1
|
Matsuoka T, Yoshida H, Kasai T, Tozawa T, Iehara T, Chiyonobu T. α-Synuclein pathology in Drosophila melanogaster is exacerbated by haploinsufficiency of Rop: connecting STXBP1 encephalopathy with α-synucleinopathies. Hum Mol Genet 2024; 33:1328-1338. [PMID: 38692286 DOI: 10.1093/hmg/ddae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Syntaxin-binding protein 1 (STXBP1) is a presynaptic protein that plays important roles in synaptic vesicle docking and fusion. STXBP1 haploinsufficiency causes STXBP1 encephalopathy (STXBP1-E), which encompasses neurological disturbances including epilepsy, neurodevelopmental disorders, and movement disorders. Most patients with STXBP1-E present with regression and movement disorders in adulthood, highlighting the importance of a deeper understanding of the neurodegenerative aspects of STXBP1-E. An in vitro study proposed an interesting new role of STXBP1 as a molecular chaperone for α-Synuclein (αSyn), a key molecule in the pathogenesis of neurodegenerative disorders. However, no studies have shown αSyn pathology in model organisms or patients with STXBP1-E. In this study, we used Drosophila models to examine the effects of STXBP1 haploinsufficiency on αSyn-induced neurotoxicity in vivo. We demonstrated that haploinsufficiency of Ras opposite (Rop), the Drosophila ortholog of STXBP1, exacerbates compound eye degeneration, locomotor dysfunction, and dopaminergic neurodegeneration in αSyn-expressing flies. This phenotypic aggravation was associated with a significant increase in detergent-insoluble αSyn levels in the head. Furthermore, we tested whether trehalose, which has neuroprotective effects in various models of neurodegenerative disorders, mitigates αSyn-induced neurotoxicity exacerbated by Rop haploinsufficiency. In flies expressing αSyn and carrying a heterozygous Rop null variant, trehalose supplementation effectively alleviates neuronal phenotypes, accompanied by a decrease in detergent-insoluble αSyn in the head. In conclusion, this study revealed that Rop haploinsufficiency exacerbates αSyn-induced neurotoxicity by altering the αSyn aggregation propensity. This study not only contributes to understanding the mechanisms of neurodegeneration in STXBP1-E patients, but also provides new insights into the pathogenesis of α-synucleinopathies.
Collapse
Affiliation(s)
- Taro Matsuoka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takashi Kasai
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Bordbar S, Alijanzadeh D, Samieefar N, Khazeei Tabari MA, Pourbakhtyaran E, Rezaei N. The Role of Alpha-Synuclein in Neurodevelopmental Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04305-2. [PMID: 38949729 DOI: 10.1007/s12035-024-04305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Neurodevelopmental disorders are a group of diseases with cognitive, motor, and emotional development deficits. Alpha-synuclein (α-syn) is a synaptic protein involved in transmission and neurodevelopment. This protein was previously shown to be associated with several disorders, including Parkinson's disease. Furthermore, a close link between neurodevelopmental disorders and Parkinson's has also been found. Changes in synaptic function have been noticed in neurodevelopmental disorders, including autism spectrum disorder. Impaired neurogenesis and related cognitive problems have been associated with altered expression of α-syn. Various studies reported α-syn in different body fluids and tissues such as blood and serum. Alpha-synuclein can help in better understanding the pathogenesis of neurodevelopmental diseases and facilitating their early diagnosis. This review aims to go over the recent advances in the role of α-syn in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, and motor and social impairment, and its value as a diagnostic biomarker.
Collapse
Affiliation(s)
- Sanaz Bordbar
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, 1417755331, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Alijanzadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Pourbakhtyaran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zheng G, Kong H. Exploring the correlation between serum α-synuclein and abnormal electroencephalography patterns in children with epilepsy, as well as electroencephalographic discharge index. Int J Neurosci 2024:1-8. [PMID: 38506641 DOI: 10.1080/00207454.2024.2332958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND This study investigates the correlation between serum α-synuclein and abnormal electroencephalography patterns as well as the electroencephalographic discharge index in children with epilepsy. METHODS Fasting venous blood of 4 ml were collected from the participants, centrifuged at 3000 rpm with a centrifuge radius of 15 cm for 20 min, and stored in a -70 °C freezer for serum α-synuclein examination. Normal EEG: Exhibits symmetrical α or β rhythm primarily in the occipital region. RESULTS The electroencephalogram (EEG) examination results showed that out of the 110 children with epilepsy, 9 had normal EEGs, 35 had mild EEG abnormalities, 46 had moderate EEG abnormalities, and 20 had severe EEG abnormalities. It is noteworthy that the control group did not exhibit any abnormalities in EEG. In the epilepsy group, serum α-synuclein levels were higher than those in the normal group, while α-wave power and θ-wave power were lower than in the normal group (p < 0.05). Among children with epilepsy, those with mild EEG abnormalities, moderate EEG abnormalities, and severe EEG abnormalities had higher serum α-synuclein levels and electroencephalographic discharge indices compared to children with normal EEGs (p < 0.05). Additionally, among children with EEG abnormalities, those with mild, moderate, and severe EEG abnormalities had progressively increasing serum α-synuclein levels and electroencephalographic discharge indices (p < 0.05). CONCLUSIONS Children with epilepsy exhibit elevated serum α-synuclein levels, and there is a positive correlation between α-synuclein levels and the grading of EEG abnormalities as well as the electroencephalographic discharge index.
Collapse
Affiliation(s)
- Guoyuan Zheng
- Center for Rehabilitation Medicine, Department of Neuroelectrophysiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Kong
- Center for Reproductive Medicine, Department of Pediatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Akefe IO, Saber SH, Matthews B, Venkatesh BG, Gormal RS, Blackmore DG, Alexander S, Sieriecki E, Gambin Y, Bertran-Gonzalez J, Vitale N, Humeau Y, Gaudin A, Ellis SA, Michaels AA, Xue M, Cravatt B, Joensuu M, Wallis TP, Meunier FA. The DDHD2-STXBP1 interaction mediates long-term memory via generation of saturated free fatty acids. EMBO J 2024; 43:533-567. [PMID: 38316990 PMCID: PMC10897203 DOI: 10.1038/s44318-024-00030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emma Sieriecki
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | - Yann Gambin
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | | | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 CNRS - Université de Strasbourg, Strasbourg, France
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Arnaud Gaudin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sevannah A Ellis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alysee A Michaels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia.
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Weeratunga S, Gormal RS, Liu M, Eldershaw D, Livingstone EK, Malapaka A, Wallis TP, Bademosi AT, Jiang A, Healy MD, Meunier FA, Collins BM. Interrogation and validation of the interactome of neuronal Munc18-interacting Mint proteins with AlphaFold2. J Biol Chem 2024; 300:105541. [PMID: 38072052 PMCID: PMC10820826 DOI: 10.1016/j.jbc.2023.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
Munc18-interacting proteins (Mints) are multidomain adaptors that regulate neuronal membrane trafficking, signaling, and neurotransmission. Mint1 and Mint2 are highly expressed in the brain with overlapping roles in the regulation of synaptic vesicle fusion required for neurotransmitter release by interacting with the essential synaptic protein Munc18-1. Here, we have used AlphaFold2 to identify and then validate the mechanisms that underpin both the specific interactions of neuronal Mint proteins with Munc18-1 as well as their wider interactome. We found that a short acidic α-helical motif within Mint1 and Mint2 is necessary and sufficient for specific binding to Munc18-1 and binds a conserved surface on Munc18-1 domain3b. In Munc18-1/2 double knockout neurosecretory cells, mutation of the Mint-binding site reduces the ability of Munc18-1 to rescue exocytosis, and although Munc18-1 can interact with Mint and Sx1a (Syntaxin1a) proteins simultaneously in vitro, we find that they have mutually reduced affinities, suggesting an allosteric coupling between the proteins. Using AlphaFold2 to then examine the entire cellular network of putative Mint interactors provides a structural model for their assembly with a variety of known and novel regulatory and cargo proteins including ADP-ribosylation factor (ARF3/ARF4) small GTPases and the AP3 clathrin adaptor complex. Validation of Mint1 interaction with a new predicted binder TJAP1 (tight junction-associated protein 1) provides experimental support that AlphaFold2 can correctly predict interactions across such large-scale datasets. Overall, our data provide insights into the diversity of interactions mediated by the Mint family and show that Mints may help facilitate a key trigger point in SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) complex assembly and vesicle fusion.
Collapse
Affiliation(s)
- Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Meihan Liu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Denaye Eldershaw
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Emma K Livingstone
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Anusha Malapaka
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Anmin Jiang
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Michael D Healy
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing and Dementia Research, Queensland Brain Institute, The University of Queensland, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Queensland, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| |
Collapse
|
6
|
Hayashi T, Yano N, Kora K, Yokoyama A, Maizuru K, Kayaki T, Nishikawa K, Osawa M, Niwa A, Takenouchi T, Hijikata A, Shirai T, Suzuki H, Kosaki K, Saito MK, Takita J, Yoshida T. Involvement of mTOR pathway in neurodegeneration in NSF-related developmental and epileptic encephalopathy. Hum Mol Genet 2023; 32:1683-1697. [PMID: 36645181 PMCID: PMC10162430 DOI: 10.1093/hmg/ddad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naoko Yano
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kengo Kora
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Atsushi Yokoyama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kanako Maizuru
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taisei Kayaki
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kinuko Nishikawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Mitsujiro Osawa
- Thyas Co. Ltd, Kyoto 606-8501, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Spagnoli C, Fusco C, Pisani F. Pediatric-Onset Epilepsy and Developmental Epileptic Encephalopathies Followed by Early-Onset Parkinsonism. Int J Mol Sci 2023; 24:ijms24043796. [PMID: 36835207 PMCID: PMC9965035 DOI: 10.3390/ijms24043796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic early-onset Parkinsonism is unique due to frequent co-occurrence of hyperkinetic movement disorder(s) (MD), or additional neurological of systemic findings, including epilepsy in up to 10-15% of cases. Based on both the classification of Parkinsonism in children proposed by Leuzzi and coworkers and the 2017 ILAE epilepsies classification, we performed a literature review in PubMed. A few discrete presentations can be identified: Parkinsonism as a late manifestation of complex neurodevelopmental disorders, characterized by developmental and epileptic encephalopathies (DE-EE), with multiple, refractory seizure types and severely abnormal EEG characteristics, with or without preceding hyperkinetic MD; Parkinsonism in the context of syndromic conditions with unspecific reduced seizure threshold in infancy and childhood; neurodegenerative conditions with brain iron accumulation, in which childhood DE-EE is followed by neurodegeneration; and finally, monogenic juvenile Parkinsonism, in which a subset of patients with intellectual disability or developmental delay (ID/DD) develop hypokinetic MD between 10 and 30 years of age, following unspecific, usually well-controlled, childhood epilepsy. This emerging group of genetic conditions leading to epilepsy or DE-EE in childhood followed by juvenile Parkinsonism highlights the need for careful long-term follow-up, especially in the context of ID/DD, in order to readily identify individuals at increased risk of later Parkinsonism.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296033
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Gao V, Briano JA, Komer LE, Burré J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J Mol Biol 2023; 435:167714. [PMID: 35787839 PMCID: PMC10472340 DOI: 10.1016/j.jmb.2022.167714] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
α-Synuclein is an abundant protein at the neuronal synapse that has been implicated in Parkinson's disease for over 25 years and characterizes the hallmark pathology of a group of neurodegenerative diseases now known as the synucleinopathies. Physiologically, α-synuclein exists in an equilibrium between a synaptic vesicle membrane-bound α-helical multimer and a cytosolic largely unstructured monomer. Through its membrane-bound state, α-synuclein functions in neurotransmitter release by modulating several steps in the synaptic vesicle cycle, including synaptic vesicle clustering and docking, SNARE complex assembly, and homeostasis of synaptic vesicle pools. These functions have been ascribed to α-synuclein's interactions with the synaptic vesicle SNARE protein VAMP2/synaptobrevin-2, the synaptic vesicle-attached synapsins, and the synaptic vesicle membrane itself. How α-synuclein affects these processes, and whether disease is due to loss-of-function or gain-of-toxic-function of α-synuclein remains unclear. In this review, we provide an in-depth summary of the existing literature, discuss possible reasons for the discrepancies in the field, and propose a working model that reconciles the findings in the literature.
Collapse
Affiliation(s)
- Virginia Gao
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neurology, New York Presbyterian/Weill Cornell Medicine, New York, NY, USA.
| | - Juan A Briano
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lauren E Komer
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. https://www.twitter.com/lauren_komer
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute & Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Akefe IO, Osborne SL, Matthews B, Wallis TP, Meunier FA. Lipids and Secretory Vesicle Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:357-397. [PMID: 37615874 DOI: 10.1007/978-3-031-34229-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, the number of studies implicating lipids in the regulation of synaptic vesicle exocytosis has risen considerably. It has become increasingly clear that lipids such as phosphoinositides, lysophospholipids, cholesterol, arachidonic acid and myristic acid play critical regulatory roles in the processes leading up to exocytosis. Lipids may affect membrane fusion reactions by altering the physical properties of the membrane, recruiting key regulatory proteins, concentrating proteins into exocytic "hotspots" or by modulating protein functions allosterically. Discrete changes in phosphoinositides concentration are involved in multiple trafficking events including exocytosis and endocytosis. Lipid-modifying enzymes such as the DDHD2 isoform of phospholipase A1 were recently shown to contribute to memory acquisition via dynamic modifications of the brain lipid landscape. Considering the increasing reports on neurodegenerative disorders associated with aberrant intracellular trafficking, an improved understanding of the control of lipid pathways is physiologically and clinically significant and will afford unique insights into mechanisms and therapeutic methods for neurodegenerative diseases. Consequently, this chapter will discuss the different classes of lipids, phospholipase enzymes, the evidence linking them to synaptic neurotransmitter release and how they act to regulate key steps in the multi-step process leading to neuronal communication and memory acquisition.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Shona L Osborne
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
11
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
12
|
von Scheibler EN, van Eeghen AM, de Koning TJ, Kuijf ML, Zinkstok JR, Müller AR, van Amelsvoort TA, Boot E. Parkinsonism in Genetic Neurodevelopmental Disorders: A Systematic Review. Mov Disord Clin Pract 2022; 10:17-31. [PMID: 36699000 PMCID: PMC9847320 DOI: 10.1002/mdc3.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background With advances in clinical genetic testing, associations between genetic neurodevelopmental disorders and parkinsonism are increasingly recognized. In this review, we aimed to provide a comprehensive overview of reports on parkinsonism in genetic neurodevelopmental disorders and summarize findings related to genetic diagnosis, clinical features and proposed disease mechanisms. Methods A systematic literature review was conducted in PubMed and Embase on June 15, 2021. Search terms for parkinsonism and genetic neurodevelopmental disorders, using generic terms and the Human Phenotype Ontology, were combined. Study characteristics and descriptive data were extracted from the articles using a modified version of the Cochrane Consumers and Communication Review Group's data extraction template. The protocol was registered in PROSPERO (CRD42020191035). Results The literature search yielded 208 reports for data-extraction, describing 69 genetic disorders in 422 patients. The five most reported from most to least frequent were: 22q11.2 deletion syndrome, beta-propeller protein-associated neurodegeneration, Down syndrome, cerebrotendinous xanthomatosis, and Rett syndrome. Notable findings were an almost equal male to female ratio, an early median age of motor onset (26 years old) and rigidity being more common than rest tremor. Results of dopaminergic imaging and response to antiparkinsonian medication often supported the neurodegenerative nature of parkinsonism. Moreover, neuropathology results showed neuronal loss in the majority of cases. Proposed disease mechanisms included aberrant mitochondrial function and disruptions in neurotransmitter metabolism, endosomal trafficking, and the autophagic-lysosomal and ubiquitin-proteasome system. Conclusion Parkinsonism has been reported in many GNDs. Findings from this study may provide clues for further research and improve management of patients with GNDs and/or parkinsonism.
Collapse
Affiliation(s)
- Emma N.M.M. von Scheibler
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - Agnies M. van Eeghen
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom J. de Koning
- Department of GeneticsUniversity of GroningenGroningenThe Netherlands,Expertise Centre Movement Disorders GroningenUniversity Medical Centre GroningenGroningenThe Netherlands,Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | - Mark L. Kuijf
- Department of NeurologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Janneke R. Zinkstok
- Department of PsychiatryRadoud University Medical CentreNijmegenThe Netherlands,Karakter child and adolescent psychiatryNijmegenThe Netherlands,Department of Psychiatry and Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Annelieke R. Müller
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Erik Boot
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands,The Dalglish Family 22q ClinicUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
13
|
Mutation in the STXBP1 Gene Associated with Early Onset West Syndrome: A Case Report and Literature Review. Pediatr Rep 2022; 14:386-395. [PMID: 36278550 PMCID: PMC9589999 DOI: 10.3390/pediatric14040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Syntaxin-binding protein1 (STXBP1) is a member of the Sec1/Munc18-1 protein family, which comprises important regulators of the secretory and synaptic vesicle fusion machinery underlying hormonal and neuronal transmission, respectively. STXBP1 pathogenic variants are associated with multiple neurological disorders. Herein, we present the case of a Japanese girl with a mutation in the STXBP1 gene, who was born at 40 weeks without neonatal asphyxia. At 15 days old, she developed epilepsy and generalized seizures. Around 88 days old, she presented with a series of nodding spasms, with the seizure frequency gradually increasing. Interictal EEG indicated hypsarrhythmia and she presented with developmental regression. At 1.5 years old, genetic testing was performed and mutational analysis revealed an STXBP1 gene mutation (c.875G > A: p.Arg292His). Accordingly, she was diagnosed with developmental and epileptic encephalopathy, presenting West syndrome’s clinical characteristics caused by the STXBP1 gene mutation. Although drug treatment has reduced the frequency of epileptic seizures, her development has remained regressive. The relationship between the location and type of genetic abnormality and the phenotype remains unclear. Future studies should investigate the genotype−phenotype correlation and the underlying pathophysiology to elucidate the causal relationships among the multiple phenotype-determining factors.
Collapse
|
14
|
Lv Y, Zhang C, Jian H, Lou Y, Kang Y, Deng W, Wang C, Wang W, Shang S, Hou M, Shen W, Xie J, Li X, Zhou H, Feng S. Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury. Gene 2022; 837:146689. [PMID: 35750086 DOI: 10.1016/j.gene.2022.146689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI. METHODS In this study, we isolated mouse cortical neurons and constructed an oxygen-glucose deprivation/reoxygenation (OGD) model to explore the change in DNA methylation and its effect on the expression of corresponding genes. RESULTS We found that DNA methylation in neurons increased with hypoxia duration and that hypermethylation of numerous promoters and 3'-untranslated regions increased. We performed Gene Ontology enrichment analysis to study gene function and Kyoto Encyclopedia of Genes and Genomes pathway analysis to identify the pathways associated with gene regulation. The results showed that hypermethylation-related genes expressed after OGD were related to physiological pathways such as neuronal projection, ion transport, growth and development, while hypomethylation-related genes were related to pathological pathways such as the external apoptosis signaling pathway, neuronal death regulation, and regulation of oxidative stress. However, the changes in DNA methylation were specific for certain genes and may have been related to OGD-induced neuronal damage. Importantly, we integrated transcription and DNA methylation data to identify several candidate target genes, including hypomethylated Apoe, Pax6, Bmp4, and Ptch1 and hypermethylated Adora2a, Crhr1, Stxbp1, and Tac1. This study further indicated the effect of DNA methylation on gene function in brain IRI from the perspective of epigenetics, and the identified genes may become new targets for achieving neuroprotection in the brain after IRI.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Weimin Deng
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Jing Xie
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China; Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
15
|
Madaan P, Kaushal Y, Srivastava P, Crow YJ, Livingston JH, Ahuja C, Sankhyan N. Delineating the epilepsy phenotype of NRROS-related microgliopathy: A case report and literature review. Seizure 2022; 100:15-20. [PMID: 35716448 DOI: 10.1016/j.seizure.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Negative regulator of reactive oxygen species (NRROS) related microgliopathy, a rare and recently recognized neurodegenerative condition, is caused by pathogenic variants in the NRROS gene, which plays a major role in the regulation of transforming growth factor-beta 1. METHODS We report a child presenting with infantile spasms syndrome (ISS) with subsequent progressive neurodegeneration who was identified to harbour a novel likely pathogenic NRROS variant (c.1359del; p.Ser454Alafs*11). The previously published reports of patients with this disorder were also reviewed systematically. RESULTS Including our index patient, 11 children (6 girls) were identified in total. Early development was normal in seven of these eleven children. All had a history of drug-resistant epilepsy, with 3 having epileptic spasms. The median age at seizure onset and developmental regression was 12 months, and the median age at death was 36 months. Intracranial calcifications were described in eight of eleven children. Neuroimaging revealed progressive cerebral atrophy and white matter loss in all children. The most common reported genetic variation was c.1981delC; (p.Leu661Serfs*97) observed in two families (likely due to a founder effect). CONCLUSIONS Pathogenic variants in NRROS should be suspected in children with neuro-regression and drug-resistant epilepsy including ISS with onset in the first two years of life. Punctate or serpiginous calcifications at the grey-white matter junction and acquired microcephaly are further clues towards the diagnosis.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Yashovardhan Kaushal
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - John H Livingston
- Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, UK
| | - Chirag Ahuja
- Department of Radiodiagnosis and Imaging (Section of Neuroimaging and Interventional Radiology), PGIMER, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
16
|
You Y, Hersh SW, Aslebagh R, Shaffer SA, Ikezu S, Mez J, Lunetta KL, Logue MW, Farrer LA, Ikezu T. Alzheimer's disease associated AKAP9 I2558M mutation alters posttranslational modification and interactome of tau and cellular functions in CRISPR-edited human neuronal cells. Aging Cell 2022; 21:e13617. [PMID: 35567427 PMCID: PMC9197405 DOI: 10.1111/acel.13617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease (AD) is a pervasive neurodegeneration disease with high heritability. In this study, we employed CRISPR-Cas9-engineered technology to investigate the effects of a rare mutation (rs144662445) in the A kinase anchoring protein 9 (AKAP9) gene, which is associated with AD in African Americans (AA), on tau pathology and the tau interactome in SH-SY5Y P301L neuron-like cells. The mutation significantly increased the level of phosphorylated tau, specifically at the site Ser396/Ser404. Moreover, analyses of the tau interactome measured by affinity purification-mass spectrometry revealed that differentially expressed tau-interacting proteins in AKAP9 mutant cells were associated with RNA translation, RNA localization and oxidative activity, recapitulating the tau interactome signature previously reported with human AD brain samples. Importantly, these results were further validated by functional studies showing a significant reduction in protein synthesis activity and excessive oxidative stress in AKAP9 mutant compared with wild type cells in a tau-dependent manner, which are mirrored with pathological phenotype frequently seen in AD. Our results demonstrated specific effects of rs14462445 on mis-processing of tau and suggest a potential role of AKAP9 in AD pathogenesis.
Collapse
Affiliation(s)
- Yang You
- Departments of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Samuel W. Hersh
- Departments of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Roshanak Aslebagh
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- Mass Spectrometry FacilityUniversity of Massachusetts Medical SchoolShrewsburyMassachusettsUSA
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- Mass Spectrometry FacilityUniversity of Massachusetts Medical SchoolShrewsburyMassachusettsUSA
| | - Seiko Ikezu
- Departments of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Mark W. Logue
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
- National Center for PTSDBehavioral Sciences DivisionVA Boston Healthcare SystemBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
- Department of OphthalmologyBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Tsuneya Ikezu
- Departments of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
- Center for Systems NeuroscienceBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
17
|
Shin GJ, Na JH, Lee H, Lee YM. A Case of Intellectual Disability without Epilepsy Associated with a Pathogenic Variant of <i>STXBP1</i>. ANNALS OF CHILD NEUROLOGY 2022. [DOI: 10.26815/acn.2022.00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Clinical whole exome sequencing revealed de novo Heterozygous Stop-Gain and Missense variants in the STXBP1 gene associated with Epilepsy in Saudi Families. Saudi J Biol Sci 2022; 29:103309. [PMID: 35663845 PMCID: PMC9160351 DOI: 10.1016/j.sjbs.2022.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Intellectual disability and developmental encephalopathies are mostly linked with infant epilepsy. Epileptic encephalopathy is a term that is used to define association between developmental delay and epilepsy. Mutations in the STXBP1 (Syntaxin-binding protein 1) gene have been previously reported in association with multiple severe early epileptic encephalopathies along with many neurodevelopmental disorders. Among the disorders produced due to any mutations in the STXBP1 gene is developmental and epileptic encephalopathy 4 (OMIM: 612164), is an autosomal dominant neurologic disorder categorized by the onset of tonic seizures in early infancy (usually in the first months of life). In this article, we report two Saudi families one with de novo heterozygous stop-gain mutation c.364C > T and a novel missense c. 305C > A p.Ala102Glu in exon 5 of the STXBP1 gene (OMIM: 602926) lead to development of epileptic encephalopathy 4. The variants identified in the current study broadened the genetic spectrum of STXBP1 gene related with diseases, which will help to add in the literature and benefit to the studies addressing this disease in the future.
Collapse
|
19
|
Disruption of the Ubiquitin-Proteasome System and Elevated Endoplasmic Reticulum Stress in Epilepsy. Biomedicines 2022; 10:biomedicines10030647. [PMID: 35327449 PMCID: PMC8945847 DOI: 10.3390/biomedicines10030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The epilepsies are a broad group of conditions characterized by repeated seizures, and together are one of the most common neurological disorders. Additionally, epilepsy is comorbid with many neurological disorders, including lysosomal storage diseases, syndromic intellectual disability, and autism spectrum disorder. Despite the prevalence, treatments are still unsatisfactory: approximately 30% of epileptic patients do not adequately respond to existing therapeutics, which primarily target ion channels. Therefore, new therapeutic approaches are needed. Disturbed proteostasis is an emerging mechanism in epilepsy, with profound effects on neuronal health and function. Proteostasis, the dynamic balance of protein synthesis and degradation, can be directly disrupted by epilepsy-associated mutations in various components of the ubiquitin-proteasome system (UPS), or impairments can be secondary to seizure activity or misfolded proteins. Endoplasmic reticulum (ER) stress can arise from failed proteostasis and result in neuronal death. In light of this, several treatment modalities that modify components of proteostasis have shown promise in the management of neurological disorders. These include chemical chaperones to assist proper folding of proteins, inhibitors of overly active protein degradation, and enhancers of endogenous proteolytic pathways, such as the UPS. This review summarizes recent work on the pathomechanisms of abnormal protein folding and degradation in epilepsy, as well as treatment developments targeting this area.
Collapse
|
20
|
Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, Nicotera AG, Di Rosa G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front Neurol 2022; 13:826211. [PMID: 35350397 PMCID: PMC8957959 DOI: 10.3389/fneur.2022.826211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
The proper connection between the pre- and post-synaptic nervous cells depends on any element constituting the synapse: the pre- and post-synaptic membranes, the synaptic cleft, and the surrounding glial cells and extracellular matrix. An alteration of the mechanisms regulating the physiological synergy among these synaptic components is defined as “synaptopathy.” Mutations in the genes encoding for proteins involved in neuronal transmission are associated with several neuropsychiatric disorders, but only some of them are associated with Developmental and Epileptic Encephalopathies (DEEs). These conditions include a heterogeneous group of epilepsy syndromes associated with cognitive disturbances/intellectual disability, autistic features, and movement disorders. This review aims to elucidate the pathogenesis of these conditions, focusing on mechanisms affecting the neuronal pre-synaptic terminal and its role in the onset of DEEs, including potential therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- *Correspondence: Vincenzo Salpietro
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
21
|
Chen X, Shi L, Zhang L, Cheng Y, Xue Z, Yan J, Jiang H. Epitranscriptomic Analysis of N6-methyladenosine in Infant Rhesus Macaques after Multiple Sevoflurane Anesthesia. Neuroscience 2021; 482:64-76. [PMID: 34843896 DOI: 10.1016/j.neuroscience.2021.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022]
Abstract
Clinical investigations to date have proposed the possibility that exposure to anesthetics is associated with neurodevelopmental deficits. Sevoflurane is the most commonly used general anesthetic in pediatric patients. Animal studies have demonstrated that multiple exposures to sevoflurane during the postnatal period resulted in neuropathological brain changes and long-term cognitive deficits. However, the underlying mechanisms remain to be clarified. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was performed to acquire genome-wide profiling of RNA N6-methyladenosine (m6A) in the prefrontal cortex of infant rhesus macaques. The macaques in the sevoflurane group had more m6A peaks than the macaques in the control group (p ≤ 0.05). After sevoflurane treatment, the mRNA levels of YT521-B homology domain family 1 (YTHDF1) and YT521-B homology domain family 3 (YTHDF3) were decreased, and sevoflurane anesthesia dynamically regulated RNA m6A methylation. Gene ontology (GO) analysis revealed that after sevoflurane exposure, genes with increased methylation of m6A sites were enriched in some physiological processes relevant to neurodevelopment, mainly focused on synaptic plasticity. The female macaques had 18 hypermethylated genes. The males had 35 hypermethylated genes, and some physiological processes related to the regulation of synaptic structure were enriched. Rhesus macaques are genetically closer to human beings. Our findings can help in the study of the mechanism of sevoflurane-relevant neurodevelopmental deficits at the posttranscriptional level and can provide new insights into potential clinical preventions and interventions for the neurotoxicity of neonatal anesthesia exposure.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lingling Shi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanyong Cheng
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
22
|
El-Ansary A, Alhakbany M, Aldbass A, Qasem H, Al-Mazidi S, Bhat RS, Al-Ayadhi L. Alpha-Synuclein, cyclooxygenase-2 and prostaglandins-EP2 receptors as neuroinflammatory biomarkers of autism spectrum disorders: Use of combined ROC curves to increase their diagnostic values. Lipids Health Dis 2021; 20:155. [PMID: 34742290 PMCID: PMC8571879 DOI: 10.1186/s12944-021-01578-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and restricted and repetitive behaviors. Neuroinflammation and abnormal lipid mediators have been identified in multiple investigations as an acknowledged etiological mechanism of ASD that can be targeted for therapeutic intervention. METHODS In this study, multiple regression and combined receiver operating characteristic (ROC) curve analyses were used to determine the relationship between the neuroinflammatory marker α-synuclein and lipid mediator markers related to inflammation induction, such as cyclooxygenase-2 and prostaglandin-EP2 receptors, in the etiology of ASD. Additionally, the study aimed to determine the linear combination that maximizes the partial area under ROC curves for a set of markers. Forty children with ASD and 40 age- and sex-matched controls were enrolled in the study. Using ELISA, the levels of α-synuclein, cyclo-oxygenase-2, and prostaglandin-EP2 receptors were measured in the plasma of both groups. Statistical analyses using ROC curves and multiple and logistic regression models were performed. RESULTS A remarkable increase in the area under the curve was observed using combined ROC curve analyses. Moreover, higher specificity and sensitivity of the combined markers were reported. CONCLUSIONS The present study indicates that measurement of the predictive value of selected biomarkers related to neuroinflammation and lipid metabolism in children with ASD using a ROC curve analysis should lead to a better understanding of the etiological mechanism of ASD and its link with metabolism. This information may facilitate early diagnosis and intervention.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P. O Box 22452, Riyadh, KSA, 11495, Saudi Arabia.
- Autism Research and Treatment Center, Riyadh, Saudi Arabia.
| | - Manan Alhakbany
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Aldbass
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Qasem
- Department of Physiology, College of Medicine, Al-Imam Mohammed Bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Sarah Al-Mazidi
- Department of Physiology, College of Medicine, Al-Imam Mohammed Bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Physiology, College of Medicine, Al-Imam Mohammed Bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Zaganas I, Vorgia P, Spilioti M, Mathioudakis L, Raissaki M, Ilia S, Giorgi M, Skoula I, Chinitrakis G, Michaelidou K, Paraskevoulakos E, Grafakou O, Kariniotaki C, Psyllou T, Zafeiris S, Tzardi M, Briassoulis G, Dinopoulos A, Mitsias P, Evangeliou A. Genetic cause of epilepsy in a Greek cohort of children and young adults with heterogeneous epilepsy syndromes. Epilepsy Behav Rep 2021; 16:100477. [PMID: 34568804 PMCID: PMC8449081 DOI: 10.1016/j.ebr.2021.100477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022] Open
Abstract
We describe a cohort of 10 unrelated Greek patients (4 females, 6 males; median age 6.5 years, range 2-18 years) with heterogeneous epilepsy syndromes with a genetic basis. In these patients, causative genetic variants, including two novel ones, were identified in 9 known epilepsy-related genes through whole exome sequencing. A patient with glycine encephalopathy was a compound heterozygote for the p.Arg222Cys and the p.Ser77Leu AMT variant. A patient affected with Lafora disease carried the homozygous p.Arg171His EPM2A variant. A de novo heterozygous variant in the GABRG2 gene (p.Pro282Thr) was found in one patient and a pathogenic variant in the GRIN2B gene (p.Gly820Val) in another patient. Infantile-onset lactic acidosis with seizures was associated with the p.Arg446Ter PDHX gene variant in one patient. In two additional epilepsy patients, the p.Ala1662Val and the novel non-sense p.Phe1330Ter SCN1A gene variants were found. Finally, in 3 patients we observed a novel heterozygous missense variant in SCN2A (p.Ala1874Thr), a heterozygous splice site variant in SLC2A1 (c.517-2A>G), as a cause of Glut1 deficiency syndrome, and a pathogenic variant in STXBP1 (p.Arg292Leu), respectively. In half of our cases (patients with variants in the GRIN2B, SCN1A, SCN2A and SLC2A1 genes), a genetic cause with potential management implications was identified.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Heraklion, Crete, Greece
| | - Pelagia Vorgia
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Maria Raissaki
- Department of Radiology, University Hospital of Heraklion, Crete, Greece
| | - Stavroula Ilia
- Pediatric Intensive Care Unit, University Hospital of Heraklion, Crete, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - Olga Grafakou
- Pediatric Department, Venizelion General Hospital, Heraklio, Crete, Greece
| | - Chariklia Kariniotaki
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Thekla Psyllou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Spiros Zafeiris
- Neurology Department, University Hospital of Heraklion, Crete, Greece
| | - Maria Tzardi
- Pathology Department, Medical School, University of Crete, Greece
| | - George Briassoulis
- Pediatric Intensive Care Unit, University Hospital of Heraklion, Crete, Greece
| | | | - Panayiotis Mitsias
- Neurology Department, University Hospital of Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, MI, USA
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
Cortical proteins may provide motor resilience in older adults. Sci Rep 2021; 11:11311. [PMID: 34050212 PMCID: PMC8163829 DOI: 10.1038/s41598-021-90859-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Motor resilience proteins may be a high value therapeutic target that offset the negative effects of pathologies on motor function. This study sought to identify cortical proteins associated with motor decline unexplained by brain pathologies that provide motor resilience. We studied 1226 older decedents with annual motor testing, postmortem brain pathologies and quantified 226 proteotypic peptides in prefrontal cortex. Twenty peptides remained associated with motor decline in models controlling for ten brain pathologies (FDR < 0.05). Higher levels of nine peptides and lower levels of eleven peptides were related to slower decline. A higher motor resilience protein score based on averaging the levels of all 20 peptides was related to slower motor decline, less severe parkinsonism and lower odds of mobility disability before death. Cortical proteins may provide motor resilience. Targeting these proteins in further drug discovery may yield novel interventions to maintain motor function in old age.
Collapse
|
25
|
Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, Taura Y, Yamashita S, Yoshida M, Morimoto M, Higurashi N, Yamamoto T, Okano H, Hirose S. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC-derived GABAergic neurons. Hum Mol Genet 2021; 30:1337-1348. [PMID: 33961044 DOI: 10.1093/hmg/ddab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Syntaxin-binding protein 1 (STXBP1; also called MUNC18-1), encoded by STXBP1, is an essential component of the molecular machinery that controls synaptic vesicle docking and fusion. De novo pathogenic variants of STXBP1 cause a complex set of neurological disturbances, namely STXBP1 encephalopathy (STXBP1-E) that includes epilepsy, neurodevelopmental disorders and neurodegeneration. Several animal studies have suggested the contribution of GABAergic dysfunction in STXBP1-E pathogenesis. However, the pathophysiological changes in GABAergic neurons of these patients are still poorly understood. Here, we exclusively generated GABAergic neurons from STXBP1-E patient-derived induced pluripotent stem cells (iPSCs) by transient expression of the transcription factors ASCL1 and DLX2. We also generated CRISPR/Cas9-edited isogenic iPSC-derived GABAergic (iPSC GABA) neurons as controls. We demonstrated that the reduction in STXBP1 protein levels in patient-derived iPSC GABA neurons was slight (approximately 20%) compared to the control neurons, despite a 50% reduction in STXBP1 mRNA levels. Using a microelectrode array-based assay, we found that patient-derived iPSC GABA neurons exhibited dysfunctional maturation with reduced numbers of spontaneous spikes and bursts. These findings reinforce the idea that GABAergic dysfunction is a crucial contributor to STXBP1-E pathogenesis. Moreover, gene expression analysis revealed specific dysregulation of genes previously implicated in epilepsy, neurodevelopment and neurodegeneration in patient-derived iPSC GABA neurons, namely KCNH1, KCNH5, CNN3, RASGRF1, SEMA3A, SIAH3 and INPP5F. Thus, our study provides new insights for understanding the biological processes underlying the widespread neuropathological features of STXBP1-E.
Collapse
Affiliation(s)
- Eisuke Ichise
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuyoshi Tanaka
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Mami Shibata
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Yamashita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiko Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masafumi Morimoto
- Department of Medical Science, School of Nursing, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
26
|
Abramov D, Guiberson NGL, Burré J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J Neurochem 2021; 157:165-178. [PMID: 32643187 PMCID: PMC7812771 DOI: 10.1111/jnc.15120] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Mutations in Munc18-1/STXBP1 (syntaxin-binding protein 1) are linked to various severe early epileptic encephalopathies and neurodevelopmental disorders. Heterozygous mutations in the STXBP1 gene include missense, nonsense, frameshift, and splice site mutations, as well as intragenic deletions and duplications and whole-gene deletions. No genotype-phenotype correlation has been identified so far, and patients are treated by anti-epileptic drugs because of the lack of a specific disease-modifying therapy. The molecular disease mechanisms underlying STXBP1-linked disorders are yet to be fully understood, but both haploinsufficiency and dominant-negative mechanisms have been proposed. This review focuses on the current understanding of the phenotypic spectrum of STXBP1-linked disorders, as well as discusses disease mechanisms in the context of the numerous pathways in which STXBP1 functions in the brain. We additionally evaluate the available animal models to study these disorders and highlight potential therapeutic approaches for treating these devastating diseases.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
Wang X, Fu G, Wen J, Chen H, Zhang B, Zhu D. Membrane Location of Syntaxin-Binding Protein 1 Is Correlated with Poor Prognosis of Lung Adenocarcinoma. TOHOKU J EXP MED 2021; 250:263-270. [PMID: 32321873 DOI: 10.1620/tjem.250.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related death, and adenocarcinoma is the most common histological type of lung cancer. Syntaxin-binding protein 1 (STXBP1) is essential for exocytosis of secretory vesicles. Since exocytosis is the basic cellular process of cells, we investigated STXBP1 expression and clinical significance in lung adenocarcinoma. We performed quantitative real-time polymerase chain reaction in 20 pairs of lung adenocarcinoma and paired normal tissues, and demonstrated that the relative expression levels of STXBP1 mRNA in lung adenocarcinoma was significantly higher than those in normal lung tissues. We then carried out immunohistochemistry (IHC) to determine the expression profile of STXBP1 in 276 lung adenocarcinoma specimens, and categorized patients into subgroups with low or high STXBP1 expression, based on the IHC score. Moreover, STXBP1 expression phenotypes were categorized as membrane, cytoplasm, and mixed expression (both membrane and cytoplasm) expression. High STXBP1 protein accounted for 58.0% of all the 276 cases (160/276), and membrane, cytoplasm or mixed STXBP1 accounted for 28.75%, 25.63% and 45.63% in the 160 cases of high STXBP1 expression. The clinical significances of these phenotypes were evaluated by analyzing their correlation with clinicopathological factors, as well as their prognostic values. Consequently, the whole STXBP1 expression or membranal STXBP1 expression were correlated with poor prognosis and were independent prognostic factors of lung adenocarcinoma. The whole and membranal STXBP1 expression are independent prognostic factors of lung adenocarcinoma. STXBP1 detection is capable to help screen patients who may have poor prognosis and strengthen the adjuvant therapy more precisely.
Collapse
Affiliation(s)
| | - Gang Fu
- Department of Urology Surgery, YIDU Central Hospital
| | | | | | | | - Dongyuan Zhu
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science
| |
Collapse
|
28
|
Tang F, Xiao D, Chen L, Gao H, Li X. Role of Munc18-1 in the biological functions and pathogenesis of neurological disorders (Review). Mol Med Rep 2021; 23:198. [PMID: 33495808 PMCID: PMC7821349 DOI: 10.3892/mmr.2021.11837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinsons disease, Alzheimers disease, multiple sclerosis, Duchennes muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Xiao W, Yang Z, Yan X, Feng L, Long L, Tu T, Deng N, Chen W, Xiao B, Long H, Zeng Y. iTRAQ-Based Proteomic Analysis of Dentate Gyrus in Temporal Lobe Epilepsy With Hippocampal Sclerosis. Front Neurol 2021; 11:626013. [PMID: 33569037 PMCID: PMC7868380 DOI: 10.3389/fneur.2020.626013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent type of focal epilepsy in adults, typically resistant to pharmacological treatment, and mostly presents with cognitive impairment and psychiatric comorbidities. The most common neuropathological hallmark in TLE patients is hippocampal sclerosis (HS). However, the underlying molecular mechanisms involved remain poorly characterized. The dentate gyrus (DG), one specific hippocampal subarea, structural and functional changes imply a key involvement of the DG in the development of TLE. In this study, a isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic technique was performed for the analysis of hippocampal DG obtained from patients with TLE-HS compared to control samples obtained from autopsy. Our proteomic data identified 5,583 proteins, of which 82 proteins were upregulated and 90 proteins were downregulated. Bioinformatics analysis indicated that differentially expressed proteins were enriched in "synaptic vesicle," "mitochondrion," "cell-cell adhesion," "regulation of synaptic plasticity," "ATP binding," and "oxidative phosphorylation." Protein-protein interaction network analysis found a pivotal module of 10 proteins that were related to "oxidative phosphorylation." This study has investigated proteomic alterations in the DG region of TLE-HS patients, and paved the way for the better understanding of epileptogenesis mechanisms and future therapeutic intervention.
Collapse
Affiliation(s)
- Wenbiao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Na Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjuan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
31
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
32
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Zhu B, Mak JCH, Morris AP, Marson AG, Barclay JW, Sills GJ, Morgan A. Functional analysis of epilepsy-associated variants in STXBP1/Munc18-1 using humanized Caenorhabditis elegans. Epilepsia 2020; 61:810-821. [PMID: 32112430 PMCID: PMC8614121 DOI: 10.1111/epi.16464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Genetic variants in STXBP1, which encodes the conserved exocytosis protein Munc18-1, are associated with a variety of infantile epilepsy syndromes. We aimed to develop an in vivo Caenorhabditis elegans model that could be used to test the pathogenicity of such variants in a cost-effective manner. METHODS The CRISPR/Cas9 method was used to introduce a null mutation into the unc-18 gene (the C. elegans orthologue of STXBP1), thereby creating a paralyzed worm strain. We subsequently rescued this strain with transgenes encoding the human STXBP1/Munc18-1 protein (wild-type and eight different epilepsy-associated missense variants). The resulting humanized worm strains were then analyzed via behavioral, electrophysiological, and biochemical approaches. RESULTS Transgenic expression of wild-type human STXBP1 protein fully rescued locomotion in both solid and liquid media to the same level as the standard wild-type worm strain, Bristol N2. Six variant strains (E59K, V84D, C180Y, R292H, L341P, R551C) exhibited impaired locomotion, whereas two (P335L, R406H) were no different from worms expressing wild-type STXBP1. Electrophysiological recordings revealed that all eight variant strains displayed less frequent and more irregular pharyngeal pumping in comparison to wild-type STXBP1-expressing strains. Four strains (V84D, C180Y, R292H, P335L) exhibited pentylenetetrazol-induced convulsions in an acute assay of seizure-like activity, in contrast to worms expressing wild-type STXBP1. No differences were seen between wild-type and variant STXBP1 strains in terms of mRNA abundance. However, STXBP1 protein levels were reduced to 20%-30% of wild-type in all variants, suggesting that the mutations result in STXBP1 protein instability. SIGNIFICANCE The approach described here is a cost-effective in vivo method for establishing the pathogenicity of genetic variants in STXBP1 and potentially other conserved neuronal proteins. Furthermore, the humanized strains we created could potentially be used in the future for high-throughput drug screens to identify novel therapeutics.
Collapse
Affiliation(s)
- Bangfu Zhu
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jennifer C H Mak
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrew P Morris
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
34
|
Paredes AC, González DV, Espinosa E. Encefalopatía epiléptica infantil en un paciente colombiano con una variante patogénica de novo en el gen STXBP1. REPERTORIO DE MEDICINA Y CIRUGÍA 2020. [DOI: 10.31260/repertmedcir.01217273.966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
El desarrollo de los estudios moleculares ha permitido identificar la etiología genética de diversas enfermedades como las encefalopatías epilépticas infantiles, las cuales se han asociado con variantes patogénicas en diferentes genes, entre ellos el STXBP1. La encefalopatía con epilepsia STXBP1 es una enfermedad genética con un patrón de herencia autosómico dominante, donde están alterados los mecanismos reguladores de la liberación de neurotransmisores por parte de las vesículas sinápticas, con alteración del neurodesarrollo. La edad de presentación del trastorno es temprano, con convulsiones en los primeros dos meses de vida. Los pacientes presentan dificultades en la alimentación, trastornos del movimiento y alteración del espectro autista. En este artículo presentamos el caso clínico de un paciente colombiano con encefalopatía epiléptica STXBP1 revisando los aspectos clínicos de la enfermedad, dirigido a profesionales de la salud para sensibilizarlos y así lograr el diagnóstico temprano. Esta es la primera publicación en el país de un paciente con esta etiología.
Collapse
|