1
|
Vanderlinden G, Vandenberghe R, Vandenbulcke M, Van Laere K. The Current Role of Tau PET Imaging in Neurodegeneration. Semin Nucl Med 2025:S0001-2998(25)00031-5. [PMID: 40263023 DOI: 10.1053/j.semnuclmed.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
Neurodegenerative tauopathies are characterized by the pathological hyperphosphorylation of tau proteins that subsequently form aggregates. Tau PET tracers with affinity to bind these pathological tau aggregates have been developed to measure disease progression and to support therapeutic drug development. In this review, we summarize the pathophysiology of tau throughout the range of neurodegenerative tauopathies. We outline the available first- and second-generation tau PET tracers, with a focus on new tau PET tracer developments, and discuss the quantification of tau PET images. Next, we summarize how tau PET relates to cerebrospinal fluid and plasma tau biomarkers. Finally, we review the current recommendations on the clinical use of tau PET versus fluid tau biomarkers in diagnosis, prognosis and treatment development.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium; Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Research Group Psychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Krösche M, Hartmann CJ, Butz M, Schnitzler A, Hirschmann J. Altered cortical network dynamics during observing and preparing action in patients with corticobasal syndrome. Neurobiol Dis 2025; 205:106796. [PMID: 39778748 DOI: 10.1016/j.nbd.2025.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025] Open
Abstract
Corticobasal syndrome (CBS) is characterized not only by parkinsonism but also by higher-order cortical dysfunctions, such as apraxia. However, the electrophysiological mechanisms underlying these symptoms remain poorly understood. To explore the pathophysiology of CBS, we recorded magnetoencephalographic (MEG) data from 17 CBS patients and 20 age-matched controls during an observe-to-imitate task. This task involved observing a tool-use video (action observation), withholding movement upon a Go cue (movement preparation), and subsequently imitating the tool-use action. We analyzed spectral power modulations at the source level. During action observation, event-related beta power (13-30 Hz) suppression was weaker in CBS patients compared to controls. This reduction was evident bilaterally in superior parietal, primary motor, premotor and inferior frontal cortex. During movement preparation, beta power suppression was also reduced in CBS patients, correlating with longer reaction times. Immediately prior to movement onset, however, beta suppression was comparable between groups. Our findings suggest that action observation induces beta suppression, likely indicative of motor cortical disinhibition, which is impaired in CBS patients. This alteration may represent a neural correlate of disrupted visuo-motor mapping in CBS. The altered timing of beta suppression to the Go cue suggests deficits in learning the task's temporal structure rather than in movement initiation itself.
Collapse
Affiliation(s)
- Marius Krösche
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christian J Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Groot C, Smith R, Collij LE, Mastenbroek SE, Stomrud E, Binette AP, Leuzy A, Palmqvist S, Mattsson-Carlgren N, Strandberg O, Cho H, Lyoo CH, Frisoni GB, Peretti DE, Garibotto V, La Joie R, Soleimani-Meigooni DN, Rabinovici G, Ossenkoppele R, Hansson O. Tau Positron Emission Tomography for Predicting Dementia in Individuals With Mild Cognitive Impairment. JAMA Neurol 2024; 81:845-856. [PMID: 38857029 PMCID: PMC11165418 DOI: 10.1001/jamaneurol.2024.1612] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 06/11/2024]
Abstract
Importance An accurate prognosis is especially pertinent in mild cognitive impairment (MCI), when individuals experience considerable uncertainty about future progression. Objective To evaluate the prognostic value of tau positron emission tomography (PET) to predict clinical progression from MCI to dementia. Design, Setting, and Participants This was a multicenter cohort study with external validation and a mean (SD) follow-up of 2.0 (1.1) years. Data were collected from centers in South Korea, Sweden, the US, and Switzerland from June 2014 to January 2024. Participant data were retrospectively collected and inclusion criteria were a baseline clinical diagnosis of MCI; longitudinal clinical follow-up; a Mini-Mental State Examination (MMSE) score greater than 22; and available tau PET, amyloid-β (Aβ) PET, and magnetic resonance imaging (MRI) scan less than 1 year from diagnosis. A total of 448 eligible individuals with MCI were included (331 in the discovery cohort and 117 in the validation cohort). None of these participants were excluded over the course of the study. Exposures Tau PET, Aβ PET, and MRI. Main Outcomes and Measures Positive results on tau PET (temporal meta-region of interest), Aβ PET (global; expressed in the standardized metric Centiloids), and MRI (Alzheimer disease [AD] signature region) was assessed using quantitative thresholds and visual reads. Clinical progression from MCI to all-cause dementia (regardless of suspected etiology) or to AD dementia (AD as suspected etiology) served as the primary outcomes. The primary analyses were receiver operating characteristics. Results In the discovery cohort, the mean (SD) age was 70.9 (8.5) years, 191 (58%) were male, the mean (SD) MMSE score was 27.1 (1.9), and 110 individuals with MCI (33%) converted to dementia (71 to AD dementia). Only the model with tau PET predicted all-cause dementia (area under the receiver operating characteristic curve [AUC], 0.75; 95% CI, 0.70-0.80) better than a base model including age, sex, education, and MMSE score (AUC, 0.71; 95% CI, 0.65-0.77; P = .02), while the models assessing the other neuroimaging markers did not improve prediction. In the validation cohort, tau PET replicated in predicting all-cause dementia. Compared to the base model (AUC, 0.75; 95% CI, 0.69-0.82), prediction of AD dementia in the discovery cohort was significantly improved by including tau PET (AUC, 0.84; 95% CI, 0.79-0.89; P < .001), tau PET visual read (AUC, 0.83; 95% CI, 0.78-0.88; P = .001), and Aβ PET Centiloids (AUC, 0.83; 95% CI, 0.78-0.88; P = .03). In the validation cohort, only the tau PET and the tau PET visual reads replicated in predicting AD dementia. Conclusions and Relevance In this study, tau-PET showed the best performance as a stand-alone marker to predict progression to dementia among individuals with MCI. This suggests that, for prognostic purposes in MCI, a tau PET scan may be the best currently available neuroimaging marker.
Collapse
Affiliation(s)
- Colin Groot
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Lyduine E. Collij
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Sophie E. Mastenbroek
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Giovanni B. Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
- Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - Debora E. Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers, Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- Center for Biomedical Imaging, Geneva, Switzerland
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, University of California, San Francisco
| | - David N. Soleimani-Meigooni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Gil Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- Associate Editor, JAMA Neurology
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Singh NA, Alnobani A, Graff‐Radford J, Machulda MM, Mielke MM, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Kanekiyo T, Josephs KA, Whitwell JL. Relationships between PET and blood plasma biomarkers in corticobasal syndrome. Alzheimers Dement 2024; 20:4765-4774. [PMID: 38885334 PMCID: PMC11247700 DOI: 10.1002/alz.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Corticobasal syndrome (CBS) can result from underlying Alzheimer's disease (AD) pathologies. Little is known about the utility of blood plasma metrics to predict positron emission tomography (PET) biomarker-confirmed AD in CBS. METHODS A cohort of eighteen CBS patients (8 amyloid beta [Aβ]+; 10 Aβ-) and 8 cognitively unimpaired (CU) individuals underwent PET imaging and plasma analysis. Plasma concentrations were compared using a Kruskal-Wallis test. Spearman correlations assessed relationships between plasma concentrations and PET uptake. RESULTS CBS Aβ+ group showed a reduced Aβ42/40 ratio, with elevated phosphorylated tau (p-tau)181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) concentrations, while CBS Aβ- group only showed elevated NfL concentration compared to CU. Both p-tau181 and GFAP were able to differentiate CBS Aβ- from CBS Aβ+ and showed positive associations with Aβ and tau PET uptake. DISCUSSION This study supports use of plasma p-tau181 and GFAP to detect AD in CBS. NfL shows potential as a non-specific disease biomarker of CBS regardless of underlying pathology. HIGHLIGHTS Plasma phosphorylated tau (p-tau)181 and glial fibrillary acidic protein (GFAP) concentrations differentiate corticobasal syndrome (CBS) amyloid beta (Aβ)- from CBS Aβ+. Plasma neurofilament light concentrations are elevated in CBS Aβ- and Aβ+ compared to controls. Plasma p-tau181 and GFAP concentrations were associated with Aβ and tau positron emission tomography (PET) uptake. Aβ42/40 ratio showed a negative correlation with Aβ PET uptake.
Collapse
Affiliation(s)
| | - Alla Alnobani
- Department of Neuroscience, Mayo ClinicJacksonvilleFloridaUSA
| | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo ClinicRochesterMinnesotaUSA
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | | | | | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | |
Collapse
|
5
|
Blazhenets G, Soleimani-Meigooni DN, Thomas W, Mundada N, Brendel M, Vento S, VandeVrede L, Heuer HW, Ljubenkov P, Rojas JC, Chen MK, Amuiri AN, Miller Z, Gorno-Tempini ML, Miller BL, Rosen HJ, Litvan I, Grossman M, Boeve B, Pantelyat A, Tartaglia MC, Irwin DJ, Dickerson BC, Baker SL, Boxer AL, Rabinovici GD, La Joie R. [ 18F]PI-2620 Binding Patterns in Patients with Suspected Alzheimer Disease and Frontotemporal Lobar Degeneration. J Nucl Med 2023; 64:1980-1989. [PMID: 37918868 PMCID: PMC10690126 DOI: 10.2967/jnumed.123.265856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-β (Aβ) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45,…50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aβ-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aβ-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.
Collapse
Affiliation(s)
- Ganna Blazhenets
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wesley Thomas
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephanie Vento
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Peter Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Miranda K Chen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Alinda N Amuiri
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Murray Grossman
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - David J Irwin
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
6
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
7
|
Saito Y, Kamagata K, Andica C, Uchida W, Takabayashi K, Yoshida S, Nakaya M, Tanaka Y, Kamio S, Sato K, Nishizawa M, Akashi T, Shimoji K, Wada A, Aoki S. Glymphatic system impairment in corticobasal syndrome: diffusion tensor image analysis along the perivascular space (DTI-ALPS). Jpn J Radiol 2023; 41:1226-1235. [PMID: 37273112 DOI: 10.1007/s11604-023-01454-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE This study aimed to evaluate the along the perivascular space (ALPS) index based on the diffusion tensor image ALPS (DTI-ALPS) in corticobasal degeneration with corticobasal syndrome (CBD-CBS) and investigate its correlation with motor and cognitive functions. MATERIALS AND METHODS The data of 21 patients with CBD-CBS and 17 healthy controls (HCs) were obtained from the 4-Repeat Tauopathy Neuroimaging Initiative and the Frontotemporal Lobar Degeneration Neuroimaging Initiative databases. Diffusion magnetic resonance imaging was performed using a 3-Tesla MRI scanner. The ALPS index based on DTI-ALPS was automatically calculated after preprocessing. The ALPS index was compared between the CBD-CBS and HC groups via a general linear model analysis, with covariates such as age, sex, years of education, and intracranial volume (ICV). Furthermore, to confirm the relation between the ALPS index and the motor and cognitive score in CBD-CBS, the partial Spearman's rank correlation coefficient was calculated with covariates such as age, sex, years of education, and ICV. A p value of < 0.05 was considered as statistically significant in all statistical analyses. RESULTS The ALPS index of CBD-CBS was significantly lower than that of HC (Cohen's d = - 1.53, p < 0.005). Moreover, the ALPS index had a significant positive correlation with the mini mental state evaluation score (rs = 0.65, p < 0.005) and a significant negative correlation with the unified Parkinson's Disease Rating Scale III score (rs = - 0.75, p < 0.001). CONCLUSION The ALPS index of patients with CBD-CBS, which is significantly lower than that of HCs, is significantly associated with motor and cognitive functions.
Collapse
Affiliation(s)
- Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan.
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Seina Yoshida
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Yuya Tanaka
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Satoru Kamio
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Kanako Sato
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Mitsuo Nishizawa
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Keigo Shimoji
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyoku, Tokyo, 113-8421, Japan
| |
Collapse
|
8
|
Ding J, Shen C, Wang Z, Yang Y, El Fakhri G, Lu J, Liang D, Zheng H, Zhou Y, Sun T. Tau-PET abnormality as a biomarker for Alzheimer's disease staging and early detection: a topological perspective. Cereb Cortex 2023; 33:10649-10659. [PMID: 37653600 DOI: 10.1093/cercor/bhad312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Alzheimer's disease can be detected early through biomarkers such as tau positron emission tomography (PET) imaging, which shows abnormal protein accumulations in the brain. The standardized uptake value ratio (SUVR) is often used to quantify tau-PET imaging, but topological information from multiple brain regions is also linked to tau pathology. Here a new method was developed to investigate the correlations between brain regions using subject-level tau networks. Participants with cognitive normal (74), early mild cognitive impairment (35), late mild cognitive impairment (32), and Alzheimer's disease (40) were included. The abnormality network from each scan was constructed to extract topological features, and 7 functional clusters were further analyzed for connectivity strengths. Results showed that the proposed method performed better than conventional SUVR measures for disease staging and prodromal sign detection. For example, when to differ healthy subjects with and without amyloid deposition, topological biomarker is significant with P < 0.01, SUVR is not with P > 0.05. Functionally significant clusters, i.e. medial temporal lobe, default mode network, and visual-related regions, were identified as critical hubs vulnerable to early disease conversion before mild cognitive impairment. These findings were replicated in an independent data cohort, demonstrating the potential to monitor the early sign and progression of Alzheimer's disease from a topological perspective for individual.
Collapse
Affiliation(s)
- Jie Ding
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Chushu Shen
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Zhenguo Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201807, People's Republic of China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen 518055, People's Republic of China
| |
Collapse
|
9
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
10
|
Santillo AF, Leuzy A, Honer M, Landqvist Waldö M, Tideman P, Harper L, Ohlsson T, Moes S, Giannini L, Jögi J, Groot C, Ossenkoppele R, Strandberg O, van Swieten J, Smith R, Hansson O. [ 18F]RO948 tau positron emission tomography in genetic and sporadic frontotemporal dementia syndromes. Eur J Nucl Med Mol Imaging 2023; 50:1371-1383. [PMID: 36513817 PMCID: PMC10027632 DOI: 10.1007/s00259-022-06065-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. METHODS A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aβ-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. RESULTS [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aβ-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. CONCLUSION [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations.
Collapse
Affiliation(s)
- Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, SE-20502, Malmö, Sweden.
| | - Antoine Leuzy
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Maria Landqvist Waldö
- Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pontus Tideman
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Luke Harper
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Tomas Ohlsson
- Radiation Physics, Skane University Hospital, Scania, Sweden
| | - Svenja Moes
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lucia Giannini
- Alzheimer Center, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jonas Jögi
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Colin Groot
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Rik Ossenkoppele
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Olof Strandberg
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - John van Swieten
- Alzheimer Center, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ruben Smith
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
- Memory Clinic, Skåne University Hospital, SE-20502, Malmö, Sweden
| |
Collapse
|
11
|
Malarte ML, Gillberg PG, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry 2023; 28:1272-1283. [PMID: 36447011 PMCID: PMC10005967 DOI: 10.1038/s41380-022-01875-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Recent mechanistic and structural studies have challenged the classical tauopathy classification approach and revealed the complexity and heterogeneity of tau pathology in Alzheimer's disease (AD) and primary tauopathies such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), progressing beyond distinct tau isoforms. In this multi-tau tracer study, we focused on the new second-generation tau PET tracers PI2620, MK6240 and RO948 to investigate this tau complexity in AD, CBD, and PSP brains using post-mortem radioligand binding studies and autoradiography of large and small frozen brain sections. Saturation binding studies indicated multiple binding sites for 3H-PI2620 in AD, CBD and PSP brains with different binding affinities (Kd ranging from 0.2 to 0.7 nM) and binding site densities (following the order: BmaxAD > BmaxCBD > BmaxPSP). Competitive binding studies complemented these findings, demonstrating the presence of two binding sites [super-high affinity (SHA): IC50(1) = 8.1 pM; and high affinity (HA): IC50(2) = 4.9 nM] in AD brains. Regional binding distribution studies showed that 3H-PI2620 could discriminate between AD (n = 6) and control cases (n = 9), especially in frontal cortex and temporal cortex tissue (p < 0.001) as well as in the hippocampal region (p = 0.02). 3H-PI2620, 3H-MK6240 and 3H-RO948 displayed similar binding behaviour in AD brains (in both homogenate competitive studies and one large frozen hemispherical brain section autoradiography studies) in terms of binding affinities, number of sites and regional patterns. Our small section autoradiography studies in the frontal cortex of CBD (n = 3) and PSP brains (n = 2) showed high specificity for 3H-PI2620 but not for 3H-MK6240 or 3H-RO948. Our findings clearly demonstrate different binding properties among the second-generation tau PET tracers, which may assist in further understanding of tau heterogeneity in AD versus non-AD tauopathies and suggests potential for development of pure selective 4R tau PET tracers.
Collapse
Grants
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- Stiftelsen Olle Engkvist Byggmästare
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Stockholms Läns Landsting (Stockholm County Council)
- Hjärnfonden (Swedish Brain Foundation)
- Stockholm County Council -Karolinska Institute regional agreement on medical training and clinical research (ALF grant),the Swedish Alzheimer Foundation, the Foundation for Old Servants, Gun and Bertil Stohne’s Foundation, the KI Foundation for Geriatric Diseases, the Swedish Dementia Foundation, the Center for Innovative Medicine (CIMED) Region Stockholm, the Michael J Fox Foundation (MJFF-019728), the Alzheimer Association USA (AARF -21-848395), and the Recherche sur Alzheimer Foundation (Paris, France).
Collapse
Affiliation(s)
- Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Laëtitia Lemoine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
13
|
Alosco ML, Su Y, Stein TD, Protas H, Cherry JD, Adler CH, Balcer LJ, Bernick C, Pulukuri SV, Abdolmohammadi B, Coleman MJ, Palmisano JN, Tripodis Y, Mez J, Rabinovici GD, Marek KL, Beach TG, Johnson KA, Huber BR, Koerte I, Lin AP, Bouix S, Cummings JL, Shenton ME, Reiman EM, McKee AC, Stern RA. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. Eur J Nucl Med Mol Imaging 2023; 50:435-452. [PMID: 36152064 PMCID: PMC9816291 DOI: 10.1007/s00259-022-05963-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yi Su
- Banner Alzheimer's Institute, Arizona State University, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Surya Vamsi Pulukuri
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
- NICUM (NeuroImaging Core Unit Munich), Ludwig Maximilians University, Munich, Germany
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Olfati N, Shoeibi A, Litvan I. Clinical Spectrum of Tauopathies. Front Neurol 2022; 13:944806. [PMID: 35911892 PMCID: PMC9329580 DOI: 10.3389/fneur.2022.944806] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tauopathies are both clinical and pathological heterogeneous disorders characterized by neuronal and/or glial accumulation of misfolded tau protein. It is now well understood that every pathologic tauopathy may present with various clinical phenotypes based on the primary site of involvement and the spread and distribution of the pathology in the nervous system making clinicopathological correlation more and more challenging. The clinical spectrum of tauopathies includes syndromes with a strong association with an underlying primary tauopathy, including Richardson syndrome (RS), corticobasal syndrome (CBS), non-fluent agrammatic primary progressive aphasia (nfaPPA)/apraxia of speech, pure akinesia with gait freezing (PAGF), and behavioral variant frontotemporal dementia (bvFTD), or weak association with an underlying primary tauopathy, including Parkinsonian syndrome, late-onset cerebellar ataxia, primary lateral sclerosis, semantic variant PPA (svPPA), and amnestic syndrome. Here, we discuss clinical syndromes associated with various primary tauopathies and their distinguishing clinical features and new biomarkers becoming available to improve in vivo diagnosis. Although the typical phenotypic clinical presentations lead us to suspect specific underlying pathologies, it is still challenging to differentiate pathology accurately based on clinical findings due to large phenotypic overlaps. Larger pathology-confirmed studies to validate the use of different biomarkers and prospective longitudinal cohorts evaluating detailed clinical, biofluid, and imaging protocols in subjects presenting with heterogenous phenotypes reflecting a variety of suspected underlying pathologies are fundamental for a better understanding of the clinicopathological correlations.
Collapse
Affiliation(s)
- Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, San Diego, CA, United States
| |
Collapse
|
15
|
The Significance of Asymmetry in the Assessment of Brain Perfusion in Atypical Tauopathic Parkinsonian Syndromes. Diagnostics (Basel) 2022; 12:diagnostics12071671. [PMID: 35885575 PMCID: PMC9317015 DOI: 10.3390/diagnostics12071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS) are clinical manifestations of tauopathic Parkinsonian syndromes. Due to their overlapping symptomatology, the differential diagnosis of these entities may be difficult when bounded to clinical assessment. The manifestations are commonly associated with pathological entities—corticobasal degeneration and progressive supranuclear palsy, which are four-repeat tauopathies. In this study, the authors attempted to find whether the asymmetry typically associated with CBS may be feasible in the interpretation of perfusion single-photon computed tomography. The analysis based on the examination of patients with progressive supranuclear palsy—Richardson syndrome (PSP-RS), progressive supranuclear palsy—Parkinsonism predominant (PSP-P), and corticobasal syndrome (CBS) revealed significant asymmetry of perfusion of the amygdala in corticobasal syndrome. The more pronounced abnormalities of perfusion were observed in the left amygdala among patients with more severe Parkinsonian syndromes in CBS on the right. This study shows that the comparison of the perfusion of tauopathic Parkinsonian syndromes should be extended by asymmetry analysis. Interestingly, the differentiating potential of brain perfusion is present in the comparison of CBS and PSP-RS, but not in CBS and PSP-P. This phenomenon could be explained by more distinct asymmetry in the perfusion observed in PSP-P, which diminishes the differentiating potential of this parameter when it comes to the comparison of PSP-P and CBS. To the best of our knowledge, this is the first study evaluating which structures can be interpreted as significantly asymmetrical in the context of perfusion in CBS.
Collapse
|
16
|
Li Y, Liu T, Cui M. Recent development in selective Tau tracers for PET imaging in the brain. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Groot C, Villeneuve S, Smith R, Hansson O, Ossenkoppele R. Tau PET Imaging in Neurodegenerative Disorders. J Nucl Med 2022; 63:20S-26S. [PMID: 35649647 DOI: 10.2967/jnumed.121.263196] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The advent of PET ligands that bind tau pathology has enabled the quantification and visualization of tau pathology in aging and in Alzheimer disease (AD). There is strong evidence from neuropathologic studies that the most widely used tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F-RO948, and 18F-PI2620) bind tau aggregates formed in AD in the more advanced (i.e., ≥IV) Braak stages. However, tracer binding in most non-AD tauopathies is weaker and overlaps to a large extent with known off-target binding regions, limiting the quantification and visualization of non-AD tau pathology in vivo. Off-target binding is generally present in the substantia nigra, basal ganglia, pituitary, choroid plexus, longitudinal sinuses, meninges, or skull in a tracer-specific manner. Most cross-sectional studies use the inferior aspect of the cerebellar gray matter as a reference region, whereas for longitudinal analyses, an eroded white matter reference region is sometimes selected. No consensus has yet been reached on whether to use partial-volume correction of tau PET data. Although an increased neocortical tau PET signal is rare in cognitively unimpaired individuals, even in amyloid-β-positive cases, such a signal holds important prognostic information because preliminary data suggest that an elevated tau PET signal predicts cognitive decline over time. Also, in symptomatic stages of AD (i.e., mild cognitive impairment or AD dementia), tau PET shows great potential as a prognostic marker because an elevated baseline tau PET retention forecasts future cognitive decline and brain atrophy. For differential diagnostic use, the primary utility of tau PET is to differentiate AD dementia from other neurodegenerative diseases, as is in line with the conditions for the approval of 18F-flortaucipir by the U.S. Food and Drug Administration for clinical use. The differential diagnostic performance drops substantially at the mild-cognitive-impairment stage of AD, and there is no sufficient evidence for detection of sporadic non-AD primary tauopathies at the individual level for any of the currently available tau PET tracers. In conclusion, while the field is currently addressing outstanding methodologic issues, tau PET is gradually moving toward clinical application as a diagnostic and possibly prognostic marker in dementia expert centers and as a tool for selecting participants, assessing target engagement, and monitoring treatment effects in clinical trials.
Collapse
Affiliation(s)
- Colin Groot
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada; and
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden; .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Sirkis DW, Bonham LW, Johnson TP, La Joie R, Yokoyama JS. Dissecting the clinical heterogeneity of early-onset Alzheimer's disease. Mol Psychiatry 2022; 27:2674-2688. [PMID: 35393555 PMCID: PMC9156414 DOI: 10.1038/s41380-022-01531-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Early-onset Alzheimer's disease (EOAD) is a rare but particularly devastating form of AD. Though notable for its high degree of clinical heterogeneity, EOAD is defined by the same neuropathological hallmarks underlying the more common, late-onset form of AD. In this review, we describe the various clinical syndromes associated with EOAD, including the typical amnestic phenotype as well as atypical variants affecting visuospatial, language, executive, behavioral, and motor functions. We go on to highlight advances in fluid biomarker research and describe how molecular, structural, and functional neuroimaging can be used not only to improve EOAD diagnostic acumen but also enhance our understanding of fundamental pathobiological changes occurring years (and even decades) before the onset of symptoms. In addition, we discuss genetic variation underlying EOAD, including pathogenic variants responsible for the well-known mendelian forms of EOAD as well as variants that may increase risk for the much more common forms of EOAD that are either considered to be sporadic or lack a clear autosomal-dominant inheritance pattern. Intriguingly, specific pathogenic variants in PRNP and MAPT-genes which are more commonly associated with other neurodegenerative diseases-may provide unexpectedly important insights into the formation of AD tau pathology. Genetic analysis of the atypical clinical syndromes associated with EOAD will continue to be challenging given their rarity, but integration of fluid biomarker data, multimodal imaging, and various 'omics techniques and their application to the study of large, multicenter cohorts will enable future discoveries of fundamental mechanisms underlying the development of EOAD and its varied clinical presentations.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
19
|
Nakano Y, Shimada H, Shinotoh H, Hirano S, Tagai K, Sano Y, Yamamoto Y, Endo H, Matsuoka K, Takahata K, Kubota M, Takado Y, Kimura Y, Ichise M, Ono M, Sahara N, Kawamura K, Zhang MR, Kuwabara S, Suhara T, Higuchi M. PET-based classification of corticobasal syndrome. Parkinsonism Relat Disord 2022; 98:92-98. [PMID: 35533530 DOI: 10.1016/j.parkreldis.2022.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Corticobasal degeneration (CBD) is the most common neuropathological substrate for clinically diagnosed corticobasal syndrome (CBS), while identifying CBD pathology in living individuals has been challenging. This study aimed to examine the capability of positron emission tomography (PET) to detect CBD-type tau depositions and neuropathological classification of CBS. METHODS Sixteen CBS cases diagnosed by Cambridge's criteria and 12 cognitively healthy controls (HCs) underwent PET scans with 11C-PiB, 11C-PBB3, and 18F-FDG, along with T1-weighted magnetic resonance imaging. Amyloid positivity was assessed by visual inspection of 11C-PiB retentions. Tau positivity was judged by quantitative comparisons of 11C-PBB3 binding to HCs. RESULTS Sixteen CBS cases consisted of two cases (13%) with amyloid and tau positivities indicative of Alzheimer's disease (AD) pathologies, 11 cases (69%) with amyloid negativity and tau positivity, and three cases (19%) with amyloid and tau negativities. Amyloid(-), tau(+) CBS cases showed increased retentions of 11C-PBB3 in the frontoparietal areas, basal ganglia, and midbrain, and reduced metabolism in the precentral gyrus and thalamus relative to HCs. The enhanced tau probe retentions in the frontal gray and white matters partially overlapped with metabolic deficits and atrophy and correlated with Clinical Dementia Rating scores. CONCLUSIONS PET-based classification of CBS was in accordance with previous neuropathological reports on the prevalences of AD, non-AD tauopathies, and others in CBS. The current work suggests that 11C-PBB3-PET may assist the biological classification of CBS and understanding of links between CBD-type tau depositions and neuronal deteriorations leading to cognitive declines.
Collapse
Affiliation(s)
- Yoshikazu Nakano
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Neurology, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Hitoshi Shimada
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Functional Neurology & Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hitoshi Shinotoh
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Neurology Clinic Chiba, Chiba, Japan
| | - Shigeki Hirano
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Tagai
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasunori Sano
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuharu Yamamoto
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Keisuke Takahata
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Manabu Kubota
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasuyuki Kimura
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masanori Ichise
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazunori Kawamura
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tetsuya Suhara
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- National Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
20
|
Riley KJ, Graner BD, Veronesi MC. The tauopathies: Neuroimaging characteristics and emerging experimental therapies. J Neuroimaging 2022; 32:565-581. [PMID: 35470528 PMCID: PMC9545715 DOI: 10.1111/jon.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
The tauopathies are a heterogeneous group of neurodegenerative disorders in which the prevailing underlying disease process is intracellular deposition of abnormal misfolded tau protein. Diseases often categorized as tauopathies include progressive supranuclear palsy, chronic traumatic encephalopathy, corticobasal degeneration, and frontotemporal lobar degeneration. Tauopathies can be classified through clinical assessment, imaging findings, histologic validation, or molecular biomarkers tied to the underlying disease mechanism. Many tauopathies vary in their clinical presentation and overlap substantially in presentation, making clinical diagnosis of a specific primary tauopathy difficult. Anatomic imaging findings are also rarely specific to a single tauopathy, and when present may not manifest until well after the point at which therapy may be most impactful. Molecular biomarkers hold the most promise for patient care and form a platform upon which emerging diagnostic and therapeutic applications could be developed. One of the most exciting developments utilizing these molecular biomarkers for assessment of tau deposition within the brain is tau‐PET imaging utilizing novel ligands that specifically target tau protein. This review will discuss the background, significance, and clinical presentation of each tauopathy with additional attention to the pathologic mechanisms at the protein level. The imaging characteristics will be outlined with select examples of emerging imaging techniques. Finally, current treatment options and emerging therapies will be discussed. This is by no means a comprehensive review of the literature but is instead intended for the practicing radiologist as an overview of a rapidly evolving topic.
Collapse
Affiliation(s)
- Kalen J Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian D Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael C Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Young CB, Winer JR, Younes K, Cody KA, Betthauser TJ, Johnson SC, Schultz A, Sperling RA, Greicius MD, Cobos I, Poston KL, Mormino EC. Divergent Cortical Tau Positron Emission Tomography Patterns Among Patients With Preclinical Alzheimer Disease. JAMA Neurol 2022; 79:592-603. [PMID: 35435938 PMCID: PMC9016616 DOI: 10.1001/jamaneurol.2022.0676] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Characterization of early tau deposition in individuals with preclinical Alzheimer disease (AD) is critical for prevention trials that aim to select individuals at risk for AD and halt the progression of disease. Objective To evaluate the prevalence of cortical tau positron emission tomography (PET) heterogeneity in a large cohort of clinically unimpaired older adults with elevated β-amyloid (A+). Design, Setting, and Participants This cross-sectional study examined prerandomized tau PET, amyloid PET, structural magnetic resonance imaging, demographic, and cognitive data from the Anti-Amyloid Treatment in Asymptomatic AD (A4) Study from April 2014 to December 2017. Follow-up analyses used observational tau PET data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Harvard Aging Brain Study (HABS), and the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center (together hereinafter referred to as Wisconsin) to evaluate consistency. Participants were clinically unimpaired at the study visit closest to the tau PET scan and had available amyloid and tau PET data (A4 Study, n = 447; ADNI, n = 433; HABS, n = 190; and Wisconsin, n = 328). No participants who met eligibility criteria were excluded. Data were analyzed from May 11, 2021, to January 25, 2022. Main Outcomes and Measures Individuals with preclinical AD with heterogeneous cortical tau PET patterns (A+T cortical+) were identified by examining asymmetrical cortical tau signal and disproportionate cortical tau signal relative to medial temporal lobe (MTL) tau. Voxelwise tau patterns, amyloid, neurodegeneration, cognition, and demographic characteristics were examined. Results The 447 A4 participants (A+ group, 392; and normal β-amyloid group, 55), with a mean (SD) age of 71.8 (4.8) years, included 239 women (54%). A total of 36 individuals in the A+ group (9% of the A+ group) exhibited heterogeneous cortical tau patterns and were further categorized into 3 subtypes: asymmetrical left, precuneus dominant, and asymmetrical right. A total of 116 individuals in the A+ group (30% of the A+ group) showed elevated MTL tau (A+T MTL+). Individuals in the A+T cortical+ group were younger than those in the A+T MTL+ group (t61.867 = -2.597; P = .03). Across the A+T cortical+ and A+T MTL+ groups, increased regional tau was associated with reduced hippocampal volume and MTL thickness but not with cortical thickness. Memory scores were comparable between the A+T cortical+ and A+T MTL+ groups, whereas executive functioning scores were lower for the A+T cortical+ group than for the A+T MTL+ group. The prevalence of the A+T cortical+ group and tau patterns within the A+T cortical+ group were consistent in ADNI, HABS, and Wisconsin. Conclusions and Relevance This study suggests that early tau deposition may follow multiple trajectories during preclinical AD and may involve several cortical regions. Staging procedures, especially those based on neuropathology, that assume a uniform trajectory across individuals are insufficient for disease monitoring with tau imaging.
Collapse
Affiliation(s)
- Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kyan Younes
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Karly A Cody
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison
| | - Aaron Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article reviews tau PET imaging with an emphasis on first-generation and second-generation tau radiotracers and their application in neurodegenerative disorders, including Alzheimer's disease and non-Alzheimer's disease tauopathies. RECENT FINDINGS Tau is a critical protein, abundant in neurons within the central nervous system, which plays an important role in maintaining microtubules by binding to tubulin in axons. In its abnormal hyperphosphorylated form, accumulation of tau has been linked to a variety of neurodegenerative disorders, collectively referred to as tauopathies, which include Alzheimer's disease and non-Alzheimer's disease tauopathies [e.g., corticobasal degeneration (CBD), argyrophilic grain disease, progressive supranuclear palsy (PSP), and Pick's disease]. A number of first-generation and second-generation tau PET radiotracers have been developed, including the first FDA-approved agent [18F]-flortaucipir, which allow for in-vivo molecular imaging of underlying histopathology antemortem, ultimately guiding disease staging and development of disease-modifying therapeutics. SUMMARY Tau PET is an emerging imaging modality in the diagnosis and staging of tauopathies.
Collapse
Affiliation(s)
| | - Michelle Roytman
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Gloria C. Chiang
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Yi Li
- Department of Radiology, New York-Presbyterian Hospital/Weill Cornell Medical College, New York
| | - Marc L. Gordon
- Departments of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Litwin-Zucker Research Center, Feinstein Institutes for Medical Research, Manhasset
| | - Ana M. Franceschi
- Neuroradiology Division, Department of Radiology, Northwell Health/Donald and Barbara Zucker School of Medicine, Lenox Hill Hospital, New York, New York, USA
| |
Collapse
|
23
|
The Role of Tau beyond Alzheimer’s Disease: A Narrative Review. Biomedicines 2022; 10:biomedicines10040760. [PMID: 35453510 PMCID: PMC9026415 DOI: 10.3390/biomedicines10040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, there is a need for reliable fluid biomarkers to improve differential diagnosis, prognosis, and the prediction of treatment response, particularly in the management of neurogenerative diseases that display an extreme variability in clinical phenotypes. In recent years, Tau protein has been progressively recognized as a valuable neuronal biomarker in several neurological conditions, not only Alzheimer’s disease (AD). Cerebrospinal fluid and serum Tau have been extensively investigated in several neurodegenerative disorders, from classically defined proteinopathy, e.g., amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Parkinson’s disease (PD), but also in inflammatory conditions such as multiple sclerosis (MS), as a marker of axonal damage. In MS, total Tau (t-Tau) may represent, along with other proteins, a marker with diagnostic and prognostic value. In ALS, t-Tau and, mainly, the phosphorylated-Tau/t-Tau ratio alone or integrated with transactive DNA binding protein of ~43 kDa (TDP-43), may represent a tool for both diagnosis and differential diagnosis of other motoneuron diseases or tauopathies. Evidence indicated the crucial role of the Tau protein in the pathogenesis of PD and other parkinsonian disorders. This narrative review summarizes current knowledge regarding non-AD neurodegenerative diseases and the Tau protein.
Collapse
|
24
|
Carlos AF, Tosakulwong N, Weigand SD, Buciuc M, Ali F, Clark HM, Botha H, Utianski RL, Machulda MM, Schwarz CG, Reid RI, Senjem ML, Jack CR, Ahlskog JE, Dickson DW, Josephs KA, Whitwell JL. OUP accepted manuscript. Brain Commun 2022; 4:fcac108. [PMID: 35663380 PMCID: PMC9155234 DOI: 10.1093/braincomms/fcac108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Primary four-repeat tauopathies are characterized by depositions of the four-repeat isoform of the microtubule binding protein, tau. The two most common sporadic four-repeat tauopathies are progressive supranuclear palsy and corticobasal degeneration. Because tau PET tracers exhibit poor binding affinity to four-repeat pathology, determining how well in vivo MRI findings relate to underlying pathology is critical to evaluating their utility as surrogate markers to aid in diagnosis and as outcome measures for clinical trials. We studied the relationship of cross-sectional imaging findings, such as MRI volume loss and diffusion tensor imaging white matter tract abnormalities, to tau histopathology in four-repeat tauopathies. Forty-seven patients with antemortem 3 T MRI volumetric and diffusion tensor imaging scans plus post-mortem pathological diagnosis of a four-repeat tauopathy (28 progressive supranuclear palsy; 19 corticobasal degeneration) were included in the study. Tau lesion types (pretangles/neurofibrillary tangles, neuropil threads, coiled bodies, astrocytic lesions) were semiquantitatively graded in disease-specific cortical, subcortical and brainstem regions. Antemortem regional volumes, fractional anisotropy and mean diffusivity were modelled using linear regression with post-mortem tau lesion scores considered separately, based on cellular type (neuronal versus glial), or summed (total tau). Results showed that greater total tau burden was associated with volume loss in the subthalamic nucleus (P = 0.001), midbrain (P < 0.001), substantia nigra (P = 0.03) and red nucleus (P = 0.004), with glial lesions substantially driving the associations. Decreased fractional anisotropy and increased mean diffusivity in the superior cerebellar peduncle correlated with glial tau in the cerebellar dentate (P = 0.04 and P = 0.02, respectively) and red nucleus (P < 0.001 for both). Total tau and glial pathology also correlated with increased mean diffusivity in the midbrain (P = 0.02 and P < 0.001, respectively). Finally, increased subcortical white matter mean diffusivity was associated with total tau in superior frontal and precentral cortices (each, P = 0.02). Overall, results showed clear relationships between antemortem MRI changes and pathology in four-repeat tauopathies. Our findings show that brain volume could be a useful surrogate marker of tau pathology in subcortical and brainstem regions, whereas white matter integrity could be a useful marker of tau pathology in cortical regions. Our findings also suggested an important role of glial tau lesions in the pathogenesis of neurodegeneration in four-repeat tauopathies. Thus, development of tau PET tracers selectively binding to glial tau lesions could potentially uncover mechanisms of disease progression.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen D. Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mary M. Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Robert I. Reid
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - J. Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Jennifer L. Whitwell
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
- Correspondence to: Jennifer L. Whitwell, PhD Professor of Radiology, Department of Radiology Mayo Clinic, 200 1st St SW Rochester, MN 55905, USA E-mail:
| |
Collapse
|
25
|
Ezura M, Kikuchi A, Okamura N, Ishiki A, Hasegawa T, Harada R, Watanuki S, Funaki Y, Hiraoka K, Baba T, Sugeno N, Yoshida S, Kobayashi J, Kobayashi M, Tano O, Ishiyama S, Nakamura T, Nakashima I, Mugikura S, Iwata R, Taki Y, Furukawa K, Arai H, Furumoto S, Tashiro M, Yanai K, Kudo Y, Takeda A, Aoki M. 18F-THK5351 Positron Emission Tomography Imaging in Neurodegenerative Tauopathies. Front Aging Neurosci 2021; 13:761010. [PMID: 34912209 PMCID: PMC8668184 DOI: 10.3389/fnagi.2021.761010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: We aimed to determine whether in vivo tau deposits and monoamine oxidase B (MAO-B) detection using 18F-THK5351 positron emission tomography (PET) can assist in the differential distribution in patients with corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD) and whether 18F-THK5351 retention of lesion sites in CBS and PSP can correlate with clinical parameters. Methods: 18F-THK5351 PET was performed in 35 participants, including 7, 9, and 10 patients with CBS, PSP, and AD, respectively, and 9 age-matched normal controls. In CBS and PSP, cognitive and motor functions were assessed using the Montreal Cognitive Assessment, Addenbrooke's Cognitive Examination-Revised, and Frontal Assessment Battery, Unified Parkinson's Disease Rating Scale Motor Score, and PSP Rating Scale. Results: 18F-THK5351 retention was observed in sites susceptible to disease-related pathologies in CBS, PSP, and AD. 18F-THK5351 uptake in the precentral gyrus clearly differentiated patients with CBS from those with PSP and AD. Furthermore, 18F-THK5351 uptake in the inferior temporal gyrus clearly differentiated patients with AD from those with CBS and PSP. Regional 18F-THK5351 retention was associated with the cognitive function in CBS and PSP. Conclusion: Measurement of the tau deposits and MAO-B density in the brain using 18F-THK5351 may be helpful for the differential diagnosis of tauopathies and for understanding disease stages.
Collapse
Affiliation(s)
- Michinori Ezura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akio Kikuchi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aiko Ishiki
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Community of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoichi Watanuki
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yoshihito Funaki
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Kotaro Hiraoka
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Naoto Sugeno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Kobayashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Kobayashi
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ohito Tano
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Ishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Iwata
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Katsutoshi Furukawa
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Community of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroyuki Arai
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Manabu Tashiro
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukitsuka Kudo
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
Andersen E, Casteigne B, Chapman WD, Creed A, Foster F, Lapins A, Shatz R, Sawyer RP. Diagnostic biomarkers in Alzheimer’s disease. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
27
|
Schwarz CG, Knopman DS, Ramanan VK, Lowe VJ, Wiste HJ, Cogswell PM, Utianski RL, Senjem ML, Gunter JR, Vemuri P, Petersen RC, Jack CR. Longitudinally Increasing Elevated Asymmetric Flortaucipir Binding in a Cognitively Unimpaired Amyloid-Negative Older Individual. J Alzheimers Dis 2021; 85:59-64. [PMID: 34776445 PMCID: PMC8842786 DOI: 10.3233/jad-215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the case of a cognitively unimpaired 77-year-old man with elevated, asymmetric, and longitudinally increasing Flortaucipir tau PET despite normal (visually negative) amyloid PET. His atypical tau PET signal persisted and globally increased in a follow-up scan five years later. Across eight years of observations, temporoparietal atrophy was observed consistent with tau PET patterns, but he retained the cognitively unimpaired classification. Altogether, his atypical tau PET signal is not explained by any known risk factors or alternative pathologies, and other imaging findings were not remarkable. He remains enrolled for further observation.
Collapse
Affiliation(s)
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
28
|
Tezuka T, Takahata K, Seki M, Tabuchi H, Momota Y, Shiraiwa M, Suzuki N, Morimoto A, Nakahara T, Iwabuchi Y, Miura E, Yamamoto Y, Sano Y, Funaki K, Yamagata B, Ueda R, Yoshizaki T, Mashima K, Shibata M, Oyama M, Okada K, Kubota M, Okita H, Takao M, Jinzaki M, Nakahara J, Mimura M, Ito D. Evaluation of [ 18F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies. Brain Commun 2021; 3:fcab190. [PMID: 34632382 PMCID: PMC8495135 DOI: 10.1093/braincomms/fcab190] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Tau aggregates represent a key pathologic feature of Alzheimer's disease and other neurodegenerative diseases. Recently, PET probes have been developed for in vivo detection of tau accumulation; however, they are limited because of off-target binding and a reduced ability to detect tau in non-Alzheimer's disease tauopathies. The novel tau PET tracer, [18F]PI-2620, has a high binding affinity and specificity for aggregated tau; therefore, it was hypothesized to have desirable properties for the visualization of tau accumulation in Alzheimer's disease and non-Alzheimer's disease tauopathies. To assess the ability of [18F]PI-2620 to detect regional tau burden in non-Alzheimer's disease tauopathies compared with Alzheimer's disease, patients with progressive supranuclear palsy (n = 3), corticobasal syndrome (n = 2), corticobasal degeneration (n = 1) or Alzheimer's disease (n = 8), and healthy controls (n = 7) were recruited. All participants underwent MRI, amyloid β assessment and [18F]PI-2620 PET (Image acquisition at 60-90 min post-injection). Cortical and subcortical tau accumulations were assessed by calculating standardized uptake value ratios using [18F]PI-2620 PET. For pathologic validation, tau pathology was assessed using tau immunohistochemistry and compared with [18F]PI-2620 retention in an autopsied case of corticobasal degeneration. In Alzheimer's disease, focal retention of [18F]PI-2620 was evident in the temporal and parietal lobes, precuneus, and cingulate cortex. Standardized uptake value ratio analyses revealed that patients with non-Alzheimer's disease tauopathies had elevated [18F]PI-2620 uptake only in the globus pallidus, as compared to patients with Alzheimer's disease, but not healthy controls. A head-to-head comparison of [18F]PI-2620 and [18F]PM-PBB3, another tau PET probe for possibly visualizing the four-repeat tau pathogenesis in non-Alzheimer's disease, revealed different retention patterns in one subject with progressive supranuclear palsy. Imaging-pathology correlation analysis of the autopsied patient with corticobasal degeneration revealed no significant correlation between [18F]PI-2620 retention in vivo. High [18F]PI-2620 uptake at 60-90 min post-injection in the globus pallidus may be a sign of neurodegeneration in four-repeat tauopathy, but not necessarily practical for diagnosis of non-Alzheimer's disease tauopathies. Collectively, this tracer is a promising tool to detect Alzheimer's disease-tau aggregation. However, late acquisition PET images of [18F]PI-2620 may have limited utility for reliable detection of four-repeat tauopathy because of lack of correlation between post-mortem tau pathology and different retention pattern than the non-Alzheimer's disease-detectable tau radiotracer, [18F]PM-PBB3. A recent study reported that [18F]PI-2620 tracer kinetics curves in four-repeat tauopathies peak earlier (within 30 min) than Alzheimer's disease; therefore, further studies are needed to determine appropriate PET acquisition times that depend on the respective interest regions and diseases.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mika Shiraiwa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Natsumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Morimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Tadaki Nakahara
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Iwabuchi
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eisuke Miura
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kei Funaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo 160-8582, Japan
| | - Takahito Yoshizaki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kyoko Mashima
- Department of Neurology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Tokyo 272-8513, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo 187-8551, Japan.,Brain Bank, Mihara Memorial Hospital, Gunma 372-0006, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
30
|
Murugan NA, Nordberg A, Ågren H. Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy. ACS Chem Neurosci 2021; 12:2437-2447. [PMID: 34152739 PMCID: PMC8291571 DOI: 10.1021/acschemneuro.0c00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
![]()
Tauopathies are a subclass of neurodegenerative diseases characterized
by an accumulation of microtubule binding tau fibrils in brain regions.
Diseases such as Alzheimer’s (AD), chronic traumatic encephalopathy
(CTE), Pick’s disease (PiD), and corticobasal degeneration
(CBD) belong to this subclass. Development of tracers which can visualize
and discriminate between different tauopathies is of clinical importance
in the diagnosis of various tauopathies. Currently, several tau tracers
are available for in vivo imaging using a positron emission tomography
(PET) technique. Among these tracers, PBB3 is reported to bind to
various types of tau fibrils with comparable binding affinities.
In contrast, tau tracer AV-1451 is reported to bind to specific types
of tau fibrils (in particular to AD-associated and CTE) with higher
binding affinity and only show nonspecific or weaker binding toward
tau fibrils dominant with 3R isoforms (associated with PiD). The tau
fibrils associated with different tauopathies can adopt different
microstructures with different binding site microenvironments. By
using detailed studies of the binding profiles of tau tracers for
different types of tau fibrils, it may be possible to design tracers
with high selectivity toward a specific tauopathy. The microstructures
for the tau fibrils from patients with AD, PiD, and CTE have recently
been demonstrated by cryogenic electron microscopy (cryo-EM) measurements
allowing structure-based in silico simulations. In the present study,
we have performed a multiscale computational study involving molecular
docking, molecular dynamics, free energy calculations, and QM fragmentation
calculations to understand the binding profiles of tau tracer AV-1451
and its potential use for diagnosis of AD, CTE, and PiD tauopathies.
Our computational study reveals that different affinity binding sites
exist for AV-1451 in the tau fibrils associated with different tauopathies.
The binding affinity of this tracer toward different tau fibrils goes
in this order: PiD > AD > CTE. The interaction energies for different
tau fibril–tracer complexes using the QM fragmentation scheme
also showed the same trend. However, by carrying out molecular dynamics
simulations for the AD-derived tau fibrils in organic solvents, we
found additional high affinity binding sites for AV-1451. The AV-1451
binding profile in these cryptic sites correctly explains the preferential
binding of this tracer toward the AD fibrils when compared with the
PiD fibrils. This study clearly demonstrates having a cryo-EM structure
is still not sufficient for the structure-based tracer discovery for
certain targets, as they may have “potential but hidden”
high affinity binding sites, and we need additional strategies to
identify them.
Collapse
Affiliation(s)
- N. Arul Murugan
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, S-141 86 Stockholm, Sweden
- Theme Aging, The Aging Brain, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
31
|
Leuzy A, Pascoal TA, Strandberg O, Insel P, Smith R, Mattsson-Carlgren N, Benedet AL, Cho H, Lyoo CH, La Joie R, Rabinovici GD, Ossenkoppele R, Rosa-Neto P, Hansson O. A multicenter comparison of [ 18F]flortaucipir, [ 18F]RO948, and [ 18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis. Eur J Nucl Med Mol Imaging 2021; 48:2295-2305. [PMID: 34041562 PMCID: PMC8175317 DOI: 10.1007/s00259-021-05401-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aims to determine whether comparable target regions of interest (ROIs) and cut-offs can be used across [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau positron emission tomography (PET) tracers for differential diagnosis of Alzheimer's disease (AD) dementia vs either cognitively unimpaired (CU) individuals or non-AD neurodegenerative diseases. METHODS A total of 1755 participants underwent tau PET using either [18F]flortaucipir (n = 975), [18F]RO948 (n = 493), or [18F]MK6240 (n = 287). SUVR values were calculated across four theory-driven ROIs and several tracer-specific data-driven (hierarchical clustering) regions of interest (ROIs). Diagnostic performance and cut-offs for ROIs were determined using receiver operating characteristic analyses and the Youden index, respectively. RESULTS Comparable diagnostic performance (area under the receiver operating characteristic curve [AUC]) was observed between theory- and data-driven ROIs. The theory-defined temporal meta-ROI generally performed very well for all three tracers (AUCs: 0.926-0.996). An SUVR value of approximately 1.35 was a common threshold when using this ROI. CONCLUSION The temporal meta-ROI can be used for differential diagnosis of dementia patients with [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET with high accuracy, and that using very similar cut-offs of around 1.35 SUVR. This ROI/SUVR cut-off can also be applied across tracers to define tau positivity.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Philip Insel
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Hannah Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul H Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
32
|
An Update on the State of Tau Radiotracer Development: a Brief Review. Mol Imaging Biol 2021; 23:797-808. [PMID: 33987775 DOI: 10.1007/s11307-021-01612-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Evolving scientific evidence has begun to point towards hyperphosphorylated tau as a major neurotoxic component in the pathophysiological development of many major neurodegenerative conditions. In response to a need for accurate and reliable diagnosis and disease monitoring in clinical and trial settings, there has been great effort put into the development of tau radiotracers. While first-generation and second-generation radiotracers have provided a basis for assessing tau, concerns of inadequate specificity and selectivity have continued to motivate further study of these radiotracers and the development of novel radiopharmaceuticals. Given the prospective scientific and clinical value of a valid tau radiotracer, the molecular neuroimaging community must be aware of the most recent developments in the realm of tau radiotracer development. This brief review article will critically overview the most established tau radiotracers and, most importantly, concentrate on the progress of more recently developed tau radiotracers.
Collapse
|
33
|
Palleis C, Brendel M, Finze A, Weidinger E, Bötzel K, Danek A, Beyer L, Nitschmann A, Kern M, Biechele G, Rauchmann BS, Häckert J, Höllerhage M, Stephens AW, Drzezga A, van Eimeren T, Villemagne VL, Schildan A, Barthel H, Patt M, Sabri O, Bartenstein P, Perneczky R, Haass C, Levin J, Höglinger GU. Cortical [ 18 F]PI-2620 Binding Differentiates Corticobasal Syndrome Subtypes. Mov Disord 2021; 36:2104-2115. [PMID: 33951244 DOI: 10.1002/mds.28624] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Corticobasal syndrome is associated with cerebral protein aggregates composed of 4-repeat (~50% of cases) or mixed 3-repeat/4-repeat tau isoforms (~25% of cases) or nontauopathies (~25% of cases). OBJECTIVES The aim of this single-center study was to investigate the diagnostic value of the tau PET-ligand [18 F]PI-2620 in patients with corticobasal syndrome. METHODS Forty-five patients (71.5 ± 7.6 years) with corticobasal syndrome and 14 age-matched healthy controls underwent [18 F]PI-2620-PET. Beta-amyloid status was determined by cerebral β-amyloid PET and/or CSF analysis. Subcortical and cortical [18 F]PI-2620 binding was quantitatively and visually compared between β-amyloid-positive and -negative patients and controls. Regional [18 F]PI-2620 binding was correlated with clinical and demographic data. RESULTS Twenty-four percent (11 of 45) were β-amyloid-positive. Significantly elevated [18 F]PI-2620 distribution volume ratios were observed in both β-amyloid-positive and β-amyloid-negative patients versus controls in the dorsolateral prefrontal cortex and basal ganglia. Cortical [18 F]PI-2620 PET positivity was distinctly higher in β-amyloid-positive compared with β-amyloid-negative patients with pronounced involvement of the dorsolateral prefrontal cortex. Semiquantitative analysis of [18 F]PI-2620 PET revealed a sensitivity of 91% for β-amyloid-positive and of 65% for β-amyloid-negative cases, which is in excellent agreement with prior clinicopathological data. Regardless of β-amyloid status, hemispheric lateralization of [18 F]PI-2620 signal reflected contralateral predominance of clinical disease severity. CONCLUSIONS Our data indicate a value of [18 F]PI-2620 for evaluating corticobasal syndrome, providing quantitatively and regionally distinct signals in β-amyloid-positive as well as β-amyloid-negative corticobasal syndrome. In corticobasal syndrome, [18 F]PI-2620 may potentially serve for a differential diagnosis and for monitoring disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Carla Palleis
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Maike Kern
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Häckert
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany.,Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Julich, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Victor L Villemagne
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Schildan
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, United Kingdom
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Abstract
Two pathologically distinct neurodegenerative conditions, progressive supranuclear palsy and corticobasal degeneration, share in common deposits of tau proteins that differ both molecularly and ultrastructurally from the common tau deposits diagnostic of Alzheimer disease. The proteinopathy in these disorders is characterized by fibrillary aggregates of 4R tau proteins. The clinical presentations of progressive supranuclear palsy and of corticobasal degeneration are often confused with more common disorders such as Parkinson disease or subtypes of frontotemporal lobar degeneration. Neither of these 4R tau disorders has effective therapy, and while there are emerging molecular imaging approaches to identify patients earlier in the course of disease, there are as yet no reliably sensitive and specific approaches to diagnoses in life. In this review, aspects of the clinical syndromes, neuropathology, and molecular biomarker imaging studies applicable to progressive supranuclear palsy and to corticobasal degeneration will be presented. Future development of more accurate molecular imaging approaches is proposed.
Collapse
Affiliation(s)
- Kirk A Frey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The University of Michigan Health System, Ann Arbor, MI.
| |
Collapse
|
35
|
Brooks DJ. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics 2021; 18:753-771. [PMID: 33432494 PMCID: PMC8423977 DOI: 10.1007/s13311-020-00994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
In this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson's disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson's disease dementia, and Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- David J Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus N, 8200, Denmark.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
36
|
Schwarz CG. Uses of Human MR and PET Imaging in Research of Neurodegenerative Brain Diseases. Neurotherapeutics 2021; 18:661-672. [PMID: 33723751 PMCID: PMC8423895 DOI: 10.1007/s13311-021-01030-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 01/18/2023] Open
Abstract
In the past decades, many neuroimaging studies have aimed to improve the scientific understanding of human neurodegenerative diseases using MRI and PET. This article is designed to provide an overview of the major classes of brain imaging and how/why they are used in this line of research. It is intended as a primer for individuals who are relatively unfamiliar with the methods of neuroimaging research to gain a better understanding of the vocabulary and overall methodologies. It is not intended to describe or review any research findings for any disease or biology, but rather to broadly describe the imaging methodologies that are used in conducting this neurodegeneration research. We will also review challenges and strategies for analyzing neuroimaging data across multiple sites and studies, i.e., harmonization and standardization of imaging data for multi-site and meta-analyses.
Collapse
|
37
|
Li CH, Chen TF, Chiu MJ, Yen RF, Shih MC, Lin CH. Integrated 18F-T807 Tau PET, Structural MRI, and Plasma Tau in Tauopathy Neurodegenerative Disorders. Front Aging Neurosci 2021; 13:646440. [PMID: 33854426 PMCID: PMC8039308 DOI: 10.3389/fnagi.2021.646440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Objective: Tau-specific positron emission topography (PET) imaging enables in vivo assessment of Alzheimer's disease (AD). We aimed to investigate its performance in combination with plasma tau levels in patients with non-AD tauopathy. Methods: A total of 47 participants were enrolled, including 10 healthy controls, 16 with tauopathy parkinsonism syndromes (9 with corticobasal syndrome [CBS], 7 with progressive supranuclear palsy [PSP]), 9 with frontotemporal dementia (FTD), 4 with AD, and 8 with Parkinson's disease (PD). All participants underwent clinical assessments, 18F-T807 tau PET, brain MRI, and plasma tau assay. Results: The global cortical standard uptake value ratio (SUVR) of 18F-T807 PET was comparable between PD and control (p = 0.088). The cortical SUVR was significantly higher in AD group (p = 0.002) but was modestly increased in PSP group compared to the PD group (p = 0.044), especially in parietal and pallidal regions. Asymmetric 18F-T807 uptake at the pallidum was noted in patients with CBS and FTD. Cortical tau tracer uptake was associated with increased plasma total tau level (p = 0.016), especially in frontal and parietal regions. Regional tracer uptake was correlated with cortical thinning in patients with CBS and PSP (CBS: r = -0.092, p = 0.025; PSP: r = -0.114, p = 0.015). Conclusions: The 18F-T807 tau tracer uptake was only modestly increased in patients with PSP. Although the cortical tau tracer uptake correlated with regional cortical atrophy and plasma tau levels, a four-repeated tau-specific tracer is needed for future classifying tauopathy parkinsonism syndromes.
Collapse
Affiliation(s)
- Cheng-Hsuan Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Biomedical Park Hospital, Hsinchu, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Psychology, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chieh Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Frey KA, Bohnen NILJ. Molecular Imaging of Neurodegenerative Parkinsonism. PET Clin 2021; 16:261-272. [PMID: 33589385 DOI: 10.1016/j.cpet.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advances in molecular PET imaging of neurodegenerative parkinsonism are reviewed with focus on neuropharmacologic radiotracers depicting terminals of selectively vulnerable neurons in these conditions. Degeneration and losses of dopamine, norepinephrine, serotonin, and acetylcholine imaging markers thus far do not differentiate among the parkinsonian conditions. Recent studies performed with [18F]fluorodeoxyglucose PET are limited by the need for automated image analysis tools and by lack of routine coverage for this imaging indication in the United States. Ongoing research engages use of novel molecular modeling and in silico methods for design of imaging ligands targeting these specific proteinopathies.
Collapse
Affiliation(s)
- Kirk A Frey
- Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA; Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA.
| | - Nicolaas I L J Bohnen
- Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA; Department of Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA; Ann Arbor Veterans Administration Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Goodheart AE, Locascio JJ, Samore WR, Collins JA, Brickhouse M, Schultz A, Touroutoglou A, Johnson KA, Frosch MP, Growdon JH, Dickerson BC, Gomperts SN. 18F-AV-1451 positron emission tomography in neuropathological substrates of corticobasal syndrome. Brain 2021; 144:266-277. [PMID: 33578418 PMCID: PMC7880673 DOI: 10.1093/brain/awaa383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
Multiple neuropathological processes can manifest in life as a corticobasal syndrome. We sought to relate retention of the tau-PET tracer 18F-AV-1451 and structural magnetic resonance measures of regional atrophy to clinical features in clinically diagnosed and neuropathologically confirmed cases of corticobasal syndrome and to determine whether these vary with the underlying neuropathological changes. In this observational, cross-sectional study, 11 subjects (eight female and three male, median age 72 years) with corticobasal syndrome underwent structural MRI, tau-PET with 18F-AV-1451, amyloid-PET with 11C-Pittsburgh compound B, detailed clinical examinations and neuropsychological testing. Of the 11, three had evidence of high amyloid burden consistent with Alzheimer's disease while eight did not. Neuropathological evaluations were acquired in six cases. Mixed effects general linear models were used to compare 18F-AV-1451 retention and atrophy in amyloid-negative corticobasal syndrome cases to 32 age-matched healthy control subjects and to relate cortical and subcortical 18F-AV-1451 retention and atrophy to clinical features. Subjects without amyloid, including three with pathologically confirmed corticobasal degeneration, showed greater regional 18F-AV-1451 retention and associated regional atrophy in areas commonly associated with corticobasal degeneration pathology than healthy control subjects [retention was higher compared to healthy controls (P = 0.0011), driven especially by the precentral gyrus (P = 0.011) and pallidum (P < 0.0001), and greater atrophy was seen in subjects compared to control subjects (P = 0.0004)]. Both 18F-AV-1451 retention and atrophy were greater in the clinically more affected hemisphere [on average, retention was 0.173 standardized uptake value ratio units higher on the more affected side (95% confidence interval, CI 0.11-0.24, P < 0.0001), and volume was 0.719 lower on the more affected side (95% CI 0.35-1.08, P = 0.0001)]. 18F-AV-1451 retention was greater in subcortical than in cortical regions, P < 0.0001. In contrast to these findings, subjects with amyloid-positive corticobasal syndrome, including two neuropathologically confirmed cases of Alzheimer's disease, demonstrated greater and more widespread 18F-AV-1451 retention and regional atrophy than observed in the amyloid-negative cases. There was thalamic 18F-AV-1451 retention but minimal cortical and basal ganglia uptake in a single corticobasal syndrome subject without neuropathological evidence of tau pathology, likely representing non-specific signal. Asymmetric cortical and basal ganglia 18F-AV-1451 retention consonant with the clinical manifestations characterize corticobasal syndrome due to corticobasal degeneration, whereas the cortical retention in cases associated with Alzheimer's disease is greater and more diffuse.
Collapse
Affiliation(s)
- Anna E Goodheart
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Wesley R Samore
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica A Collins
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael Brickhouse
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aaron Schultz
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - John H Growdon
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen N Gomperts
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
40
|
Radioactive synthesis of tau PET imaging agent 18F-AV-1451 and its role in monitoring the progression of Alzheimer's disease and supporting differential diagnosis. Ann Nucl Med 2021; 35:139-147. [PMID: 33460010 DOI: 10.1007/s12149-020-01566-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is on the rise all over the world, and brings with it great challenges to medical care and heavy burdens to family and society. Accurate diagnosis and differential diagnosis are of great importance. Tau positron emission tomography (PET) might offer novel insights and be of great assistance in monitoring disease progression and supporting the differential diagnosis. 18F-AV-1451, as the first Tau PET imaging agent approved by the Food and Drug Administration (FDA), has been of great potential in clinical trials. Here, we reviewed the synthesis and characteristics of 18F-AV-1451 and its role in monitoring AD progression and supporting the differential diagnosis.
Collapse
|
41
|
Dev SI, Dickerson BC, Touroutoglou A. Neuroimaging in Frontotemporal Lobar Degeneration: Research and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:93-112. [PMID: 33433871 PMCID: PMC8787866 DOI: 10.1007/978-3-030-51140-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Frontotemporal lobar dementia (FTLD) is a clinically and pathologically complex disease. Advances in neuroimaging techniques have provided a specialized set of tools to investigate underlying pathophysiology and identify clinical biomarkers that aid in diagnosis, prognostication, monitoring, and identification of appropriate endpoints in clinical trials. In this chapter, we review data discussing the utility of neuroimaging biomarkers in sporadic FTLD, with an emphasis on current and future clinical applications. Among those modalities readily utilized in clinical settings, T1-weighted structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) are best supported in differential diagnosis and as targets for clinical trial endpoints. However, a number of nonclinical neuroimaging modalities, including diffusion tensor imaging and resting-state functional connectivity MRI, show promise as biomarkers to predict progression and as clinical trial endpoints. Other neuroimaging modalities, including amyloid PET, Tau PET, and arterial spin labeling MRI, are also discussed, though more work is required to establish their utility in FTLD in clinical settings.
Collapse
Affiliation(s)
- Sheena I Dev
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
42
|
Drzezga A, Bischof GN, Giehl K, van Eimeren T. PET and SPECT Imaging of Neurodegenerative Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Abstract
Pathological accumulated misfolded tau underlies various neurodegenerative diseases and associated clinical syndromes. To diagnose those diseases reliable before death or even at early stages, many different tau-specific radiotracers have been developed in the last decade to be used with positron-emission-tomography. In contrast to amyloid-β imaging, different isoforms of tau exist further complicating radiotracer development. First-generation radiotracers like [11C]PBB3, [18F]AV1451 and [18F]THK5351 have been extensively investigated in vitro and in vivo. In Alzheimer's disease (AD), high specific binding could be detected, and evidence of clinical applicability recently led to clinical approval of [18F]flortaucipir ([18F]AV1451) by the FDA. Nevertheless, absent or minor binding to non-AD tau isoforms and high off-target binding to non-tau brain structures limit the diagnostic applicability especially in non-AD tauopathies demanding further tracer development. In vitro assays and autoradiography results of next-generation radiotracers [18F]MK-6240, [18F]RO-948, [18F]PM-PBB3, [18F]GTP-1 and [18F]PI-2620 clearly indicate less off-target binding and high specific binding to tau neurofibrils. First in human studies have been conducted with promising results for all tracers in AD patients, and also some positive experience in non-AD tauopathies. Overall, larger scaled autoradiography and human studies are needed to further evaluate the most promising candidates and support future clinical approval.
Collapse
Affiliation(s)
- Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, Munich, Germany.
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
44
|
Soleimani-Meigooni DN, Iaccarino L, La Joie R, Baker S, Bourakova V, Boxer AL, Edwards L, Eser R, Gorno-Tempini ML, Jagust WJ, Janabi M, Kramer JH, Lesman-Segev OH, Mellinger T, Miller BL, Pham J, Rosen HJ, Spina S, Seeley WW, Strom A, Grinberg LT, Rabinovici GD. 18F-flortaucipir PET to autopsy comparisons in Alzheimer's disease and other neurodegenerative diseases. Brain 2020; 143:3477-3494. [PMID: 33141172 PMCID: PMC7719031 DOI: 10.1093/brain/awaa276] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Few studies have evaluated the relationship between in vivo18F-flortaucipir PET and post-mortem pathology. We sought to compare antemortem 18F-flortaucipir PET to neuropathology in a consecutive series of patients with a broad spectrum of neurodegenerative conditions. Twenty patients were included [mean age at PET 61 years (range 34-76); eight female; median PET-to-autopsy interval of 30 months (range 4-59 months)]. Eight patients had primary Alzheimer's disease pathology, nine had non-Alzheimer tauopathies (progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and frontotemporal lobar degeneration with MAPT mutations), and three had non-tau frontotemporal lobar degeneration. Using an inferior cerebellar grey matter reference, 80-100-min 18F-flortaucipir PET standardized uptake value ratio (SUVR) images were created. Mean SUVRs were calculated for progressive supranuclear palsy, corticobasal degeneration, and neurofibrillary tangle Braak stage regions of interest, and these values were compared to SUVRs derived from young, non-autopsy, cognitively normal controls used as a standard for tau negativity. W-score maps were generated to highlight areas of increased tracer retention compared to cognitively normal controls, adjusting for age as a covariate. Autopsies were performed blinded to PET results. There was excellent correspondence between areas of 18F-flortaucipir retention, on both SUVR images and W-score maps, and neurofibrillary tangle distribution in patients with primary Alzheimer's disease neuropathology. Patients with non-Alzheimer tauopathies and non-tau frontotemporal lobar degeneration showed a range of tracer retention that was less than Alzheimer's disease, though higher than age-matched, cognitively normal controls. Overall, binding across both tau-positive and tau-negative non-Alzheimer disorders did not reliably correspond with post-mortem tau pathology. 18F-flortaucipir SUVRs in subcortical regions were higher in autopsy-confirmed progressive supranuclear palsy and corticobasal degeneration than in controls, but were similar to values measured in Alzheimer's disease and tau-negative neurodegenerative pathologies. Quantification of 18F-flortaucipir SUVR images at Braak stage regions of interest reliably detected advanced Alzheimer's (Braak VI) pathology. However, patients with earlier Braak stages (Braak I-IV) did not show elevated tracer uptake in these regions compared to young, tau-negative controls. In summary, PET-to-autopsy comparisons confirm that 18F-flortaucipir PET is a reliable biomarker of advanced Braak tau pathology in Alzheimer's disease. The tracer cannot reliably differentiate non-Alzheimer tauopathies and may not detect early Braak stages of neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rana Eser
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - William J Jagust
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Mustafa Janabi
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Taylor Mellinger
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
45
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
46
|
Parmera JB, Coutinho AM, Aranha MR, Studart-Neto A, de Godoi Carneiro C, de Almeida IJ, Fontoura Solla DJ, Ono CR, Barbosa ER, Nitrini R, Buchpiguel CA, Brucki SMD. FDG-PET Patterns Predict Amyloid Deposition and Clinical Profile in Corticobasal Syndrome. Mov Disord 2020; 36:651-661. [PMID: 33206389 DOI: 10.1002/mds.28373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is an atypical parkinsonian syndrome related to multiple underlying pathologies. OBJECTIVE To investigate if individual brain [18 F]fluorodeoxyglucose-positron emission tomography (FDG-PET) patterns could distinguish CBS due to Alzheimer's disease (AD) from other pathologies based on [11 C]Pittsburgh Compound-B (PIB)-PET. METHODS Forty-five patients with probable CBS were prospectively evaluated regarding cognitive and movement disorders profile. They underwent FDG-PET and were distributed into groups: likely related to AD (CBS FDG-AD) or likely non-AD (CBS FDG-nonAD) pathology. Thirty patients underwent PIB-PET on a hybrid PET-magnetic resonance imaging equipment to assess their amyloid status. FDG and PIB-PET images were classified individually based on visual and semi-quantitative analysis, blinded to each other. Quantitative group analyses were also performed. RESULTS CBS FDG-AD group demonstrated worse cognitive performances, mostly concerning attention, memory, visuospatial domains, and displayed more myoclonus and hallucinations. The non-AD metabolic group presented more often limb dystonia, ocular motor dysfunction, motor perseveration, and dysarthria. All patients classified as CBS FDG-AD tested positive at PIB-PET compared to 3 of 20 in the non-AD group. The individual FDG-PET classification demonstrated 76.92% of sensitivity, 100% of specificity and positive predictive value and 88.5% of balanced accuracy to detect positive PIB-PET scans. Individuals with positive and negative PIB-PET showed hypometabolism in posterior temporoparietal areas and in thalamus and brainstem, respectively, mainly contralateral to most affected side, disclosing possible metabolic signatures of CBS variants. CONCLUSION FDG-PET was useful to predict AD and non-AD CBS variants depicting their specific degeneration patterns, different clinical features, and brain amyloid deposition. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacy Bezerra Parmera
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Artur Martins Coutinho
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Mateus Rozalem Aranha
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil.,Laboratory of Magnetic Resonance in Neuroradiology (LIM 44), Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Adalberto Studart-Neto
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Camila de Godoi Carneiro
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Isabel Junqueira de Almeida
- Department of Physical Therapy, Speech, and Occupational Therapy, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Davi J Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carla Rachel Ono
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Center of Nuclear Medicine, Institute of Radiology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Sonia Maria Dozzi Brucki
- Department of Neurology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
47
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|
48
|
Ricci M, Cimini A, Chiaravalloti A, Filippi L, Schillaci O. Positron Emission Tomography (PET) and Neuroimaging in the Personalized Approach to Neurodegenerative Causes of Dementia. Int J Mol Sci 2020; 21:ijms21207481. [PMID: 33050556 PMCID: PMC7589353 DOI: 10.3390/ijms21207481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Generally, dementia should be considered an acquired syndrome, with multiple possible causes, rather than a specific disease in itself. The leading causes of dementia are neurodegenerative and non-neurodegenerative alterations. Nevertheless, the neurodegenerative group of diseases that lead to cognitive impairment and dementia includes multiple possibilities or mixed pathologies with personalized treatment management for each cause, even if Alzheimer's disease is the most common pathology. Therefore, an accurate differential diagnosis is mandatory in order to select the most appropriate therapy approach. The role of personalized assessment in the treatment of dementia is rapidly growing. Neuroimaging is an essential tool for differential diagnosis of multiple causes of dementia and allows a personalized diagnostic and therapeutic protocol based on risk factors that may improve treatment management, especially in early diagnosis during the prodromal stage. The utility of structural and functional imaging could be increased by standardization of acquisition and analysis methods and by the development of algorithms for automated assessment. The aim of this review is to focus on the most commonly used tracers for differential diagnosis in the dementia field. Particularly, we aim to explore 18F Fluorodeoxyglucose (FDG) and amyloid positron emission tomography (PET) imaging in Alzheimer's disease and in other neurodegenerative causes of dementia.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Luca Filippi
- Nuclear Medicine Section, “Santa Maria Goretti” Hospital, 04100 Latina, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
49
|
Rowley PA, Samsonov AA, Betthauser TJ, Pirasteh A, Johnson SC, Eisenmenger LB. Amyloid and Tau PET Imaging of Alzheimer Disease and Other Neurodegenerative Conditions. Semin Ultrasound CT MR 2020; 41:572-583. [PMID: 33308496 DOI: 10.1053/j.sult.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although diagnosing the syndrome of dementia is largely a clinical endeavor, neuroimaging plays an increasingly important role in accurately determining the underlying etiology, which extends beyond its traditional role in excluding other causes of altered cognition. New neuroimaging methods not only facilitate the diagnosis of the most common neurodegenerative conditions (particularly Alzheimer Disease [AD]) after symptom onset, but also show diagnostic promise even in the very early or presymptomatic phases of disease. Positron emission tomography (PET) is increasingly recognized as a key clinical tool for differentiating normal age-related changes in brain metabolism (using 18F-fluorodeoxyglucose [FDG]) from those seen in the earliest stages of specific forms of dementia. However, FDG PET only demonstrates nonspecific changes in altered parenchymal glucose uptake and not the specific etiologic proteinopathy causing the abnormal glucose uptake. A growing class of radiotracers targeting specific protein aggregates for amyloid-β (Aβ) and tau are changing the way AD is diagnosed, as these radiotracers directly label the underlying disease pathology. As these pathology-specific radiotracers are currently making their way to the clinic, it is important for the clinical neuroradiologist to understand the underlying patterns of Aβ and tau deposition in the context of AD (across its clinical continuum) and in other causes of dementia, as well as understand the implications of current research.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Radiology, University of Wisconsin, Madison, WI
| | | | | | - Ali Pirasteh
- Department of Radiology, University of Wisconsin, Madison, WI
| | | | | |
Collapse
|
50
|
Lesman-Segev OH, Edwards L, Rabinovici GD. Chronic Traumatic Encephalopathy: A Comparison with Alzheimer's Disease and Frontotemporal Dementia. Semin Neurol 2020; 40:394-410. [PMID: 32820492 DOI: 10.1055/s-0040-1715134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical diagnosis of chronic traumatic encephalopathy (CTE) is challenging due to heterogeneous clinical presentations and overlap with other neurodegenerative dementias. Depending on the clinical presentation, the differential diagnosis of CTE includes Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease, amyotrophic lateral sclerosis, primary mood disorders, posttraumatic stress disorder, and psychotic disorders. The aim of this article is to compare the clinical aspects, genetics, fluid biomarkers, imaging, treatment, and pathology of CTE to those of AD and bvFTD. A detailed clinical evaluation, neurocognitive assessment, and structural brain imaging can inform the differential diagnosis, while molecular biomarkers can help exclude underlying AD pathology. Prospective studies that include clinicopathological correlations are needed to establish tools that can more accurately determine the cause of neuropsychiatric decline in patients at risk for CTE.
Collapse
Affiliation(s)
- Orit H Lesman-Segev
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Lauren Edwards
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Department of Neurology, University of California San Francisco, San Francisco, California.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Weill Neuroscience Institute, University of California San Francisco, San Francisco, California
| |
Collapse
|