1
|
Sundman MH, Green JM, Fuglevand AJ, Chou YH. TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia. AGING BRAIN 2024; 6:100123. [PMID: 39132326 PMCID: PMC11315225 DOI: 10.1016/j.nbas.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
Aging is a complex and diverse biological process characterized by progressive molecular, cellular, and tissue damage, resulting in a loss of physiological integrity and heightened vulnerability to pathology. This biological diversity corresponds with highly variable cognitive trajectories, which are further confounded by genetic and environmental factors that influence the resilience of the aging brain. Given this complexity, there is a need for neurophysiological indicators that not only discern physiologic and pathologic aging but also closely align with cognitive trajectories. Transcranial Magnetic Stimulation (TMS) may have utility in this regard as a non-invasive brain stimulation tool that can characterize features of cortical excitability. Particularly, as a proxy for central cholinergic function, short-afferent inhibition (SAI) dysfunction is robustly associated with cognitive deficits in the latter stages of Alzheimer's Disease and Related Dementia (ADRD). In this study, we evaluated SAI in healthy young adults and older adults who, though absent clinical diagnoses, were algorithmically classified as cognitively normal (CN) or cognitively impaired (CI) according to the Jak/Bondi actuarial criteria. We report that SAI is preserved in the Old-CN cohort relative to the young adults, and SAI is significantly diminished in the Old-CI cohort relative to both young and CN older adults. Additionally, diminished SAI was significantly associated with impaired sustained attention and working memory. As a proxy measure for central cholinergic deficits, we discuss the potential value of SAI for discerning physiological and pathological aging.
Collapse
Affiliation(s)
- Mark H. Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacob M. Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J. Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Rodriguez-Hernandez MA, Alemany I, Olofsson JK, Diaz-Galvan P, Nemy M, Westman E, Barroso J, Ferreira D, Cedres N. Degeneration of the cholinergic system in individuals with subjective cognitive decline: A systematic review. Neurosci Biobehav Rev 2024; 157:105534. [PMID: 38220033 DOI: 10.1016/j.neubiorev.2024.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is a risk factor for future cognitive impairment and dementia. It is uncertain whether the neurodegeneration of the cholinergic system is already present in SCD individuals. We aimed to review the current evidence about the association between SCD and biomarkers of degeneration in the cholinergic system. METHOD Original articles were extracted from three databases: Pubmed, Web of Sciences, and Scopus, in January 2023. Two researchers screened the studies independently. RESULTS A total of 11 research articles were selected. SCD was mostly based on amnestic cognitive complaints. Cholinergic system biomarkers included neuroimaging markers of basal forebrain volume, functional connectivity, transcranial magnetic stimulation, or biofluid. The evidence showed associations between basal forebrain atrophy, poorer connectivity of the cholinergic system, and SCD CONCLUSIONS: Degenerative changes in the cholinergic system can be present in SCD. Subjective complaints may help when identifying individuals with brain changes that are associated with cognitive impairment. These findings may have important implications in targeting individuals that may benefit from cholinergic-target treatments at very early stages of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta A Rodriguez-Hernandez
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain
| | - Iris Alemany
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain
| | - Jonas K Olofsson
- Department of Psychology, Sensory Cognitive Interaction Laboratory (SCI-lab), Stockholm University, Stockholm, Sweden
| | | | - Milan Nemy
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic; Department of Biomedical Engineering and Assistive Technology, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jose Barroso
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden
| | - Nira Cedres
- Department of Psychology, Faculty of Health Sciences, University Fernando Pessoa-Canarias, Santa María de Guia, Spain; Department of Psychology, Sensory Cognitive Interaction Laboratory (SCI-lab), Stockholm University, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Center for Alzheimer Research, Stockholm, Sweden; Division of Clinical Geriatrics, Care Sciences and Society. Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Cheng YW, Lin YJ, Lin YS, Hong WP, Kuan YC, Wu KY, Hsu JL, Wang PN, Pai MC, Chen CS, Fuh JL, Hu CJ, Chiu MJ. Application of blood-based biomarkers of Alzheimer's disease in clinical practice: Recommendations from Taiwan Dementia Society. J Formos Med Assoc 2024:S0929-6646(24)00051-2. [PMID: 38296698 DOI: 10.1016/j.jfma.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Blood-based biomarkers (BBM) are potentially powerful tools that assist in the biological diagnosis of Alzheimer's disease (AD) in vivo with minimal invasiveness, relatively low cost, and good accessibility. This review summarizes current evidence for using BBMs in AD, focusing on amyloid, tau, and biomarkers for neurodegeneration. Blood-based phosphorylated tau and the Aβ42/Aβ40 ratio showed consistent concordance with brain pathology measured by CSF or PET in the research setting. In addition, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are neurodegenerative biomarkers that show the potential to assist in the differential diagnosis of AD. Other pathology-specific biomarkers, such as α-synuclein and TAR DNA-binding protein 43 (TDP-43), can potentially detect AD concurrent pathology. Based on current evidence, the working group from the Taiwan Dementia Society (TDS) achieved consensus recommendations on the appropriate use of BBMs for AD in clinical practice. BBMs may assist clinical diagnosis and prognosis in AD subjects with cognitive symptoms; however, the results should be interpreted by dementia specialists and combining biochemical, neuropsychological, and neuroimaging information. Further studies are needed to evaluate BBMs' real-world performance and potential impact on clinical decision-making.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ju Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shuan Lin
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Pin Hong
- Department of Neurology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan; Brain & Consciousness Research Center, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Pei-Ning Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology and Dementia Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Yoo HS, Kim HK, Lee JH, Chun JH, Lee HS, Grothe MJ, Teipel S, Cavedo E, Vergallo A, Hampel H, Ryu YH, Cho H, Lyoo CH. Association of Basal Forebrain Volume with Amyloid, Tau, and Cognition in Alzheimer's Disease. J Alzheimers Dis 2024; 99:145-159. [PMID: 38640150 DOI: 10.3233/jad-230975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Degeneration of cholinergic basal forebrain (BF) neurons characterizes Alzheimer's disease (AD). However, what role the BF plays in the dynamics of AD pathophysiology has not been investigated precisely. Objective To investigate the baseline and longitudinal roles of BF along with core neuropathologies in AD. Methods In this retrospective cohort study, we enrolled 113 subjects (38 amyloid [Aβ]-negative cognitively unimpaired, 6 Aβ-positive cognitively unimpaired, 39 with prodromal AD, and 30 with AD dementia) who performed brain MRI for BF volume and cortical thickness, 18F-florbetaben PET for Aβ, 18F-flortaucipir PET for tau, and detailed cognitive testing longitudinally. We investigated the baseline and longitudinal association of BF volume with Aβ and tau standardized uptake value ratio and cognition. Results Cross-sectionally, lower BF volume was not independently associated with higher cortical Aβ, but it was associated with tau burden. Tau burden in the orbitofrontal, insular, lateral temporal, inferior temporo-occipital, and anterior cingulate cortices were associated with progressive BF atrophy. Lower BF volume was associated with faster Aβ accumulation, mainly in the prefrontal, anterior temporal, cingulate, and medial occipital cortices. BF volume was associated with progressive decline in language and memory functions regardless of baseline Aβ and tau burden. Conclusions Tau deposition affected progressive BF atrophy, which in turn accelerated amyloid deposition, leading to a vicious cycle. Also, lower baseline BF volume independently predicted deterioration in cognitive function.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Hyun Chun
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation-ISCIII, Madrid, Spain
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)-Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Germany
| | - Enrica Cavedo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Harald Hampel
- Sorbonne University Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Xia Y, Maruff P, Doré V, Bourgeat P, Laws SM, Fowler C, Rainey-Smith SR, Martins RN, Villemagne VL, Rowe CC, Masters CL, Coulson EJ, Fripp J. Longitudinal trajectories of basal forebrain volume in normal aging and Alzheimer's disease. Neurobiol Aging 2023; 132:120-130. [PMID: 37801885 DOI: 10.1016/j.neurobiolaging.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023]
Abstract
Dysfunction of the cholinergic basal forebrain (BF) system and amyloid-β (Aβ) deposition are early pathological features in Alzheimer's disease (AD). However, their association in early AD is not well-established. This study investigated the nature and magnitude of volume loss in the BF, over an extended period, in 516 older adults who completed Aβ-PET and serial magnetic resonance imaging scans. Individuals were grouped at baseline according to the presence of cognitive impairment (CU, CI) and Aβ status (Aβ-, Aβ+). Longitudinal volumetric changes in the BF and hippocampus were assessed across groups. The results indicated that high Aβ levels correlated with faster volume loss in the BF and hippocampus, and the effect of Aβ varied within BF subregions. Compared to CU Aβ+ individuals, Aβ-related loss among CI Aβ+ adults was much greater in the predominantly cholinergic subregion of Ch4p, whereas no difference was observed for the Ch1/Ch2 region. The findings support early and substantial vulnerability of the BF and further reveal distinctive degeneration of BF subregions during early AD.
Collapse
Affiliation(s)
- Ying Xia
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia.
| | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Vincent Doré
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, Victoria, Australia; The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Melbourne, Victoria, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Simon M Laws
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia; Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Ralph N Martins
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, Victoria, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Daamen M, Scheef L, Li S, Grothe MJ, Gaertner FC, Buchert R, Buerger K, Dobisch L, Drzezga A, Essler M, Ewers M, Fliessbach K, Herrera Melendez AL, Hetzer S, Janowitz D, Kilimann I, Krause BJ, Lange C, Laske C, Munk MH, Peters O, Priller J, Ramirez A, Reimold M, Rominger A, Rostamzadeh A, Roeske S, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel SJ, Wagner M, Düzel E, Jessen F, Boecker H. Cortical Amyloid Burden Relates to Basal Forebrain Volume in Subjective Cognitive Decline. J Alzheimers Dis 2023; 95:1013-1028. [PMID: 37638433 DOI: 10.3233/jad-230141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Atrophy of cholinergic basal forebrain (BF) nuclei is a frequent finding in magnetic resonance imaging (MRI) volumetry studies that examined patients with prodromal or clinical Alzheimer's disease (AD), but less clear for individuals in earlier stages of the clinical AD continuum. OBJECTIVE To examine BF volume reductions in subjective cognitive decline (SCD) participants with AD pathologic changes. METHODS The present study compared MRI-based BF volume measurements in age- and sex-matched samples of N = 24 amyloid-positive and N = 24 amyloid-negative SCD individuals, based on binary visual ratings of Florbetaben positron emission tomography (PET) measurements. Additionally, we assessed associations of BF volume with cortical amyloid burden, based on semiquantitative Centiloid (CL) analyses. RESULTS Group differences approached significance for BF total volume (p = 0.061) and the Ch4 subregion (p = 0.059) only, showing the expected relative volume reductions for the amyloid-positive subgroup. There were also significant inverse correlations between BF volumes and CL values, which again were most robust for BF total volume and the Ch4 subregion. CONCLUSIONS The results are consistent with the hypothesis that amyloid-positive SCD individuals, which are considered to represent a transitional stage on the clinical AD continuum, already show incipient alterations of BF integrity. The negative association with a continuous measure of cortical amyloid burden also suggests that this may reflect an incremental process. Yet, further research is needed to evaluate whether BF changes already emerge at "grey zone" levels of amyloid accumulation, before amyloidosis is reliably detected by PET visual readings.
Collapse
Affiliation(s)
- Marcel Daamen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lukas Scheef
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | - Shumei Li
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Ralph Buchert
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Drzezga
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Ewers
- Institute for Clinical Radiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Ana Lucia Herrera Melendez
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center of Advanced Neuroimaging, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian University Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK Dementia Research Institute, Edinburgh, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Matthias Reimold
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-University, Tübingen, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ayda Rostamzadeh
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Tau proteins in blood as biomarkers of Alzheimer's disease and other proteinopathies. J Neural Transm (Vienna) 2022; 129:239-259. [PMID: 35175385 DOI: 10.1007/s00702-022-02471-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, is characterized neuropathologically by extracellular Aβ plaques and intracellular tau neurofibrillary tangles. While in AD tau pathology probably follows early alterations in Aβ metabolism, it develops independently in the so-called primary tauopathies, the main form being frontotemporal lobar degeneration with tau pathology. Tau pathology in AD brain is reflected in the cerebrospinal fluid (CSF) by elevated levels of the two AD tau biomarkers total and phosphorylated tau, which are now used for routine diagnostic purposes. On the contrary, no established neurochemical biomarkers exist for tau pathology in primary tauopathies. Thanks to recent technological advances, total and phosphorylated tau can now be quantified also on peripheral blood, and accumulating evidence shows that measurement of plasma phosphorylated tau species (P-tau181, P-tau217, and P-tau231) has high performances in discriminating AD patients from cognitively unimpaired subjects but also from patients with other dementias. Moreover, plasma P-tau levels are associated with tracer uptake on tau- and amyloid-PET as well as with brain atrophy, cognitive measures and longitudinal changes of these parameters. These features, together with the low invasiveness, scalability, and ease of longitudinal sampling, which differentiate plasma P-tau species from their CSF counterparts, make these proteins promising peripheral biomarkers for AD in both research and clinical setting. This review discusses the recent developments in the field of plasma tau proteins as diagnostic, pathophysiological and prognostic biomarkers of Alzheimer's disease; additional findings from the fields of genetic forms of AD and of non-AD proteinopathies are also summarized.
Collapse
|
9
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
10
|
Marks JD, Syrjanen JA, Graff-Radford J, Petersen RC, Machulda MM, Campbell MR, Algeciras-Schimnich A, Lowe V, Knopman DS, Jack CR, Vemuri P, Mielke MM. Comparison of plasma neurofilament light and total tau as neurodegeneration markers: associations with cognitive and neuroimaging outcomes. Alzheimers Res Ther 2021; 13:199. [PMID: 34906229 PMCID: PMC8672619 DOI: 10.1186/s13195-021-00944-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jordan D Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jeremy A Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Singh K, Cheung BM, Xu A. Ultrasensitive detection of blood biomarkers of Alzheimer's and Parkinson's diseases: a systematic review. Biomark Med 2021; 15:1693-1708. [PMID: 34743546 DOI: 10.2217/bmm-2021-0219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: Neurodegenerative disorders are a global health burden with costly and invasive diagnoses relying on brain imaging technology or CSF-based biomarkers. Therefore, considerable efforts to identify blood-biomarkers for Alzheimer's (AD) and Parkinson's diseases (PD) are ongoing. Objectives: This review evaluates the blood biomarkers for AD and PD for their diagnostic value. Methods: This study systematically reviewed articles published between July 1984 and February 2021. Among 1266 papers, we selected 42 studies for a systematic review and 23 studies for meta-analysis. Results & conclusion: Our analysis highlights P-tau181, T-tau and Nfl as promising blood biomarkers for AD diagnosis. Nfl levels were consistently raised in 16 AD and three PD cohorts. P-tau181 and T-tau were also significantly increased in 12 and eight AD cohorts, respectively.
Collapse
Affiliation(s)
- Kailash Singh
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Bernard My Cheung
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.,Department of Pharmacy & Pharmacology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Alldred MJ, Lee SH, Stutzmann GE, Ginsberg SD. Oxidative Phosphorylation Is Dysregulated Within the Basocortical Circuit in a 6-month old Mouse Model of Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:707950. [PMID: 34489678 PMCID: PMC8417045 DOI: 10.3389/fnagi.2021.707950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Down syndrome (DS) is the primary genetic cause of intellectual disability (ID), which is due to the triplication of human chromosome 21 (HSA21). In addition to ID, HSA21 trisomy results in a number of neurological and physiological pathologies in individuals with DS, including progressive cognitive dysfunction and learning and memory deficits which worsen with age. Further exacerbating neurological dysfunction associated with DS is the concomitant basal forebrain cholinergic neuron (BFCN) degeneration and onset of Alzheimer's disease (AD) pathology in early mid-life. Recent single population RNA sequencing (RNA-seq) analysis in the Ts65Dn mouse model of DS, specifically the medial septal cholinergic neurons of the basal forebrain (BF), revealed the mitochondrial oxidative phosphorylation pathway was significantly impacted, with a large subset of genes within this pathway being downregulated. We further queried oxidative phosphorylation pathway dysregulation in Ts65Dn mice by examining genes and encoded proteins within brain regions comprising the basocortical system at the start of BFCN degeneration (6 months of age). In select Ts65Dn mice we demonstrate significant deficits in gene and/or encoded protein levels of Complex I-V of the mitochondrial oxidative phosphorylation pathway in the BF. In the frontal cortex (Fr Ctx) these complexes had concomitant alterations in select gene expression but not of the proteins queried from Complex I-V, suggesting that defects at this time point in the BF are more severe and occur prior to cortical dysfunction within the basocortical circuit. We propose dysregulation within mitochondrial oxidative phosphorylation complexes is an early marker of cognitive decline onset and specifically linked to BFCN degeneration that may propagate pathology throughout cortical memory and executive function circuits in DS and AD.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Discipline of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, United States
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Departments of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, United States
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
13
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
14
|
Illán-Gala I, Lleo A, Karydas A, Staffaroni AM, Zetterberg H, Sivasankaran R, Grinberg LT, Spina S, Kramer JH, Ramos EM, Coppola G, La Joie R, Rabinovici GD, Perry DC, Gorno-Tempini ML, Seeley WW, Miller BL, Rosen HJ, Blennow K, Boxer AL, Rojas JC. Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease. Neurology 2021; 96:e671-e683. [PMID: 33199433 PMCID: PMC7884995 DOI: 10.1212/wnl.0000000000011226] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. METHODS We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. RESULTS Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. CONCLUSION Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles.
| | - Alberto Lleo
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Anna Karydas
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Adam M Staffaroni
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Henrik Zetterberg
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Rajeev Sivasankaran
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Lea T Grinberg
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Salvatore Spina
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Joel H Kramer
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Eliana M Ramos
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Giovanni Coppola
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Renaud La Joie
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Gil D Rabinovici
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - David C Perry
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Maria Luisa Gorno-Tempini
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - William W Seeley
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Bruce L Miller
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Howard J Rosen
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Kaj Blennow
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Adam L Boxer
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| | - Julio C Rojas
- From the Sant Pau Memory Unit, Department of Neurology (I.I.-G., A.L.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Spain; Memory and Aging Center (A.K., A.M.S., L.T.G., S.S., J.H.K., R.L.J., G.D.R., D.C.P., M.L.G.-T., W.W.S., B.L.M., H.J.R., A.L.B., J.C.R.), Department of Neurology (I.I.-G.), University of California San Francisco; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology; UK Dementia Research Institute at UCL (H.Z.), London, UK; Novartis Institute for BioMedical Research (R.S.), Cambridge, MA; and Department of Psychiatry (E.M.R., G.C.), David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
15
|
Vergallo A, Lemercier P, Cavedo E, Lista S, Vanmechelen E, De Vos A, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Teipel S, Hampel H. Plasma β-secretase1 concentrations correlate with basal forebrain atrophy and neurodegeneration in cognitively healthy individuals at risk for AD. Alzheimers Dement 2021; 17:629-640. [PMID: 33527718 DOI: 10.1002/alz.12228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Increased β-secretase 1 (BACE1) protein concentration, in body fluids, is a candidate biomarker of Alzheimer's disease (AD).We reported that plasma BACE1 protein concentrations are associated with the levels of brain amyloidβ (Αβ) accumulation in cognitively healthy individuals with subjective memory complaint (SMC). METHODS In 302 individuals from the same cohort, we investigated the cross-sectional and longitudinal association between plasma BACE1 protein concentrations and AD biomarkers of neurodegeneration (plasma t-tau and Neurofilament light chain (NfL), fluorodeoxyglucose-positron emission tomography (FDG-PET), brain volumes in the basal forebrain [BF], hippocampus, and entorhinal cortex). RESULTS We report a positive longitudinal correlation of BACE1 with both NfL and t-tau, as well as a correlation between annual BACE1 changes and bi-annual reduction of BF volume. We show a positive association between BACE1 and FDG-PET signal at baseline. CONCLUSIONS The association between plasma BACE1 protein concentrations and BF atrophy we found in cognitively healthy individuals with SMC corroborates translational studies, suggesting a role of BACE1 in neurodegeneration.
Collapse
Affiliation(s)
- Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, Paris, France
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Stefan Teipel
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | -
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
16
|
Marzoughi S, Banerjee A, Jutzeler CR, Prado MAM, Rosner J, Cragg JJ, Cashman N. Tardive neurotoxicity of anticholinergic drugs: A review. J Neurochem 2020; 158:1334-1344. [PMID: 33222198 DOI: 10.1111/jnc.15244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
The cholinergic system is a complex neurotransmitter system with functional involvement at multiple levels of the nervous system including the cerebral cortex, spinal cord, autonomic nervous system, and neuromuscular junction. Anticholinergic medications are among the most prescribed medications, making up one-third to one-half of all medications prescribed for seniors. Recent evidence has linked long-term use of anticholinergic medications and dementia. Emerging evidence implicates the cholinergic system in the regulation of cerebral vasculature as well as neuroinflammation, suggesting that anticholinergic medications may contribute to absolute risk and progression of neurodegenerative diseases. In this review, we explore the involvement of the cholinergic system in various neurodegenerative diseases and the possible detrimental effects of anticholinergic medications on the onset and progression of these disorders. We identified references by searching the PubMed and Cochrane database between January 1990 and September 2019 for English-language animal and human studies including randomized clinical trials (RCTs), meta-analyses, systematic reviews, and observational studies. In addition, we conducted a manual search of reference lists from retrieved studies. Long-term anticholinergic medication exposure may have detrimental consequences beyond well-documented short-term cognitive effects, through a variety of mechanisms either directly impacting cholinergic neurotransmission or through receptors expressed on the vasculature or immune cells, providing a pathophysiological framework for complex interactions across the entire neuroaxis.
Collapse
Affiliation(s)
- Sina Marzoughi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ankur Banerjee
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine R Jutzeler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Jan Rosner
- Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jacquelyn J Cragg
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Neil Cashman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Clinical Utility of the Pathogenesis-Related Proteins in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21228661. [PMID: 33212853 PMCID: PMC7698353 DOI: 10.3390/ijms21228661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the Aβ cascade and alternations of biomarkers in neuro-inflammation, synaptic dysfunction, and neuronal injury followed by Aβ have progressed. But the question is how to use the biomarkers. Here, we examine the evidence and pathogenic implications of protein interactions and the time order of alternation. After the deposition of Aβ, the change of tau, neurofilament light chain (NFL), and neurogranin (Ng) is the main alternation and connection to others. Neuro-inflammation, synaptic dysfunction, and neuronal injury function is exhibited prior to the structural and metabolic changes in the brain following Aβ deposition. The time order of such biomarkers compared to the tau protein is not clear. Despite the close relationship between biomarkers and plaque Aβ deposition, several factors favor one or the other. There is an interaction between some proteins that can predict the brain amyloid burden. The Aβ cascade hypothesis could be the pathway, but not all subjects suffer from Alzheimer's disease (AD) within a long follow-up, even with very elevated Aβ. The interaction of biomarkers and the time order of change require further research to identify the right subjects and right molecular target for precision medicine therapies.
Collapse
|
18
|
Hampel H, Lista S, Vanmechelen E, Zetterberg H, Giorgi FS, Galgani A, Blennow K, Caraci F, Das B, Yan R, Vergallo A. β-Secretase1 biological markers for Alzheimer's disease: state-of-art of validation and qualification. Alzheimers Res Ther 2020; 12:130. [PMID: 33066807 PMCID: PMC7566058 DOI: 10.1186/s13195-020-00686-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2020] [Indexed: 01/09/2023]
Abstract
β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, F-75013, Paris, France
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Filippo Sean Giorgi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Andrea Vergallo
- Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
19
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E ε4 genotype. Sci Rep 2020; 10:2924. [PMID: 32076055 PMCID: PMC7031423 DOI: 10.1038/s41598-020-59869-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease with a multitude of contributing genetic factors, many of which are related to inflammation. The apolipoprotein E (APOE) ε4 allele is the most common genetic risk factor for AD and is related to a pro-inflammatory state. To test the hypothesis that microglia and AD-implicated cytokines were differentially associated with AD pathology based on the presence of APOE ε4, we examined the dorsolateral frontal cortex from deceased participants within a community-based aging cohort (n = 154). Cellular density of Iba1, a marker of microglia, was positively associated with tau pathology only in APOE ε4 positive participants (p = 0.001). The cytokines IL-10, IL-13, IL-4, and IL-1α were negatively associated with tau pathology, independent of Aβ1–42 levels, only in APOE ε4 negative participants. Overall, the association of mostly anti-inflammatory cytokines with less tau pathology suggests a protective effect in APOE ε4 negative participants. These associations are largely absent in the presence of APOE ε4 where tau pathology was significantly associated with increased microglial cell density. Taken together, these results suggest that APOE ε4 mediates an altered inflammatory response and increased tau pathology independent of Aβ1–42 pathology.
Collapse
|