1
|
Li WY, Qu WR, Li Y, Wang SY, Liu DM, Deng LX, Wang Y. DBS in the restoration of motor functional recovery following spinal cord injury. Front Neurol 2024; 15:1442281. [PMID: 39697443 PMCID: PMC11652279 DOI: 10.3389/fneur.2024.1442281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms. A literature review via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals a growing body of evidence for therapeutic DBS in SCI recovery. Advances in techniques like optogenetics and whole-brain tractogram have helped elucidate DBS mechanisms. Neuronal targets sites for SCI functional recovery include the mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray (PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional recovery treatment. Radiologically guided DBS optimization and combination therapy with classical rehabilitation have become an effective therapeutic method, though ongoing interventional trials are needed to enhance understanding and validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-clinical approaches are essential to enhance the quality of evidence on DBS safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds promise for neurological and functional recovery after SCI, akin to other electrical stimulation approaches.
Collapse
Affiliation(s)
- Wen-yuan Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Wen-rui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Shu-ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Dong-ming Liu
- Department of Neurology, Mudanjiang First People’s Hospital, Mudanjiang, China
| | - Ling-xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| |
Collapse
|
2
|
Zhou H, Li F, Lin Z, Meng L, Chen D, Zhang Q, Niu L. Holographic Ultrasound Modulates Neural Activity in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0516. [PMID: 39507404 PMCID: PMC11538569 DOI: 10.34133/research.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Ultrasound (US) has emerged as a noninvasive neurostimulation method for motor control in Parkinson's disease (PD). Previous in vivo US neuromodulation studies for PD were single-target stimulation. However, the motor symptoms of PD are linked with neural circuit dysfunction, and multi-target stimulation is conducted in clinical treatment for PD. Thus, in the present study, we achieved multi-target US stimulation using holographic lens transducer based on the Rayleigh-Sommerfeld diffraction integral and time-reversal methods. We demonstrated that holographic US stimulation of the bilateral dorsal striatum (DS) could improve the motor function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. The holographic US wave (fundamental frequency: 3 MHz, pulse repetition frequency: 500 Hz, duty cycle: 20%, tone-burst duration: 0.4 ms, sonication duration: 1 s, interstimulus interval: 4 s, spatial-peak temporal-average intensity: 180 mw/cm2) was delivered to the bilateral DS 20 min per day for consecutive 10 d after the last injection of MPTP. Immunohistochemical c-Fos staining demonstrated that holographic US significantly increased the c-Fos-positive neurons in the bilateral DS compared with the sham group (P = 0.003). Moreover, our results suggested that holographic US stimulation of the bilateral DS ameliorated motor dysfunction (P < 0.05) and protected the dopaminergic (DA) neurons (P < 0.001). The neuroprotective effect of holographic US was associated with the prevention of axon degeneration and the reinforcement of postsynaptic densities [growth associated protein-43 (P < 0.001), phosphorylated Akt (P = 0.001), β3-tubulin (P < 0.001), phosphorylated CRMP2 (P = 0.037), postsynaptic density (P = 0.023)]. These data suggested that holographic US-induced acoustic radiation force has the potential to achieve multi-target neuromodulation and could serve as a reliable tool for the treatment of PD.
Collapse
Affiliation(s)
- Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
- Tech X Academy,
Shenzhen Polytechnic University, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Dan Chen
- Institute of Ultrasonic Technology, Institute of Intelligent Manufacturing Technology,
Shenzhen Polytechnic University, Shenzhen, China
| | - Qingping Zhang
- School of Electronic and Communication Engineering,
Shenzhen Polytechnic University, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Wang F, Huang P, Lin S, Dai L, Lin Z, Pan Y, Zhang C, Sun B, Wu Y, Li D. Anterior capsulotomy combined with subthalamic nucleus deep brain stimulation for tardive dystonia. J Psychiatr Res 2024; 176:148-154. [PMID: 38865864 DOI: 10.1016/j.jpsychires.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been reported as a therapy option for the motor dysfunction of severe tardive dystonia (TD). The major psychiatric diseases, however, are contraindications to DBS treatment in TD patients. METHODS Six severe, medically refractory TD patients undergoing bilateral anterior capsulotomy combined with bilateral subthalamic nucleus (STN)-DBS treatment were studied retrospectively at two time points: pre-operation, and 1-3 years post-operation. Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to assess the dystonia and disability. Depressive, anxiety, psychiatric symptoms, and Quality of Life (QoL) were evaluated using the 17-item Hamilton Depression Scale (HAMD-17), the 14-item Hamilton Anxiety Scale (HAMA-14), the Positive and Negative Syndrome Scale (PANSS), and 36-item Short-Form Health Survey (SF-36), respectively. RESULTS After receiving the combination treatment for 25 ± 11.6 months (range, 12-41 months), significant clinical symptom improvements were reported in TD patients. BFMDRS motor and disability scores were ameliorated by 78.5 ± 32.0% (p = 0.031) and 76.5 ± 38.6% (p = 0.031), respectively. The HAMD-17 and HAMA-14 scores were reduced by 60.3 ± 27.9% (p = 0.007) and 60.0 ± 24.6% (p = 0.009), respectively. Furthermore, the PANSS scores of the comorbidity schizophrenia TD patients decreased by 58.1 ± 6.0% (p = 0.022), and the QoL improved by 59.7 ± 14.1% (SF-36, p = 0.0001). During the research, there were no notable adverse effects or problems. CONCLUSION Bilateral anterior capsulotomy combined with bilateral STN-DBS may be an effective and relatively safe treatment option for severe TD comorbid with major psychiatric disorders.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China; Contributed equally to this Research, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Contributed equally to this Research, China
| | - Suzhen Lin
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyu Lin
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li N, Li Y, Yu T, Gou M, Chen W, Wang X, Tong J, Chen S, Tan S, Wang Z, Tian B, Li CSR, Tan Y. Immunosenescence-related T cell phenotypes and white matter in schizophrenia patients with tardive dyskinesia. Schizophr Res 2024; 269:36-47. [PMID: 38723519 DOI: 10.1016/j.schres.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 06/17/2024]
Abstract
Schizophrenia patients with tardive dyskinesia (TD) are associated with accelerated biological aging, immunological dysfunction, and premature morbidity and mortality. Older individuals are particularly vulnerable to TD development. As a characteristic of immunosenescence, alterations in the relative proportions of naïve or memory T cell subpopulations may be negatively or positively associated with brain structure abnormalities; however, whether these changes are correlated with TD remains unclear. In this study, we investigated correlations between distributions of T cell phenotypes and brain structure abnormalities (especially white matter) in schizophrenia patients with (TD) and without (NTD) TD (n = 50 and 58, respectively) relative to healthy controls (HC, n = 41). Immune markers, including naïve (CD45RA+), memory (CD45RO+), and apoptotic (CD95+) CD4+ and CD8+ T cells, were examined by flow cytometry, as were the intracellular levels of cytokines (interferon (IFN)-γ, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α) in CD8 + CD45RA + CD95+ and CD8 + CD45RO + CD95+ T cells. MRI was employed to evaluate the fractional anisotropy (FA) of white matter tracts and subcortical volumes, following published routines. The percentage of CD8 + CD45RO + CD95+ T cells was higher in TD compared with NTD and HC groups and correlated with the choroid plexus volume in TD group. The intracellular level of IFN-γ in CD8 + CD45RO + CD95+ T cells, the FA of the fornix/stria terminalis, and the pallidum volume were correlated with orofacial TD, whereas the FAs of the inferior fronto-occipital fasciculus, cingulum, and superior longitudinal fasciculus were correlated with limb-truncal TD. These findings provide preliminary evidence that the association between immunosenescence-related T cell subpopulations and brain structure may underline the pathological process of TD.
Collapse
Affiliation(s)
- Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Xiaoying Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China.
| |
Collapse
|
5
|
Aihemaitiniyazi A, Zhang H, Hu Y, Li T, Liu C. Quality of life outcomes after deep brain stimulation in acquired dystonia: a systematic review and meta-analysis. Neurol Sci 2024; 45:467-476. [PMID: 37816931 PMCID: PMC10791872 DOI: 10.1007/s10072-023-07106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Dystonia is a condition that affects the ability to control the movement and function of the body's muscles. It can cause not only physical problems, but also mental problems, resulting in impaired health-related quality of life (HRQoL). However, the effect of deep brain stimulation on quality of life in acquired dystonia remains unclear. METHODS We conducted a systematic literature review from January 2000 to October 2022,determined the eligible studies, and performed a meta-analysis of HRQoL outcomes based on the Short-Form Health Survey-36 (SF-36) after DBS to evaluate the effects of DBS on physical and mental QoL. RESULTS A total of 14 studies met the inclusion criteria and were systematically reviewed. A comprehensive meta-analysis was performed for 9 studies that reported physical and psychological data or physical component summary (PCS), or mental component summary (MCS) for SF-36. The mean (SD) age at DBS implantation was 34.29 (10.3) years, and the follow-up period after implantation was 2.21 (2.80) years. The random effects model meta-analysis revealed that both physical and mental domains of the SF-36 improved following DBS. There was no statistically significant difference between the physical domains (effect size=1.34; p<0.0001) and the mental domains (effect size=1.38; p<0.0001). CONCLUSION This is the first meta-analysis that demonstrates significant benefits in HRQoL following DBS in patients with acquired dystonia. There were significant improvements in both physical QoL and mental QoL.
Collapse
Affiliation(s)
| | - Huawei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Aviation General Hospital, China Medical University, Beijing, 100012, China
| | - Tiemin Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Changqing Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Chongqing Sanbo Jiangling Hospital, Chongqing, China.
| |
Collapse
|
6
|
Szczakowska A, Gabryelska A, Gawlik-Kotelnicka O, Strzelecki D. Deep Brain Stimulation in the Treatment of Tardive Dyskinesia. J Clin Med 2023; 12:1868. [PMID: 36902655 PMCID: PMC10003252 DOI: 10.3390/jcm12051868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Tardive dyskinesia (TD) is a phenomenon observed following the predominantly long-term use of dopamine receptor blockers (antipsychotics) widely used in psychiatry. TD is a group of involuntary, irregular hyperkinetic movements, mainly in the muscles of the face, eyelid, lips, tongue, and cheeks, and less frequently in the limbs, neck, pelvis, and trunk. In some patients, TD takes on an extremely severe form, massively disrupting functioning and, moreover, causing stigmatization and suffering. Deep brain stimulation (DBS), a method used, among others, in Parkinson's disease, is also an effective treatment for TD and often becomes a method of last resort, especially in severe, drug-resistant forms. The group of TD patients who have undergone DBS is still very limited. The procedure is relatively new in TD, so the available reliable clinical studies are few and consist mainly of case reports. Unilateral and bilateral stimulation of two sites has proven efficacy in TD treatment. Most authors describe stimulation of the globus pallidus internus (GPi); less frequent descriptions involve the subthalamic nucleus (STN). In the present paper, we provide up-to-date information on the stimulation of both mentioned brain areas. We also compare the efficacy of the two methods by comparing the two available studies that included the largest groups of patients. Although GPi stimulation is more frequently described in literature, our analysis indicates comparable results (reduction of involuntary movements) with STN DBS.
Collapse
Affiliation(s)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
7
|
Badarny S, Nassar R, Badarny Y. Tardive Syndrome Is a Mysterious Phenomenon with Different Clinical Manifestations-Review. J Clin Med 2023; 12:jcm12041498. [PMID: 36836033 PMCID: PMC9967615 DOI: 10.3390/jcm12041498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Tardive syndrome (TS) refers to persistent hyperkinetic, hypokinetic, and sensory complaints appearing after chronic neuroleptics and other dopamine receptor-blocking agents (DRBAs). It is defined as involuntary movements, often rhythmic, choreiform, or athetoid, involving the tongue, face, extremities, and sensory urges such as akathisia and lasts for a few weeks. TS develops in association with neuroleptic medication usage for a few months at least. There is usually a delay between the initiation of the causative drug and the onset of abnormal movements. However, it was soon noted that TS can also develop early, even days or weeks after DRBAs begin. However, the longer the exposure, the greater the risk of developing TS. Tardive dyskinesia, dystonia, akathisia, tremor, and parkinsonism are frequent phenomenologies of this syndrome.
Collapse
Affiliation(s)
- Samih Badarny
- Neurology Department, Galilee Medical Center, Nahariya 221001, Israel
- Bar Ilan Faculty of Medicine, Zafed 1311502, Israel
- Correspondence: (S.B.); (R.N.); (Y.B.)
| | - Rima Nassar
- Faculty of Medicine, Israel Technion, Haifa 3109601, Israel
- Correspondence: (S.B.); (R.N.); (Y.B.)
| | - Yazid Badarny
- Neurosurgery Department, Rambam Medical Center, Haifa 3109601, Israel
- Correspondence: (S.B.); (R.N.); (Y.B.)
| |
Collapse
|
8
|
Nagel JM, Ghika J, Runge J, Wolf ME, Krauss JK. Case report: Pallidal deep brain stimulation for treatment of tardive dystonia/dyskinesia secondary to chronic metoclopramide medication. Front Neurol 2023; 13:1076713. [PMID: 36712453 PMCID: PMC9877408 DOI: 10.3389/fneur.2022.1076713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Objectives Tardive dystonia/dyskinesia (TDD) occurs as a side effect of anti-dopaminergic drugs, including metoclopramide, and is often refractory to medication. While pallidal deep brain stimulation (DBS) has become an accepted treatment for TDD secondary to neuroleptic medication, there is much less knowledge about its effects on metoclopramide-induced TDD. Methods We present the case of a woman with metoclopramide-induced TDD, whose symptoms were initially misjudged as "functional." After 8 years of ineffective medical treatments, she received bilateral implantation of quadripolar electrodes into the posteroventral lateral globus pallidus internus (GPi). Results GPi DBS led to significant symptom reduction [Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor score 24/44 at admission and 7/44 at discharge]. Chronic stimulation led to full recovery from TDD symptoms 9 years after surgery. The BFMDRS motor score decreased to 0.5 (98% improvement). Discussion Pallidal DBS may result in sustained improvement of TDD secondary to chronic metoclopramide intake in the long term.
Collapse
Affiliation(s)
- Johanna M. Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany,*Correspondence: Johanna M. Nagel ✉
| | - Joseph Ghika
- Service de Neurologie, Hôpital du Valais, Sion, Switzerland
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Marc E. Wolf
- Department of Neurology, Neurozentrum, Klinikum Stuttgart, Stuttgart, Germany,Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Ghadery CM, Kalia LV, Connolly BS. Movement disorders of the mouth: a review of the common phenomenologies. J Neurol 2022; 269:5812-5830. [PMID: 35904592 DOI: 10.1007/s00415-022-11299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Movement disorders of the mouth encompass a spectrum of hyperactive movements involving the muscles of the orofacial complex. They are rare conditions and are described in the literature primarily in case reports originating from neurologists, psychiatrists, and the dental community. The focus of this review is to provide a phenomenological description of different oral motor disorders including oromandibular dystonia, orofacial dyskinesia and orolingual tremor, and to offer management strategies for optimal treatment based on the current literature. A literature search of full text studies using PubMed/Medline and Cochrane library combined with a manual search of the reference lists was conducted until June 2021. Results from this search included meta-analyses, systematic reviews, reviews, clinical studies, case series, and case reports published by neurologists, psychiatrists, dentists and oral and maxillofacial surgeons. Data garnered from these sources were used to provide an overview of most commonly encountered movement disorders of the mouth, aiding physicians in recognizing these rare conditions and in initiating appropriate therapy.
Collapse
Affiliation(s)
- C M Ghadery
- Division of Neurology, Department of Medicine, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
| | - L V Kalia
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - B S Connolly
- Division of Neurology, Department of Medicine, McMaster University, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada.
| |
Collapse
|
10
|
Krause P, Kroneberg D, Gruber D, Koch K, Schneider GH, Kühn AA. Long-term effects of pallidal deep brain stimulation in tardive dystonia: a follow-up of 5-14 years. J Neurol 2022; 269:3563-3568. [PMID: 35083518 PMCID: PMC9217904 DOI: 10.1007/s00415-022-10965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Introduction Pallidal DBS is an established treatment for severe isolated dystonia. However, its use in disabling and treatment-refractory tardive syndromes (TS) including tardive dyskinesia and tardive dystonia (TD) is less well investigated and long-term data remain sparse. This observational study evaluates long-term effects of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in patients with medically refractory TS. Methods We retrospectively analyzed a cohort of seven TD patients with bilateral GPi-DBS. Involuntary movements, dystonia and disability were rated at long-term follow-up (LT-FU) after a mean of 122 ± 33.2 SD months (range 63–171 months) and compared to baseline (BL), short-term (ST-FU; mean 6 ± 2.0 SD months) and 4-year follow-up (4y-FU; mean 45 ± 12.3 SD months) using the Abnormal Involuntary Movement Scale (AIMS) and the Burke–Fahn–Marsden Dystonia Rating Scale (BFMDRS), respectively. Quality of life and mood were evaluated using the SF36 and Beck Depression Index (BDI) questionnaires, respectively. Results At LT-FU patients had improved by 73% ± 14.2 SD in involuntary movements and 90% ± 1.0 SD in dystonia. Mood had improved significantly whereas quality of life remained unchanged compared to baseline. No serious long-lasting stimulation-related adverse events (AEs) were observed. Three patients of this cohort presented without active stimulation and ongoing symptom relief at long-term follow-up after 3–10 years of continuous DBS. Conclusion Pallidal DBS is a safe and effective long-term TD treatment. Even more interesting, three of our patients could stop stimulation after several years of DBS without serious relapse. Larger studies need to explore the phenomenon of ongoing symptom relief after DBS cessation. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-10965-8.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Kroneberg
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Doreen Gruber
- Department of Neurology and Stereotactic Surgery, University Medicine of Magdeburg, Magdeburg, Germany
| | - Kristin Koch
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité, University Medicine Berlin, University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité, University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
11
|
Méneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable Hyperkinetic Movement Disorders Not to Be Missed. Front Neurol 2021; 12:659805. [PMID: 34925200 PMCID: PMC8671871 DOI: 10.3389/fneur.2021.659805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperkinetic movement disorders are characterized by the presence of abnormal involuntary movements, comprising most notably dystonia, chorea, myoclonus, and tremor. Possible causes are numerous, including autoimmune disorders, infections of the central nervous system, metabolic disturbances, genetic diseases, drug-related causes and functional disorders, making the diagnostic process difficult for clinicians. Some diagnoses may be delayed without serious consequences, but diagnosis delays may prove detrimental in treatable disorders, ranging from functional disabilities, as in dopa-responsive dystonia, to death, as in Whipple's disease. In this review, we focus on treatable disorders that may present with prominent hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Aurélie Méneret
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Béatrice Garcin
- Service de Neurologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Solène Frismand
- Département de Neurologie, Hôpital universitaire de Nancy, Nancy, France
| | - Annie Lannuzel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Département de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France
- Faculté de Médecine, Université Des Antilles, Pointe-à-Pitre, France
- Centre D'investigation Clinique Antilles Guyane, Pointe-à-Pitre, France
| | - Louise-Laure Mariani
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
12
|
Tolmacheva VA. Tardive dyskinesia. CONSILIUM MEDICUM 2021. [DOI: 10.26442/20751753.2021.11.201155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tardive dyskinesia is a group of hyperkinetic and hypokinetic movement disorders, following the administration of dopamine receptor-blocking drugs. The severity of these syndromes varies from soft forms to the development of life-degrading situations. Phenomenologically tardive dyskinesia can be represented both in isolation and in various combinations. Recognition of these syndromes early in the development of tardive dyskinesia can optimize therapeutic treatment and reduce the risk of severe complications. As a means of treatment, deutetrabenazine or valbenazine are used as first-line drugs, with resistance to therapy and in severe cases, drugs of other groups are used (amantadine, baclofen, botulinum toxin type A, clonazepam, donepezil, gabapentin, ginkgo biloba, levetiracetam, melatonin, pregabalin, thiamine, verapamil, vitamin B6, vitamin E). Our own experience of 12 patients with tardive dystonia showed the effeciency of local injections of botulinum toxin.
Collapse
|
13
|
Gupta H, Moity AR, Jumonville A, Kaufman S, Edinoff AN, Kaye AD. Valbenazine for the Treatment of Adults with Tardive Dyskinesia. Health Psychol Res 2021; 9:24929. [PMID: 35106396 PMCID: PMC8801818 DOI: 10.52965/001c.24929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 10/11/2023] Open
Abstract
PURPOSE OF REVIEW This a comprehensive review of the literature regarding the use of Valbenazine in treating tardive dyskinesia. A primarily oral movement disorder induced by chronic exposure to certain classes of medications, tardive dyskinesia is often resistant to many therapeutic approaches. This review presents the background, evidence, and indications for the use of Valbenazine as a treatment option for this condition. RECENT FINDINGS Tardive dyskinesia is a disorder arising from long-term exposure to medications that blocked dopamine receptors, primarily antipsychotics. It is characterized by abnormal movements of the oral-buccal-lingual structures as well as associated pain and hypertrophy. Simply stopping the use of the dopamine blocking agents effectively alleviates the symptoms but is not always reliable hence the need for another therapeutic approach.Valbenazine is thought to function as a highly selective inhibitor of the VMAT2 vesicular monoamine transporter resulting in decreased availability of dopamine in the presynaptic cleft. This leads to decreased dopaminergic activation of the striatal motor pathway. The FDA approved Valbenazine in 2017 to treat tardive dyskinesia in adults and needs to be evaluated with existing therapeutic approaches. SUMMARY The chronic use of dopamine receptor blocking agents, most commonly antipsychotics, can lead to a movement disorder called tardive dyskinesia. Once symptom onset has occurred, these movement abnormalities can persist for years to permanently, depending on the speed and effectiveness of treatment. Valbenazine is a relatively newer option for the treatment of tardive dyskinesia in adults. Compared to other pharmaceutical agents, it is more selective and has limited toxicities making it an effective treatment regimen. However, further research, including additional direct comparison studies, should be conducted to fully evaluate this drug's usefulness.
Collapse
Affiliation(s)
- Harshit Gupta
- David Geffen School of Medicine, University of California Los Angeles
| | - Alycee R Moity
- School of Medicine, Louisiana State University Health Shreveport
| | | | - Sarah Kaufman
- School of Medicine, Louisiana State University Health Shreveport
| | - Amber N Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
14
|
Debrey SM, Goldsmith DR. Tardive Dyskinesia: Spotlight on Current Approaches to Treatment. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2021; 19:14-23. [PMID: 34483762 DOI: 10.1176/appi.focus.20200038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tardive dyskinesia (TD) is a debilitating, iatrogenic, and potentially severe movement disorder characterized by involuntary, repetitive, purposeless movements that are present throughout the body. The authors present a review of studies of past, current, and possible future treatment approaches to the management of TD; consider the phenomenology, assessment, and putative pathophysiological mechanisms of TD, early pharmacological trials, a focus on the newer vesicular monoamine transporter 2 inhibitors, and other evidence-based approaches, such as clozapine; and present preliminary evidence for newer approaches, such as deep brain stimulation and repetitive transcranial magnetic stimulation. On the basis of the evidence presented here, the authors highlight the importance of early recognition and assessment of TD, as well as how to best approach management of these often incapacitating symptoms.
Collapse
Affiliation(s)
- Sarah M Debrey
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta
| |
Collapse
|
15
|
Kashyap S, Ceponiene R, Savla P, Bernstein J, Ghanchi H, Ananda A. Resolution of tardive tremor after bilateral subthalamic nucleus deep brain stimulation placement. Surg Neurol Int 2020; 11:444. [PMID: 33408929 PMCID: PMC7771401 DOI: 10.25259/sni_723_2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/19/2020] [Indexed: 11/04/2022] Open
Abstract
Background:Tardive tremor (TT) is an underrecognized manifestation of tardive syndrome (TS). In our experience, TT is a rather common manifestation of TS, especially in a setting of treatment with aripiprazole, and is a frequent cause of referrals for the evaluation of idiopathic Parkinson disease. There are reports of successful treatment of tardive orofacial dyskinesia and dystonia with deep brain stimulation (DBS) using globus pallidus interna (GPi) as the primary target, but the literature on subthalamic nucleus (STN) DBS for tardive dyskinesia (TD) is lacking. To the best of our knowledge, there are no reports on DBS treatment of TT.Case Description:A 75-year-old right-handed female with the medical history of generalized anxiety disorder and major depressive disorder had been treated with thioridazine and citalopram from 1980 till 2010. Around 2008, she developed orolingual dyskinesia. She was started on tetrabenazine in June 2011. She continued to have tremors and developed Parkinsonian gait, both of which worsened overtime. She underwent DBS placement in the left STN in January 2017 with near-complete resolution of her tremors. She underwent right STN implantation in September 2017 with similar improvement in symptoms.Conclusion:While DBS-GPi is the preferred treatment in treating oral TD and dystonia, DBS-STN could be considered a safe and effective target in patients with predominating TT and/or tardive Parkinsonism. This patient saw a marked improvement in her symptoms after implantation of DBS electrodes, without significant relapse or recurrence in the years following implantation.
Collapse
Affiliation(s)
- Samir Kashyap
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Rita Ceponiene
- Department of Neurology, Kaiser Permanente Sourthern California Physician Medical Group, Los Angeles, California, United States,
| | - Paras Savla
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Jacob Bernstein
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Hammad Ghanchi
- Department of Neurosurgery, Riverside University Health System, Moreno Valley, California, United States,
| | - Ajay Ananda
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California, United States
| |
Collapse
|
16
|
Chen CY, Chiang HL, Fuh JL. Tardive syndrome: An update and mini-review from the perspective of phenomenology. J Chin Med Assoc 2020; 83:1059-1065. [PMID: 32956105 DOI: 10.1097/jcma.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tardive syndrome (TS) is a group of movement disorders caused by the long-term use of dopamine receptor blocking agents. The phenotypic presentation of TS is diverse, ranging from the most well-characterized symptom of tardive dyskinesia to other symptoms, including dystonia, akathisia, myoclonus, parkinsonism, tremor, and tics. These tardive symptoms are distinct not only in their phenomenology but also in their clinical outcomes. However, our knowledge of the pathophysiology and management of TS is almost exclusively based on tardive dyskinesia. First-generation antipsychotics have a higher risk of inducing TS and have largely been replaced by second-generation antipsychotics with a lower risk of TS. However, patients with off-label use of second-generation antipsychotics are still at risk of developing TS. Thus, the management of TS remains a challenging and important issue for physicians. In this review, we update the information on the epidemiology, phenomenology, and treatment of TS from the perspective of the specific form of TS.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualian, Taiwan, ROC
| | - Han-Lin Chiang
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jong-Ling Fuh
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
17
|
Burns MR, Chiu SY, Patel B, Mitropanopoulos SG, Wong JK, Ramirez-Zamora A. Advances and Future Directions of Neuromodulation in Neurologic Disorders. Neurol Clin 2020; 39:71-85. [PMID: 33223090 DOI: 10.1016/j.ncl.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
"Deep brain stimulation is a safe and effective therapy for the management of a variety of neurologic conditions with Food and Drug Administration or humanitarian exception approval for Parkinson disease, dystonia, tremor, and obsessive-compulsive disorder. Advances in neurophysiology, neuroimaging, and technology have driven increasing interest in the potential benefits of neurostimulation in other neuropsychiatric conditions including dementia, depression, pain, Tourette syndrome, and epilepsy, among others. New anatomic or combined targets are being investigated in these conditions to improve symptoms refractory to medications or standard stimulation."
Collapse
Affiliation(s)
- Matthew R Burns
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Shannon Y Chiu
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Bhavana Patel
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Sotiris G Mitropanopoulos
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Joshua K Wong
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Adolfo Ramirez-Zamora
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA.
| |
Collapse
|
18
|
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication following chronic exposure to centrally acting dopamine receptor antagonists, mainly of the class of antipsychotics drugs. New generations of antipsychotic drugs reduced its mean prevalence to 20%, but it continues to mar the drug experience and social integration in a significant fraction of patients. The underlying molecular cascade remains elusive, explaining in part why TD management is so often difficult. Protocol variations between experimental laboratories and inter-species differences in the biological response to antipsychotic drugs have added layers of complexity. The traditional dopamine D2 receptor supersensitivity hypothesis was revisited in an experimental nonhuman primate model. Findings in the striatum revealed a strong upregulation of D3, not D2, receptors specific to dyskinetic animals, and indirect evidence suggestive of a link between overactivation of glycogen synthase kinase-3β signaling and TD. New effective vesicular monoamine transporter type 2 inhibitors alleviating TD have been approved in the USA. They were integrated to an emerging stepwise treatment algorithm for troublesome TD, which also includes consideration for changes in the current antipsychotic drug regimen and recognition of potentially aggravating factors such as anticholinergic co-medications. These advances may benefit TD.
Collapse
|
19
|
Bledsoe IO, Viser AC, San Luciano M. Treatment of Dystonia: Medications, Neurotoxins, Neuromodulation, and Rehabilitation. Neurotherapeutics 2020; 17:1622-1644. [PMID: 33095402 PMCID: PMC7851280 DOI: 10.1007/s13311-020-00944-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/24/2023] Open
Abstract
Dystonia is a complex disorder with numerous presentations occurring in isolation or in combination with other neurologic symptoms. Its treatment has been significantly improved with the advent of botulinum toxin and deep brain stimulation in recent years, though additional investigation is needed to further refine these interventions. Medications are of critical importance in forms of dopa-responsive dystonia but can be beneficial in other forms of dystonia as well. Many different rehabilitative paradigms have been studied with variable benefit. There is growing interest in noninvasive stimulation as a potential treatment, but with limited long-term benefit shown to date, and additional research is needed. This article reviews existing evidence for treatments from each of these categories. To date, there are many examples of incomplete response to available treatments, and improved therapies are needed.
Collapse
Affiliation(s)
- Ian O. Bledsoe
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Aaron C. Viser
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Marta San Luciano
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| |
Collapse
|
20
|
Abstract
Tardive syndrome (TS) is an iatrogenic, often persistent movement disorder caused by drugs that block dopamine receptors. It has a broad phenotype including movement (orobuccolingual stereotypy, dystonia, tics, and others) and nonmotor features (akathisia and pain). TS has garnered increased attention of late because of the Food and Drug Administration approval of the first therapeutic agents developed specifically for this purpose. This paper will begin with a discussion on pathogenesis, clinical features, and epidemiology. However, the main focus will be treatment options currently available for TS including a suggested algorithm based on current evidence. Recently, there have been significant advances in TS therapy, particularly with the development of 2 new vesicular monoamine transporter type 2 inhibitors for TS and with new data on the efficacy of deep brain stimulation. The discussion will start with switching antipsychotics and the use of clozapine monotherapy which, despite the lack of higher-level evidence, should be considered for the treatment of psychosis and TS. Anti-dyskinetic drugs are separated into 3 tiers: 1) vesicular monoamine transporter type 2 inhibitors, which have level A evidence, are approved for use in TS and are recommended first-choice agents; 2) drugs with lower level of evidence for efficacy including clonazepam, Ginkgo biloba, and amantadine; and 3) drugs that have the potential to be beneficial, but currently have insufficient evidence including levetiracetam, piracetam, vitamin B6, melatonin, baclofen, propranolol, zolpidem, and zonisamide. Finally, the roles of botulinum toxin and surgical therapy will be examined. Current therapies, though improved, are symptomatic. Next steps should focus on the prevention and reversal of the pathogenic process.
Collapse
Affiliation(s)
- Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, Georgia, 30329, USA.
| |
Collapse
|
21
|
|
22
|
Bellows S, Jankovic J. Treatment of dystonia and tics. Clin Park Relat Disord 2019; 2:12-19. [PMID: 34316614 PMCID: PMC8302199 DOI: 10.1016/j.prdoa.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
Treatment of dystonia and tics continues to evolve. In dystonia, while oral agents such as benzodiazepines, baclofen and anticholinergics remain in use, botulinum toxin (BoNT) continues to be regarded as the treatment of choice for focal and segmental dystonia, but new preparations are being studied. While deep brain stimulation (DBS) has typically focused on targeting the globus pallidus internus (GPi) when treating dystonia, more recent research has expanded the targets to include subthalamic nucleus (STN) and other targets. In addition to DBS, thalamotomies continue to show therapeutic benefit in focal hand dystonias. Treatment of tics includes a growing armamentarium of options besides the three FDA-approved drugs, all dopamine receptor blockers (haloperidol, pimozide and aripiprazole). Because of lower risk of adverse effects, dopamine depleters (e.g. tetrabebazine, deutetrabenazine, and valbenazine), along with novel D1 receptor antagonists, are currently studied as treatment alternatives in patients with tics. Practice guidelines for the treatment of tics and Tourette syndrome have been recently updated. Data regarding the use of DBS in treatment of tics remains relatively sparse, but international registries have expanded our understanding of the effect of stimulation at several targets.
Collapse
Affiliation(s)
- Steven Bellows
- Parkinson's Disease Center, Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Jankovic
- Parkinson's Disease Center, Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
23
|
Tsuboi T, Wong JK, Okun MS, Ramirez-Zamora A. Quality of life outcomes after deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2019; 70:82-93. [PMID: 31767450 DOI: 10.1016/j.parkreldis.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
Dystonia is an incurable movement disorder which can cause not only physical but also mental problems, leading to impaired health-related quality of life (HRQoL). For patients with dystonia refractory to medical treatment, deep brain stimulation (DBS) is a well-established surgical treatment. The objective of this systematic review is to provide a better understanding of HRQoL outcomes after DBS for dystonia. A search of the literature was conducted using Medline (PubMed), Embase, and Cochrane Library databases in May 2019. HRQoL outcomes after DBS along with motor outcomes were reported in a total of 36 articles involving 610 patients: 21 articles on inherited or idiopathic isolated dystonia, 5 on tardive dystonia, 3 on cerebral palsy, 2 on myoclonus-dystonia, 1 on X-linked dystonia-parkinsonism, and 3 on mixed cohorts of different dystonia subtypes. DBS improved motor symptoms in various subtypes of dystonia. Most studies on patients with inherited or idiopathic isolated dystonia showed significant improvement in physical QoL, whereas gains in mental QoL were less robust and likely related to the complexity of associated neuropsychiatric problems. HRQoL outcomes beyond 5 years remain scarce. Although the studies on patients with other subtypes of dystonia also demonstrated improvement in HRQoL after DBS, the interpretation is difficult because of a limited number of articles with small cohorts. Most articles employed generic measures (e.g. Short Form Health Survey-36) and this highlights the critical need to develop and to utilize sensitive and disease-specific HRQoL measures. Finally, long-term HRQoL outcomes and predictors of HRQoL should also be clarified.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
25
|
Arya D, Khan T, Margolius AJ, Fernandez HH. Tardive Dyskinesia: Treatment Update. Curr Neurol Neurosci Rep 2019; 19:69. [DOI: 10.1007/s11910-019-0976-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Factor SA, Burkhard PR, Caroff S, Friedman JH, Marras C, Tinazzi M, Comella CL. Recent developments in drug-induced movement disorders: a mixed picture. Lancet Neurol 2019; 18:880-890. [PMID: 31279747 DOI: 10.1016/s1474-4422(19)30152-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 01/14/2023]
Abstract
A large and ever-growing number of medications can induce various movement disorders. Drug-induced movement disorders are disabling but are often under-recognised and inappropriately managed. In particular, second generation antipsychotics, like first generation agents, are associated with potentially debilitating side-effects, most notably tardive syndromes and parkinsonism, as well as potentially fatal acute syndromes. Appropriate, evidence-based management is essential as these drugs are being prescribed to a growing population vulnerable to these side-effects, including children and elderly people. Prevention of the development of drug-induced movement disorders is an important consideration when prescribing medications that can induce movement disorders. Recent developments in diagnosis, such as the use of dopamine transporter imaging for drug-induced parkinsonism, and treatment, with the approval of valbenazine and deutetrabenazine, the first drugs indicated for tardive syndromes, have improved outcomes for many patients with drug-induced movement disorders. Future research should focus on development of safer antipsychotics and specific therapies for the different tardive syndromes and the treatment of drug-induced parkinsonism.
Collapse
Affiliation(s)
- Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA, USA.
| | - Pierre R Burkhard
- Department of Neurology, Faculty of Medicine, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Stanley Caroff
- Corporal Michael J Crescenz VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Friedman
- Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Research, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Cynthia L Comella
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To provide an update on the frequency of antipsychotic-induced tardive dyskinesia and its management in patients with schizophrenia spectrum disorders in studies published since the last systematic review in 2008. RECENT FINDINGS Recent data about antipsychotic-induced tardive dyskinesia in patients with schizophrenia underscore the superiority of newer generation antipsychotics (21%) over first-generation antipsychotics (30%) with respect to prevalence and incidence rates. Regarding recently tested management strategies, the new vesicular monoamine transporter 2 inhibitors valbenazine and deutetrabenazine have been found to be effective and may be considered as first-line pharmacotherapy for tardive dyskinesia. Owing to quality issues of randomized controlled trials and/or small sample sizes, limited and conflicting evidence remains for most treatment strategies. SUMMARY The reviewed literature reveals lower prevalence rates of antipsychotic-induced tardive dyskinesia in patients treated with newer generation compared with first-generation antipsychotics. The evidence of vesicular monoamine transporter 2 inhibitors as a first-line therapy for tardive dyskinesia is well supported by several controlled clinical trials.
Collapse
|
28
|
Hashimoto T, Isobe T, Goto T. Successful pallidal surgery for tardive stereotypy: A video case report. Neurol Clin Pract 2018; 8:e26-e27. [PMID: 30564505 DOI: 10.1212/cpj.0000000000000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Takao Hashimoto
- Department of Neurology (TH, TI), Aizawa Hospital; and Department of Neurosurgery (TG), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takashi Isobe
- Department of Neurology (TH, TI), Aizawa Hospital; and Department of Neurosurgery (TG), Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuya Goto
- Department of Neurology (TH, TI), Aizawa Hospital; and Department of Neurosurgery (TG), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
29
|
Margolius A, Fernandez HH. Current treatment of tardive dyskinesia. Parkinsonism Relat Disord 2018; 59:155-160. [PMID: 30591350 DOI: 10.1016/j.parkreldis.2018.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Tardive dyskinesia (TD) is a common, iatrogenic movement disorder affecting many individuals treated with dopamine-receptor blocking agents (DRBAs). Studying treatment of TD can be complex, as the symptoms can be affected by changes in either dosage or type of DRBA, as well as by the variable natural course of the disease. Historically many pharmacological therapies have been studied in TD, finding varying degrees of treatment success. Most recently, the VMAT2 inhibitors valbenazine and deutetrabenazine were rigorously studied in TD in large, phase III clinical trials, and were shown to be beneficial in this population. In this article, we will review various treatments of TD, including manipulation of the offending agent, VMAT2 inhibitors, other non-VMAT2-inhibiting medications, and non-pharmacological approaches.
Collapse
Affiliation(s)
- Adam Margolius
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, S-3, Cleveland, OH, 44195, USA.
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, S-3, Cleveland, OH, 44195, USA.
| |
Collapse
|
30
|
Gruber D, Südmeyer M, Deuschl G, Falk D, Krauss JK, Mueller J, Müller JU, Poewe W, Schneider GH, Schrader C, Vesper J, Volkmann J, Winter C, Kupsch A, Schnitzler A. Neurostimulation in tardive dystonia/dyskinesia: A delayed start, sham stimulation-controlled randomized trial. Brain Stimul 2018; 11:1368-1377. [DOI: 10.1016/j.brs.2018.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
|
31
|
Repetitive transcranial magnetic stimulation for treatment of tardive syndromes: double randomized clinical trial. J Neural Transm (Vienna) 2018; 126:183-191. [DOI: 10.1007/s00702-018-1941-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
32
|
Abstract
SUMMARYThe development of rational treatments for tardive dyskinesia has been held back by limitations to our understanding of its aetiology, which even now does not extend far beyond its association with centrally acting dopamine-blocking drugs. This article reviews briefly the major aetiological theories and addresses general management and specific treatment options. Primary prevention and early recognition remain the crucial management issues because, once the condition is established, there are no satisfactory treatments. The article considers two newly developed drugs, valbenazine and deutetrabenazine, in some detail as, although they are not yet licensed in Europe, they have largely been responsible for an upsurge in interest in tardive dyskinesia in the North American literature and are likely to be widely promoted in the future. Although possessed of undoubted benefits, the evidence suggests that these represent small steps rather than large leaps forward in treatment.LEARNING OBJECTIVES•Be able to discuss the major aetiological theories on the causation of a common, and sometimes serious, adverse action of antidopaminergic drugs•Understand general management and specific treatment options•Understand the pharmacology and efficacy of two drugs recently approved by the FDA for the treatment of tardive dyskinesiaDECLARATION OF INTERESTD.C.O. is psychiatric commissioner on the Commission on Human Medicines, the UK drug regulator, and chair of its expert advisory group on CNS drugs. He is also a member of the psychiatry Scientific Advisory Group of the European Medicines Agency.
Collapse
|
33
|
Eggink H, Szlufik S, Coenen MA, van Egmond ME, Moro E, Tijssen MA. Non-motor effects of deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2018; 55:26-44. [PMID: 29945825 DOI: 10.1016/j.parkreldis.2018.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
|
34
|
Stroup TS, Gray N. Management of common adverse effects of antipsychotic medications. World Psychiatry 2018; 17:341-356. [PMID: 30192094 PMCID: PMC6127750 DOI: 10.1002/wps.20567] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
The benefits of antipsychotic medications are sometimes obscured by their adverse effects. These effects range from relatively minor tolerability issues (e.g., mild sedation or dry mouth) to very unpleasant (e.g., constipation, akathisia, sexual dysfunction) to painful (e.g., acute dystonias) to disfiguring (e.g., weight gain, tardive dyskinesia) to life-threatening (e.g., myocarditis, agranulocytosis). Importantly, adverse effect profiles are specific to each antipsychotic medication and do not neatly fit into first- and second-generation classifications. This paper reviews management strategies for the most frequent side effects and identifies common principles intended to optimize net antipsychotic benefits. Only use antipsychotics if the indication is clear; only continue antipsychotics if a benefit is discernible. If an antipsychotic is providing substantial benefit, and the adverse effect is not life-threatening, then the first management choice is to lower the dose or adjust the dosing schedule. The next option is to change the antipsychotic; this is often reasonable unless the risk of relapse is high. In some instances, behavioral interventions can be tried. Finally, concomitant medications, though generally not desirable, are necessary in many instances and can provide considerable relief. Among concomitant medication strategies, anticholinergic medications for dystonias and parkinsonism are often effective; beta-blockers and anticholinergic medications are useful for akathisia; and metformin may lead to slight to moderate weight loss. Anticholinergic drops applied sublingually reduce sialorrhea. Usual medications are effective for constipation or dyslipidemias. The clinical utility of recently approved treatments for tardive dyskinesia, valbenazine and deutetrabenazine, is unclear.
Collapse
Affiliation(s)
- T Scott Stroup
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Neil Gray
- Department of Psychiatry, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
35
|
|
36
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
37
|
Bergman H, Walker DM, Nikolakopoulou A, Soares-Weiser K, Adams CE. Systematic review of interventions for treating or preventing antipsychotic-induced tardive dyskinesia. Health Technol Assess 2018; 21:1-218. [PMID: 28812541 DOI: 10.3310/hta21430] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antipsychotic medication can cause tardive dyskinesia (TD) - late-onset, involuntary, repetitive movements, often involving the face and tongue. TD occurs in > 20% of adults taking antipsychotic medication (first-generation antipsychotics for > 3 months), with this proportion increasing by 5% per year among those who continue to use these drugs. The incidence of TD among those taking newer antipsychotics is not different from the rate in people who have used older-generation drugs in moderate doses. Studies of TD have previously been found to be limited, with no treatment approach shown to be effective. OBJECTIVES To summarise the clinical effectiveness and safety of treatments for TD by updating past Cochrane reviews with new evidence and improved methods; to undertake public consultation to gauge the importance of the topic for people living with TD/the risk of TD; and to make available all data from relevant trials. DATA SOURCES All relevant randomised controlled trials (RCTs) and observational studies. REVIEW METHODS Cochrane review methods, network meta-analysis (NMA). DESIGN Systematic reviews, patient and public involvement consultation and NMA. SETTING Any setting, inpatient or outpatient. PARTICIPANTS For systematic reviews, adults with TD who have been taking a stable antipsychotic drug dose for > 3 months. INTERVENTIONS Any, with emphasis on those relevant to UK NHS practice. MAIN OUTCOME MEASURES Any measure of TD, global assessments and adverse effects/events. RESULTS We included 112 studies (nine Cochrane reviews). Overall, risk of bias showed little sign of improvement over two decades. Taking the outcome of 'TD symptoms improved to a clinically important extent', we identified two trials investigating reduction of antipsychotic dose [n = 17, risk ratio (RR) 0.42, 95% confidence interval (CI) 0.17 to 1.04; very low quality]. Switching was investigated twice in trials that could not be combined (switching to risperidone vs. antipsychotic withdrawal: one RCT, n = 42, RR 0.45, 95% CI 0.23 to 0.89; low quality; switching to quetiapine vs. haloperidol: one RCT, n = 45, RR 0.80, 95% CI 0.52 to 1.22; low quality). In addition to RCTs, six observational studies compared antipsychotic discontinuation with decreased or increased dosage, and there was no clear evidence that any of these strategies had a beneficial effect on TD symptoms (very low-quality evidence). We evaluated the addition to standard antipsychotic care of several treatments, but not anticholinergic treatments, for which we identified no trials. We found no clear effect of the addition of either benzodiazepines (two RCTs, n = 32, RR 1.12, 95% CI 0.6 to 2.09; very low quality) or vitamin E (six RCTs, n = 264, RR 0.95, 95% CI 0.89 to 1.01; low quality). Buspirone as an adjunctive treatment did have some effect in one small study (n = 42, RR 0.53, 95% CI 0.33 to 0.84; low quality), as did hypnosis and relaxation (one RCT, n = 15, RR 0.45, 95% CI 0.21 to 0.94; very low quality). We identified no studies focusing on TD in people with dementia. The NMA model found indirect estimates to be imprecise and failed to produce useful summaries on relative effects of interventions or interpretable results for decision-making. Consultation with people with/at risk of TD highlighted that management of TD remains a concern, and found that people are deeply disappointed at the length of time it has taken researchers to address the issue. LIMITATIONS Most studies remain small and poorly reported. CONCLUSIONS Clinicians, policy-makers and people with/at risk of TD are little better informed than they were decades ago. Underpowered trials of limited quality repeatedly fail to provide answers. FUTURE WORK TD reviews have data from current trials extracted, tabulated and traceable to source. The NMA highlights one context in which support for this technique is ill advised. All relevant trials, even if not primarily addressing the issue of TD, should report appropriate binary outcomes on groups of people with this problem. Randomised trials of treatments for people with established TD are indicated. These should be large (> 800 participants), necessitating accrual through accurate local/national registers, including an intervention with acceptable treatments and recording outcomes used in clinical practice. STUDY REGISTRATION This study is registered as PROSPERO CRD4201502045. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
| | - Dawn-Marie Walker
- Faculty of Health Sciences, University of Southampton, Southampton, UK
| | | | | | - Clive E Adams
- Institute of Mental Health, University of Nottingham, Nottingham, UK
| |
Collapse
|
38
|
Macerollo A, Deuschl G. Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis. J Neurol Sci 2018; 389:55-60. [DOI: 10.1016/j.jns.2018.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
39
|
Updating the recommendations for treatment of tardive syndromes: A systematic review of new evidence and practical treatment algorithm. J Neurol Sci 2018; 389:67-75. [PMID: 29454493 DOI: 10.1016/j.jns.2018.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Management of tardive syndromes (TS) is challenging, with only a few evidence-based therapeutic algorithms reported in the American Academy of Neurology (AAN) guideline in 2013. OBJECTIVE To update the evidence-based recommendations and provide a practical treatment algorithm for management of TS by addressing 5 questions: 1) Is withdrawal of dopamine receptor blocking agents (DRBAs) an effective TS treatment? 2) Does switching from typical to atypical DRBAs reduce TS symptoms? 3) What is the efficacy of pharmacologic agents in treating TS? 4) Do patients with TS benefit from chemodenervation with botulinum toxin? 5) Do patients with TS benefit from surgical therapy? METHODS Systematic reviews were conducted by searching PsycINFO, Ovid MEDLINE, PubMed, EMBASE, Web of Science and Cochrane for articles published between 2012 and 2017 to identify new evidence published after the 2013 AAN guidelines. Articles were classified according to an AAN 4-tiered evidence-rating scheme. To the extent possible, for each study we attempted to categorize results based on the description of the population enrolled (tardive dyskinesia [TD], tardive dystonia, tardive tremor, etc.). Recommendations were based on the evidence. RESULTS AND RECOMMENDATIONS New evidence was combined with the existing guideline evidence to inform our recommendations. Deutetrabenazine and valbenazine are established as effective treatments of TD (Level A) and must be recommended as treatment. Clonazepam and Ginkgo biloba probably improve TD (Level B) and should be considered as treatment. Amantadine and tetrabenazine might be considered as TD treatment (Level C). Pallidal deep brain stimulation possibly improves TD and might be considered as a treatment for intractable TD (Level C). There is insufficient evidence to support or refute TS treatment by withdrawing causative agents or switching from typical to atypical DRBA (Level U).
Collapse
|
40
|
Meyer JM. Future directions in tardive dyskinesia research. J Neurol Sci 2018; 389:76-80. [PMID: 29433809 DOI: 10.1016/j.jns.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/02/2018] [Indexed: 02/05/2023]
Abstract
Tardive dyskinesia (TD) research is at a crossroads because of renewed interest in this syndrome following the successful development and regulatory approval of two novel vesicular monoamine transport 2 (VMAT2) inhibitors. Despite these clinical advances, significant lacunae exist in the knowledge base of TD pathophysiology, prognosis, and epidemiology. Moreover, conflicting definitions of TD as either a syndrome that encompasses a broad array of related phenomena or as a specific subset of tardive syndromes are an impediment to both clinical and basic science research, and to educational efforts targeting nonspecialist clinicians. A unique opportunity is thus presented by the enhanced focus on TD to resolve fundamental issues with regards to nomenclature and clinical criteria, thereby facilitating more sophisticated surveillance and genetic and epidemiological research into tardive movement disorders related to dopamine receptor blocking agents. The widespread use of newer antipsychotics portends that TD will remain a persistent public health issue. This article will present one view of research avenues to be explored for this neuropsychiatric condition, including those that may yield immediate therapeutic benefits by extending expert knowledge into routine clinical care situations.
Collapse
Affiliation(s)
- Jonathan M Meyer
- University of California, San Diego, United States; California Department of State Hospitals (DSH), Psychopharmacology Resource Network, United States.
| |
Collapse
|
41
|
Budman E, Deeb W, Martinez-Ramirez D, Pilitsis JG, Peng-Chen Z, Okun MS, Ramirez-Zamora A. Potential indications for deep brain stimulation in neurological disorders: an evolving field. Eur J Neurol 2018; 25:434-e30. [PMID: 29266596 DOI: 10.1111/ene.13548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Deep brain stimulation (DBS) is an established therapy for appropriately selected patients with movement disorders and neuropsychiatric conditions. Although the exact mechanisms and biology of DBS are not fully understood, it is a safe and well-tolerated therapy for many refractory cases of neuropsychiatric disease. Increasingly, DBS has been explored in other conditions with encouraging results. In this paper, available data is reviewed and new DBS targets, challenges and future directions in neurological disorders are explored. A detailed search of the medical literature discussing the potential use of DBS for neurological disorders excluding accepted indications was conducted. All reports were analyzed individually for content and redundant articles were excluded by examining individual abstracts. The level of evidence for each indication was summarized. Multiple studies report promising preliminary data regarding the safety and efficacy of DBS for a variety of neurological indications including chronic pain, tinnitus, epilepsy, Tourette syndrome, Huntington's disease, tardive dyskinesia and Alzheimer's disease. The initial results of DBS studies for diverse neurological disorders are encouraging but larger, controlled, prospective, homogeneous clinical trials are necessary to establish long-term safety and effectiveness. The field of neuromodulation continues to evolve and advances in DBS technology, stereotactic techniques, neuroimaging and DBS programming capabilities are shaping the present and future of DBS research and use in practice.
Collapse
Affiliation(s)
- E Budman
- Department of Neurology, Albany Medical College, Albany, NY, USA
| | - W Deeb
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - D Martinez-Ramirez
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - J G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Z Peng-Chen
- Unidad de Neurología, Hospital Padre Hurtado, Santiago, Chile.,Unidad Movimientos Anormales, Centro Medico Clínica Dávila, Santiago, Chile
| | - M S Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - A Ramirez-Zamora
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Stegmayer K, Walther S, van Harten P. Tardive Dyskinesia Associated with Atypical Antipsychotics: Prevalence, Mechanisms and Management Strategies. CNS Drugs 2018; 32:135-147. [PMID: 29427000 DOI: 10.1007/s40263-018-0494-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
All antipsychotics, including the atypical antipsychotics (AAPs), may cause tardive dyskinesia (TD), a potentially irreversible movement disorder, the pathophysiology of which is currently unknown. The prevention and treatment of TD remain major challenges for clinicians. We conducted a PubMed search to review the prevalence and etiology of and management strategies for TD associated with AAPs. TD prevalence rates varied substantially between studies, with an estimated prevalence of around 20% in patients using AAPs. The risk of TD is lower with AAPs than with typical antipsychotics (TAPs) but remains a problem because AAPs are increasingly being prescribed. Important risk factors associated with TD include the duration of antipsychotic use, age, and ethnicity other than Caucasian. Theories about the etiology of TD include supersensitivity of the dopamine receptors and oxidative stress, but other neurotransmitters and factors are probably involved. Studies concerning the management of TD have considerable methodological limitations. Thus, recommendations for the management of TD are based on a few trials and clinical experience, and no general guidelines for the management of TD can be established. The best management strategy remains prevention. Caution is required when prescribing antipsychotics, and regular screening is needed for early detection of TD. Other strategies may include reducing the AAP dosage, switching to clozapine, or administering vesicular monoamine transporter (VMAT)-2 inhibitors. In severe cases, local injections of botulinum toxin or deep brain stimulation may be considered. More clinical trials in larger samples are needed to gather valid information on the effect of interventions targeting TD.
Collapse
Affiliation(s)
- Katharina Stegmayer
- University Hospital of Psychiatry, Bolligenstrasse 111, 3060, Bern, Switzerland.
| | - Sebastian Walther
- University Hospital of Psychiatry, Bolligenstrasse 111, 3060, Bern, Switzerland
| | - Peter van Harten
- Psychiatric Centre GGz Centraal, Innova, Amersfoort, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
43
|
Sarva H, Henchcliffe C. Valbenazine as the first and only approved treatment for adults with tardive dyskinesia. Expert Rev Clin Pharmacol 2018; 11:209-217. [PMID: 29338466 DOI: 10.1080/17512433.2018.1429264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Valbenazine is a selective VMAT2 inhibitor that the FDA approved in April 2017 for the specific treatment of tardive dyskinesia (TD), a movement disorder commonly caused by dopamine blocking agents. Valbenazine acts to decrease dopamine release, reducing excessive movement found in TD. Areas covered: This drug profile reviews the development of valbenazine and the clinical trials that led to its approval as the first treatment specific to TD. The literature search was performed with the PubMed online database. Expert commentary: Two clinical trials assessing the efficacy of valbenazine have shown the reduction of antipsychotic-induced involuntary movement. No life threatening adverse effects were found. Data from a 42-week extension study demonstrated sustained response.
Collapse
Affiliation(s)
- Harini Sarva
- a Parkinson's Disease and Movement Disorders Institute , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| | - Claire Henchcliffe
- a Parkinson's Disease and Movement Disorders Institute , Weill Cornell Medicine/New York Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
44
|
Affiliation(s)
- Isabel Alfradique-Dunham
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Abstract
INTRODUCTION Tardive dyskinesia (TD) is a hyperkinetic movement disorder that may result from treatment with antipsychotics or other dopamine receptor blocking agents. Underlying pathophysiology is incompletely understood but since the 1970s dopamine depleting agents have been used to reduce involuntary movements. The search for safe, effective treatments for TD is ongoing. Valbenazine, a novel VMAT2 inhibitor, has recently been FDA approved for treatment of TD. Areas covered: An overview of TD, unmet medical needs and current treatment guidelines are presented. The background, chemistry and clinical development of valbenazine to treat TD is detailed. A competitive market is developing as the treatment gap is identified and potential therapies are discussed in context of a broader market overview. Expert opinion: Antipsychotic use is growing among adults and children in the U.S. Consequently, prevalence of TD is expected to rise. Cessation of antipsychotics is often not possible as the psychiatric condition may deteriorate. Increasing doses of an antipsychotic to suppress involuntary movements is not sustainable long term as underlying TD worsens and movements typically recur. There were no FDA approved treatments for TD. The approval of valbenazine to treat TD is a critical step in addressing this gap in neurologic care.
Collapse
Affiliation(s)
| | - Robert A Hauser
- b Department of Neurology , University of South Florida , Tampa , FL , USA
| |
Collapse
|
46
|
Reese R, Volkmann J. Deep Brain Stimulation for the Dystonias: Evidence, Knowledge Gaps, and Practical Considerations. Mov Disord Clin Pract 2017; 4:486-494. [PMID: 30363085 PMCID: PMC6090587 DOI: 10.1002/mdc3.12519] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus internus (GPi-DBS) is among the most effective treatment options for dystonias. Because the term "dystonia" is defined by a characteristic phenomenology of involuntary muscle contractions, which may present with a large clinical and pathogenetic heterogeneity, decision making for or against GPi-DBS can be difficult in individual patients. METHODS A search of the PubMed database for research and review articles, focused on "deep brain stimulation" and "dystonia" was used to identify clinical trials and to determine current concepts in the surgical management of dystonia. Patient selection in previous studies was recategorized by the authors using the new dystonia classification put forward by a consensus committee of experts in dystonia research. The evidence and knowledge gaps are summarized and commented by the authors taking into account expert opinion and personal clinical experience for providing practical guidance in patient selection for DBS in dystonia. RESULTS The literature review shows that pallidal deep brain stimulation is most effective in patients with isolated dystonia irrespective of the underlying etiology. In contrast, patients with combined dystonias are less likely to benefit from DBS, because the associated neurological symptoms (e.g., hypotonia or ataxia), with the exception of myoclonus, do not respond to pallidal neurostimulation. CONCLUSIONS It is important to recognize the clinical features of dystonia, because the distinction between isolated and combined dystonia syndromes may predict the treatment response to pallidal deep brain stimulation. The aim of this review is to help guide clinicians with advising patients about deep brain stimulation therapy for dystonia and refering appropriate candidates to surgical centers.
Collapse
Affiliation(s)
- René Reese
- Department of NeurologyRostock University Medical CenterRostockGermany
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Jens Volkmann
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| |
Collapse
|
47
|
Martino D, Morgante F. Movement disorders and chronic psychosis: Five new things. Neurol Clin Pract 2017; 7:163-169. [PMID: 29185545 DOI: 10.1212/cpj.0000000000000344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Purpose of review To discuss selected peer-reviewed research articles published between 2014 and 2016 and highlight 5 clinically relevant messages related to hyperkinetic and hypokinetic movement disorders in patients with chronic psychosis. Recent findings A recent population-based study complemented data from clinical trials in showing increased risk of developing extrapyramidal symptoms with antipsychotic use. A community service-based longitudinal study showed that dopamine transporter imaging could help identify subgroups of patients with parkinsonism associated with antipsychotics with a progressive course, potentially manageable with l-dopa. Data from recent noteworthy clinical trials showed that a new VMAT-2 inhibitor and, for pharmacologically refractory tardive dyskinesia, deep brain stimulation of the globus pallidus internus are promising interventions. Finally, a population-based study has confirmed that hyperkinesias (encompassing chorea, dystonia, and stereotypies) may be early predictors of psychosis even in childhood and adolescence. Summary Movement disorders associated with new-generation antipsychotics, including widely used agents (e.g., aripiprazole), are not rare occurrences. Better monitoring is needed to assess their true effect on patients' quality of life and functioning and to prevent underascertainment.
Collapse
Affiliation(s)
- Davide Martino
- Movement Disorders Program (DM), Department of Clinical Neurosciences, University of Calgary, Canada; Department of Clinical and Experimental Medicine (FM), University of Messina, Italy; and Institute of Molecular and Clinical Sciences (FM), St George's University of London, UK
| | - Francesca Morgante
- Movement Disorders Program (DM), Department of Clinical Neurosciences, University of Calgary, Canada; Department of Clinical and Experimental Medicine (FM), University of Messina, Italy; and Institute of Molecular and Clinical Sciences (FM), St George's University of London, UK
| |
Collapse
|
48
|
Calandrella D, Rizzi M, Ferré FM, Romito LM. Excoriation disorder as a risk factor for deep brain stimulation hardware removal. J Neurol Sci 2017; 373:342-343. [PMID: 28131218 DOI: 10.1016/j.jns.2017.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Daniela Calandrella
- Department of Neurology - Movement Disorders, Neurological Institute Carlo Besta, Milan, Italy
| | - Michele Rizzi
- Department of Neurosurgery, Functional Neurosurgery Unit, Neurological Institute Carlo Besta, Milan, Italy
| | - Francesca M Ferré
- Department of Neurology - Movement Disorders, Neurological Institute Carlo Besta, Milan, Italy
| | - Luigi M Romito
- Department of Neurology - Movement Disorders, Neurological Institute Carlo Besta, Milan, Italy.
| |
Collapse
|
49
|
Hu J, Lai J, Hu S, Xu Y. Scopolamine alleviates involuntary lingual movements: tardive dyskinesia or dystonia? Neuropsychiatr Dis Treat 2017; 13:2327-2330. [PMID: 28919765 PMCID: PMC5587161 DOI: 10.2147/ndt.s143970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cholinergic hypofunction was believed to be associated with the pathogenesis of tardive dyskinesia, and therefore, anticholinergic treatment might exacerbate the condition. We describe herein a middle-aged male with feeble chewing movements, involuntary rolling motions of the tongue, and abnormally tightened cheeks which developed after consuming different psychotropic medications. These symptoms did not improve after routine treatment for tardive dyskinesia, but responded well to anticholinergic agents, such as scopolamine and benzhexol hydrochloride. This case extended our understanding of the complexity of extrapyramidal effects and their pharmacologic management.
Collapse
Affiliation(s)
- Jianbo Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China
| |
Collapse
|
50
|
Abstract
The broad use of atypical antipsychotics was expected to dramatically reduce the prevalence and incidence of tardive dyskinesia (TD), but data show that TD remains an important challenge due the persistent nature of its symptoms and resistance to numerous treatment modalities, including antipsychotic discontinuation. Recent insights on genetic risk factors and new concepts surrounding pathophysiology have spurred interest in the possibility of targeted treatment for TD. As will be reviewed in this article, the number of evidence-based strategies for TD treatment is small: only clonazepam, amantadine, ginkgo biloba extract, and the vesicular monoamine transporter 2 (VMAT2) inhibitor tetrabenazine have compelling data. Using new insights into the metabolism of tetrabenazine and the properties of its active metabolites, 2 modifications of tetrabenazine have been synthesized to improve the kinetic profile, and are currently involved in double-blind placebo controlled studies aimed at U.S. Food and Drug Administration (FDA) regulatory approval. The possible availability of these new agents, deuterated tetrabenazine and valbenazine, significantly widens the range of treatment choices for patients with TD. For clinicians with patients at risk for TD due to dopamine antagonist exposure, experience has shown that the problem of TD will be an ongoing issue in modern psychiatry, and that an appreciation of new developments in the pathophysiology of, risk factors for, and treatment of TD is crucial to managing this condition.
Collapse
|