1
|
Langley J, Bennett IJ, Hu XP. Examining iron-related off-target binding effects of 18F-AV1451 PET in the cortex of Aβ+ individuals. Eur J Neurosci 2024; 60:3614-3628. [PMID: 38722153 DOI: 10.1111/ejn.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 07/06/2024]
Abstract
The presence of neurofibrillary tangles containing hyper-phosphorylated tau is a characteristic of Alzheimer's disease (AD) pathology. The positron emission tomography (PET) radioligand sensitive to tau neurofibrillary tangles (18F-AV1451) also binds with iron. This off-target binding effect may be enhanced in older adults on the AD spectrum, particularly those with amyloid-positive biomarkers. Here, we examined group differences in 18F-AV1451 PET after controlling for iron-sensitive measures from magnetic resonance imaging (MRI) and its relationships to tissue microstructure and cognition in 40 amyloid beta positive (Aβ+) individuals, 20 amyloid beta negative (Aβ-) with MCI and 31 Aβ- control participants. After controlling for iron, increased 18F-AV1451 PET uptake was found in the temporal lobe and hippocampus of Aβ+ participants compared to Aβ- MCI and control participants. Within the Aβ+ group, significant correlations were seen between 18F-AV1451 PET uptake and tissue microstructure and these correlations remained significant after controlling for iron. These findings indicate that off-target binding of iron to the 18F-AV1451 ligand may not affect its sensitivity to Aβ status or cognition in early-stage AD.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California, USA
| | - Ilana J Bennett
- Department of Psychology, University of California Riverside, Riverside, California, USA
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California, USA
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| |
Collapse
|
2
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
3
|
Alosco ML, Su Y, Stein TD, Protas H, Cherry JD, Adler CH, Balcer LJ, Bernick C, Pulukuri SV, Abdolmohammadi B, Coleman MJ, Palmisano JN, Tripodis Y, Mez J, Rabinovici GD, Marek KL, Beach TG, Johnson KA, Huber BR, Koerte I, Lin AP, Bouix S, Cummings JL, Shenton ME, Reiman EM, McKee AC, Stern RA. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. Eur J Nucl Med Mol Imaging 2023; 50:435-452. [PMID: 36152064 PMCID: PMC9816291 DOI: 10.1007/s00259-022-05963-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yi Su
- Banner Alzheimer's Institute, Arizona State University, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Surya Vamsi Pulukuri
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
- NICUM (NeuroImaging Core Unit Munich), Ludwig Maximilians University, Munich, Germany
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Mormino EC, Insel PS. Uncertainties in the PET defined A-/T Neocortical+ subtype. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12348. [PMID: 36051175 PMCID: PMC9413468 DOI: 10.1002/dad2.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Elizabeth C. Mormino
- Department of Neurology and Neurological Sciences, StanfordPalo AltoCaliforniaUSA
- Wu Tsai Neuroscience Institute, StanfordPalo AltoCaliforniaUSA
| | - Philip S. Insel
- Department of Psychiatry and Behavioral SciencesUniversity of San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Lee WJ, Brown JA, Kim HR, La Joie R, Cho H, Lyoo CH, Rabinovici GD, Seong JK, Seeley WW. Regional Aβ-tau interactions promote onset and acceleration of Alzheimer's disease tau spreading. Neuron 2022; 110:1932-1943.e5. [PMID: 35443153 PMCID: PMC9233123 DOI: 10.1016/j.neuron.2022.03.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/19/2022] [Accepted: 03/28/2022] [Indexed: 12/22/2022]
Abstract
Amyloid-beta and tau are key molecules in the pathogenesis of Alzheimer's disease, but it remains unclear how these proteins interact to promote disease. Here, by combining cross-sectional and longitudinal molecular imaging and network connectivity analyses in living humans, we identified two amyloid-beta/tau interactions associated with the onset and propagation of tau spreading. First, we show that the lateral entorhinal cortex, an early site of tau neurofibrillary tangle formation, is subject to remote, connectivity-mediated amyloid-beta/tau interactions linked to initial tau spreading. Second, we identify the inferior temporal gyrus as the region featuring the greatest local amyloid-beta/tau interactions and a connectivity profile well suited to accelerate tau propagation. Taken together, our data address long-standing questions regarding the topographical dissimilarity between early amyloid-beta and tau deposition.
Collapse
Affiliation(s)
- Wha Jin Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hye Ryun Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Global Health Technology Research Center, College of Health Science, Korea University, Seoul 02841, South Korea
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Seoul 06273, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Seoul 06273, South Korea
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Department of Artificial Intelligence, Korea University, Seoul 02841, South Korea.
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This article reviews tau PET imaging with an emphasis on first-generation and second-generation tau radiotracers and their application in neurodegenerative disorders, including Alzheimer's disease and non-Alzheimer's disease tauopathies. RECENT FINDINGS Tau is a critical protein, abundant in neurons within the central nervous system, which plays an important role in maintaining microtubules by binding to tubulin in axons. In its abnormal hyperphosphorylated form, accumulation of tau has been linked to a variety of neurodegenerative disorders, collectively referred to as tauopathies, which include Alzheimer's disease and non-Alzheimer's disease tauopathies [e.g., corticobasal degeneration (CBD), argyrophilic grain disease, progressive supranuclear palsy (PSP), and Pick's disease]. A number of first-generation and second-generation tau PET radiotracers have been developed, including the first FDA-approved agent [18F]-flortaucipir, which allow for in-vivo molecular imaging of underlying histopathology antemortem, ultimately guiding disease staging and development of disease-modifying therapeutics. SUMMARY Tau PET is an emerging imaging modality in the diagnosis and staging of tauopathies.
Collapse
Affiliation(s)
| | - Michelle Roytman
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Gloria C. Chiang
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Yi Li
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Marc L. Gordon
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Litwin-Zucker Research Center, Feinstein Institutes for Medical Research, Manhasset
| | - Ana M. Franceschi
- Neuroradiology Division, Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York, USA
| |
Collapse
|
7
|
Wolters EE, Papma JM, Verfaillie SCJ, Visser D, Weltings E, Groot C, van der Ende EL, Giannini LAA, Tuncel H, Timmers T, Boellaard R, Yaqub M, van Assema DME, Kuijper DA, Segbers M, Rozemuller AJM, Barkhof F, Windhorst AD, van der Flier WM, Pijnenburg YAL, Scheltens P, van Berckel BNM, van Swieten JC, Ossenkoppele R, Seelaar H. [ 18F]Flortaucipir PET Across Various MAPT Mutations in Presymptomatic and Symptomatic Carriers. Neurology 2021; 97:e1017-e1030. [PMID: 34210823 PMCID: PMC8448551 DOI: 10.1212/wnl.0000000000012448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the [18F]flortaucipir binding distribution across MAPT mutations in presymptomatic and symptomatic carriers. METHODS We compared regional [18F]flortaucipir binding potential (BPND) derived from a 130-minute dynamic [18F]flortaucipir PET scan in 9 (pre)symptomatic MAPT mutation carriers (4 with P301L [1 symptomatic], 2 with R406W [1 symptomatic], 1 presymptomatic L315R, 1 presymptomatic S320F, and 1 symptomatic G272V carrier) with 30 cognitively normal controls and 52 patients with Alzheimer disease. RESULTS [18F]Flortaucipir BPND images showed overall highest binding in the symptomatic carriers. This was most pronounced in the symptomatic R406W carrier in whom tau binding exceeded the normal control range in the anterior cingulate cortex, insula, amygdala, temporal, parietal, and frontal lobe. Elevated medial temporal lobe BPND was observed in a presymptomatic R406W carrier. The single symptomatic carrier and 1 of the 3 presymptomatic P301L carriers showed elevated [18F]flortaucipir BPND in the insula, parietal, and frontal lobe compared to controls. The symptomatic G272V carrier exhibited a widespread elevated cortical BPND, with at neuropathologic examination a combination of 3R pathology and encephalitis. The L315R presymptomatic mutation carrier showed higher frontal BPND compared to controls. The BPND values of the S320F presymptomatic mutation carrier fell within the range of controls. CONCLUSION Presymptomatic MAPT mutation carriers already showed subtle elevated tau binding, whereas symptomatic MAPT mutation carriers showed a more marked increase in [18F]flortaucipir BPND. Tau deposition was most pronounced in R406W MAPT (pre)symptomatic mutation carriers, which is associated with both 3R and 4R tau accumulation. Thus, [18F]flortaucipir may serve as an early biomarker for MAPT mutation carriers in mutations that cause 3R/4R tauopathies.
Collapse
Affiliation(s)
- Emma E Wolters
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden.
| | - Janne M Papma
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Sander C J Verfaillie
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Denise Visser
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Emma Weltings
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Colin Groot
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Emma L van der Ende
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Lucia A A Giannini
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Hayel Tuncel
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Tessa Timmers
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Ronald Boellaard
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Maqsood Yaqub
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Danielle M E van Assema
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Dennis A Kuijper
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Marcel Segbers
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Annemieke J M Rozemuller
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Frederik Barkhof
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Albert D Windhorst
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Wiesje M van der Flier
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Yolande A L Pijnenburg
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Philip Scheltens
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Bart N M van Berckel
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - John C van Swieten
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Rik Ossenkoppele
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| | - Harro Seelaar
- From the Department of Radiology & Nuclear Medicine (E.E.W., S.C.J.V., D.V., E.W., H.T., T.T., R.B., M.Y., F.B., A.D.W., B.N.M.v.B.) and Alzheimer Center Amsterdam, Department of Neurology (E.E.W., C.G., W.M.v.d.F., Y.A.L.P., P.S., R.O.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (W.M.v.d.F.), Vrije Universiteit Amsterdam, Amsterdam UMC; Department of Neurology, Alzheimer Center (J.M.P., E.L.v.d.E., L.A.A.G., J.C.v.S., H.S.), and Department of Radiology & Nuclear Medicine (D.M.E.v.A., D.A.K., M.S.), Erasmus MC University Medical Center, Rotterdam; Department of Pathology (A.J.M.R.), Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands; Institutes of Neurology & Healthcare Engineering (F.B.), UCL, London, UK; and Clinical Memory Research Unit (R.O.), Lund University, Sweden
| |
Collapse
|
8
|
Liu W, Au LWC, Abrigo J, Luo Y, Wong A, Lam BYK, Fan X, Kwan PWL, Ma HW, Ng AYT, Chen S, Leung EYL, Ho CL, Wong SHM, Chu WC, Ko H, Lau AYL, Shi L, Mok VCT. MRI-based Alzheimer's disease-resemblance atrophy index in the detection of preclinical and prodromal Alzheimer's disease. Aging (Albany NY) 2021; 13:13496-13514. [PMID: 34091443 PMCID: PMC8202853 DOI: 10.18632/aging.203082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's Disease-resemblance atrophy index (AD-RAI) is an MRI-based machine learning derived biomarker that was developed to reflect the characteristic brain atrophy associated with AD. Recent study showed that AD-RAI (≥0.5) had the best performance in predicting conversion from mild cognitive impairment (MCI) to dementia and from cognitively unimpaired (CU) to MCI. We aimed to validate the performance of AD-RAI in detecting preclinical and prodromal AD. We recruited 128 subjects (MCI=50, CU=78) from two cohorts: CU-SEEDS and ADNI. Amyloid (A+) and tau (T+) status were confirmed by PET (11C-PIB, 18F-T807) or CSF analysis. We investigated the performance of AD-RAI in detecting preclinical and prodromal AD (i.e. A+T+) among MCI and CU subjects and compared its performance with that of hippocampal measures. AD-RAI achieved the best metrics among all subjects (sensitivity 0.74, specificity 0.91, accuracy 85.94%) and among MCI subjects (sensitivity 0.92, specificity 0.81, accuracy 86.00%) in detecting A+T+ subjects over other measures. Among CU subjects, AD-RAI yielded the best specificity (0.95) and accuracy (85.90%) over other measures, while hippocampal volume achieved a higher sensitivity (0.73) than AD-RAI (0.47) in detecting preclinical AD. These results showed the potential of AD-RAI in the detection of early AD, in particular at the prodromal stage.
Collapse
Affiliation(s)
- Wanting Liu
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lisa Wing Chi Au
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yishan Luo
- BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Adrian Wong
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bonnie Yin Ka Lam
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Fan
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pauline Wing Lam Kwan
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon Wing Ma
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthea Yee Tung Ng
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sirong Chen
- Department of Nuclear Medicine and PET, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Eric Yim Lung Leung
- Department of Nuclear Medicine and PET, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Chi Lai Ho
- Department of Nuclear Medicine and PET, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | | | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexander Yuk Lun Lau
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,BrainNow Research Institute, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Vincent Chung Tong Mok
- Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
9
|
Ossenkoppele R, Hansson O. Towards clinical application of tau PET tracers for diagnosing dementia due to Alzheimer's disease. Alzheimers Dement 2021; 17:1998-2008. [PMID: 33984177 DOI: 10.1002/alz.12356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
The recent development of several tau positron emission tomography (PET) tracers represents a major milestone for the Alzheimer's disease (AD) field. These tau PET tracers bind tau neurofibrillary tangles, a key neuropathological characteristic of AD that is tightly linked to synaptic loss, brain atrophy, and cognitive decline. It is notable that these tau PET tracers show low uptake in most non-AD tauopathies and other neurodegenerative disorders, resulting in a diagnostic specificity that is superior to that of amyloid beta (Aβ) PET and biofluid markers, especially at an older age when incidental Aβ pathology is common. Furthermore, tau PET tracers diagnostically outperform widely used MRI markers. Given its excellent diagnostic performance due to the combination of high sensitivity and specificity for detecting tau pathology in AD dementia, we hypothesize that tau PET can become an important diagnostic tool in specialized clinics for the differential diagnosis of dementia syndromes where AD is among the major possible underlying diseases.
Collapse
Affiliation(s)
- Rik Ossenkoppele
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Oskar Hansson
- Lund University, Clinical Memory Research Unit, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Soleimani-Meigooni DN, Iaccarino L, La Joie R, Baker S, Bourakova V, Boxer AL, Edwards L, Eser R, Gorno-Tempini ML, Jagust WJ, Janabi M, Kramer JH, Lesman-Segev OH, Mellinger T, Miller BL, Pham J, Rosen HJ, Spina S, Seeley WW, Strom A, Grinberg LT, Rabinovici GD. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain 2020; 143:3477-3494. [PMID: 33141172 PMCID: PMC7719031 DOI: 10.1093/brain/awaa276] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Few studies have evaluated the relationship between in vivo18F-flortaucipir PET and post-mortem pathology. We sought to compare antemortem 18F-flortaucipir PET to neuropathology in a consecutive series of patients with a broad spectrum of neurodegenerative conditions. Twenty patients were included [mean age at PET 61 years (range 34-76); eight female; median PET-to-autopsy interval of 30 months (range 4-59 months)]. Eight patients had primary Alzheimer's disease pathology, nine had non-Alzheimer tauopathies (progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and frontotemporal lobar degeneration with MAPT mutations), and three had non-tau frontotemporal lobar degeneration. Using an inferior cerebellar grey matter reference, 80-100-min 18F-flortaucipir PET standardized uptake value ratio (SUVR) images were created. Mean SUVRs were calculated for progressive supranuclear palsy, corticobasal degeneration, and neurofibrillary tangle Braak stage regions of interest, and these values were compared to SUVRs derived from young, non-autopsy, cognitively normal controls used as a standard for tau negativity. W-score maps were generated to highlight areas of increased tracer retention compared to cognitively normal controls, adjusting for age as a covariate. Autopsies were performed blinded to PET results. There was excellent correspondence between areas of 18F-flortaucipir retention, on both SUVR images and W-score maps, and neurofibrillary tangle distribution in patients with primary Alzheimer's disease neuropathology. Patients with non-Alzheimer tauopathies and non-tau frontotemporal lobar degeneration showed a range of tracer retention that was less than Alzheimer's disease, though higher than age-matched, cognitively normal controls. Overall, binding across both tau-positive and tau-negative non-Alzheimer disorders did not reliably correspond with post-mortem tau pathology. 18F-flortaucipir SUVRs in subcortical regions were higher in autopsy-confirmed progressive supranuclear palsy and corticobasal degeneration than in controls, but were similar to values measured in Alzheimer's disease and tau-negative neurodegenerative pathologies. Quantification of 18F-flortaucipir SUVR images at Braak stage regions of interest reliably detected advanced Alzheimer's (Braak VI) pathology. However, patients with earlier Braak stages (Braak I-IV) did not show elevated tracer uptake in these regions compared to young, tau-negative controls. In summary, PET-to-autopsy comparisons confirm that 18F-flortaucipir PET is a reliable biomarker of advanced Braak tau pathology in Alzheimer's disease. The tracer cannot reliably differentiate non-Alzheimer tauopathies and may not detect early Braak stages of neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rana Eser
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - William J Jagust
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Taylor Mellinger
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Sonni I, Lesman Segev OH, Baker SL, Iaccarino L, Korman D, Rabinovici GD, Jagust WJ, Landau SM, La Joie R. Evaluation of a visual interpretation method for tau-PET with 18F-flortaucipir. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12133. [PMID: 33313377 PMCID: PMC7699207 DOI: 10.1002/dad2.12133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Positron emission tomography targeting tau (tau-PET) is a promising diagnostic tool for the identification of Alzheimer's disease (AD). Currently available data rely on quantitative measures, and a visual interpretation method, critical for clinical translation, is needed. METHODS We developed a visual interpretation method for 18F-flortaucipir tau-PET and tested it on 274 individuals (cognitively normal controls, patients with mild cognitive impairment [MCI], AD dementia, and non-AD diagnoses). Two readers interpreted 18F-flortaucipir PET using two complementary indices: a global visual score and a visual distribution pattern. RESULTS Global visual scores were reliable, correlated with global cortical 18F-flortaucipir standardized uptake value ratio (SUVR) and were associated with clinical diagnosis and amyloid status. The AD-like 18F-flortaucipir pattern had good sensitivity and specificity to identify amyloid-positive patients with AD dementia or MCI. DISCUSSION This 18F-flortaucipir visual rating scheme is associated with SUVR quantification, clinical diagnosis, and amyloid status, and constitutes a promising approach to tau measurement in clinical settings.
Collapse
Affiliation(s)
- Ida Sonni
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LabBerkeleyCaliforniaUSA
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Orit H. Lesman Segev
- Memory and Aging CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Diagnostic ImagingSheba Medical Center, Tel HashomerRamat GanIsrael
| | - Suzanne L. Baker
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LabBerkeleyCaliforniaUSA
| | - Leonardo Iaccarino
- Memory and Aging CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Deniz Korman
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Gil D. Rabinovici
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LabBerkeleyCaliforniaUSA
- Memory and Aging CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - William J. Jagust
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LabBerkeleyCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Susan M. Landau
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
12
|
Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2020; 48:2233-2244. [PMID: 32572562 DOI: 10.1007/s00259-020-04923-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE In vivo measurement of the spatial distribution of neurofibrillary tangle pathology is critical for early diagnosis and disease monitoring of Alzheimer's disease (AD). METHODS Forty-nine participants were scanned with 18F-PI-2620 PET to examine the distribution of this novel PET ligand throughout the course of AD: 36 older healthy controls (HC) (age range 61 to 86), 11 beta-amyloid+ (Aβ+) participants with cognitive impairment (CI; clinical diagnosis of either mild cognitive impairment or AD dementia, age range 57 to 86), and 2 participants with semantic variant primary progressive aphasia (svPPA, age 66 and 78). Group differences in brain regions relevant in AD (medial temporal lobe, posterior cingulate cortex, and lateral parietal cortex) were examined using standardized uptake value ratios (SUVRs) normalized to the inferior gray matter of the cerebellum. RESULTS SUVRs in target regions were relatively stable 60 to 90 min post-injection, with the exception of very high binders who continued to show increases over time. Robust elevations in 18F-PI-2620 were observed between HC and Aβ+ CI across all AD regions. Within the HC group, older age was associated with subtle elevations in target regions. Mildly elevated focal uptake was observed in the anterior temporal pole in one svPPA patient. CONCLUSION Preliminary results suggest strong differences in the medial temporal lobe and cortical regions known to be impacted in AD using 18F-PI-2620 in patients along the AD trajectory. This work confirms that 18F-PI-2620 holds promise as a tool to visualize tau aggregations in AD.
Collapse
|
13
|
Vogel JW, Iturria-Medina Y, Strandberg OT, Smith R, Levitis E, Evans AC, Hansson O. Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease. Nat Commun 2020; 11:2612. [PMID: 32457389 PMCID: PMC7251068 DOI: 10.1038/s41467-020-15701-2] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tau is a hallmark pathology of Alzheimer's disease, and animal models have suggested that tau spreads from cell to cell through neuronal connections, facilitated by β-amyloid (Aβ). We test this hypothesis in humans using an epidemic spreading model (ESM) to simulate tau spread, and compare these simulations to observed patterns measured using tau-PET in 312 individuals along Alzheimer's disease continuum. Up to 70% of the variance in the overall spatial pattern of tau can be explained by our model. Surprisingly, the ESM predicts the spatial patterns of tau irrespective of whether brain Aβ is present, but regions with greater Aβ burden show greater tau than predicted by connectivity patterns, suggesting a role of Aβ in accelerating tau spread. Altogether, our results provide evidence in humans that tau spreads through neuronal communication pathways even in normal aging, and that this process is accelerated by the presence of brain Aβ.
Collapse
Affiliation(s)
- Jacob W Vogel
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | | | | | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Elizabeth Levitis
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
14
|
Quevenco FC, van Bergen JM, Treyer V, Studer ST, Kagerer SM, Meyer R, Gietl AF, Kaufmann PA, Nitsch RM, Hock C, Unschuld PG. Functional Brain Network Connectivity Patterns Associated With Normal Cognition at Old-Age, Local β-amyloid, Tau, and APOE4. Front Aging Neurosci 2020; 12:46. [PMID: 32210782 PMCID: PMC7075450 DOI: 10.3389/fnagi.2020.00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Integrity of functional brain networks is closely associated with maintained cognitive performance at old age. Consistently, both carrier status of Apolipoprotein E ε4 allele (APOE4), and age-related aggregation of Alzheimer’s disease (AD) pathology result in altered brain network connectivity. The posterior cingulate and precuneus (PCP) is a node of particular interest due to its role in crucial memory processes. Moreover, the PCP is subject to the early aggregation of AD pathology. The current study aimed at characterizing brain network properties associated with unimpaired cognition in old aged adults. To determine the effects of age-related brain change and genetic risk for AD, pathological proteins β-amyloid and tau were measured by Positron-emission tomography (PET), PCP connectivity as a proxy of cognitive network integrity, and genetic risk by APOE4 carrier status. Methods: Fifty-seven cognitively unimpaired old-aged adults (MMSE = 29.20 ± 1.11; 73 ± 8.32 years) were administered 11C Pittsburgh Compound B and 18F Flutemetamol PET for assessing β-amyloid, and 18F AV-1451 PET for tau. Individual functional connectivity seed maps of the PCP were obtained by resting-state multiband BOLD functional MRI at 3-Tesla for increased temporal resolution. Voxelwise correlations between functional connectivity, β-amyloid- and tau-PET were explored by Biological Parametric Mapping (BPM). Results: Local β-amyloid was associated with increased connectivity in frontal and parietal regions of the brain. Tau was linked to increased connectivity in more spatially distributed clusters in frontal, parietal, occipital, temporal, and cerebellar regions. A positive interaction was observable for APOE4 carrier status and functional connectivity with brain regions characterized by increased local β-amyloid and tau tracer retention. Conclusions: Our data suggest an association between spatially differing connectivity systems and local β-amyloid, and tau aggregates in cognitively normal, old-aged adults, which is moderated by APOE4. Additional longitudinal studies may determine protective connectivity patterns associated with healthy aging trajectories of AD-pathology aggregation.
Collapse
Affiliation(s)
- Frances C Quevenco
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Jiri M van Bergen
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Sandro T Studer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sonja M Kagerer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Anton F Gietl
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Neurimmune, Schlieren, Switzerland
| | - Paul G Unschuld
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland.,Department of Psychogeriatric Medicine, Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
15
|
Pereira JB, Harrison TM, La Joie R, Baker SL, Jagust WJ. Spatial patterns of tau deposition are associated with amyloid, ApoE, sex, and cognitive decline in older adults. Eur J Nucl Med Mol Imaging 2020; 47:2155-2164. [PMID: 31915896 PMCID: PMC7338820 DOI: 10.1007/s00259-019-04669-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
Purpose The abnormal deposition of tau begins before the onset of clinical symptoms and seems to target specific brain networks. The aim of this study is to identify the spatial patterns of tau deposition in cognitively normal older adults and assess whether they are related to amyloid-β (Aβ), APOE, sex, and longitudinal cognitive decline. Methods We included 114 older adults with cross-sectional flortaucipir (FTP) and Pittsburgh Compound-B PET in addition to longitudinal cognitive testing. A voxel-wise independent component analysis was applied to FTP images to identify the spatial patterns of tau deposition. We then assessed whether tau within these patterns differed by Aβ status, APOE genotype, and sex. Linear mixed effects models were built to test whether tau in each component predicted cognitive decline. Finally, we ordered the spatial components based on the frequency of high tau deposition to model tau spread. Results We found 10 biologically plausible tau patterns in the whole sample. There was greater tau in medial temporal, occipital, and orbitofrontal components in Aβ-positive compared with Aβ-negative individuals; in the parahippocampal component in ε3ε3 compared with ε2ε3 carriers; and in temporo-parietal and anterior frontal components in women compared with men. Higher tau in temporal and frontal components predicted longitudinal cognitive decline in memory and executive functions, respectively. Tau deposition was most frequently observed in medial temporal and ventral cortical areas, followed by lateral and primary areas. Conclusions These findings suggest that the spatial patterns of tau in asymptomatic individuals are clinically meaningful and are associated with Aβ, APOE ε2ε3, sex and cognitive decline. These patterns could be used to predict the regional spread of tau and perform in vivo tau staging in older adults. Electronic supplementary material The online version of this article (10.1007/s00259-019-04669-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden. .,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, University of California, Oakland, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
16
|
La Joie R, Visani AV, Baker SL, Brown JA, Bourakova V, Cha J, Chaudhary K, Edwards L, Iaccarino L, Janabi M, Lesman-Segev OH, Miller ZA, Perry DC, O'Neil JP, Pham J, Rojas JC, Rosen HJ, Seeley WW, Tsai RM, Miller BL, Jagust WJ, Rabinovici GD. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med 2020; 12:eaau5732. [PMID: 31894103 PMCID: PMC7035952 DOI: 10.1126/scitranslmed.aau5732] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
β-Amyloid plaques and tau-containing neurofibrillary tangles are the two neuropathological hallmarks of Alzheimer's disease (AD) and are thought to play crucial roles in a neurodegenerative cascade leading to dementia. Both lesions can now be visualized in vivo using positron emission tomography (PET) radiotracers, opening new opportunities to study disease mechanisms and improve patients' diagnostic and prognostic evaluation. In a group of 32 patients at early symptomatic AD stages, we tested whether β-amyloid and tau-PET could predict subsequent brain atrophy measured using longitudinal magnetic resonance imaging acquired at the time of PET and 15 months later. Quantitative analyses showed that the global intensity of tau-PET, but not β-amyloid-PET, signal predicted the rate of subsequent atrophy, independent of baseline cortical thickness. Additional investigations demonstrated that the specific distribution of tau-PET signal was a strong indicator of the topography of future atrophy at the single patient level and that the relationship between baseline tau-PET and subsequent atrophy was particularly strong in younger patients. These data support disease models in which tau pathology is a major driver of local neurodegeneration and highlight the relevance of tau-PET as a precision medicine tool to help predict individual patient's progression and design future clinical trials.
Collapse
Affiliation(s)
- Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Adrienne V Visani
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jungho Cha
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kiran Chaudhary
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David C Perry
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - James P O'Neil
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Richard M Tsai
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Lesman-Segev OH, La Joie R, Stephens ML, Sonni I, Tsai R, Bourakova V, Visani AV, Edwards L, O'Neil JP, Baker SL, Gardner RC, Janabi M, Chaudhary K, Perry DC, Kramer JH, Miller BL, Jagust WJ, Rabinovici GD. Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy. Neuroimage Clin 2019; 24:102025. [PMID: 31670152 PMCID: PMC6831941 DOI: 10.1016/j.nicl.2019.102025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To characterize individual and group-level neuroimaging findings in patients at risk for Chronic Traumatic Encephalopathy (CTE). METHODS Eleven male patients meeting criteria for Traumatic Encephalopathy Syndrome (TES, median age: 64) underwent neurologic evaluation, 3-Tesla MRI, and PET with [18F]-Flortaucipir (FTP, tau-PET) and [11C]-Pittsburgh compound B (PIB, amyloid-PET). Six patients underwent [18F]-Fluorodeoxyglucose-PET (FDG, glucose metabolism). We assessed imaging findings at the individual patient level, and in group-level comparisons with modality-specific groups of cognitively normal older adults (CN). Tau-PET findings in patients with TES were also compared to a matched group of patients with mild cognitive impairment or dementia due to Alzheimer's disease (AD). RESULTS All patients with TES sustained repetitive head injury participating in impact sports, ten in American football. Three patients met criteria for dementia and eight had mild cognitive impairment. Two patients were amyloid-PET positive and harbored the most severe MRI atrophy, FDG hypometabolism, and FTP-tau PET binding. Among the nine amyloid-negative patients, tau-PET showed either mildly elevated frontotemporal binding, a "dot-like" pattern, or no elevated binding. Medial temporal FTP was mildly elevated in a subset of amyloid-negative patients, but values were considerably lower than in AD. Voxelwise analyses revealed a convergence of imaging abnormalities (higher FTP binding, lower FDG, lower gray matter volumes) in frontotemporal areas in TES compared to controls. CONCLUSIONS Mildly elevated tau-PET binding was observed in a subset of amyloid-negative patients at risk for CTE, in a distribution consistent with CTE pathology stages III-IV. FTP-PET may be useful as a biomarker of tau pathology in CTE but is unlikely to be sensitive to early disease stages.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States.
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Melanie L Stephens
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Ida Sonni
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Richard Tsai
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Adrienne V Visani
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - James P O'Neil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Suzanne L Baker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Raquel C Gardner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, United States
| | - Mustafa Janabi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kiran Chaudhary
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - David C Perry
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States
| | - William J Jagust
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, United States; Departments of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, United States; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
18
|
Drake LR, Pham JM, Desmond TJ, Mossine AV, Lee SJ, Kilbourn MR, Koeppe RA, Brooks AF, Scott PJ. Identification of AV-1451 as a Weak, Nonselective Inhibitor of Monoamine Oxidase. ACS Chem Neurosci 2019; 10:3839-3846. [PMID: 31339297 DOI: 10.1021/acschemneuro.9b00326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
[18F]AV-1451 is one of the most widely used radiotracers for positron emission tomography (PET) imaging of tau protein aggregates in neurodegenerative disorders. While the radiotracer binds with high affinity to tau neurofibrillary tangles, extensive clinical studies have simultaneously revealed off-target tracer accumulation in areas of low tau burden such as the basal ganglia and choroid plexus. Though there are a number of possible reasons for this accumulation, it is often attributed to off-target binding to monoamine oxidase (MAO). In this paper, we investigate the association between [18F]AV-1451 and MAO through (i) enzyme inhibition assays, (ii) autoradiography with postmortem tissue samples, and (iii) nonhuman primate PET imaging. We confirm that [18F]AV-1451 is a weak inhibitor of MAO-A and -B and that MAO inhibitors can alter binding of [18F]AV-1451 in autoradiography and in vivo PET imaging.
Collapse
Affiliation(s)
- Lindsey R. Drake
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan M. Pham
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy J. Desmond
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew V. Mossine
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - So Jeong Lee
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael R. Kilbourn
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J.H. Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Tsai RM, Bejanin A, Lesman-Segev O, LaJoie R, Visani A, Bourakova V, O’Neil JP, Janabi M, Baker S, Lee SE, Perry DC, Bajorek L, Karydas A, Spina S, Grinberg LT, Seeley WW, Ramos EM, Coppola G, Gorno-Tempini ML, Miller BL, Rosen HJ, Jagust W, Boxer AL, Rabinovici GD. 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes. Alzheimers Res Ther 2019; 11:13. [PMID: 30704514 PMCID: PMC6357510 DOI: 10.1186/s13195-019-0470-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The tau positron emission tomography (PET) ligand 18F-flortaucipir binds to paired helical filaments of tau in aging and Alzheimer's disease (AD), but its utility in detecting tau aggregates in frontotemporal dementia (FTD) is uncertain. METHODS We performed 18F-flortaucipir imaging in patients with the FTD syndromes (n = 45): nonfluent variant primary progressive aphasia (nfvPPA) (n = 11), corticobasal syndrome (CBS) (n = 10), behavioral variant frontotemporal dementia (bvFTD) (n = 10), semantic variant primary progressive aphasia (svPPA) (n = 2) and FTD associated pathogenic genetic mutations microtubule-associated protein tau (MAPT) (n = 6), chromosome 9 open reading frame 72 (C9ORF72) (n = 5), and progranulin (GRN) (n = 1). All patients underwent MRI and β-amyloid biomarker testing via 11C-PiB or cerebrospinal fluid. 18F-flortaucipir uptake in patients was compared to 53 β-amyloid negative normal controls using voxelwise and pre-specified region of interest approaches. RESULTS On qualitative assessment, patients with nfvPPA showed elevated 18F-flortacupir binding in the left greater than right inferior frontal gyrus. Patients with CBS showed elevated binding in frontal white matter, with higher cortical gray matter uptake in a subset of β-amyloid-positive patients. Five of ten patients with sporadic bvFTD demonstrated increased frontotemporal binding. MAPT mutation carriers had elevated 18F-flortaucipir retention primarily, but not exclusively, in mutations with Alzheimer's-like neurofibrillary tangles. However, tracer retention was also seen in patients with svPPA, and the mutations C9ORF72, GRN predicted to have TDP-43 pathology. Quantitative region-of-interest differences between patients and controls were seen only in inferior frontal gyrus in nfvPPA and left insula and bilateral temporal poles in MAPT carriers. No significant regional differences were found in CBS or sporadic bvFTD. Two patients underwent postmortem neuropathological examination. A patient with C9ORF72, TDP-43-type B pathology, and incidental co-pathology of scattered neurofibrillary tangles in the middle frontal, inferior temporal gyrus showed corresponding mild 18F-flortaucipir retention without additional uptake matching the widespread TDP-43 type B pathology. A patient with sporadic bvFTD demonstrated punctate inferior temporal and hippocampus tracer retention, corresponding to the area of severe argyrophilic grain disease pathology. CONCLUSIONS 18F-flortaucipir in patients with FTD and predicted tauopathy or TDP-43 pathology demonstrated limited sensitivity and specificity. Further postmortem pathological confirmation and development of FTD tau-specific ligands are needed.
Collapse
Affiliation(s)
- Richard M. Tsai
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Alexandre Bejanin
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Orit Lesman-Segev
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Renaud LaJoie
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Adrienne Visani
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Viktoriya Bourakova
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - James P. O’Neil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Mustafa Janabi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Suzanne Baker
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Suzee E. Lee
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - David C. Perry
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Lynn Bajorek
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Anna Karydas
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Salvatore Spina
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Lea T. Grinberg
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - William W. Seeley
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Eliana M. Ramos
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Giovanni Coppola
- Departments of Psychiatry and Neurology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Bruce L. Miller
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Howard J. Rosen
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Adam L. Boxer
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
| | - Gil D. Rabinovici
- Memory and Aging Center, University of California at San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, USA
| |
Collapse
|
20
|
Harrison TM, La Joie R, Maass A, Baker SL, Swinnerton K, Fenton L, Mellinger TJ, Edwards L, Pham J, Miller BL, Rabinovici GD, Jagust WJ. Longitudinal tau accumulation and atrophy in aging and alzheimer disease. Ann Neurol 2019; 85:229-240. [PMID: 30597624 PMCID: PMC6579738 DOI: 10.1002/ana.25406] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the rate of tau accumulation in healthy older adults (OA) and patients with Alzheimer disease (AD), as well as the relationship of tau accumulation to cortical atrophy. METHODS Two longitudinal flortaucipir (FTP) positron emission tomography (PET) and magnetic resonance imaging (MRI) scans were acquired from 42 OA (21 Pittsburg compound B [PiB]+ , age = 77.6 ± 4.6 years, 25 female [F]/17 male [M]) and 19 PiB+ patients with AD (age = 63.1 ± 10.3 years, 12 F/7 M) over 1 to 3 years of follow-up. FTP change, structural MRI measures of atrophy, and cross-modal correlations were examined on a voxelwise level. Regional annual percentage change in FTP was also calculated. RESULTS Voxelwise FTP change in AD showed the greatest increases in lateral and medial frontal lobes. Atrophy over the same interval was more widespread and included posteromedial cortical areas, where tau accumulation rates were lower. In OA, FTP binding increased in bilateral temporal lobe and retrosplenial cortex, accompanied by atrophy in the same regions. There were no associations between voxelwise change in FTP and sex, PiB, or APOE. Regional FTP significantly increased at follow-up in OA and patients with AD. Mixed effects models showed greater FTP increases in AD compared to OA, and no differences within OA based on PiB status. INTERPRETATION Our findings indicate that tau accumulates even in amyloid-negative healthy OA and this process can be measured with in vivo tau-PET. In OA, tau accumulation and atrophy share a similar topography. In AD, tau increases more rapidly and accumulation occurs in frontal regions that are not yet undergoing significant atrophy. Ann Neurol 2019; 1-12 ANN NEUROL 2019;85:229-240.
Collapse
Affiliation(s)
- Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Anne Maass
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Kaitlin Swinnerton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Laura Fenton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Taylor J Mellinger
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Lauren Edwards
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Julie Pham
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA.,Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
21
|
Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W. Biomarkers for tau pathology. Mol Cell Neurosci 2018; 97:18-33. [PMID: 30529601 PMCID: PMC6584358 DOI: 10.1016/j.mcn.2018.12.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022] Open
Abstract
The aggregation of fibrils of hyperphosphorylated and C-terminally truncated microtubule-associated tau protein characterizes 80% of all dementia disorders, the most common neurodegenerative disorders. These so-called tauopathies are hitherto not curable and their diagnosis, especially at early disease stages, has traditionally proven difficult. A keystone in the diagnosis of tauopathies was the development of methods to assess levels of tau protein in vivo in cerebrospinal fluid, which has significantly improved our knowledge about these conditions. Tau proteins have also been measured in blood, but the importance of tau-related changes in blood is still unclear. The recent addition of positron emission tomography ligands to visualize, map and quantify tau pathology has further contributed with information about the temporal and spatial characteristics of tau accumulation in the living brain. Together, the measurement of tau with fluid biomarkers and positron emission tomography constitutes the basis for a highly active field of research. This review describes the current state of biomarkers for tau biomarkers derived from neuroimaging and from the analysis of bodily fluids and their roles in the detection, diagnosis and prognosis of tau-associated neurodegenerative disorders, as well as their associations with neuropathological findings, and aims to provide a perspective on how these biomarkers might be employed prospectively in research and clinical settings. Biomarkers for tau pathology are now essential to the research framework in the diagnosis of Alzheimer's disease (AD) Measurement of t- and p-tau has been possible in cerebrospinal fluid (CSF) for some time, the recent development of positron emission tomography (PET) ligands binding to tau has added the possibility to map and quantify tau in the living brain First-generation tau PET ligands bind predominantly to AD-typical 3R/4R tau isoforms and exhibit off-target binding that can limit accurate ligand uptake quantification Second-generation tau PET ligands appear to bind to comparable binding sites but exhibit fewer issues with brain off-target binding Biomarkers for tau derived from CSF analysis and PET could provide complementary information about disease state and stage At this time, T-tau, but not p-tau, can be reliably measured in plasma using ultra-sensitive immunoassays.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
22
|
Vogel JW, Mattsson N, Iturria-Medina Y, Strandberg OT, Schöll M, Dansereau C, Villeneuve S, van der Flier WM, Scheltens P, Bellec P, Evans AC, Hansson O, Ossenkoppele R. Data-driven approaches for tau-PET imaging biomarkers in Alzheimer's disease. Hum Brain Mapp 2018; 40:638-651. [PMID: 30368979 DOI: 10.1002/hbm.24401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Previous positron emission tomography (PET) studies have quantified filamentous tau pathology using regions-of-interest (ROIs) based on observations of the topographical distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches may not take full advantage of information contained in neuroimaging data. The present study employs an unsupervised data-driven method to identify spatial patterns of tau-PET distribution, and to compare these patterns to previously published "pathology-driven" ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 normal controls and patients with mild cognitive impairment or Alzheimer's disease (AD) dementia from the Swedish BioFINDER cohort, who underwent [18 F]AV1451 PET scanning. Associations with cognition were tested in a separate sample of 90 individuals from ADNI. BioFINDER [18 F]AV1451 images were entered into a robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [18 F]AV1451 uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was extracted from ADNI [18 F]AV1451 scans. We performed linear models comparing [18 F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex, and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selection routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and education, which together explained 28% of the variance of a global cognitive composite score. Our findings suggest that [18 F]AV1451-PET data naturally clusters into spatial patterns that are biologically meaningful and that may offer advantages as clinical tools.
Collapse
Affiliation(s)
- Jacob W Vogel
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | | | | | - Michael Schöll
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christian Dansereau
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Pierre Bellec
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Rik Ossenkoppele
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | | | | |
Collapse
|
23
|
Visualization of ischemic stroke-related changes on 18F-THK-5351 positron emission tomography. EJNMMI Res 2018; 8:62. [PMID: 30014313 PMCID: PMC6047954 DOI: 10.1186/s13550-018-0417-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Background The 18F-THK-5351 radiotracer has been used to detect the in vivo tau protein distribution in patients with tauopathy, such as Alzheimer’s disease and corticobasal syndrome. In addition, 18F-THK-5351 can also monitor neuroinflammatory process due to high affinity to astrogliosis. We aimed to explore 18F-THK-5351 distribution patterns and characteristics in patients with recent ischemic stroke. Results Fifteen patients received 18F-THK-5351 positron emission tomography (PET) and diffusion tensor imaging (DTI) approximately 3 months after ischemic stroke. A region of interest (ROI) was placed in the peri-ischemic area and was mirrored on the contralateral side as the control, and a proportional value was derived from the ratio of the peri-ischemic ROI value over the mirrored ROI value. Increased 18F-THK-5351 retention was observed in the areas around and remote from the stroke location. The proportional 18F-THK-5351 values were negatively correlated with the proportional fractional anisotropy values (r = − 0.39, P = 0.04). Conclusion 18F-THK-5351 PET imaging provides a potential tool for in vivo visualization of the widespread ischemia-related changes associated with a microstructural disruption in recent ischemic stroke patients. Electronic supplementary material The online version of this article (10.1186/s13550-018-0417-1) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Chen J, Li Y, Pirraglia E, Okamura N, Rusinek H, de Leon MJ. Quantitative evaluation of tau PET tracers 18F-THK5351 and 18F-AV-1451 in Alzheimer's disease with standardized uptake value peak-alignment (SUVP) normalization. Eur J Nucl Med Mol Imaging 2018; 45:1596-1604. [PMID: 29704038 PMCID: PMC6174003 DOI: 10.1007/s00259-018-4040-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Off-target binding in the reference region is a challenge for recent tau tracers 18F-AV-1451 and 18F-THK5351. The conventional standardized uptake value ratio (SUVR) method relies on the average uptake from an unaffected tissue sample, and therefore is susceptible to biases from off-target binding as well as variability among individuals in the reference region. We propose a new method, standardized uptake value peak-alignment (SUVP), to reduce the bias of the SUVR, and improve the quantitative assessment of tau deposition. METHODS The SUVP normalizes uptake values by their mode and standard deviation. Instead of using a reference region, the SUVP derives the contrast from unaffected voxels over the whole brain. Using SUVP and SUVR methods, we evaluated the global and regional tau binding of 18F-THK5351 and 18F-AV-1451 on two independent cohorts (N = 18 and 32, respectively), each with cognitively normal (NL) subjects and Alzheimer's disease (AD) subjects. RESULTS Both tracers showed significantly increased binding for AD in the targeted cortical areas. In the temporal cortex, SUVP had a higher classification success rate (CSR) than SUVR (0.96 vs 0.89 for 18F-THK5351; 0.86 vs 0.75 for 18F-AV-1451), as well as higher specificity under fixed sensitivity around 0.80 (0.70 vs 0.45 specificity for 18F-THK5351; 1.00 vs 0.78 for 18F-AV-1451). In the cerebellar cortex, an AD-NL group difference with effect size (Cohen's d) of 0.62 was observed for AV-1451, confirming the limitation of the SUVR approach using this region as a reference. A smaller cerebellar effect size (0.09) was observed for THK5351. CONCLUSION The SUVP method reduces the bias of the reference region and improves the NL-AD classification compared to the SUVR approach.
Collapse
Affiliation(s)
- Jingyun Chen
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, 145 East 32nd Street, Fifth Floor, New York, NY, 10016, USA
| | - Yi Li
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, 145 East 32nd Street, Fifth Floor, New York, NY, 10016, USA.
| | - Elizabeth Pirraglia
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, 145 East 32nd Street, Fifth Floor, New York, NY, 10016, USA
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 983-8536, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Japan
| | - Henry Rusinek
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, 145 East 32nd Street, Fifth Floor, New York, NY, 10016, USA
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, 145 East 32nd Street, Fifth Floor, New York, NY, 10016, USA
| |
Collapse
|
25
|
Cho SH, Cho H, Park S, Ryu YH, Choi JY, Lyoo CH, Na DL, Seo SW, Kim HJ. Increased Uptake of AV-1451 in a Subacute Infarction Lesion. Yonsei Med J 2018; 59:563-565. [PMID: 29749140 PMCID: PMC5949299 DOI: 10.3349/ymj.2018.59.4.563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 11/29/2022] Open
Abstract
¹⁸F-AV-1451 is a tau PET ligand that has high affinity for paired helical filament tau. However, various off-target bindings unrelated to tau have also been reported. Herein, we report a case of 83-year-old woman, who showed abnormal uptake of AV-1451 that was shown to be subacute infarction. Clinicians should recognize that increased uptake of AV-1451 may be related to stroke.
Collapse
Affiliation(s)
- Soo Hyun Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seongbeom Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Yong Choi
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
26
|
Josephs KA, Martin PR, Botha H, Schwarz CG, Duffy JR, Clark HM, Machulda MM, Graff-Radford J, Weigand SD, Senjem ML, Utianski RL, Drubach DA, Boeve BF, Jones DT, Knopman DS, Petersen RC, Jack CR, Lowe VJ, Whitwell JL. [ 18 F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol 2018; 83:599-611. [PMID: 29451323 PMCID: PMC5896771 DOI: 10.1002/ana.25183] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To assess [18 F]AV-1451 tau-PET (positron emission tomography) uptake patterns across the primary progressive aphasia (PPA) variants (logopenic, semantic, and agrammatic), examine regional uptake patterns of [18 F]AV-1451 independent of clinical diagnosis, and compare the diagnostic utility of [18 F]AV-1451, [18 F]-fluorodeoxygluclose (FDG)-PET and MRI (magnetic resonance imaging) to differentiate the PPA variants. METHODS We performed statistical parametric mapping of [18 F]AV-1451 across 40 PPA patients (logopenic-PPA = 14, semantic-PPA = 13, and agrammatic-PPA = 13) compared to 80 cognitively normal, Pittsburgh compound B-negative controls, age and gender matched 2:1. Principal component analysis of regional [18 F]AV-1451 tau-PET standard uptake value ratio was performed to understand underlying patterns of [18 F]AV-1451 uptake independent of clinical diagnosis. Penalized multinomial regression analyses were utilized to assess diagnostic utility. RESULTS Logopenic-PPA showed striking uptake throughout neocortex, particularly temporoparietal, compared to controls, semantic-PPA, and agrammatic-PPA. Semantic-PPA and agrammatic-PPA showed milder patterns of focal [18 F]AV-1451 uptake. Semantic-PPA showed elevated uptake (left>right) in anteromedial temporal lobes, compared to controls and agrammatic-PPA. Agrammatic-PPA showed elevated uptake (left>right) throughout prefrontal white matter and in subcortical gray matter structures, compared to controls and semantic-PPA. The principal component analysis of regional [18 F]AV-1451 indicated two primary dimensions, a severity dimension that distinguished logopenic-PPA from agrammatic-PPA and semantic-PPA, and a frontal versus temporal contrast that distinguishes agrammatic-PPA and semantic-PPA cases. Diagnostic utility of [18 F]AV-1451was superior to MRI and at least equal to FDG-PET. INTERPRETATION [18 F]AV-1451binding characteristics differ across the PPA variants and were excellent at distinguishing between the variants. [18 F]AV-1451binding characteristics were as good or better than other brain imaging modalities utilized in clinical practice, suggesting that [18 F]AV-1451 may have clinical diagnostic utility in PPA. Ann Neurol 2018 Ann Neurol 2018;83:599-611.
Collapse
Affiliation(s)
- Keith A. Josephs
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Peter R. Martin
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Hugo Botha
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | | | - Joseph R. Duffy
- Department of Neurology (Speech pathology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Heather M. Clark
- Department of Neurology (Speech pathology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Mary M. Machulda
- Department of Psychiatry (Neuropsychology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Jonathan Graff-Radford
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Stephen D. Weigand
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Matthew L. Senjem
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota, U.S.A
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Rene L. Utianski
- Department of Neurology (Speech pathology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Daniel A. Drubach
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Bradley F. Boeve
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - David T. Jones
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - David S. Knopman
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Ronald C. Petersen
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Clifford R. Jack
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Val J. Lowe
- Department of Radiology (Nuclear Medicine), Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Jennifer L. Whitwell
- Department of Radiology (Neuroradiology), Mayo Clinic, Rochester, Minnesota, U.S.A
| |
Collapse
|
27
|
Southekal S, Devous MD, Kennedy I, Navitsky M, Lu M, Joshi AD, Pontecorvo MJ, Mintun MA. Flortaucipir F 18 Quantitation Using Parametric Estimation of Reference Signal Intensity. J Nucl Med 2017; 59:944-951. [PMID: 29191858 DOI: 10.2967/jnumed.117.200006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
PET imaging of tau pathology in Alzheimer disease may benefit from the use of white matter reference regions. These regions have shown reduced variability compared with conventional cerebellar regions in amyloid imaging. However, they are susceptible to contamination from partial-volume blurring of tracer uptake in the cortex. We present a new technique, PERSI (Parametric Estimation of Reference Signal Intensity), for flortaucipir F 18 count normalization that leverages the advantages of white matter reference regions while mitigating potential partial-volume effects. Methods: Subjects with a clinical diagnosis of Alzheimer disease, mild cognitive impairment, or normal cognition underwent T1-weighted MRI and florbetapir imaging (to determine amyloid [Aβ] status) at screening and flortaucipir F 18 imaging at single or multiple time points. Flortaucipir F 18 images, acquired as 4 × 5 min frames 80 min after a 370-MBq injection, were motion-corrected, averaged, and transformed to Montreal Neurological Institute (MNI) space. The PERSI reference region was calculated for each scan by fitting a bimodal gaussian distribution to the voxel-intensity histogram within an atlas-based white matter region and using the center and width of the lower-intensity peak to identify the voxel intensities to be included. Four conventional reference regions were also evaluated: whole cerebellum, cerebellar gray matter, atlas-based white matter, and subject-specific white matter. SUVr (standardized uptake value ratio) was calculated for a statistically defined neocortical volume of interest. Performance was evaluated with respect to test-retest variability in a phase 2 study of 21 subjects (5-34 d between scans). Baseline variability in controls (SD of SUVr and ΔSUVr) and effect sizes for group differences (Cohen d; Aβ-positive impaired vs. Aβ-negative normal) were evaluated in another phase 2 study with cross-sectional data (n = 215) and longitudinal data (n = 142/215; 18 ± 2 mo between scans). Results: PERSI showed superior test-retest reproducibility (1.84%) and group separation ability (cross-sectional Cohen d = 9.45; longitudinal Cohen d = 2.34) compared with other reference regions. Baseline SUVr variability and ΔSUVr were minimal in Aβ control subjects with no specific flortaucipir F 18 uptake (SUVr, 1.0 ± 0.04; ΔSUVr, 0.0 ± 0.02). Conclusion: PERSI reduced variability while enhancing discrimination between diagnostic cohorts. Such improvements could lead to more accurate disease staging and robust measurements of changes in tau burden over time for the evaluation of putative therapies.
Collapse
Affiliation(s)
- Sudeepti Southekal
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Michael D Devous
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Ian Kennedy
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Michael Navitsky
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Ming Lu
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Abhinay D Joshi
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Michael J Pontecorvo
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| | - Mark A Mintun
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia Pennsylvania
| |
Collapse
|
28
|
Whitwell JL, Höglinger GU, Antonini A, Bordelon Y, Boxer AL, Colosimo C, van Eimeren T, Golbe LI, Kassubek J, Kurz C, Litvan I, Pantelyat A, Rabinovici G, Respondek G, Rominger A, Rowe JB, Stamelou M, Josephs KA. Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be? Mov Disord 2017; 32:955-971. [PMID: 28500751 PMCID: PMC5511762 DOI: 10.1002/mds.27038] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
PSP is a pathologically defined neurodegenerative tauopathy with a variety of clinical presentations including typical Richardson's syndrome and other variant PSP syndromes. A large body of neuroimaging research has been conducted over the past two decades, with many studies proposing different structural MRI and molecular PET/SPECT biomarkers for PSP. These include measures of brainstem, cortical and striatal atrophy, diffusion weighted and diffusion tensor imaging abnormalities, [18F] fluorodeoxyglucose PET hypometabolism, reductions in striatal dopamine imaging and, most recently, PET imaging with ligands that bind to tau. Our aim was to critically evaluate the degree to which structural and molecular neuroimaging metrics fulfill criteria for diagnostic biomarkers of PSP. We queried the PubMed, Cochrane, Medline, and PSYCInfo databases for original research articles published in English over the past 20 years using postmortem diagnosis or the NINDS-SPSP criteria as the diagnostic standard from 1996 to 2016. We define a five-level theoretical construct for the utility of neuroimaging biomarkers in PSP, with level 1 representing group-level findings, level 2 representing biomarkers with demonstrable individual-level diagnostic utility, level 3 representing biomarkers for early disease, level 4 representing surrogate biomarkers of PSP pathology, and level 5 representing definitive PSP biomarkers of PSP pathology. We discuss the degree to which each of the currently available biomarkers fit into this theoretical construct, consider the role of biomarkers in the diagnosis of Richardson's syndrome, variant PSP syndromes and autopsy confirmed PSP, and emphasize current shortfalls in the field. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Günter U. Höglinger
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Angelo Antonini
- Parkinson and Movement Disorder Unit, IRCCS Hospital San Camillo, Venice and Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Thilo van Eimeren
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Lawrence I. Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Carolin Kurz
- Psychiatrische Klinik, Ludwigs-Maximilians-Universität, München, Germany
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, CA, USA
| | | | - Gil Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gesine Respondek
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Axel Rominger
- Deptartment of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Maria Stamelou
- Second Department of Neurology, Attikon University Hospital, University of Athens, Greece; Philipps University, Marburg, Germany; Movement Disorders Dept., HYGEIA Hospital, Athens, Greece
| | | |
Collapse
|