1
|
Peter E, Ciano-Petersen NL, Do LD, Perrot J, Ngo T, Pluvinage J, Bartley CM, Zorn KC, Miske R, Scharf M, Villagrán-García M, Farina A, Rogemond V, Antoine JC, Tranchant C, Dubois V, DeRisi JL, Pleasure SJ, Wilson MR, Gelfand JM, Traverse-Glehen A, Honnorat J, Desestret V. Anti-RGS8 paraneoplastic cerebellar ataxia is preferentially associated with a particular subtype of Hodgkin's lymphoma. J Neurol 2024; 271:6839-6846. [PMID: 39207522 PMCID: PMC11447075 DOI: 10.1007/s00415-024-12618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Ataxia with anti-regulator of G-protein signaling 8 autoantibodies (RGS8-Abs) is an autoimmune disease recently described in four patients. The present study aimed to identify other patients with RGS8-Abs, describe their clinical features, including the link between RGS8-related autoimmune cerebellar ataxia (ACA) and cancer. Patients with RGS8-Abs were identified retrospectively in the biological collections of the French Reference Center for Paraneoplastic Neurological Syndrome and the University of California San Francisco Center for Encephalitis and Meningitis. Clinical data were collected, and cerebrospinal fluid, serum, and tumor pathological samples were retrieved to characterize the autoantibodies and the associated malignancies. Only three patients with RGS8-Abs were identified. All of them presented with a pure cerebellar ataxia of mild to severe course, unresponsive to current immunotherapy regimens for ACA. Two patients presented with a Hodgkin lymphoma of the rare specific subtype called nodular lymphocyte-predominant Hodgkin lymphoma, with very mild extension. Autoantibodies detected in all patients enriched the same epitope on the RGS8 protein, which is an intracellular protein physiologically expressed in Purkinje cells but also ectopically expressed specifically in lymphoma cells of patients with RGS8-related ACA. The present results and those of the four cases previously described suggest that RGS8-Abs define a new paraneoplastic neurological syndrome of extreme rarity found mostly in middle-aged males that associates pure cerebellar ataxia and a particular lymphoma specifically expressing the RGS8 antigen. As in other paraneoplastic ACA with intracellular antigen, the disease course is severe, and patients tend to exhibit a poor response to immune therapy.
Collapse
Affiliation(s)
- Elise Peter
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Le-Duy Do
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jimmy Perrot
- Hospices Civils de Lyon, Service d'Anatomie Pathologique, Centre Hospitalier Lyon Sud, Lyon, France
| | - Thomas Ngo
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - John Pluvinage
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher M Bartley
- Weill Institute for Neurosciences, Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Ramona Miske
- Unit for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Madeleine Scharf
- Unit for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany
| | - Macarena Villagrán-García
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Antonio Farina
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Rogemond
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Christophe Antoine
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Université Jean Monnet, Saint-Etienne, France
- Département de Neurologie, Centre Hospitalier Universitaire de Saint Etienne, Saint-Etienne, France
| | - Christine Tranchant
- Service de Neurologie, Hôpital de Hautepierre, Strasbourg, France
- Faculté de Médecine, Fédération de Médecine Translationnelle, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Valérie Dubois
- Laboratoire d'étude du HLA, Etablissement Français du Sang Auvergne-Rhône-Alpes, Lyon, France
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Samuel J Pleasure
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey M Gelfand
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Desestret
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.
- MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Muñiz-Castrillo S, Honnorat J. Genetic predisposition to autoimmune encephalitis and paraneoplastic neurological syndromes. Curr Opin Neurol 2024; 37:329-337. [PMID: 38483154 DOI: 10.1097/wco.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW We summarize the recent discoveries on genetic predisposition to autoimmune encephalitis and paraneoplastic neurological syndromes (PNS), emphasizing clinical and pathophysiological implications. RECENT FINDINGS The human leukocyte antigen (HLA) is the most studied genetic factor in autoimmune encephalitis and PNS. The HLA haplotype 8.1, which is widely known to be related to systemic autoimmunity, has been only weakly associated with a few types of autoimmune encephalitis and PNS. However, the strongest and most specific associations have been reported in a subgroup of autoimmune encephalitis that comprises antileucine-rich glioma-inactivated 1 (LGI1) limbic encephalitis, associated with DRB1∗07 : 01 , anticontactin-associated protein-like 2 (CASPR2) limbic encephalitis, associated with DRB1∗11 : 01 , and anti-IgLON5 disease, associated with DRB1∗10 : 01∼DQA1∗01∼DQB1∗05 . Non-HLA genes have been poorly investigated so far in autoimmune encephalitis, mainly in those lacking HLA associations such as anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, with only a few genome-wide association studies (GWAS) reporting equivocal results principally limited by small sample size. SUMMARY Genetic predisposition seems to be driven mostly by HLA in a group of autoimmune encephalitis characterized by being nonparaneoplastic and having predominantly IgG4 autoantibodies. The contribution of non-HLA genes, especially in those diseases lacking known or strong HLA associations, will require large cohorts enabling GWAS to be powerful enough to render meaningful results.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, California, USA
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon
- MeLiS Institute - UCBL-CNRS UMR 5284 - INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Faure F, Yshii L, Renno T, Coste I, Joubert B, Desestret V, Liblau R, Honnorat J. A Pilot Study to Develop Paraneoplastic Cerebellar Degeneration Mouse Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:181-196. [PMID: 36729270 DOI: 10.1007/s12311-023-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Modeling paraneoplastic neurological diseases to understand the immune mechanisms leading to neuronal death is a major challenge given the rarity and terminal access of patients' autopsies. Here, we present a pilot study aiming at modeling paraneoplastic cerebellar degeneration with Yo autoantibodies (Yo-PCD). Female mice were implanted with an ovarian carcinoma cell line expressing CDR2 and CDR2L, the known antigens recognized by anti-Yo antibodies. To boost the immune response, we also immunized the mice by injecting antigens with diverse adjuvants and immune checkpoint inhibitors. Ataxia and gait instability were assessed in treated mice as well as autoantibody levels, Purkinje cell density, and immune infiltration in the cerebellum. We observed the production of anti-Yo antibodies in the CSF and serum of all immunized mice. Brain immunoreaction varied depending on the site of implantation of the tumor, with subcutaneous administration leading to a massive infiltration of immune cells in the meningeal spaces, choroid plexus, and cerebellar parenchyma. However, we did not observe massive Purkinje cell death nor any motor impairments in any of the experimental groups. Self-sustained neuro-inflammation might require a longer time to build up in our model. Unusual tumor antigen presentation and/or intrinsic, species-specific factors required for pro-inflammatory engagement in the brain may also constitute strong limitations to achieve massive recruitment of antigen-specific T-cells and killing of antigen-expressing neurons in this mouse model.
Collapse
Affiliation(s)
- Fabrice Faure
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
| | - Lidia Yshii
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
- Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
| | - Toufic Renno
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Isabelle Coste
- Cancer Research Centre of Lyon, Université de Lyon, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Bastien Joubert
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Virginie Desestret
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024, Toulouse, France
- Department of Immunology, Toulouse University Hospital, 31300, Toulouse, France
| | - Jérôme Honnorat
- Synaptopathies and Autoantibodies (SynatAc) Team, Institut NeuroMyoGène (INMG)-MeLis, INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, 69373, Lyon, France.
- French Reference Centre On Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 59 Boulevard Pinel, 69677, Bron Cedex, France.
| |
Collapse
|
4
|
Farina A, Villagrán-García M, Vogrig A, Zekeridou A, Muñiz-Castrillo S, Velasco R, Guidon AC, Joubert B, Honnorat J. Neurological adverse events of immune checkpoint inhibitors and the development of paraneoplastic neurological syndromes. Lancet Neurol 2024; 23:81-94. [PMID: 38101905 DOI: 10.1016/s1474-4422(23)00369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
Immune checkpoint inhibitors, a class of oncological treatments that enhance antitumour immunity, can trigger neurological adverse events closely resembling paraneoplastic neurological syndromes. Unlike other neurological adverse events caused by these drugs, post-immune checkpoint inhibitor paraneoplastic neurological syndromes predominantly affect the CNS and are associated with neural antibodies and cancer types commonly found also in spontaneous paraneoplastic neurological syndromes. Furthermore, post-immune checkpoint inhibitor paraneoplastic neurological syndromes have poorer neurological outcomes than other neurological adverse events of immune checkpoint inhibitors. Early diagnosis and initiation of immunosuppressive therapy are likely to be crucial in preventing the accumulation of neurological disability. Importantly, the neural antibodies found in patients with post-immune checkpoint inhibitor paraneoplastic neurological syndromes are sometimes detected before treatment, indicating that these antibodies might help to predict the development of neurological adverse events. Experimental and clinical evidence suggests that post-immune checkpoint inhibitor paraneoplastic neurological syndromes probably share immunological features with spontaneous paraneoplastic syndromes. Hence, the study of post-immune checkpoint inhibitor paraneoplastic neurological syndromes can help in deciphering the immunopathogenesis of paraneoplastic neurological syndromes and in identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Antonio Farina
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France; Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Macarena Villagrán-García
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France
| | - Alberto Vogrig
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy; Department of Medicine (DAME), University of Udine Medical School, Udine, Italy
| | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sergio Muñiz-Castrillo
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France; Stanford Center for Sleep Sciences and Medicine, Palo Alto, CA, USA
| | - Roser Velasco
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-Institut Català d Oncologia L'Hospitalet, Institut d'Investigació Biomèdica de Bellvitge, l'Hospitalet de Llobregat, Barcelona, Spain; Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amanda C Guidon
- Harvard Medical School, Boston, MA, USA; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bastien Joubert
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France; Department of Neurology, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Reference Centre for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Neurological Hospital, Bron, France; MeLiS, UCBL-CNRS UMR 5284, INSERM U1314, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Peter E, Honnorat J, Desestret V. Paraneoplastic neurologic syndrome associated with gynecologic and breast malignancies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:409-417. [PMID: 38494293 DOI: 10.1016/b978-0-12-823912-4.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Gynecologic and breast malignancies are the cancers most commonly associated with paraneoplastic neurologic syndromes, of which the foremost is Yo [Purkinje cell antibody, type 1 (PCA-1)] paraneoplastic cerebellar degeneration. Yo syndrome affects women in the sixth decade and manifests as a subacute severe cerebellar ataxia. The association of the typical clinical picture with the detection of Yo antibodies in a patient's serum or CSF defines the diagnosis. Yo syndrome is always associated with a cancer, and the search for the underlying tumor should focus on ovarian and breast cancers and be repeated overtime if negative. The Yo autoantibodies are directed against the Yo antigens, aberrantly overexpressed by tumor cells with frequent somatic mutations and gene amplifications. The massive infiltration of these tumors by immune cells suggests that they are the site of the immune tolerance breakdown, leading to the destruction of Purkinje cells harboring the Yo antigens. Despite a growing understanding of the immunologic mechanisms, efficient therapeutic options are still lacking. Anti-Ri and antiamphiphysin syndromes are rarer and associated with breast cancers; a wide variety of other rare paraneoplastic neurologic syndromes have been described in association with gynecologic and breast malignancies that, though sharing some similarities, may have specific immune and genetics features leading to the immune tolerance breakdown.
Collapse
Affiliation(s)
- Elise Peter
- French Reference Center for Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; Synaptopathies and Autoantibodies (SynatAc) Team, Institut MeLis, Inserm U1314, UMR CNRS 5284, University Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; Synaptopathies and Autoantibodies (SynatAc) Team, Institut MeLis, Inserm U1314, UMR CNRS 5284, University Claude Bernard Lyon 1, Lyon, France.
| | - Virginie Desestret
- French Reference Center for Paraneoplastic Neurological Syndromes, Hospices Civils de Lyon, Lyon, France; Synaptopathies and Autoantibodies (SynatAc) Team, Institut MeLis, Inserm U1314, UMR CNRS 5284, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Brigo F, Zelano J, Abraira L, Bentes C, Ekdahl CT, Lattanzi S, Ingvar Lossius M, Redfors P, Rouhl RPW, Russo E, Sander JW, Vogrig A, Wickström R. Proceedings of the "International Congress on Structural Epilepsy & Symptomatic Seizures" (STESS, Gothenburg, Sweden, 29-31 March 2023). Epilepsy Behav 2024; 150:109538. [PMID: 38039602 DOI: 10.1016/j.yebeh.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy.
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden; Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Sweden
| | - Laura Abraira
- Neurology Department, Epilepsy Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carla Bentes
- Neurophysiological Monitoring Unit - EEG/Sleep Laboratory, Refractory Epilepsy Reference Centre (member of EpiCARE), Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Centro de Estudos Egas Moniz, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Morten Ingvar Lossius
- National Centre for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Member of the ERN EpiCARE, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petra Redfors
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Academic Centre for Epileptology Kempenhaeghe/MUMC+ Heeze and Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Italy
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Centre for Epilepsy, Chalfont St Peter, Bucks., SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, The Netherlands; Neurology Department, West of China Hospital, Sichuan University, Chengdu 610041, China
| | - Alberto Vogrig
- Department of Medicine (DAME), University of Udine, Udine, Italy; Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Dalmau J. Changing landscape in the field of paraneoplastic neurology: Personal perspectives over a 35-year career. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:11-32. [PMID: 38494272 DOI: 10.1016/b978-0-12-823912-4.00013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes are a group of rare disorders that have fascinated neurologists for more than a century. The discovery in the 1980s that many of these disorders occurred in association with antibodies against neuronal proteins revived the interest for these diseases. This chapter first traces the history of the paraneoplastic neurologic syndromes during the era that preceded the discovery of immune mechanisms and then reviews the immunologic period during which many of these syndromes were found to be associated with antibodies against intracellular onconeuronal proteins and pathogenic cytotoxic T-cell mechanisms. Alongside these developments, investigations on the antibody-mediated disorders of the peripheral nervous system, such as the myasthenic syndromes or neuromyotonia, provided suggestions for the study of the central nervous system (CNS) syndromes. These converging areas of research culminated with the groundbreaking discovery of a new category of CNS disorders mediated by antibodies against neuronal surface proteins or receptors. These disorders are not always paraneoplastic, and the understanding of these syndromes and mechanisms has changed the landscape of neurology and neurosciences.
Collapse
Affiliation(s)
- Josep Dalmau
- IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Abbatemarco JR, Vedeler CA, Greenlee JE. Paraneoplastic cerebellar and brainstem disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:173-191. [PMID: 38494276 DOI: 10.1016/b978-0-12-823912-4.00030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic cerebellar and brainstem disorders are a heterogeneous group that requires prompt recognition and treatment to help prevent irreversible neurologic injury. Paraneoplastic cerebellar degeneration is best characterized by Yo antibodies in patients with breast or ovarian cancer. Tr (DNER) antibodies in patients with Hodgkin lymphoma can also present with a pure cerebellar syndrome and is one of the few paraneoplastic syndromes found with hematological malignancy. Opsoclonus-myoclonus-ataxia syndrome presents in both pediatric and adult patients with characteristic clinical findings. Other paraneoplastic brainstem syndromes are associated with Ma2 and Hu antibodies, which can cause widespread neurologic dysfunction. The differential for these disorders is broad and also includes pharmacological side effects, infection or postinfectious processes, and neurodegenerative diseases. Although these immune-mediated disorders have been known for many years, mechanisms of pathogenesis are still unclear, and optimal treatment has not been established.
Collapse
Affiliation(s)
- Justin R Abbatemarco
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.
| | - Christian A Vedeler
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, University of Bergen, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - John E Greenlee
- Neurology Service, George E. Wahlen Veterans Affairs Health Care System, Salt Lake City, UT, United States; Department of Neurology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
Quinot V, Höftberger R. Pathogenesis and immunopathology of paraneoplastic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:33-54. [PMID: 38494287 DOI: 10.1016/b978-0-12-823912-4.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Paraneoplastic neurologic syndromes (PNS) represent a rare group of immune-mediated complications associated with an underlying tumor. Ectopic protein expression in neoplastic cells or an aberrant immune regulation in the course of hematooncologic diseases or thymomas trigger an autoimmune response that may affect any part of the central and/or peripheral nervous system. Recent advances in drug therapies as well as novel animal models and neuropathologic studies have led to further insights on the immune pathomechanisms of PNS. Although the syndromes share common paths in pathogenesis, they may differ in the disease course, prognosis, and therapy targets, depending on the localization and type of antibody epitope. Neuropathologic hallmarks of PNS associated with antibodies directed against intracellular epitopes are characterized by T cell-dominated inflammation, reactive gliosis including microglial nodules, and neuronal degeneration. By contrast, the neuropathology of cell surface antibody-mediated PNS strongly depends on the targeted antigen and varies from B cell/plasma cell-dominated inflammation and well-preserved neurons together with a reduced expression of the target antigen in anti-NMDAR encephalitis to irreversible Purkinje cell loss in anti-P/Q-type VGCC antibody-associated paraneoplastic cerebellar degeneration. The understanding of different pathomechanisms in PNS is important because they strongly correspond with therapy response and prognosis, and should guide treatment decisions.
Collapse
Affiliation(s)
- Valérie Quinot
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
11
|
Vogrig A, Pegat A, Villagrán-García M, Wucher V, Attignon V, Sohier E, Brevet M, Rogemond V, Pinto AL, Muñiz-Castrillo S, Peter E, Robert M, Picard G, Hopes L, Psimaras D, Terra A, Perrin C, Cogne D, Tabone-Eglinger S, Martinez S, Jury D, Valantin J, Gadot N, Auclair-Perrossier J, Viari A, Dubois B, Desestret V, Honnorat J. Different Genetic Signatures of Small-Cell Lung Cancer Characterize Anti-GABA B R and Anti-Hu Paraneoplastic Neurological Syndromes. Ann Neurol 2023; 94:1102-1115. [PMID: 37638563 DOI: 10.1002/ana.26784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Small-cell lung cancer (SCLC) is the malignancy most frequently associated with paraneoplastic neurological syndromes (PNS) and can trigger different antibody responses against intracellular (Hu) or neuronal surface (GABAB R) antigens. Our aim was to clarify whether the genomic and transcriptomic features of SCLC are different in patients with anti-GABAB R or anti-Hu PNS compared with SCLC without PNS. METHODS A total of 76 SCLC tumor samples were collected: 34 anti-Hu, 14 anti-GABAB R, and 28 SCLC without PNS. The study consisted of 4 steps: (1) pathological confirmation; (2) next generation sequencing using a panel of 98 genes, including those encoding the autoantibodies targets ELAVL1-4, GABBR1-2, and KCTD16; (3) genome-wide copy number variation (CNV); and (4) whole-transcriptome RNA sequencing. RESULTS CNV analysis revealed that patients with anti-GABAB R PNS commonly have a gain in chromosome 5q, which contains KCTD16, whereas anti-Hu and control patients often harbor a loss. No significantly different number of mutations regarding any onconeural genes was observed. Conversely, the transcriptomic profile of SCLC was different, and the differentially expressed genes allowed effective clustering of the samples into 3 groups, reflecting the antibody-based classification, with an overexpression of KCTD16 specific to anti-GABAB R PNS. Pathway analysis revealed that tumors of patients with anti-GABAB R encephalitis were enriched in B-cell signatures, as opposed to those of patients with anti-Hu, in which T-cell- and interferon-γ-related signatures were overexpressed. INTERPRETATION SCLC genetic and transcriptomic features differentiate anti-GABAB R, anti-Hu, and non-PNS tumors. The role of KCTD16 appears to be pivotal in the tumor immune tolerance breakdown of anti-GABAB R PNS. ANN NEUROL 2023;94:1102-1115.
Collapse
Affiliation(s)
- Alberto Vogrig
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Clinical Neurology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Antoine Pegat
- Service ENMG et Pathologies Neuromusculaires, Hôpital Neurologique P. Wertheimer, Hospices Civils de Lyon, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, INMG, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Macarena Villagrán-García
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Valentin Wucher
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Valéry Attignon
- Cancer Genomic Platform, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Emilie Sohier
- Gilles Thomas Bioinformatics Platform, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
- Fondation Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Marie Brevet
- Department of Pathology, Lyon Est Hospital, Hospices Civils de Lyon, Bron, France
| | - Veronique Rogemond
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laurie Pinto
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sergio Muñiz-Castrillo
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Elise Peter
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Melisse Robert
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Géraldine Picard
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lucie Hopes
- Department of Neurology, CHRU Nancy, Nancy, France
| | - Dimitri Psimaras
- Neurology 2 Department Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Sorbonne Université, INSERM, CNRS, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Anthony Terra
- Centre de Ressources Biologiques Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| | - Corinne Perrin
- Centre de Ressources Biologiques Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| | - Dominique Cogne
- Plateforme de Gestion des Echantillons Biologique, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Severine Tabone-Eglinger
- Plateforme de Gestion des Echantillons Biologique, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Séverine Martinez
- Plateforme de Gestion des Echantillons Biologique, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Delphine Jury
- Plateforme de Gestion des Echantillons Biologique, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Julie Valantin
- Plateforme Anatomopathologie Recherche, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Plateforme Anatomopathologie Recherche, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS Centre Léon Bérard, Lyon, France
| | - Jessie Auclair-Perrossier
- Cancer Genomic Platform, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Gilles Thomas Bioinformatics Platform, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
| | - Bertrand Dubois
- Cancer Immune Surveillance and Therapeutic Targeting Team, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory, Cancer Research Center of Lyon, Lyon, France
| | - Virginie Desestret
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- French Reference Center of Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
- Mechanisms in integrated life sciences Institute, (MeLiS), INSERM U1314, CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Manto M, Mitoma H. Recent Advances in Immune-Mediated Cerebellar Ataxias: Pathogenesis, Diagnostic Approaches, Therapies, and Future Challenges-Editorial. Brain Sci 2023; 13:1626. [PMID: 38137074 PMCID: PMC10741786 DOI: 10.3390/brainsci13121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical category of immune-mediated cerebellar ataxias (IMCAs) has been established after 3 decades of clinical and experimental research. The cerebellum is particularly enriched in antigens (ion channels and related proteins, synaptic adhesion/organizing proteins, transmitter receptors, glial cells) and is vulnerable to immune attacks. IMCAs include various disorders, including gluten ataxia (GA), post-infectious cerebellitis (PIC), Miller Fisher syndrome (MFS), paraneoplastic cerebellar degeneration (PCD), opsoclonus myoclonus syndrome (OMS), and anti-GAD ataxia. Other disorders such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), Behçet disease, and collagen vascular disorders may also present with cerebellar symptoms when lesions are localized to cerebellar pathways. The triggers of autoimmunity are established in GA (gluten sensitivity), PIC and MFS (infections), PCD (malignancy), and OMS (infections or malignant tumors). Patients whose clinical profiles do not match those of classic types of IMCAs are now included in the spectrum of primary autoimmune cerebellar ataxia (PACA). Recent remarkable progress has clarified various characteristics of these etiologies and therapeutic strategies in terms of immunotherapies. However, it still remains to be elucidated as to how immune tolerance is broken, leading to autoimmune insults of the cerebellum, and the consecutive sequence of events occurring during cerebellar damage caused by antibody- or cell-mediated mechanisms. Antibodies may specifically target the cerebellar circuitry and impair synaptic mechanisms (synaptopathies). The present Special Issue aims to illuminate what is solved and what is unsolved in clinical practice and the pathophysiology of IMCAs. Immune ataxias now represent a genuine category of immune insults to the central nervous system (CNS).
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000 Mons, Belgium
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-8402, Japan;
| |
Collapse
|
13
|
Dalmau J, Dalakas MC, Kolson DL, Paul F, Sánchez-Valle R, Zamvil SS. N2 Year in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/1/e200076. [PMID: 36596717 PMCID: PMC9827124 DOI: 10.1212/nxi.0000000000200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Josep Dalmau
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco.
| | - Marinos C Dalakas
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Dennis L Kolson
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Friedemann Paul
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Raquel Sánchez-Valle
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| | - Scott S Zamvil
- From the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) (J.D., R.S.-V.), Hospital Clínic, Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA) (J.D.), Barcelona, Spain; Department of Neurology (J.D., D.L.K.), University of Pennsylvania, Philadelphia; Neuroimmunology Unit (M.C.D.), National and Kapodistrian University of Athens Medical School, Greece; Thomas Jefferson University (M.C.D.), Philadelphia, PA; Charité-Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine (F.P.), Germany; and Department of Neurology (S.S.Z.), Weill Institute for Neurosciences and Program in Immunology, University of California, San Francisco
| |
Collapse
|
14
|
Seizures, Epilepsy, and NORSE Secondary to Autoimmune Encephalitis: A Practical Guide for Clinicians. Biomedicines 2022; 11:biomedicines11010044. [PMID: 36672553 PMCID: PMC9855825 DOI: 10.3390/biomedicines11010044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
The most recent International League Against Epilepsy (ILAE) classification has included "immune etiology" along with other well-known causes of epilepsy. This was possible thanks to the progress in detection of pathogenic neural antibodies (Abs) in a subset of patients, and resulted in an increased interest in identifying potentially treatable causes of otherwise refractory seizures. Most autoimmune encephalitides (AE) present with seizures, but only a minority of cases evolve to long-term epilepsy. The risk of epilepsy is higher for patients harboring Abs targeting intracellular antigens (T cell-mediated and mostly paraneoplastic, such as Hu, CV2/CRMP5, Ma2, GAD65 Abs), compared with patients with neuronal surface Abs (antibody-mediated and less frequently paraneoplastic, such as NMDAR, GABAbR, LGI1, CASPR2 Abs). To consider these aspects, conceptual definitions for two entities were provided: acute symptomatic seizures secondary to AE, and autoimmune-associated epilepsy, which reflect the different pathophysiology and prognoses. Through this manuscript, we provide an up-to-date review on the current state of knowledge concerning diagnosis and management of patients with Ab-mediated encephalitis and associated epilepsy. Special emphasis is placed on clinical aspects, such as brain magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) specificities, electroencephalographic (EEG) findings, cancer screening and suggestions for a rational therapeutic approach.
Collapse
|