1
|
Doyle BR, Aiyagari V, Yokobori S, Kuramatsu JB, Barnes A, Puccio A, Nairon EB, Marshall JL, Olson DM. Anisocoria After Direct Light Stimulus is Associated with Poor Outcomes Following Acute Brain Injury. Neurocrit Care 2024; 41:1020-1026. [PMID: 38918339 DOI: 10.1007/s12028-024-02030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Assessing pupil size and reactivity is the standard of care in neurocritically ill patients. Anisocoria observed in critically ill patients often prompts further investigation and treatment. This study explores anisocoria at rest and after light stimulus determined using quantitative pupillometry as a predictor of discharge modified Rankin Scale (mRS) scores. METHODS This analysis includes data from an international registry and includes patients with paired (left and right eye) quantitative pupillometry readings linked to discharge mRS scores. Anisocoria was defined as the absolute difference in pupil size using three common cut points (> 0.5 mm, > 1 mm, and > 2 mm). Nonparametric models were constructed to explore patient outcome using three predictors: the presence of anisocoria at rest (in ambient light); the presence of anisocoria after light stimulus; and persistent anisocoria (present both at rest and after light). The primary outcome was discharge mRS score associated with the presence of anisocoria at rest versus after light stimulus using the three commonly defined cut points. RESULTS This analysis included 152,905 paired observations from 6,654 patients with a mean age of 57.0 (standard deviation 17.9) years, and a median hospital stay of 5 (interquartile range 3-12) days. The mean admission Glasgow Coma Scale score was 12.7 (standard deviation 3.5), and the median discharge mRS score was 2 (interquartile range 0-4). The ranges for absolute differences in pupil diameters were 0-5.76 mm at rest and 0-6.84 mm after light. Using an anisocoria cut point of > 0.5 mm, patients with anisocoria after light had worse median mRS scores (2 [interquartile range 0-4]) than patients with anisocoria at rest (1 [interquartile range 0-3]; P < .0001). Patients with persistent anisocoria had worse median mRS scores (3 [interquartile range 1-4]) than those without persistent anisocoria (1 [interquartile range 0-3]; P < .0001). Similar findings were observed using a cut point for anisocoria of > 1 mm and > 2 mm. CONCLUSIONS Anisocoria after light is a new biomarker that portends worse outcome than anisocoria at rest. After further validation, anisocoria after light should be considered for inclusion as a reported and trended assessment value.
Collapse
Affiliation(s)
- Brittany R Doyle
- Department of Nursing, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Venkatesh Aiyagari
- Neurological Surgery and Neurology University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Joji B Kuramatsu
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arianna Barnes
- Cardiac Intensive Care Unit, Barnes Jewish Hospital, St. Louis, MO, USA
| | - Ava Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emerson B Nairon
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jade L Marshall
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - DaiWai M Olson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Martínez-Palacios K, Vásquez-García S, Fariyike OA, Robba C, Rubiano AM. Quantitative Pupillometry for Intracranial Pressure (ICP) Monitoring in Traumatic Brain Injury: A Scoping Review. Neurocrit Care 2024; 41:255-271. [PMID: 38351298 PMCID: PMC11335905 DOI: 10.1007/s12028-023-01927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/15/2023] [Indexed: 08/21/2024]
Abstract
The neurological examination has remained key for the detection of worsening in neurocritical care patients, particularly after traumatic brain injury (TBI). New-onset, unreactive anisocoria frequently occurs in such situations, triggering aggressive diagnostic and therapeutic measures to address life-threatening elevations in intracranial pressure (ICP). As such, the field needs objective, unbiased, portable, and reliable methods for quickly assessing such pupillary changes. In this area, quantitative pupillometry (QP) proves promising, leveraging the analysis of different pupillary variables to indirectly estimate ICP. Thus, this scoping review seeks to describe the existing evidence for the use of QP in estimating ICP in adult patients with TBI as compared with invasive methods, which are considered the standard practice. This review was conducted in accordance with the Joanna Briggs Institute methodology for scoping reviews, with a main search of PubMed and EMBASE. The search was limited to studies of adult patients with TBI published in any language between 2012 and 2022. Eight studies were included for analysis, with the vast majority being prospective studies conducted in high-income countries. Among QP variables, serial rather than isolated measurements of neurologic pupillary index, constriction velocity, and maximal constriction velocity demonstrated the best correlation with invasive ICP measurement values, particularly in predicting refractory intracranial hypertension. Neurologic pupillary index and ICP also showed an inverse relationship when trends were simultaneously compared. As such, QP, when used repetitively, seems to be a promising tool for noninvasive ICP monitoring in patients with TBI, especially when used in conjunction with other clinical and neuromonitoring data.
Collapse
Affiliation(s)
- Karol Martínez-Palacios
- Neuroscience Institute, Universidad El Bosque, Bogotá, Colombia
- Fundación para la Educación e Investigación Médica y Técnica en Emergencias "MEDITECH", Cali, Colombia
| | - Sebastián Vásquez-García
- Fundación para la Educación e Investigación Médica y Técnica en Emergencias "MEDITECH", Cali, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Olubunmi A Fariyike
- Fundación para la Educación e Investigación Médica y Técnica en Emergencias "MEDITECH", Cali, Colombia
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, Policlinico San Martino, Genova, Italy
| | - Andrés M Rubiano
- Neuroscience Institute, Universidad El Bosque, Bogotá, Colombia.
- Fundación para la Educación e Investigación Médica y Técnica en Emergencias "MEDITECH", Cali, Colombia.
| |
Collapse
|
3
|
Lovett ME, MacDonald JM, Mir M, Ghosh S, O'Brien NF, LaRovere KL. Noninvasive Neuromonitoring Modalities in Children Part I: Pupillometry, Near-Infrared Spectroscopy, and Transcranial Doppler Ultrasonography. Neurocrit Care 2024; 40:130-146. [PMID: 37160846 DOI: 10.1007/s12028-023-01730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Noninvasive neuromonitoring in critically ill children includes multiple modalities that all intend to improve our understanding of acute and ongoing brain injury. METHODS In this article, we review basic methods and devices, applications in clinical care and research, and explore potential future directions for three noninvasive neuromonitoring modalities in the pediatric intensive care unit: automated pupillometry, near-infrared spectroscopy, and transcranial Doppler ultrasonography. RESULTS All three technologies are noninvasive, portable, and easily repeatable to allow for serial measurements and trending of data over time. However, a paucity of high-quality data supporting the clinical utility of any of these technologies in critically ill children is currently a major limitation to their widespread application in the pediatric intensive care unit. CONCLUSIONS Future prospective multicenter work addressing major knowledge gaps is necessary to advance the field of pediatric noninvasive neuromonitoring.
Collapse
Affiliation(s)
- Marlina E Lovett
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jennifer M MacDonald
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Marina Mir
- Division of Pediatric Critical Care, Montreal Children's Hospital and McGill University, Montreal, Canada
| | - Suman Ghosh
- Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Nicole F O'Brien
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Felling RJ, Kamerkar A, Friedman ML, Said AS, LaRovere KL, Bell MJ, Bembea MM. Neuromonitoring During ECMO Support in Children. Neurocrit Care 2023; 39:701-713. [PMID: 36720837 DOI: 10.1007/s12028-023-01675-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Extracorporeal membrane oxygenation is a potentially lifesaving intervention for children with severe cardiac or respiratory failure. It is used with increasing frequency and in increasingly more complex and severe diseases. Neurological injuries are important causes of morbidity and mortality in children treated with extracorporeal membrane oxygenation and include ischemic stroke, intracranial hemorrhage, hypoxic-ischemic injury, and seizures. In this review, we discuss the epidemiology and pathophysiology of neurological injury in patients supported with extracorporeal membrane oxygenation, and we review the current state of knowledge for available modalities of monitoring neurological function in these children. These include structural imaging with computed tomography and ultrasound, cerebral blood flow monitoring with near-infrared spectroscopy and transcranial Doppler ultrasound, and physiological monitoring with electroencephalography and plasma biomarkers. We highlight areas of need and emerging advances that will improve our understanding of neurological injury related to extracorporeal membrane oxygenation and help to reduce the burden of neurological sequelae in these children.
Collapse
Affiliation(s)
- Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Suite 2158, Baltimore, MD, USA.
| | - Asavari Kamerkar
- Department of Anesthesia Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Matthew L Friedman
- Division of Pediatric Critical Care, Indiana School of Medicine, Indianapolis, IN, USA
| | - Ahmed S Said
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael J Bell
- Division of Critical Care Medicine, Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Melania M Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Oddo M, Taccone FS, Petrosino M, Badenes R, Blandino-Ortiz A, Bouzat P, Caricato A, Chesnut RM, Feyling AC, Ben-Hamouda N, Hemphill JC, Koehn J, Rasulo F, Suarez JI, Elli F, Vargiolu A, Rebora P, Galimberti S, Citerio G. The Neurological Pupil index for outcome prognostication in people with acute brain injury (ORANGE): a prospective, observational, multicentre cohort study. Lancet Neurol 2023; 22:925-933. [PMID: 37652068 DOI: 10.1016/s1474-4422(23)00271-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Improving the prognostication of acute brain injury is a key element of critical care. Standard assessment includes pupillary light reactivity testing with a hand-held light source, but findings are interpreted subjectively; automated pupillometry might be more precise and reproducible. We aimed to assess the association of the Neurological Pupil index (NPi)-a quantitative measure of pupillary reactivity computed by automated pupillometry-with outcomes of patients with severe non-anoxic acute brain injury. METHODS ORANGE is a multicentre, prospective, observational cohort study at 13 hospitals in eight countries in Europe and North America. Patients admitted to the intensive care unit after traumatic brain injury, aneurysmal subarachnoid haemorrhage, or intracerebral haemorrhage were eligible for the study. Patients underwent automated infrared pupillometry assessment every 4 h during the first 7 days after admission to compute NPi, with values ranging from 0 to 5 (with abnormal NPi being <3). The co-primary outcomes of the study were neurological outcome (assessed with the extended Glasgow Outcome Scale [GOSE]) and mortality at 6 months. We used logistic regression to model the association between NPi and poor neurological outcome (GOSE ≤4) at 6 months and Cox regression to model the relation of NPi with 6-month mortality. This study is registered with ClinicalTrials.gov, NCT04490005. FINDINGS Between Nov 1, 2020, and May 3, 2022, 514 patients (224 with traumatic brain injury, 139 with aneurysmal subarachnoid haemorrhage, and 151 with intracerebral haemorrhage) were enrolled. The median age of patients was 61 years (IQR 46-71), and the median Glasgow Coma Scale score on admission was 8 (5-11). 40 071 NPi measurements were taken (median 40 per patient [20-50]). The 6-month outcome was assessed in 497 (97%) patients, of whom 160 (32%) patients died, and 241 (47%) patients had at least one recording of abnormal NPi, which was associated with poor neurological outcome (for each 10% increase in the frequency of abnormal NPi, adjusted odds ratio 1·42 [95% CI 1·27-1·64]; p<0·0001) and in-hospital mortality (adjusted hazard ratio 5·58 [95% CI 3·92-7·95]; p<0·0001). INTERPRETATION NPi has clinically and statistically significant prognostic value for neurological outcome and mortality after acute brain injury. Simple, automatic, repeat automated pupillometry assessment could improve the continuous monitoring of disease progression and the dynamics of outcome prediction at the bedside. FUNDING NeurOptics.
Collapse
Affiliation(s)
- Mauro Oddo
- Department of Intensive Care Medicine, CHUV-Lausanne University Hospital and University of Lusanne, Lausanne, Switzerland; CHUV Directorate for Innovation and Clinical Research, CHUV-Lausanne University Hospital and University of Lusanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Matteo Petrosino
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, Valencia, Spain
| | - Aaron Blandino-Ortiz
- Department of Intensive Care Medicine, Ramón y Cajal University Hospital, Universidad de Alcalá, Madrid, Spain
| | - Pierre Bouzat
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Department of Anaesthesia and Intensive Care, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Anselmo Caricato
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Randall M Chesnut
- Department of Neurological Surgery, and Department of Orthopaedic Surgery, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Anders C Feyling
- Department of Anaesthesia and Intensive Care, Oslo University Hospital Ullevål, Oslo, Norway
| | - Nawfel Ben-Hamouda
- Department of Intensive Care Medicine, CHUV-Lausanne University Hospital and University of Lusanne, Lausanne, Switzerland
| | - J Claude Hemphill
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Julia Koehn
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frank Rasulo
- Department of Neuroanesthesia and Neurocritical Care, Spedali Civili University Affiliated Hospital of Brescia, Brescia, Italy
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesca Elli
- Department of Neuroscience, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessia Vargiolu
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Rebora
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefania Galimberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Neuroscience, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
6
|
Ong CJ. The prognostic potential of pupillometry in patients with acute brain injury. Lancet Neurol 2023; 22:876-878. [PMID: 37652069 PMCID: PMC10791071 DOI: 10.1016/s1474-4422(23)00314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Affiliation(s)
- Charlene J Ong
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Nyholm B, Obling LER, Hassager C, Grand J, Møller JE, Othman MH, Kondziella D, Kjaergaard J. Specific thresholds of quantitative pupillometry parameters predict unfavorable outcome in comatose survivors early after cardiac arrest. Resusc Plus 2023; 14:100399. [PMID: 37252025 PMCID: PMC10220278 DOI: 10.1016/j.resplu.2023.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Aim Quantitative pupillometry is the guideline-recommended method for assessing pupillary light reflex for multimodal prognostication in comatose patients resuscitated from out-of-hospital cardiac arrest (OHCA). However, threshold values predicting an unfavorable outcome have been inconsistent across studies; therefore, we aimed to identify specific thresholds for all quantitative pupillometry parameters. Methods Comatose post-OHCA patients were consecutively admitted to the cardiac arrest center at Copenhagen University Hospital Rigshospitalet from April 2015 to June 2017. The parameters of quantitatively assessed pupillary light reflex (qPLR), Neurological Pupil index (NPi), average/max constriction velocity (CV/MCV), dilation velocity (DV), and latency of constriction (Lat) were recorded on the first three days after admission. We evaluated the prognostic performance and identified thresholds achieving zero percent false positive rate (0% PFR) for an unfavorable outcome of 90-day Cerebral Performance Category (CPC) 3-5. Treating physicians were blinded for pupillometry results. Results Of the 135 post-OHCA patients, the primary outcome occurred for 53 (39%) patients.On any day during hospitalization, a qPLR < 4%, NPi < 2.45, CV < 0.1 mm/s, and an MCV < 0.335 mm/s predicted 90-day unfavorable neurological outcome with 0% FPR (95%CI: 0-0%), with sensitivities of 28% (17-40%), 9% (2-19%), 13% (6-23%), and 17% (8-26%), respectively on day 1. Conclusion We found that specific thresholds of all quantitative pupillometry parameters, measured at any time following hospital admission until day 3, predicted a 90-day unfavorable outcome with 0% FPR in comatose patients resuscitated from OHCA. However, at 0% FPR, thresholds resulted in low sensitivity. These findings should be further validated in larger multicenter clinical trials.
Collapse
Affiliation(s)
- Benjamin Nyholm
- Department of Cardiology, the Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Christian Hassager
- Department of Cardiology, the Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Grand
- Department of Cardiology, the Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, the Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marwan H. Othman
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, the Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Mills EP, Combs-Ramey K, Kwong GPS, Pang DSJ. Development of reference intervals for pupillometry in healthy dogs. Front Vet Sci 2022; 9:1020710. [PMID: 36387393 PMCID: PMC9643214 DOI: 10.3389/fvets.2022.1020710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Pupillometry, the measurement of pupil size and reactivity to a stimulus, has various uses in both human and veterinary medicine. These reflect autonomic tone, with the potential to assess nociception and emotion. Infrared pupillometry reduces inaccuracies that may occur when the pupillary light reflex is determined subjectively by the examiner. To our knowledge, there are no published studies outlining normal reference intervals for automated pupillometry in dogs. OBJECTIVE The objective of this study was to develop de novo automated pupillometry reference intervals from 126 healthy canine eyes. METHODS The pupillary light reflex (PLR) was measured with a handheld pupillometer (NeurOptics™ PLR-200™ Pupillometer). Parameters recorded included maximum pupil diameter (MAX), minimum pupil diameter (MIN), percent constriction (CON), latency (LAT), average constriction velocity (ACV), maximum constriction velocity (MCV), average dilation velocity (ADV) and time to 75% pupil diameter recovery (T75). One measurement was obtained for each eye. RESULTS The following reference intervals were developed: MAX (6.05-11.30 mm), MIN (3.76-9.44 mm), CON (-37.89 to -9.64 %), LAT (0.11-0.30 s), ACV (-6.39 to -2.63 mm/ s), MCV (-8.45 to -3.75 mm/s), ADV (-0.21-1.77 mm/s), and T75 (0.49-3.20 s). CLINICAL SIGNIFICANCE The reference intervals developed in this study are an essential first step to facilitate future research exploring pupillometry as a pain assessment method in dogs.
Collapse
Affiliation(s)
- Erinn P. Mills
- Western Veterinary Specialist and Emergency Centre, Calgary, AB, Canada
| | | | - Grace P. S. Kwong
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel S. J. Pang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, Université de Montréal, St Hyacinthe, QC, Canada
| |
Collapse
|
9
|
Nyholm B, Obling L, Hassager C, Grand J, Møller J, Othman M, Kondziella D, Kjaergaard J. Superior reproducibility and repeatability in automated quantitative pupillometry compared to standard manual assessment, and quantitative pupillary response parameters present high reliability in critically ill cardiac patients. PLoS One 2022; 17:e0272303. [PMID: 35901103 PMCID: PMC9333219 DOI: 10.1371/journal.pone.0272303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Quantitative pupillometry is part of multimodal neuroprognostication of comatose patients after out-of-hospital cardiac arrest (OHCA). However, the reproducibility, repeatability, and reliability of quantitative pupillometry in this setting have not been investigated.
Methods
In a prospective blinded validation study, we compared manual and quantitative measurements of pupil size. Observer and device variability for all available parameters are expressed as mean difference (bias), limits of agreement (LoA), and reliability expressed as intraclass correlation coefficients (ICC) with a 95% confidence interval.
Results
Fifty-six unique quadrupled sets of measurement derived from 14 sedated and comatose patients (mean age 70±12 years) were included.
For manually measured pupil size, inter-observer bias was -0.14±0.44 mm, LoA of -1.00 to 0.71 mm, and ICC at 0.92 (0.86–0.95). For quantitative pupillometry, we found bias at 0.03±0.17 mm, LoA of -0.31 to 0.36 mm and ICCs at 0.99. Quantitative pupillometry also yielded lower bias and LoA and higher ICC for intra-observer and inter-device measurements.
Correlation between manual and automated pupillometry was better in larger pupils, and quantitative pupillometry had less variability and higher ICC, when assessing small pupils. Further, observers failed to detect 26% of the quantitatively estimated abnormal reactivity with manual assessment.
We found ICC >0.91 for all quantitative pupillary response parameters (except for latency with ICC 0.81–0.91).
Conclusion
Automated quantitative pupillometry has excellent reliability and twice the reproducibility and repeatability than manual pupillometry. This study further presents novel estimates of variability for all quantitative pupillary response parameters with excellent reliability.
Collapse
Affiliation(s)
- Benjamin Nyholm
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Laust Obling
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johannes Grand
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jacob Møller
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marwan Othman
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
10
|
Crippa IA, Pelosi P, Quispe-Cornejo AA, Messina A, Corradi F, Taccone FS, Robba C. Automated Pupillometry as an Assessment Tool for Intracranial Hemodynamics in Septic Patients. Cells 2022; 11:cells11142206. [PMID: 35883649 PMCID: PMC9319569 DOI: 10.3390/cells11142206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Impaired cerebral autoregulation (CA) may increase the risk of brain hypoperfusion in septic patients. Sepsis dysregulates the autonomic nervous system (ANS), potentially affecting CA. ANS function can be assessed through the pupillary light reflex (PLR). The aim of this prospective, observational study was to investigate the association between CA and PLR in adult septic patients. Transcranial Doppler was used to assess CA and calculate estimated cerebral perfusion pressure (eCPP) and intracranial pressure (eICP). An automated pupillometer (AP) was used to record Neurological Pupil Index (NPi), constriction (CV) and dilation (DV) velocities. The primary outcome was the relationship between AP-derived variables with CA; the secondary outcome was the association between AP-derived variables with eCPP and/or eICP. Among 40 included patients, 21 (53%) had impaired CA, 22 (55%) had low eCPP (<60 mmHg) and 15 (38%) had high eICP (>16 mmHg). DV was lower in patients with impaired CA compared to others; DV predicted impaired CA with area under the curve, AUROC= 0.78 [95% Confidence Interval, CI 0.63−0.94]; DV < 2.2 mm/s had sensitivity 85% and specificity 69% for impaired CA. Patients with low eCPP or high eICP had lower NPi values than others. NPi was correlated with eCPP (r = 0.77, p < 0.01) and eICP (r = −0.87, p < 0.01). Automated pupillometry may play a role to assess brain hemodynamics in septic patients.
Collapse
Affiliation(s)
- Ilaria Alice Crippa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.A.Q.-C.); (F.S.T.)
- Department of Anesthesiology and Intensive Care, San Marco Hospital, San Donato Group, 24040 Zingonia, Italy
- Correspondence:
| | - Paolo Pelosi
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (C.R.)
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Armin Alvaro Quispe-Cornejo
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.A.Q.-C.); (F.S.T.)
| | - Antonio Messina
- Humanitas Clinical and Research Center—IRCCS, 20089 Rozzano, Italy;
| | - Francesco Corradi
- Department of Surgical Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (A.A.Q.-C.); (F.S.T.)
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (P.P.); (C.R.)
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
11
|
Kamal A, Ahmed KM, Venkatachalam AM, Osman M, Aoun SG, Aiyagari V, Schneider N, Hasan-Washington H, Stutzman SE, Olson DM. Pilot Study of Neurologic Pupil Index as A Predictor of External Ventricular Drain Clamp Trial Failure After Subarachnoid Hemorrhage. World Neurosurg 2022; 164:2-7. [PMID: 35525437 DOI: 10.1016/j.wneu.2022.04.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND External ventricular drains (EVDs) provide a temporary egress for cerebrospinal fluid (CSF) in patients with symptomatic hydrocephalus following aneurysmal subarachnoid hemorrhage. Before EVD removal, a wean trial, which involves clamping the EVD, is typically attempted to ensure that CSF self-regulation is achieved. Automated infrared pupillometry (AIP) has been shown to detect early neurologic decline. We sought to explore the use of AIP to detect early EVD clamping trial failure. METHODS This prospective observational pilot study enrolled aneurysmal subarachnoid hemorrhage patients before an EVD clamp trial. On initiating the clamp trial, nurses included hourly AIP assessment in documentation. Clamp trial outcome was based on neurologic examination and neuroimaging. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) models were constructed to explore computed tomography (CT) versus AIP as predictors of clamp trial outcome. RESULTS Among the 30 subjects enrolled, there were 38 clamping trials and 22 successful EVD removals. CT scan as a predictor of clamp trial was found to have a sensitivity of 68.8% and specificity of 89.5% (PPV = 84.6%, NPV = 77.3%). AIP assessment as a predictor of wean trial outcome was found to have a sensitivity of 58.3% and specificity of 100% (PPV = 100%, NPV = 63.2%). CONCLUSIONS The pilot study data support that Neurological Pupil index <3 is a potential indicator of early clamp trial failure, but a CT scan has a higher sensitivity and NPV for predicting successful EVD removal. This finding suggests the benefits of including AIP assessments during clamping trials.
Collapse
Affiliation(s)
- Abdulkadir Kamal
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA
| | - Khalid M Ahmed
- University of Texas Houston McGovern Medical School, Department of Pulmonary and Critical Care Medicine, Houston, Texas, USA
| | - Aardhra M Venkatachalam
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA; Ross University School of Medicine, Miramar, Florida, USA
| | - Mohamed Osman
- Texas Health Harris Methodist, Fort Worth, Texas, USA
| | - Salah G Aoun
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA
| | - Venkatesh Aiyagari
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA
| | - Nathan Schneider
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA
| | - Heather Hasan-Washington
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA
| | - Sonja E Stutzman
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA
| | - DaiWai M Olson
- The University of Texas Southwestern Medical Center at Dallas, Department of Neurology and Neurosurgery, Dallas, Texas, USA.
| |
Collapse
|
12
|
Brown KL, Agrawal S, Kirschen MP, Traube C, Topjian A, Pressler R, Hahn CD, Scholefield BR, Kanthimathinathan HK, Hoskote A, D'Arco F, Bembea M, Manning JC, Hunfeld M, Buysse C, Tasker RC. The brain in pediatric critical care: unique aspects of assessment, monitoring, investigations, and follow-up. Intensive Care Med 2022; 48:535-547. [PMID: 35445823 PMCID: PMC10082392 DOI: 10.1007/s00134-022-06683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
As survival after pediatric intensive care unit (PICU) admission has improved over recent years, a key focus now is the reduction of morbidities and optimization of quality of life for survivors. Neurologic disorders and direct brain injuries are the reason for 11-16% of admissions to PICU. In addition, many critically ill children are at heightened risk of brain injury and neurodevelopmental difficulties affecting later life, e.g., complex heart disease and premature birth. Hence, assessment, monitoring and protection of the brain, using fundamental principles of neurocritical care, are crucial to the practice of pediatric intensive care medicine. The assessment of brain function, necessary to direct appropriate care, is uniquely challenging amongst children admitted to the PICU. Challenges in assessment arise in children who are unstable, or pharmacologically sedated and muscle relaxed, or who have premorbid abnormality in development. Moreover, the heterogeneity of diseases and ages in PICU patients, means that high caliber evidence is harder to accrue than in adult practice, nonetheless, great progress has been made over recent years. In this 'state of the art' paper about critically ill children, we discuss (1) patient types at risk of brain injury, (2) new standardized clinical assessment tools for age-appropriate, clinical evaluation of brain function, (3) latest evidence related to cranial imaging, non-invasive and invasive monitoring of the brain, (4) the concept of childhood 'post intensive are syndrome' and approaches for neurodevelopmental follow-up. Better understanding of these concepts is vital for taking PICU survivorship to the next level.
Collapse
Affiliation(s)
- Kate L Brown
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK. .,Institute of Cardiovascular, Science University College London, London, UK.
| | - Shruti Agrawal
- Paediatric Intensive Care Unit Addenbrookes Hospital, Cambridge, UK
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, USA, Philadelphia.,University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Chani Traube
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Weill Cornell Medical College, New York, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, USA, Philadelphia.,University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ronit Pressler
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.,University College London Institute of Child Health, London, UK
| | - Cecil D Hahn
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Barnaby R Scholefield
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Hari Krishnan Kanthimathinathan
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Paediatric Intensive Care Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Aparna Hoskote
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,Institute of Cardiovascular, Science University College London, London, UK
| | - Felice D'Arco
- Biomedical Research Centre, Great Ormond Street Hospital for Children, London, UK.,University College London Institute of Child Health, London, UK
| | - Melania Bembea
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Manning
- Nottingham Children's Hospital and Neonatology, Nottingham University Hospitals NHS Trust, Nottingham, UK.,Centre for Children and Young People Health Research, School of Health Sciences, University of Nottingham, Nottingham, UK
| | - Maayke Hunfeld
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Corinne Buysse
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robert C Tasker
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Selwyn College, Cambridge University, Cambridge, UK
| |
Collapse
|
13
|
Taccone FS, Citerio G. Reader Response: Automated Quantitative Pupillometry in the Critically Ill: A Systematic Review of the Literature. Neurology 2021; 97:1138-1139. [PMID: 34903616 DOI: 10.1212/wnl.0000000000012981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Opic P, Sutter R. Author Response: Automated Quantitative Pupillometry in the Critically Ill: A Systematic Review of the Literature. Neurology 2021; 97:1140-1141. [PMID: 34903619 DOI: 10.1212/wnl.0000000000012984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
|
15
|
Opic P, Sutter R. Author Response: Automated Quantitative Pupillometry in the Critically Ill: A Systematic Review of the Literature. Neurology 2021; 97:1139. [PMID: 34903617 DOI: 10.1212/wnl.0000000000012983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Instrumental Evaluation of COVID-19 Related Dysautonomia in Non-Critically-Ill Patients: An Observational, Cross-Sectional Study. J Clin Med 2021; 10:jcm10245861. [PMID: 34945155 PMCID: PMC8703676 DOI: 10.3390/jcm10245861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) is a predominantly respiratory syndrome. Growing reports about a SARS-CoV-2 neurological involvement, including autonomic dysfunction (AD), have been reported, mostly in critically-ill patients, or in the long-COVID syndrome. In this observational, cross-sectional study, we investigated the prevalence of AD in 20 non-critically-ill COVID-19 patients (COVID+ group) in the acute phase of the disease through a composite instrumental evaluation consisting of Sudoscan, automated pupillometry, heart rate variability (HRV), and pulse transit time (PTT). All the parameters were compared to a control group of 20 healthy volunteers (COVID− group). COVID+ group presented higher values of pupillary dilatation velocities, and baseline pupil diameter than COVID− subjects. Moreover, COVID+ patients presented a higher incidence of feet sudomotor dysfunction than COVID− group. No significant differences emerged in HRV and PTT parameters between groups. In this study we observed the occurrence of autonomic dysfunction in the early stage of the disease.
Collapse
|
17
|
Larson MD. Reader Response: Automated Quantitative Pupillometry in the Critically Ill: A Systematic Review of the Literature. Neurology 2021; 97:1140. [PMID: 34903618 DOI: 10.1212/wnl.0000000000012982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|