1
|
Kala S, Strutz AG, Katt ME. The Rise of Pluripotent Stem Cell-Derived Glia Models of Neuroinflammation. Neurol Int 2025; 17:6. [PMID: 39852770 PMCID: PMC11767680 DOI: 10.3390/neurolint17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroinflammation is a blanket term that describes the body's complex inflammatory response in the central nervous system (CNS). It encompasses a phenotype shift to a proinflammatory state, the release of cytokines, the recruitment of peripheral immune cells, and a wide variety of other processes. Neuroinflammation has been implicated in nearly every major CNS disease ranging from Alzheimer's disease to brain cancer. Understanding and modeling neuroinflammation is critical for the identification of novel therapeutic targets in the treatment of CNS diseases. Unfortunately, the translation of findings from non-human models has left much to be desired. This review systematically discusses the role of human pluripotent stem cell (hPSC)-derived glia and supporting cells within the CNS, including astrocytes, microglia, oligodendrocyte precursor cells, pericytes, and endothelial cells, to describe the state of the field and hope for future discoveries. hPSC-derived cells offer an expanded potential to study the pathobiology of neuroinflammation and immunomodulatory cascades that impact disease progression. While much progress has been made in the development of models, there is much left to explore in the application of these models to understand the complex inflammatory response in the CNS.
Collapse
Affiliation(s)
- Srishti Kala
- Cancer Cell Biology Graduate Education Program, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Andrew G. Strutz
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
2
|
Föttinger F, Krajnc N, Riedl K, Leutmezer F, Ponleitner M, Rommer P, Kornek B, Macher S, Schmied C, Zebenholzer K, Zulehner G, Zrzavy T, Berger T, Bsteh G. Autoimmune screening panel in patients with multiple sclerosis: A Vienna multiple sclerosis database study. Eur J Neurol 2025; 32:e16558. [PMID: 39601436 PMCID: PMC11625921 DOI: 10.1111/ene.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE Autoimmune screening panels (ASPs) are often ordered as a part of the diagnostic workup in people with suspected multiple sclerosis (MS). However, data on the significance of ASP seropositivity in MS are scarce. This study aimed to investigate whether routine implementation of ASPs is viable in MS diagnostic workup. METHODS In this retrospective study, we included patients from the Vienna Multiple Sclerosis Database who were diagnosed with MS according to current McDonald criteria between 2014 and 2021 and had an ASP performed. RESULTS We analyzed 212 patients (mean age at serology = 30.4 [SD = 8.5] years, 67% female). Red flag symptoms for presence of systemic autoimmune disease were reported by 5.6% of patients during initial evaluation (sicca syndrome [n = 5], joint pain [n = 4], dermatitis [n = 4]). Complement levels (C3c and C4) were below the lower reference level in 26 of 134 (19.4%) and three of 134 (2.2%), respectively. Antinuclear antibodies (ANAs) were positive in 24 of 210 (11.4%), with 18 (8.6%), five (2.4%), and one (0.5%) having mildly, moderately, and strongly positive ANA titers. Extractable nuclear antibody subsets were positive in 10 of 211 (4.7%) patients. ASPs led to the diagnosis of mixed connective tissue disease (n = 1), psoriatic arthritis (n = 1), and Sjögren syndrome (n = 2; positive predictive value [PPV] = 4.9%, negative predictive value [NPV] = 99.3%). Among patients presenting with red flag symptoms, ASPs had better overall test performance (PPV = 100%, NPV = 88.9%). CONCLUSIONS The rate of ASP seropositivity in MS is low and within the range of the general population. Performance of ASPs without clinical suspicion of systemic autoimmune disease seems unwarranted.
Collapse
Affiliation(s)
- Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Katharina Riedl
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Markus Ponleitner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Stefan Macher
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Christiane Schmied
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Karin Zebenholzer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gudrun Zulehner
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Tobias Zrzavy
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Tsiftsoglou SA, Gavriilaki E. A potential bimodal interplay between heme and complement factor H 402H in the deregulation of the complement alternative pathway by SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105698. [PMID: 39643072 DOI: 10.1016/j.meegid.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The recent discovery that the trimeric SARS-CoV-2 spike S glycoprotein carries heme within an NTD domain pocket of the S1 subunits, suggested that this virus may be cleverly utilizing heme, in addition to the S1 RBD domains, for invading target cells carrying a specific entry receptor like ACE2, TMEM106B and others. Studies during the COVID-19 pandemic revealed that the infectivity of this virus depends on cell surface heparan sulfate and that the infection induces non-canonical activation of the Complement Alternative pathway (AP) on the surface of infected cells. In our recent COVID-19 genomic studies, among the coding SNPs of interest we also detected the presence of the CFH rs1061170, rs800292 and rs1065489 within all the infected patient subgroups examined. The minor C allele of rs1061170 encodes CFH 402H that over the years has been associated with diseases characterized by complement dysregulation namely the age-related macular degeneration (AMD) and the atypical haemolytic uremic syndrome (aHUS). Also, more recently with the diminishment of CD4+ T cell responses with ageing. The rs800292 minor allele A encodes CFH 62I that supports enhanced cofactor activity for Complement factor I (CFI). Also, the rs1065489 minor allele T encodes CFH 936D and is located within the CCP16 domain that influences the affinity of CFH with extracellular laminins. A subsequent computational analysis revealed that the CFH residue 402 is located centrally within a heme-binding motif (HBM) in domain CCP7 (398YNQNYGRKF406). Heme on the viral spike glycoprotein S1 subunit could recruit CFH 402H for masking free viral particles from opsonisation, and when in proximity to cell surface, act as a bait disrupting CFH 402H from the heparan sulphate coat of the target cells. Publicly available genetic data for European populations indicate that the minor C allele of rs1061170 is present only in haplotypes that carry the major alleles of rs800292 and rs1065489. This combination encodes for CFH 402H that exhibits increased biochemical affinity for heme in proximity, without enhanced cofactor activity for CFI and weaker association with the extracellular matrix. In the theatre of infection, this combination can promote heme-mediated viral infection with weaker complement opsonisation and potential AP deregulation. This strategy may be evolutionary conserved among various classes of infectious agents.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Department of Biomedical Sciences, School of Health Sciences, Alexander Campus, International Hellenic University, Sindos, 57400, Greece.
| | - Eleni Gavriilaki
- 2(nd) Propedeutic Department of Internal Medicine, Hippocration General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
4
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Kennedy PGE, Fultz M, Phares J, Yu X. Immunoglobulin G and Complement as Major Players in the Neurodegeneration of Multiple Sclerosis. Biomolecules 2024; 14:1210. [PMID: 39456143 PMCID: PMC11506455 DOI: 10.3390/biom14101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) and is termed as one of the most common causes of neurological disability in young adults. Axonal loss and neuronal cell damage are the primary causes of disease progression and disability. Yet, little is known about the mechanism of neurodegeneration in the disease, a limitation that impairs the development of more effective treatments for progressive MS. MS is characterized by the presence of oligoclonal bands and raised levels of immunoglobulins in the CNS. The role of complement in the demyelinating process has been detected in both experimental animal models of MS and within the CNS of affected MS patients. Furthermore, both IgG antibodies and complement activation can be detected in the demyelinating plaques and cortical gray matter lesions. We propose here that both immunoglobulins and complement play an active role in the neurodegenerative process of MS. We hypothesize that the increased CNS IgG antibodies form IgG aggregates and bind complement C1q with high affinity, activating the classical complement pathway. This results in neuronal cell damage, which leads to neurodegeneration and demyelination in MS.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK;
| | - Matthew Fultz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| |
Collapse
|
6
|
Tortosa-Carreres J, Cubas-Núñez L, Piqueras M, Castillo-Villalba J, Quintanilla-Bordàs C, Quiroga-Varela A, Villarrubia N, Monreal E, Álvarez G, Gasque-Rubio R, Forés-Toribio L, Carratalà-Boscà S, Lucas C, Sanz MT, Ramió-Torrentà L, Villar LM, Casanova B, Laiz B, Pérez-Miralles FC. Evaluating the complement C1q levels in serum and cerebrospinal fluid in multiple sclerosis patients: Could it serve as a valuable marker in clinical practice? J Neuroimmunol 2024; 394:578428. [PMID: 39121816 DOI: 10.1016/j.jneuroim.2024.578428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Immunohistochemical studies have identified complement component C1q in MS lesions. We aimed to compare serum (sC1q) and CSF (csfC1q) levels in a large cohort of MS patients (pwMS) (n = 222) with those of healthy controls (HC, n = 52), individuals with other immune (IND, n = 14), and non-immune neurological disorders (nIND, n = 15), and to analyze their correlation with other biomarkers. pwMS were divided into three series based on their origin. CSF samples were unavailable for HC. All three pwMS cohorts had lower sC1q levels compared to HC and IND. csfC1q was higher in one pwMS cohort, with a trend in another, and correlated with IgG, Free Kappa Light Chains, GFAP, and Chitinase-3 Like Protein-1 in CSF. Our findings suggest a significant role for C1q in MS pathophysiology, potentially serving as a biomarker for disease identification.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain; Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain.
| | - Laura Cubas-Núñez
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain.
| | - Mónica Piqueras
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | | | - Carlos Quintanilla-Bordàs
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Ana Quiroga-Varela
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain.
| | - Noelia Villarrubia
- Departments of Immunology and Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Madrid, Spain.
| | - Enric Monreal
- Departments of Immunology and Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Madrid, Spain.
| | - Gary Álvarez
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain.
| | - Raquel Gasque-Rubio
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain
| | | | | | - Celia Lucas
- Computer Systems, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain..
| | - María T Sanz
- Department of Didactic of Mathematics. University of Valencia, Spain.
| | - Lluís Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain.
| | - Luisa María Villar
- Multiple Sclerosis Unit, Ramon y Cajal University Hospital, Madrid, Spain.
| | - Bonaventura Casanova
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Begoña Laiz
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain.
| | - Francisco Carlos Pérez-Miralles
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| |
Collapse
|
7
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
8
|
Complement Activation Is Associated With Disease Severity in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200246. [PMID: 38507658 PMCID: PMC10959166 DOI: 10.1212/nxi.0000000000200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|