy.
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Francesca B Pizzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | | | - Valerio Natale
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy.
| | - Corina Marjin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Noha Althubaity
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Radiological Sciences, College of Applied Medical Science, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| | - Inés Bedmar-Gómez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Immuno-Psychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK.
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Borrelli S, Leclercq S, Pasi M, Maggi P. Cerebral small vessel disease and glymphatic system dysfunction in multiple sclerosis: A narrative review. Mult Scler Relat Disord 2024; 91:105878. [PMID: 39276600 DOI: 10.1016/j.msard.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
As the multiple sclerosis (MS) population ages, the prevalence of vascular comorbidities increases, potentially accelerating disease progression and brain atrophy. Recent studies highlight the prevalence of cerebral small vessel disease (CSVD) in MS, suggesting a potential link between vascular comorbidities and accelerated disability. CSVD affects the brain's small vessels, often leading to identifiable markers on MRI such as enlarged perivascular spaces (EPVS). EPVS are increasingly recognized also in MS and have been associated with vascular comorbidities, lower percentage of MS-specific perivenular lesions, brain atrophy and aging. The exact sequence of event leading to MRI visible EPVS is yet to be determined, but an impaired perivascular brain fluid drainage appears a possible physiopathological explanation for EPVS in both CSVD and MS. In this context, a dysfunction of the brain fluid clearance system - also known as "glymphatic system" - appears associated in MS to aging, neuroinflammation, and vascular dysfunction. Advanced imaging techniques show an impaired glymphatic function in both MS and CSVD. Additionally, lifestyle factors such as physical exercise, diet, and sleep quality appear to influence glymphatic function, potentially revealing novel therapeutic strategies to mitigate microangiopathy and neuroinflammation in MS. This review underscores the potential role of glymphatic dysfunction in the complex and not-yet elucidated interplay between neuroinflammation and CSVD in MS.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium.
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Av. Hippocrate 10, Brussels 1200, Belgium.
| |
Collapse
|
10
|
Rubin M, Preziosa P, Margoni M, Meani A, Pagani E, Corazzolla G, Storelli L, Mistri D, Filippi M, Rocca MA. Dynamics of choroid plexus volume is associated with the presence and development of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334913. [PMID: 39389772 DOI: 10.1136/jnnp-2024-334913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Immune-mediated processes are implicated in the pathogenesis of fatigue, a common symptom in multiple sclerosis (MS). The choroid plexus (CP) regulates central nervous system (CNS) immune homeostasis and undergoes volumetric modifications possibly contributing to MS-related fatigue. We explored the association between MS-related CP volume changes and fatigue dynamics. METHOD Eighty-five patients with MS and 68 healthy controls (HC) underwent brain 3T MRI, neurological evaluation and Modified Fatigue Impact Scale (MFIS) at two timepoints (median follow-up=1.4 years). Normalised brain and regional grey matter (GM) volumes were obtained using FSL-SIENAx, FIRST, SIENA and tensor-based morphometry. CP volumes were quantified with in-house methods, and longitudinal changes were analysed using linear mixed models. RESULTS At baseline, 25 (29%) patients with MS had fatigue (f-MS) (MFIS ≥38). Compared with HC, patients with MS had significantly higher brain T2-lesion volume, lower brain, deep GM, cortical volumes and higher CP volume (false discovery rate (FDR)-p ≤0.024). Compared with non-fatigued (nf-MS) patients, f-MS were older, more disabled (FDR-p ≤0.002) and showed numerically higher CP volume (FDR-p=0.076). At follow-up, 41 (68%) nf-MS remained non-fatigued (nf-FU-MS) and 19 (32%) developed fatigue (f-FU-MS). Patients with MS showed higher brain and deep GM atrophy rates versus HC (FDR-p ≤0.048), whereas clinical, lesional and brain volumetric changes were not significantly different among MS groups (FDR-p ≥0.287). CP volume significantly increased in all MS groups compared with HC (FDR-p ≤0.043), with greater enlargement in f-FU-MS versus nf-FU-MS (FDR-p=0.048). CONCLUSIONS Larger CP and greater enlargement are associated with the presence and development of fatigue in MS, likely reflecting dynamic inflammatory states within the CNS, supporting the immunological contribution to MS-related fatigue.
Collapse
Affiliation(s)
- Martina Rubin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Gianluca Corazzolla
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Damiano Mistri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
11
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
12
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Landes-Château C, Ricigliano VA, Mondot L, Thouvenot E, Labauge P, Louapre C, Zéphir H, Durand-Dubief F, Le Page E, Siva A, Cohen M, Yazdan Panah A, Azevedo CJ, Okuda DT, Stankoff B, Lebrun-Frénay C. Choroid plexus enlargement correlates with periventricular pathology but not with disease activity in radiologically isolated syndrome. Mult Scler 2024; 30:1278-1289. [PMID: 39246289 DOI: 10.1177/13524585241272943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND Choroid plexus (ChP) enlargement is an emerging radiological biomarker in multiple sclerosis (MS). OBJECTIVES This study aims to assess ChP volume in a large cohort of patients with radiologically isolated syndrome (RIS) versus healthy controls (HC) and explore its relationship with other brain volumes, disease activity, and biological markers. METHODS RIS individuals were included retrospectively and compared with HC. ChPs were automatically segmented using an in-house automated algorithm and manually corrected. RESULTS A total of 124 patients fulfilled the 2023 RIS criteria, and 55 HCs were included. We confirmed that ChPs are enlarged in RIS versus HC (mean (±SD) normalized ChP volume: 17.24 (±4.95) and 11.61 (±3.58), respectively, p < 0.001). Larger ChPs were associated with more periventricular lesions (ρ = 0.26; r2 = 0.27; p = 0.005 for the correlation with lesion volume, and ρ = 0.2; r2 = 0.21; p = 0.002 for the correlation with lesion number) and lower thalamic volume (ρ = -0.38; r2 = 0.44; p < 0.001), but not with lesions in other brain regions. Conversely, ChP volume did not correlate with biological markers. No significant difference in ChP volume was observed between subjects who presented or did not have a clinical event or between those with or without imaging disease activity. CONCLUSIONS This study provides evidence that ChP volume is higher in RIS and is associated with measures reflecting periventricular pathology but does not correlate with biological, radiological, or clinical markers of disease activity.
Collapse
Affiliation(s)
| | - Vito Ag Ricigliano
- Paris Brain Institute-ICM, CNRS, Inserm, Neurology Department, Pitié-Salpêtrière Hospital, Sorbonne Université, AP-HP, Paris, France
| | | | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre Labauge
- Centre hospitalier universitaire de Montpellier, Montpellier, France
| | - Céline Louapre
- Paris Brain Institute-ICM, CNRS, Inserm, Neurology Department, Pitié-Salpêtrière Hospital, Sorbonne Université, AP-HP, Paris, France
| | - Hélène Zéphir
- University of Lille, INSERM U 1172, CHU of Lille, Lille, France
| | | | | | - Aksel Siva
- Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkiye
| | - Mikael Cohen
- Université Côte d'Azur, UMR2CA (URRIS), Nice, France
| | - Arya Yazdan Panah
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, France
| | - Christina J Azevedo
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Darin T Okuda
- The University of Texas Southwestern Medical Center, Peter O'Donnell Jr. Brain Institute, Dallas, TX, USA
| | - Bruno Stankoff
- Paris Brain Institute-ICM, CNRS, Inserm, Neurology Department, Pitié-Salpêtrière Hospital, Sorbonne Université, AP-HP, Paris, France
| | | |
Collapse
|
14
|
Mehan WA, Poyiadji N, Paul AB, Buch K. Volumetric Changes in the Choroid Plexus Associated with Spontaneous Intracranial Hypotension in Patients with Spinal CSF Leak. AJNR Am J Neuroradiol 2024; 45:1162-1165. [PMID: 39025635 PMCID: PMC11383421 DOI: 10.3174/ajnr.a8291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND PURPOSE The choroid plexus contains specialized ependymal cells responsible for CSF production. Recent studies have demonstrated volumetric and perfusion changes in the choroid plexus with age and neurodegenerative disorders, however, volumetric changes in the choroid plexus in low pressure states is not known. The purpose of this study is to evaluate volumetric differences in choroid plexus size in patients with spontaneous intracranial hypotension (SIH) resultant from spinal CSF leaks compared with healthy controls. MATERIALS AND METHODS This was a retrospective, institutional review board-approved study. Patients with MRI evidence of SIH and a spinal CSF leak diagnosed on myelography and subsequently confirmed at surgery were included in this study. All patients included in this study including age-matched healthy controls had a brain MRI performed on a either a 1.5 or 3T scanner with acquisition of 3D T1 postcontrast (eg, BRAVO, MPRAGE, etc). In all patients, the trigonum ventriculi volume, in the atria of the lateral ventricles, was contoured by using Visage-7 segmentation tools on the volumetric postcontrast T1 sequence. A basic 2-tailed t test was used to compare choroid plexus volumes between the 2 groups. RESULTS Thirty-four patients were included with 17 patients with SIH with spinal CSF leak and 17 healthy control patients who were age- and sex-matched. The mean age of patients was 45 years, standard deviation 14 years. The mean volume of the choroid plexus for patients with SIH with spinal CSF leak was 1.2 cm3 (standard deviation = 0.26) compared with 0.63 cm3 (standard deviation = 0.31) in the control group (P < .0001). CONCLUSIONS Results of this study demonstrate a higher choroid plexus volume in patients with SIH with spinal CSF leak compared with age- and sex-matched healthy controls. This likely reflects compensatory mechanisms to counteract intracranial hypotension by increasing CSF production as well as increased vascularity of the choroid plexus through expansion of the intracranial blood pool.
Collapse
Affiliation(s)
- William A Mehan
- From the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neo Poyiadji
- From the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron B Paul
- From the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karen Buch
- From the Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Wang X, Wang X, Yan Z, Yin F, Li Y, Liu X, Liu Y. Enhanced choroid plexus segmentation with 3D UX-Net and its association with disease progression in multiple sclerosis. Mult Scler Relat Disord 2024; 88:105750. [PMID: 38986172 DOI: 10.1016/j.msard.2024.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The choroid plexus (CP) is suggested to be closely associated with the neuroinflammation of multiple sclerosis (MS). Segmentation based on deep learning (DL) could facilitate rapid and reproducible volume assessment of the CP, which is crucial for elucidating its role in MS. PURPOSE To develop a reliable DL model for the automatic segmentation of CP, and further validate its clinical significance in MS. METHODS The 3D UX-Net model (3D U-Net used for comparison) was trained and validated on T1-weighted MRI from a cohort of 216 relapsing-remitting MS (RRMS) patients and 75 healthy subjects. Among these, 53 RRMS with baseline and 2-year follow-up scans formed an internal test set (dataset1b). Another 58 RRMS from multi-center data served as an external test set (dataset2). Dice coefficient was computed to assess segmentation performance. Compare the correlation of CP volume obtained through automatic and manual segmentation with clinical outcomes in MS. Disability and cognitive function of patients were assessed using the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). RESULTS The 3D UX-Net model achieved Dice coefficients of 0.875 ± 0.030 and 0.870 ± 0.044 for CP segmentation on dataset1b and dataset2, respectively, outperforming 3D U-Net's scores of 0.809 ± 0.098 and 0.601 ± 0.226. Furthermore, CP volumes segmented by the 3D UX-Net model aligned consistently with clinical outcomes compared to manual segmentation. In dataset1b, both manual and automatic segmentation revealed a significant positive correlation between normalized CP volume (nCPV) and EDSS scores at baseline (manual: r = 0.285, p = 0.045; automatic: r = 0.287, p = 0.044) and a negative correlation with SDMT scores (manual: r = -0.331, p = 0.020; automatic: r = -0.329, p = 0.021). In dataset2, similar correlations were found with EDSS scores (manual: r = 0.337, p = 0.021; automatic: r = 0.346, p = 0.017). Meanwhile, in dataset1b, both manual and automatic segmentation revealed a significant increase in nCPV from baseline to follow-up (p < 0.05). The increase of nCPV was more pronounced in patients with disability worsened than stable patients (manual: p = 0.023; automatic: p = 0.018). Patients receiving disease-modifying therapy (DMT) exhibited a significantly lower nCPV increase than untreated patients (manual: p = 0.004; automatic: p = 0.004). CONCLUSION The 3D UX-Net model demonstrated strong segmentation performance for the CP, and the automatic segmented CP can be directly used in MS clinical practice. CP volume can serve as a surrogate imaging biomarker for monitoring disease progression and DMT response in MS patients.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China; Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolong Wang
- College of Computer and Information Science, Southwest University, Chongqing, 400054, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaojuan Liu
- College of Computer and Information Science, Southwest University, Chongqing, 400054, China.
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Li J, Hu Y, Xu Y, Feng X, Meyer CH, Dai W, Zhao L. Associations between the choroid plexus and tau in Alzheimer's disease using an active learning segmentation pipeline. Fluids Barriers CNS 2024; 21:56. [PMID: 38997764 PMCID: PMC11245807 DOI: 10.1186/s12987-024-00554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The cerebrospinal fluid (CSF), primarily generated by the choroid plexus (ChP), is the major carrier of the glymphatic system. The alternations of CSF production and the ChP can be associated with the Alzheimer's disease (AD). The present work investigated the roles of the ChP in the AD based on a proposed ChP image segmentation pipeline. METHODS A human-in-the-loop ChP image segmentation pipeline was implemented with intermediate and active learning datasets. The performance of the proposed pipeline was evaluated on manual contours by five radiologists, compared to the FreeSurfer and FastSurfer toolboxes. The ChP volume and blood flow were investigated among AD groups. The correlations between the ChP volume and AD CSF biomarkers including phosphorylated tau (p-tau), total tau (t-tau), amyloid-β42 (Aβ42), and amyloid-β40 (Aβ40) was investigated using three models (univariate, multiple variables, and stepwise regression) on two datasets with 806 and 320 subjects. RESULTS The proposed ChP segmentation pipeline achieved superior performance with a Dice coefficient of 0.620 on the test dataset, compared to the FreeSurfer (0.342) and FastSurfer (0.371). Significantly larger volumes (p < 0.001) and higher perfusion (p = 0.032) at the ChP were found in AD compared to CN groups. Significant correlations were found between the tau and the relative ChP volume (the ChP volume and ChP/parenchyma ratio) in each patient groups and in the univariate regression analysis (p < 0.001), the multiple regression model (p < 0.05 except for the t-tau in the LMCI), and in the step-wise regression model (p < 0.021). In addition, the correlation coefficients changed from - 0.32 to - 0.21 along with the AD progression in the multiple regression model. In contrast, the Aβ42 and Aβ40 shows consistent and significant associations with the lateral ventricle related measures in the step-wise regression model (p < 0.027). CONCLUSIONS The proposed pipeline provided accurate ChP segmentation which revealed the associations between the ChP and tau level in the AD. The proposed pipeline is available on GitHub ( https://github.com/princeleeee/ChP-Seg ).
Collapse
Affiliation(s)
- Jiaxin Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yueqin Hu
- Psychology, Beijing Normal University, Beijing, China
| | - Yunzhi Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Feng
- Biomedical Engineering, University of Virginia, Charlottesville, VA, US
| | - Craig H Meyer
- Biomedical Engineering, University of Virginia, Charlottesville, VA, US
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, US
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Jiang J, Zhuo Z, Wang A, Li W, Jiang S, Duan Y, Ren Q, Zhao M, Wang L, Yang S, Awan MUN, Liu Y, Xu J. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum. Alzheimers Res Ther 2024; 16:149. [PMID: 38961406 PMCID: PMC11221040 DOI: 10.1186/s13195-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aβ42, Aβ40, Aβ42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aβ42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aβ42 and Aβ40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aβ42 and Aβ40 levels with MMSE scores (19.08% and 36.57%), and Aβ42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aβ42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aβ42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhizheng Zhuo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
19
|
Bergsland N, Dwyer MG, Jakimovski D, Tavazzi E, Weinstock-Guttman B, Zivadinov R. Choroid plexus enlargement is associated with future periventricular neurodegeneration in multiple sclerosis. Mult Scler Relat Disord 2024; 87:105668. [PMID: 38744032 DOI: 10.1016/j.msard.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The choroid plexus (CP), located within the ventricles of the brain and the primary producer of cerebrospinal fluid, has been shown to be enlarged in patients with multiple sclerosis (MS) and linked to periventricular remyelination failure. Atrophied T2-lesion volume (aT2-LV), a promising neurodegenerative imaging marker in progressive MS (PMS), reflects the volume of periventricular lesions subsumed into cerebrospinal fluid over the follow-up. METHODS In a cohort of 143 people with relapsing-remitting MS (RRMS) and 53 with PMS, we used 3T magnetic resonance imaging (MRI) to quantify CP volume (CPV) at baseline and aT2-LV over an average of 5.4 years of follow-up. Partial correlations, adjusting for age and sex, and linear regression analyses were used to assess the relationships between imaging measures. RESULTS In both cohorts, CPV was associated with aT2-LV in both the RRMS group (r = 0.329, p < 0.001) as well as the PMS group (r = 0.522, p < 0.001). In regression analyses predicting aT2-LV, ventricular volume (final adjusted R2 = 0.407, p < 0.001) explained additional variance beyond age, sex, and T2-lesion volume in the RRMS group while CPV (final adjusted R2 = 0.446, p = 0.009) was retained in the PMS group. CONCLUSION Findings from this study suggest that the CP enlargement is associated with future neurodegeneration, with a particularly relevant role in PMS.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Eleonora Tavazzi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
20
|
Rubin M, Pagani E, Preziosa P, Meani A, Storelli L, Margoni M, Filippi M, Rocca MA. Cerebrospinal Fluid-In Gradient of Cortical and Deep Gray Matter Damage in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200271. [PMID: 38896808 PMCID: PMC11197989 DOI: 10.1212/nxi.0000000000200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND OBJECTIVES A CSF-in gradient in cortical and thalamic gray matter (GM) damage has been found in multiple sclerosis (MS). We concomitantly explored the patterns of cortical, thalamic, and caudate microstructural abnormalities at progressive distances from CSF using a multiparametric MRI approach. METHODS For this cross-sectional study, from 3T 3D T1-weighted scans, we sampled cortical layers at 25%-50%-75% depths from pial surface and thalamic and caudate bands at 2-3-4 voxels from the ventricular-GM interface. Using linear mixed models, we tested between-group comparisons of magnetization transfer ratio (MTR) and R2* layer-specific z-scores, CSF-in across-layer z-score changes, and their correlations with clinical (disease duration and disability) and structural (focal lesions, brain, and choroid plexus volume) MRI measures. RESULTS We enrolled 52 patients with MS (33 relapsing-remitting [RRMS], 19 progressive [PMS], mean age: 46.4 years, median disease duration: 15.1 years, median: EDSS 2.0) and 70 controls (mean age 41.5 ± 12.8). Compared with controls, RRMS showed lower MTR values in the outer and middle cortical layers (false-discovery rate [FDR]-p ≤ 0.025) and lower R2* values in all 3 cortical layers (FDR-p ≤ 0.016). PMS had lower MTR values in the outer and middle cortical (FDR-p ≤ 0.016) and thalamic (FDR-p ≤ 0.048) layers, and in the outer caudate layer (FDR-p = 0.024). They showed lower R2* values in the outer cortical layer (FDR-p = 0.003) and in the outer thalamic layer (FDR-p = 0.046) and higher R2* values in all 3 caudate layers (FDR-p ≤ 0.031). Both RRMS and PMS had a gradient of damage, with lower values closer to the CSF, for cortical (FDR-p ≤ 0.002) and thalamic (FDR-p ≤ 0.042) MTR. PMS showed a gradient of damage for cortical R2* (FDR-p = 0.005), thalamic R2* (FDR-p = 0.004), and caudate MTR (FDR-p ≤ 0.013). Lower MTR and R2* of outer cortical, thalamic, and caudate layers and steeper gradient of damage toward the CSF were significantly associated with older age, higher T2-hyperintense white matter lesion volume, higher thalamic lesion volume, and lower brain volume (β ≥ 0.08, all FDR-p ≤ 0.040). Lower MTR of outer caudate layer was associated with more severe disability (β = -0.26, FDR-p = 0.040). No correlations with choroid plexus volume were found. DISCUSSION CSF-in damage gradients are heterogeneous among different GM regions and through MS course, possibly reflecting different dynamics of demyelination and iron loss/accumulation.
Collapse
Affiliation(s)
- Martina Rubin
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Neuroimaging Research Unit (M.R., E.P., P.P., A.M., L.S., M.M., M.F., M.A.R.), Division of Neuroscience; Neurology Unit (M.R., P.P., M.M., M.F., M.A.R.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.R., P.P., M.F., M.A.R.); Neurorehabilitation Unit (M.M., M.F.); and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Levit E, Ren Z, Gonzenbach V, Azevedo CJ, Calabresi PA, Cree BA, Freeman L, Longbrake EE, Oh J, Schindler MK, Sicotte NL, Reich DS, Ontaneda D, Sati P, Cao Q, Shinohara RT, Solomon AJ. Choroid plexus volume differentiates MS from its mimics. Mult Scler 2024; 30:1072-1076. [PMID: 38481081 PMCID: PMC11288781 DOI: 10.1177/13524585241238094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
This study aimed to determine whether choroid plexus volume (CPV) could differentiate multiple sclerosis (MS) from its mimics. A secondary analysis of two previously enrolled studies, 50 participants with MS and 64 with alternative diagnoses were included. CPV was automatically segmented from 3T magnetic resonance imaging (MRI), followed by manual review to remove misclassified tissue. Mean normalized choroid plexus volume (nCPV) to intracranial volume demonstrated relatively high specificity for MS participants in each cohort (0.80 and 0.76) with an area under the receiver-operator characteristic curve of 0.71 (95% confidence interval (CI) = 0.55-0.87) and 0.65 (95% CI = 0.52-0.77). In this preliminary study, nCPV differentiated MS from its mimics.
Collapse
Affiliation(s)
- Elle Levit
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, USA
- The University of Vermont Medical Center, Burlington, VT, USA
| | - Zheng Ren
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics and Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Virgilio Gonzenbach
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics and Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Ac Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Leorah Freeman
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Matthew K Schindler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Quy Cao
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics and Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics and Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, USA
- The University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
22
|
Storelli L, Pagani E, Rubin M, Margoni M, Filippi M, Rocca MA. A Fully Automatic Method to Segment Choroid Plexuses in Multiple Sclerosis Using Conventional MRI Sequences. J Magn Reson Imaging 2024; 59:1643-1652. [PMID: 37530734 DOI: 10.1002/jmri.28937] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Choroid plexus (CP) volume has been recently proposed as a proxy for brain neuroinflammation in multiple sclerosis (MS). PURPOSE To develop and validate a fast automatic method to segment CP using routinely acquired brain T1-weighted and FLAIR MRI. STUDY TYPE Retrospective. POPULATION Fifty-five MS patients (33 relapsing-remitting, 22 progressive; mean age = 46.8 ± 10.2 years; 31 women) and 60 healthy controls (HC; mean age = 36.1 ± 12.6 years, 33 women). FIELD STRENGTH/SEQUENCE 3D T2-weighted FLAIR and 3D T1-weighted gradient echo sequences at 3.0 T. ASSESSMENT Brain tissues were segmented on T1-weighted sequences and a Gaussian Mixture Model (GMM) was fitted to FLAIR image intensities obtained from the ventricle masks of the SIENAX. A second GMM was then applied on the thresholded and filtered ventricle mask. CP volumes were automatically determined and compared with those from manual segmentation by two raters (with 3 and 10 years' experience; reference standard). CP volumes from previously published automatic segmentation methods (freely available Freesurfer [FS] and FS-GMM) were also compared with reference standard. Expanded Disability Status Scale (EDSS) score was assessed within 3 days of MRI. Computational time was assessed for each automatic technique and manual segmentation. STATISTICAL TESTS Comparisons of CP volumes with reference standard were evaluated with Bland Altman analysis. Dice similarity coefficients (DSC) were computed to assess automatic CP segmentations. Volume differences between MS and HC for each method were assessed with t-tests and correlations of CP volumes with EDSS were assessed with Pearson's correlation coefficients (R). A P value <0.05 was considered statistically significant. RESULTS Compared to manual segmentation, the proposed method had the highest segmentation accuracy (mean DSC = 0.65 ± 0.06) compared to FS (mean DSC = 0.37 ± 0.08) and FS-GMM (0.58 ± 0.06). The percentage CP volume differences relative to manual segmentation were -0.1% ± 0.23, 4.6% ± 2.5, and -0.48% ± 2 for the proposed method, FS, and FS-GMM, respectively. The Pearson's correlations between automatically obtained CP volumes and the manually obtained volumes were 0.70, 0.54, and 0.56 for the proposed method, FS, and FS-GMM, respectively. A significant correlation between CP volume and EDSS was found for the proposed automatic pipeline (R = 0.2), for FS-GMM (R = 0.3) and for manual segmentation (R = 0.4). Computational time for the proposed method (32 ± 2 minutes) was similar to the manual segmentation (20 ± 5 minutes) but <25% of the FS (120 ± 15 minutes) and FS-GMM (125 ± 15 minutes) methods. DATA CONCLUSION This study developed an accurate and easily implementable method for automatic CP segmentation in MS using T1-weighted and FLAIR MRI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Andravizou A, Stavropoulou De Lorenzo S, Kesidou E, Michailidou I, Parissis D, Boziki MK, Stamati P, Bakirtzis C, Grigoriadis N. The Time Trajectory of Choroid Plexus Enlargement in Multiple Sclerosis. Healthcare (Basel) 2024; 12:768. [PMID: 38610190 PMCID: PMC11011748 DOI: 10.3390/healthcare12070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Choroid plexus (CP) can be seen as a watchtower of the central nervous system (CNS) that actively regulates CNS homeostasis. A growing body of literature suggests that CP alterations are involved in the pathogenesis of multiple sclerosis (MS) but the underlying mechanisms remain elusive. CPs are enlarged and inflamed in relapsing-remitting (RRMS) but also in clinically isolated syndrome (CIS) and radiologically isolated syndrome (RIS) stages, far beyond MS diagnosis. Increases in the choroid plexus/total intracranial volume (CP/TIV) ratio have been robustly associated with increased lesion load, higher translocator protein (TSPO) uptake in normal-appearing white matter (NAWM) and thalami, as well as with higher annual relapse rate and disability progression in highly active RRMS individuals, but not in progressive MS. The CP/TIV ratio has only slightly been correlated with magnetic resonance imaging (MRI) findings (cortical or whole brain atrophy) and clinical outcomes (EDSS score) in progressive MS. Therefore, we suggest that plexus volumetric assessments should be mainly applied to the early disease stages of MS, whereas it should be taken into consideration with caution in progressive MS. In this review, we attempt to clarify the pathological significance of the temporal CP volume (CPV) changes in MS and highlight the pitfalls and limitations of CP volumetric analysis.
Collapse
Affiliation(s)
- Athina Andravizou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Iliana Michailidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Marina-Kleopatra Boziki
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, 41334 Larissa, Greece;
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| |
Collapse
|
24
|
Klistorner S, Barnett MH, Wang C, Parratt J, Yiannikas C, Klistorner A. Longitudinal enlargement of choroid plexus is associated with chronic lesion expansion and neurodegeneration in RRMS patients. Mult Scler 2024; 30:496-504. [PMID: 38318807 PMCID: PMC11010552 DOI: 10.1177/13524585241228423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE We explored dynamic changes in the choroid plexus (CP) in patients with relapsing-remitting multiple sclerosis (RRMS) and assessed its relationship with chronic lesion expansion and atrophy in various brain compartments. METHODS Fifty-seven RRMS patients were annually assessed for a minimum of 48 months with 3D FLAIR, pre- and post-contrast 3D T1 and diffusion-weighted magnetic resonance imaging (MRI). The CP was manually segmented at baseline and last follow-up. RESULTS The volume of CP significantly increased by 1.4% annually. However, the extent of CP enlargement varied considerably among individuals (ranging from -3.6 to 150.8 mm3 or -0.2% to 6.3%). The magnitude of CP enlargement significantly correlated with central (r = 0.70, p < 0.001) and total brain atrophy (r = -0.57, p < 0.001), white (r = -0.61, p < 0.001) and deep grey matter atrophy (r = -0.60, p < 0.001). Progressive CP enlargement was significantly associated with the volume and extent of chronic lesion expansion (r = 0.60, p < 0.001), but not with the number or volume of new lesions. CONCLUSION This study provides evidence of progressive CP enlargement in patients with RRMS. Our findings also demonstrate that enlargement of the CP volume is linked to the expansion of chronic lesions and neurodegeneration of periventricular white and grey matter in RRMS patients.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael H Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia/Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Bonifacio C, Savini G, Reca C, Garoli F, Levi R, Vatteroni G, Balzarini L, Allocca M, Furfaro F, Dal Buono A, Armuzzi A, Danese S, Matteoli M, Rescigno M, Fiorino G, Politi LS. The gut-brain axis: Correlation of choroid plexus volume and permeability with inflammatory biomarkers in Crohn's disease. Neurobiol Dis 2024; 192:106416. [PMID: 38272141 DOI: 10.1016/j.nbd.2024.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The dysregulation of the gut-brain axis in chronic inflammatory bowel diseases can cause neuro-psychological disturbances, but the underlying mechanisms are still not fully understood. The choroid plexus (CP) maintains brain homeostasis and nourishment through the secretion and clearance of cerebrospinal fluid. Recent research has demonstrated the existence of a CP vascular barrier in mice which is modulated during intestinal inflammation. This study investigates possible correlations between CP modifications and inflammatory activity in patients with Crohn's disease (CD). METHODS In this prospective study, 17 patients with CD underwent concomitant abdominal and brain 3 T MRI. The volume and permeability of CP were compared with levels of C-reactive protein (CRP), fecal calprotectin (FC), sMARIA and SES-CD scores. RESULTS The CP volume was negatively correlated with CRP levels (R = -0.643, p-value = 0.024) and FC (R = -0.571, p-value = 0.050). DCE metrics normalized by CP volume were positively correlated with CRP (K-trans: R = 0.587, p-value = 0.045; Vp: R = 0.706, p-value = 0.010; T1: R = 0.699, p-value = 0.011), and FC (Vp: R = 0.606, p-value = 0.037). CONCLUSIONS Inflammatory activity in patients with CD is associated with changes in CP volume and permeability, thus supporting the hypothesis that intestinal inflammation could affect the brain through the modulation of CP vascular barrier also in humans.
Collapse
Affiliation(s)
- Cristiana Bonifacio
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Christian Reca
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Federico Garoli
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Riccardo Levi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Vatteroni
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Luca Balzarini
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Arianna Dal Buono
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy; Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
26
|
Raghib MF, Bao F, Elkhooly M, Bernitsas E. Choroid plexus volume as a marker of retinal atrophy in relapsing remitting multiple sclerosis. J Neurol Sci 2024; 457:122884. [PMID: 38237367 DOI: 10.1016/j.jns.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To evaluate choroid plexus (CP) volume as a biomarker for predicting clinical disability and retinal layer atrophy in relapsing remitting multiple sclerosis (RRMS). METHODS Ninety-five RRMS patients and 26 healthy controls (HCs) underwent 3 T whole brain MRI, expanded disability status scale (EDSS) and optical coherence tomography (OCT). Fully automated intra-retinal segmentation was performed to obtain the volumes of the retinal nerve fiber layer (RNFL), combined ganglion cell layer -inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), total macular volume (TMV) and papillomacular bundle (PMB). Automated segmentation of the CP within the lateral ventricles was performed and the choroid plexus volume (CPV) was normalized by total intracranial volume (TIV). Linear regression analysis and generalized estimating equation (GEE) models were applied to evaluate relationships between nCPV and EDSS, T2 lesion volume, disease duration, and retinal layer volumes, followed by Bonferroni correction analysis for multiple comparisons. RESULTS RRMS patients had larger tChPV compared to HCs (p < 0.001). After Bonferroni correction, there was a significant positive correlation between tChPV and EDSS (r2 = 0.25, p = 0.0002), disease duration (r2 = 0.30, p = 0.01), and T2 lesion volume (r2 = 0.39, p = 0.0000). A robust negative correlation was found between tChPV and RNFL (p < 0.001), GCIPL (p = 0.003), TMV (p = 0.0185), PMB (p < 0.0001), G (p = 0.04), T(p = 0.0001). CONCLUSIONS Our findings support the association of tChPV with disability and altered retinal integrity in RRMS.
Collapse
Affiliation(s)
- Muhammad F Raghib
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Fen Bao
- Department of Neurology, Wayne State University School of Medicine, United States of America
| | - Mahmoud Elkhooly
- Department of Neurology, Wayne State University School of Medicine, United States of America; Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, United States of America; Department of Neurology and Psychiatry, Minia University, Minia, Egypt
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, United States of America; Detroit Medical Center, Detroit, MI, United States of America.
| |
Collapse
|
27
|
Akaishi T, Fujimori J, Nakashima I. Enlarged choroid plexus in multiple sclerosis is associated with increased lesion load and atrophy in white matter but not gray matter atrophy. Mult Scler Relat Disord 2024; 82:105424. [PMID: 38181695 DOI: 10.1016/j.msard.2024.105424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Enlargement of the choroid plexus (CP) is reported to associate with inflammatory activity and contribute to brain atrophy in patients with multiple sclerosis (pwMS). However, a recent study in healthy volunteers (HVTs) has suggested that CP enlargement can be attributed to ventriculomegaly. OBJECTIVES To clarify the pathological significance of the enlargement of CP in multiple sclerosis (MS). METHODS A total of 102 pwMS (89 with relapsing-remitting MS and 13 with secondary progressive MS) and 41 HVTs were cross-sectionally evaluated using brain volumetry. The CP volume was compared between disease groups and investigated for the relationships with other brain regional volumes. RESULTS CP volume was significantly larger in pwMS than in HVTs in the univariate analysis, but not in multivariable analysis. Meanwhile, the CP and lateral ventricle (LV) volumes were significantly correlated. CP enlargement was significantly associated with increased lesion load and cerebral white matter (WM) atrophy, even after adjusting for LV volume. In contrast, multivariable analyses revealed that LV enlargement, but not CP enlargement, was associated with total gray matter (GM) atrophy. CONCLUSION CP enlargement was closely associated with LV enlargement. After adjusting for LV volume, CP enlargement in pwMS was associated with increased lesion load and WM atrophy but not GM atrophy.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University, Sendai, Japan; Department of Education and Support for Regional Medicine, Tohoku University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
28
|
Parobková V, Kompaníková P, Lázňovský J, Kavková M, Hampl M, Buchtová M, Zikmund T, Kaiser J, Bryja V. Ch OP-CT: quantitative morphometrical analysis of the Hindbrain Choroid Plexus by X-ray micro-computed tomography. Fluids Barriers CNS 2024; 21:9. [PMID: 38268040 PMCID: PMC11406807 DOI: 10.1186/s12987-023-00502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.
Collapse
Affiliation(s)
- Viktória Parobková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Jakub Lázňovský
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Kavková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marek Hampl
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
29
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Morozumi T, Preziosa P, Meani A, Albergoni M, Margoni M, Pagani E, Filippi M, Rocca MA. Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 95:29-36. [PMID: 37468307 DOI: 10.1136/jnnp-2023-331482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The hippocampus is a clinically relevant region where neurogenesis and neuroplasticity occur throughout the whole lifespan. Neuroinflammation and cardiorespiratory fitness (CRF) may influence hippocampal integrity by modulating the processes promoting neurogenesis and neuroprotection that contribute to the preservation of functions. This study aimed to investigate the effects of neuroinflammation and CRF on hippocampal volume in multiple sclerosis (MS) patients with relapsing-remitting (RR) and progressive (P) clinical phenotypes. The influence of neuroinflammation and CRF on brain, grey matter (GM) and thalamic volumes was also assessed to determine whether the effects were specific for the hippocampus. METHOD Brain 3T structural MRI scans and maximum oxygen consumption (VO2max), a proxy of CRF, were acquired from 81 MS patients (27 RR and 54 P) and 45 age-matched and sex-matched healthy controls. T2-hyperintense white matter lesion volume (T2-LV) and choroid plexuses volume (CPV) were quantified as neuroinflammatory measures. Associations of demographic, clinical, neuroinflammatory and CRF measures with normalised brain, GM, hippocampal and thalamic volumes in relapsing-remitting MS (RRMS) and progressive MS patients were assessed using Shapley and best subset selection regression. RESULTS For most volumetric measures, the largest portions of variance were explained by T2-LV (variable importance (VI)=9.4-39.4) and CPV (VI=4.5-26.2). VO2max explained the largest portion of variance of normalised hippocampal volume only in RRMS patients (VI=16.9) and was retained as relevant predictor (standardised β=0.374, p=0.023) with T2-LV (standardised β=-0.330, p=0.016). CONCLUSIONS A higher CRF may play a specific neuroprotective role on MS patients' hippocampal integrity, but only in the RR phase of the disease.
Collapse
Affiliation(s)
- Tetsu Morozumi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Matteo Albergoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
31
|
Cacciaguerra L, Rocca MA, Filippi M. Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Korean J Radiol 2023; 24:1260-1283. [PMID: 38016685 PMCID: PMC10700997 DOI: 10.3348/kjr.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 11/30/2023] Open
Abstract
Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
32
|
Jeong SH, Jeong HJ, Sunwoo MK, Ahn SS, Lee SK, Lee PH, Kim YJ, Sohn YH, Park CJ, Chung SJ. Association between choroid plexus volume and cognition in Parkinson disease. Eur J Neurol 2023; 30:3114-3123. [PMID: 37498202 DOI: 10.1111/ene.15999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND AND PURPOSE The choroid plexus (CP) clears harmful metabolites from the central nervous system as part of the glymphatic system. We investigated the association of CP volume (CPV) with baseline and longitudinal cognitive decline in patients with Parkinson disease (PD). METHODS We retrospectively reviewed the medical records of 240 patients with newly diagnosed PD who had undergone detailed neuropsychological tests and high-resolution T1-weighted structural magnetic resonance imaging during the initial assessment. The CPV of each patient was automatically segmented, and the intracranial volume ratio was used in subsequent analyses. The relationship between CPV and baseline composite scores of each cognitive domain was assessed using multivariate linear regression analyses. A Cox proportional hazards model was used to compare the risk of dementia conversion with CPV. RESULTS CPV negatively correlated with composite scores of the frontal/executive function domain (β = -0.375, p = 0.002) after adjusting for age, sex, years of education, and parkinsonian symptom duration. The Cox regression model revealed that a larger CPV was associated with a higher risk of dementia conversion (hazard ratio [HR] = 1.509, p = 0.038), which was no longer significant after adjusting for the composite scores of the frontal/executive function domain. A mediation analysis demonstrated that the effect of CPV on the risk of dementia conversion was completely mediated by frontal/executive function (direct effect: HR = 1.203, p = 0.396; indirect effect: HR = 1.400, p = 0.015). CONCLUSIONS Baseline CPV is associated with baseline frontal/executive function, which subsequently influences dementia conversion risk in patients with PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Jae Jeong
- Research Institute of Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mun Kyung Sunwoo
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Korea
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- YONSEI BEYOND LAB, Yongin, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- YONSEI BEYOND LAB, Yongin, Korea
| |
Collapse
|
33
|
Jankowska A, Chwojnicki K, Grzywińska M, Trzonkowski P, Szurowska E. Choroid Plexus Volume Change-A Candidate for a New Radiological Marker of MS Progression. Diagnostics (Basel) 2023; 13:2668. [PMID: 37627928 PMCID: PMC10453931 DOI: 10.3390/diagnostics13162668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an auto-immune, chronic, neuroinflammatory, demyelinating disease that affects mainly young patients. This progressive inflammatory process causes the chronic loss of brain tissue and results in a deterioration in quality of life. To monitor neuroinflammatory process activity and predict the further development of disease, it is necessary to find a suitable biomarker that could easily be used. In this research, we verify the usability of choroid plexus (CP) volume, a new MS biomarker, in the monitoring of the progression of multiple sclerosis disease. (2) Methods: A single-center, prospective study with three groups of patients was conducted based on the following groups: MS patients who received experimental cellular therapy (Treg), treatment-naïve MS patients and healthy controls. (3) Results: This study concludes that there is a correlation between the CPV/TIV (choroid plexus/total intracranial volume) ratio and the progress of multiple sclerosis disease-patients with MS (MS + Treg) had larger volumes of choroid plexuses. CPV/TIV ratios in MS groups were constantly and significantly growing. In the Treg group, patients with relapses had larger plexuses in comparison to the group with no relapses of MS. A similar correlation was observed for the GD+ group (patients with postcontrast enhancing plaques) compared against the non-GD group (patients without postcontrast enhancing plaques). (4) Conclusion: Choroid plexus volume, due to its immunological function, correlates with the inflammatory process in the central nervous system. We consider it to become a valuable radiological biomarker of MS activity.
Collapse
Affiliation(s)
- Anna Jankowska
- 2nd Department of Radiology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Kamil Chwojnicki
- Department of Anesthesiology and Intensive Care, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Małgorzata Grzywińska
- Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| |
Collapse
|
34
|
Ricigliano VAG, Stankoff B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr Opin Neurol 2023; 36:214-221. [PMID: 37078651 DOI: 10.1097/wco.0000000000001160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
PURPOSE OF REVIEW Choroid plexuses (ChPs) are key actors of the blood-to-cerebrospinal-fluid barrier and serve as brain immune checkpoint. The past years have seen a regain of interest about their potential involvement in the physiopathology of neuroinflammatory disorders like multiple sclerosis (MS). This article offers an overview of the recent findings on ChP alterations in MS, with a focus on the imaging tools able to detect these abnormalities and on their involvement in inflammation, tissue damage and repair. RECENT FINDINGS On MRI, ChPs are enlarged in people with MS (PwMS) versus healthy individuals. This size increase is an early event, already detected in presymptomatic and pediatric MS. Enlargement of ChPs is linked to local inflammatory infiltrates, and their dysfunction selectively impacts periventricular damage, larger ChPs predicting the expansion of chronic active lesions, smoldering inflammation and remyelination failure in tissues surrounding the ventricles. ChP volumetry may add value for the prediction of disease activity and disability worsening. SUMMARY ChP imaging metrics are emerging as possible biomarkers of neuroinflammation and repair failure in MS. Future works combining multimodal imaging techniques should provide a more refined characterization of ChP functional changes, their link with tissue damage, blood to cerebrospinal-fluid barrier dysfunction and fluid trafficking in MS.
Collapse
Affiliation(s)
- Vito A G Ricigliano
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, Pitié-Salpêtrière Hospital
| | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, ICM, CNRS, Inserm
- Neurology Department, St Antoine Hospital, APHP-Sorbonne, Paris, France
| |
Collapse
|
35
|
Wang X, Zhu Q, Yan Z, Shi Z, Xu Y, Liu Y, Li Y. Enlarged choroid plexus related to iron rim lesions and deep gray matter atrophy in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2023; 75:104740. [PMID: 37146422 DOI: 10.1016/j.msard.2023.104740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Choroid plexus (CP) is considered to be linked to inflammation of multiple sclerosis (MS), but its connection with markers of inflammation in vivo in MS is unclear, the markers such as lesions load and brain atrophy, particularly the white matter lesions (WMLs) edge surrounded by an iron rim, termed as iron rim lesions (IRLs). PURPOSE To investigate the association between CP volume and brain lesions load, especially IRLs load and atrophy in MS, and its relationship with clinical characteristics. METHODS 3.0 T brain MRI images were acquired from 99 relapsing-remitting MS (RRMS) and 60 healthy controls (HCs) to obtain the volumes of CP, whole brain and lesions. Volumes were expressed as a ratio of intracranial volume. Expanded Disability Status Scale (EDSS), Montreal Cognitive Assessment (MoCA) and Symbol Digit Modalities Test (SDMT) were used to assess the severity of disability and cognitive function. Student's t-test and Multivariable regression analyses were performed to evaluate the difference of CP volumes between RRMS and HC and the association between CP volume and lesions load, brain volumes and clinical scale scores in RRMS. RESULTS CP volume was 30% larger in patients with RRMS than HCs (p < 0.001) and was 20% larger in patients with IRLs than those without IRLs (p = 0.007). Moreover, the larger CP volume was related to greater WMLs volume in the whole RRMS (r = 0.46, p < 0.001). Further analysis in patients with IRLs showed a positive correlation between CP volume and WMLs volume (r = 0.45, p = 0.003), and IRLs volume (r = 0.51, p < 0.001). Meanwhile, enlarged CP was related to lower volumes in the whole brain (r = -0.30, p = 0.006), deep gray matter (r = -0.51, p < 0.001) and most regional deep gray matter nuclei (except amygdala), but no correlation with cortical lesions or cortex volume (both p > 0.05). In addition, CP volume was significantly higher in patients with cognitive impairment than those with cognitive preservation by MoCA scores (p = 0.011); the larger CP volume was associated with higher EDSS scores (r = 0.25, p = 0.014) and lower SDMT Z scores in RRMS (r = -0.26, p = 0.014). CONCLUSION The enlargement of CP in RRMS had close correlations with inflammatory lesions, especially IRLs and deep gray matter atrophy, but not the cortex. Meanwhile, the larger CP volume was associated with higher disability and lower cognitive scores. CP volume may be a surrogate imaging marker for MS disease activity.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhui Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanbing Liu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
37
|
Chen X, Luo D, Zheng Q, Peng Y, Han Y, Luo Q, Zhu Q, Luo T, Li Y. Enlarged choroid plexus related to cortical atrophy in multiple sclerosis. Eur Radiol 2023; 33:2916-2926. [PMID: 36547675 DOI: 10.1007/s00330-022-09277-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/26/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the correlation between choroid plexus volume and whole brain morphology in patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). METHODS Fifty-one patients with MS, 42 patients with NMOSD, and 56 healthy controls (HC) were recruited. The morphological changes in choroid plexus and whole brain tissue were compared between three groups and the correlations between choroid plexus volume and brain atrophy were further investigated. The longitudinal alterations of brain morphology in 25 MS and 20 NMOSD patients were compared. RESULTS Compared to the HC group, the choroid plexus volumes were increased in the MS group (p < 0.001) but not in the NMOSD group (p > 0.05). Compared to the HC group, the MS group showed reduced cortex thickness, deep gray matter volume, and increased ventricle system volume, and the NMOSD group showed increased third ventricle volume (all p < 0.05, false discovery rate corrected). In the MS group, there were widespread correlations between enlarged choroid plexus volume and reduced cerebral cortex thickness (p < 0.05, r = -0.292~-0.538, false discovery rate corrected). The interval time was not significantly different between the MS (median: 1.37 years) and NMOSD group (median: 1.25 years) (p > 0.05). In MS, compared with the baseline, the right hippocampus and nucleus accumbens volumes were decreased in long follow-up, and bilateral lateral ventricle volumes were increased both in short and long follow-up (all p < 0.05, false discovery rate corrected). CONCLUSIONS The enlarged choroid plexus related to reduced cortical thickness and progressive local brain atrophy are shown in MS patients, but not obvious in NMOSD patients. KEY POINTS • MS and NMOSD have different altered patterns in choroid plexus volume and brain atrophy. • The enlarged choroid plexus related to brain atrophy is shown in MS patients, but not obvious in NMOSD patients. • Progressive local brain atrophy is shown in MS patients, but not obvious in NMOSD patients.
Collapse
Affiliation(s)
- Xiaoya Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Dan Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiao Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yuling Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yongliang Han
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
38
|
Novakova Martinkova J, Ferretti MT, Ferrari A, Lerch O, Matuskova V, Secnik J, Hort J. Longitudinal progression of choroid plexus enlargement is associated with female sex, cognitive decline and ApoE E4 homozygote status. Front Psychiatry 2023; 14:1039239. [PMID: 36970283 PMCID: PMC10031049 DOI: 10.3389/fpsyt.2023.1039239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Choroid plexus (CP)-related mechanisms have been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. In this pilot study, we aimed to elucidate the association between longitudinal changes in CP volume, sex and cognitive impairment. Methods We assessed longitudinal changes in CP volume in a cohort of n = 613 subjects across n = 2,334 datapoints from ADNI 2 and ADNI-GO, belonging to cognitively unimpaired (CN), stable mild cognitive impairment (MCI), clinically diagnosed Alzheimer's disease dementia (AD) or convertor (to either AD or MCI) subgroups. CP volume was automatically segmented and used as a response variable in linear mixed effect models with random intercept clustered by patient identity. Temporal effects of select variables were assessed by interactions and subgroup analyses. Results We found an overall significant increase of CP volume in time (14.92 mm3 per year, 95% confidence interval, CI (11.05, 18.77), p < 0.001). Sex-disaggregated results showed an annual rate of increase 9.48 mm3 in males [95% CI (4.08, 14.87), p < 0.001], and 20.43 mm3 in females [95% CI (14.91, 25.93), p < 0.001], indicating more than double the rate of increase in females, which appeared independent of other temporal variables. The only diagnostic group with a significant CP increase as compared to CN was the convertors group, with an increase of 24.88 mm3/year [95% CI (14, 35.82), p < 0.001]. ApoE exhibited a significant temporal effect, with the E4 homozygote group's CP increasing at more than triple the rate of non-carrier or heterozygote groups [40.72, 95% CI (25.97, 55.46), p < 0.001 vs. 12.52, 95% CI (8.02, 17.02), p < 0.001 for ApoE E4 homozygotes and E4 non-carriers, respectively], and may have modified the diagnostic group relationship. Conclusion Our results contribute to potential mechanisms for sex differences in cognitive impairment with a novel finding of twice the annual choroid plexus enlargement in females and provide putative support for CP-related mechanisms of cognitive deterioration and its relationship to ApoE E4.
Collapse
Affiliation(s)
- Julie Novakova Martinkova
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | | | - Ondrej Lerch
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Veronika Matuskova
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Juraj Secnik
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Center for Alzheimer Research, Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Jakub Hort
- Cognitive Center, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | |
Collapse
|
39
|
Klistorner S, Van der Walt A, Barnett MH, Butzkueven H, Kolbe S, Parratt J, Yiannikas C, Klistorner A. Choroid plexus volume is enlarged in clinically isolated syndrome patients with optic neuritis. Mult Scler 2023; 29:540-548. [PMID: 36876595 DOI: 10.1177/13524585231157206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVES We investigated choroid plexus (CP) volume in patients presenting with optic neuritis (ON) as a clinically isolated syndrome (CIS), compared to a cohort with established relapsing-remitting multiple sclerosis (RRMS) and healthy controls (HCs). METHODS Three-dimensional (3D) T1, T2-FLAIR and diffusion-weighted sequences were acquired from 44 ON CIS patients at baseline, 1, 3, 6 and 12 months after the onset of ON. Fifty RRMS patients and 50 HCs were also included for comparison. RESULTS CP volumes was larger in both ON CIS and RRMS groups compared to HCs, but not significantly different between ON CIS and RRMS patients (analysis of covariance (ANCOVA) adjusted for multiple comparisons). Twenty-three ON CIS patients who converted to clinically definite MS (MS) demonstrated CP volume similar to RRMS patients, but significantly larger compared to HCs. In this sub-group, CP volume was not associated with the severity of optic nerve inflammation or long-term axonal loss, not with brain lesion load. A transient increase of CP volume was observed following an occurrence of new MS lesions on brain magnetic resonance imaging (MRI). INTERPRETATION Enlarged CP can be observed very early in a disease. It transiently reacts to acute inflammation, but not associated with the degree of tissue destruction.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, AustraliaScott Kolbe Monash University, Melbourne, VIC, Australia
| | - Michael H Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia/Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Scott Kolbe
- Monash University, Melbourne, VIC, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, NSW, Australia
| | | | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Margoni M, Gueye M, Meani A, Pagani E, Moiola L, Preziosa P, Filippi M, Rocca MA. Choroid plexus enlargement in paediatric multiple sclerosis: clinical relevance and effect of sex. J Neurol Neurosurg Psychiatry 2023; 94:181-188. [PMID: 36351790 DOI: 10.1136/jnnp-2022-330343] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Choroid plexus (CP) enlargement has been suggested as a reliable marker of neuroinflammation in adult multiple sclerosis (MS). We investigated CP volume in patients with paediatric MS compared with matched healthy controls (HC), possible sex-related effect, and the associations with clinical and structural MRI variables. METHODS Brain 3.0 T dual-echo and three-dimensional (3D) T1-weighted sequences were selected retrospectively from 69 patients with paediatric MS and 23 age-matched and sex-matched HC. CP volume was manually obtained from 3D T1-weighted scans by two expert raters. RESULTS CP segmentation was highly reproducible (intraobserver agreement: rater I=0.963, rater II=0.958; interobserver agreement=0.968). Compared with HC, patients with paediatric MS showed higher normalised CP volume (p<0.001). Both female and male patients with paediatric MS showed higher normalised CP volume compared with sex-matched HC (women: p<0.001 and men: p=0.021), with a significant disease×sex interaction (p=0.040). In patients with MS, a higher normalised CP volume was significantly associated with higher brain lesional volume (β=0.252, p=0.017), larger lateral ventricle volume (β=0.470, false discovery rate (FDR)-p<0.001), lower normalised brain volume (β=-0.413, FDR-p=0.002) and lower normalised thalamic volume (β=0.291, FDR-p=0.046). No associations with disease duration, Expanded Disability Status Scale score, normalised cortical and white matter volumes were found (FDR-p≥0.172). A significant effect of the disease in the negative association between normalised volumes of CP and thalami was observed (FDR-p=0.046). CONCLUSIONS CP enlargement occurs in paediatric MS, suggesting its early involvement in the pathophysiology of the disease. The higher CP volume, which is found especially in female patients, supports the hypothesis of sex-related differences occurring already in paediatric MS.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mor Gueye
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Neurophysiology Service, IRCCS Osepdale San raffaele, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy .,Neurology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
41
|
Bergsland N, Dwyer MG, Jakimovski D, Tavazzi E, Benedict RHB, Weinstock-Guttman B, Zivadinov R. Association of Choroid Plexus Inflammation on MRI With Clinical Disability Progression Over 5 Years in Patients With Multiple Sclerosis. Neurology 2023; 100:e911-e920. [PMID: 36543575 PMCID: PMC9990433 DOI: 10.1212/wnl.0000000000201608] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Inflammation of the choroid plexus (CP) has been reported in multiple sclerosis (MS). The AU1 association between CP inflammation and clinical disability progression is still under debate. The objective of the current study was to assess the relationship between measures of CP inflammation and investigate their associations with clinical disability progression in MS. METHODS In this retrospective analysis of a longitudinal study, 174 patients with MS (118 with relapsing-remitting MS and 56 with progressive MS [PMS]) and 56 healthy controls (HCs), group matched for age and sex, were imaged on a 3T MRI scanner at baseline and after an average of 5.5 years of follow-up. T2 lesion volume (T2-LV) was assessed. Regional tissue volumes were calculated. CP volume was measured, and pseudo-T2 (pT2) mapping was performed to asses CP inflammation. Group comparisons and correlations were adjusted for age and sex. RESULTS Patients with MS presented with significantly larger CP volume (p = 0.01) and increased CP pT2 (<0.001) at baseline, when compared with HCs. CP volume and CP pT2 did not significantly increase over the follow-up in the MS sample. However, baseline CP pT2 was associated with clinical disability progression at follow-up (p = 0.001), even after controlling for all other factors significantly associated with disability progression (p = 0.030), including T2-LV, normalized brain volume, normalized gray matter volume, and normalized thalamic volumes. Changes in CP volume and CP pT2 were not related to changes in clinical parameters such as relapse rate over the course of the follow-up. DISCUSSION CP inflammation, as evidenced by MRI, is clinically relevant in MS. CP inflammation may have a relevant role in driving disease progression.
Collapse
Affiliation(s)
- Niels Bergsland
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York.
| | - Michael G Dwyer
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| | - Dejan Jakimovski
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| | - Eleonora Tavazzi
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| | - Ralph H B Benedict
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| | - Bianca Weinstock-Guttman
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| | - Robert Zivadinov
- From the Buffalo Neuroimaging Analysis Center (N.B., M.G.D., D.J., R.Z.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; IRCCS (N.B.), Fondazione Don Carlo Gnocchi ONLUS, Milan; Multiple Sclerosis Centre (E.T.), IRCCS Mondino Foundation, Pavia, Italy; Department of Neurology (R.H.B.B., B.W.-G.), University at Buffalo, University Neurology, NY; and Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York
| |
Collapse
|
42
|
Müller J, Noteboom S, Granziera C, Schoonheim MM. Understanding the Role of the Choroid Plexus in Multiple Sclerosis as an MRI Biomarker of Disease Activity. Neurology 2023; 100:405-406. [PMID: 36543568 DOI: 10.1212/wnl.0000000000206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jannis Müller
- From the Neurologic Clinic and Polyclinic (J.M., C.G.), Translational Imaging in Neurology (ThINk) and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland; and MS Center Amsterdam (S.N., M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, the Netherlands
| | - Samantha Noteboom
- From the Neurologic Clinic and Polyclinic (J.M., C.G.), Translational Imaging in Neurology (ThINk) and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland; and MS Center Amsterdam (S.N., M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, the Netherlands
| | - Cristina Granziera
- From the Neurologic Clinic and Polyclinic (J.M., C.G.), Translational Imaging in Neurology (ThINk) and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland; and MS Center Amsterdam (S.N., M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, the Netherlands
| | - Menno M Schoonheim
- From the Neurologic Clinic and Polyclinic (J.M., C.G.), Translational Imaging in Neurology (ThINk) and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital and University of Basel, Switzerland; and MS Center Amsterdam (S.N., M.M.S.), Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, the Netherlands.
| |
Collapse
|
43
|
Robert SM, Reeves BC, Kiziltug E, Duy PQ, Karimy JK, Mansuri MS, Marlier A, Allington G, Greenberg ABW, DeSpenza T, Singh AK, Zeng X, Mekbib KY, Kundishora AJ, Nelson-Williams C, Hao LT, Zhang J, Lam TT, Wilson R, Butler WE, Diluna ML, Feinberg P, Schafer DP, Movahedi K, Tannenbaum A, Koundal S, Chen X, Benveniste H, Limbrick DD, Schiff SJ, Carter BS, Gunel M, Simard JM, Lifton RP, Alper SL, Delpire E, Kahle KT. The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 2023; 186:764-785.e21. [PMID: 36803604 PMCID: PMC10069664 DOI: 10.1016/j.cell.2023.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xue Zeng
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Le Thi Hao
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter EX1 2LU, UK
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rashaun Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael L Diluna
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Philip Feinberg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Medical Scientist Training Program, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiavash Movahedi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 11794, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinan Chen
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, the Rockefeller University, New York, NY 10065, USA
| | - Seth L Alper
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA; Department of Neurosurgery and Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Boyko AN, Dolgushin MB, Karalkina MA. [New neuroimaging methods in assessing the activity of neuroinflammation in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:8-14. [PMID: 37560828 DOI: 10.17116/jnevro20231230728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The review presents current data on the use of positron emission tomography and single-photon emission computed tomography in multiple sclerosis (MS) to assess the activity of the pathological process, including neuroinflammation, demyelination, activation of microglia, neurodegeneration and local blood flow disorders. These methodologies are a new approach for studying the mechanisms of action and evaluating the clinical effect of disease modifying therapy of MS, especially those capable of penetrating into brain tissue. Among them, the most attention is attracted by cladribine tablets acting on the mechanism of immune reconstitution therapy, most likely with the modulation of immune reactions directly in the brain tissue.
Collapse
Affiliation(s)
- A N Boyko
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M B Dolgushin
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - M A Karalkina
- Federal Center of Brain and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
45
|
Ricigliano VAG, Louapre C, Poirion E, Colombi A, Yazdan Panah A, Lazzarotto A, Morena E, Martin E, Bottlaender M, Bodini B, Seilhean D, Stankoff B. Imaging Characteristics of Choroid Plexuses in Presymptomatic Multiple Sclerosis: A Retrospective Study. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200026. [PMID: 36229188 PMCID: PMC9562043 DOI: 10.1212/nxi.0000000000200026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Abstract
Background and Objectives Recent imaging studies have suggested a possible involvement of the choroid plexus (CP) in multiple sclerosis (MS). Here, we investigated whether CP changes are already detectable at the earliest stage of MS, preceding symptom onset. Methods This study is a retrospective analysis of 27 patients with presymptomatic MS, 97 patients with clinically definite MS (CDMS), and 53 healthy controls (HCs) who underwent a cross-sectional 3T-MRI acquisition; of which, 22 MS, 19 HCs, and 1 presymptomatic MS (evaluated 8 months before conversion to CDMS) also underwent translocator protein (TSPO) 18F-DPA-714 PET and were included in the analysis. CPs were manually segmented on 3D T1-weighted images for volumetric analysis. CP 18F-DPA-714 uptake, reflecting inflammation, was calculated as the average standardized uptake value (SUV). Multivariable regressions adjusted for age, sex, and ventricular and brain volume were fitted to test CP volume differences between presymptomatic patients and MS or HCs. For the presymptomatic case who also had 18F-DPA-714 PET, CP SUV differences with MS and HCs were assessed through Crawford-Howell tests. To provide further insight into the interpretation of 18F-DPA-714-PET uptake at the CP level, a postmortem analysis of CPs in MS vs HCs was performed to characterize the cellular localization of TSPO expression. Results Compared with HCs, patients with presymptomatic MS had 32% larger CPs (β = 0.38, p = 0.001), which were not dissimilar to MS CPs (p = 0.69). Moreover, in the baseline scan of the presymptomatic case who later on developed MS, TSPO PET showed 33% greater CP inflammation vs HCs (p = 0.04), although no differences in 18F-DPA-714 uptake were found in parenchymal regions vs controls. CP postmortem analysis identified a population of CD163+ mononuclear phagocytes expressing TSPO in MS, possibly contributing to the increased 18F-DPA-714 uptake. Discussion We identified an imaging signature in CPs at the presymptomatic MS stage using MRI; in addition, we found an increased CP inflammation with PET in a single presymptomatic patient. These findings suggest a role of CP imaging as an early biomarker and argue for the involvement of the blood-CSF barrier dysfunction in disease development. Trial Registration Information APHP-20210727144630, EudraCT-Number: 2008-004174-40; ClinicalTrials.gov: NCT02305264, NCT01651520, and NCT02319382.
Collapse
Affiliation(s)
- Vito A G Ricigliano
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Céline Louapre
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Emilie Poirion
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Annalisa Colombi
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Arya Yazdan Panah
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Andrea Lazzarotto
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Emanuele Morena
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Elodie Martin
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Michel Bottlaender
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Benedetta Bodini
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Danielle Seilhean
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France
| | - Bruno Stankoff
- From the Sorbonne Université (V.A.G.R., C.L., E.P., A.C., A.Y.P., A.L., Emanuele Morena, Elodie Martin, B.B., D.S., B.S.), Paris Brain Institute, ICM, CNRS, Inserm; Neurology Department (V.A.G.R., A.L., B.B., B.S.), St Antoine Hospital, APHP-Sorbonne, Paris; Neurology Department (C.L.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris; Service D'Imagerie Médicale (E.P.), Hôpital Fondation Adolphe de Rothschild, Paris; Université Paris-Saclay (M.B.), CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay; and Neuropathology Department (D.S.), Pitié-Salpêtrière Hospital, APHP-Sorbonne, Paris, France.
| |
Collapse
|
46
|
Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol 2022; 9:1528-1537. [PMID: 36056634 PMCID: PMC9539382 DOI: 10.1002/acn3.51644] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Recent studies suggested that the expansion of long‐standing multiple sclerosis (MS) lesions and an enlargement of choroid plexus may be linked to chronic inflammation and microglial activation. We investigated the potential association between plexus volume and subsequent lesion expansion in patients with relapsing‐remitting MS. Methods Pre‐ and post‐gadolinium 3D‐T1, 3D FLAIR and diffusion tensor images were acquired from 49 patients. Choroid plexus (CP) volume (normalised by Total Intracranial Volume, TIV) and lesion activity were analysed between baseline and 48 months. In addition, plexus volume was measured in 40 healthy controls of similar age and gender. Results Baseline CP/TIV ratio was significantly larger in RRMS patients compared to normal controls (p < 0.001). CP/TIV ratio remained stable in RRMS patients during follow‐up period. There was a strong correlation between baseline CP/TIV ratio and subsequent rate of chronic lesion expansion (p < 0.001), which was stronger in close proximity to CSF. A cut‐off of 98 × 10−5 CP/TIV ratio predicted future lesion expansion with a sensitivity of 85% and specificity of 76%. CP/TIV ratio larger than a cut‐off was associated with >8‐fold increased risk of chronic lesion expansion. Baseline CP/TIV ratio was also associated with change in Mean Diffusivity (MD) inside of chronic lesions. Furthermore, baseline CP/TIV ratio significantly correlated with central brain atrophy. There was, however, no correlation between CP/TIV ratio and volume of new lesions. Interpretation Our data demonstrate that baseline CP/TIV ratio predicts subsequent expansion of chronic periventricular MS lesions and associated tissue damage within and outside of chronic lesions.
Collapse
Affiliation(s)
- Samuel Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H Barnett
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales, Australia
| | - John Parratt
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Con Yiannikas
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|