1
|
Zurek G, Binder M, Kunka B, Kosikowski R, Rodzeń M, Karaś D, Mucha G, Olejniczak R, Gorączko A, Kujawa K, Stachowicz A, Kryś-Noszczyk K, Dryjska J, Dryjski M, Szczygieł J. Can Eye Tracking Help Assess the State of Consciousness in Non-Verbal Brain Injury Patients? J Clin Med 2024; 13:6227. [PMID: 39458175 PMCID: PMC11508250 DOI: 10.3390/jcm13206227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Developments in eye-tracking technology are opening up new possibilities for diagnosing patients in a state of minimal consciousness because they can provide information on visual behavior, and the movements of the eyeballs are correlated with the patients' level of consciousness. The purpose of this study was to provide validation of a tool, based on eye tracking by comparing the results obtained with the assessment obtained using the Coma Recovery Scale-Revised (CRS-R). Methods: The mul-ti-center clinical trial was conducted in Poland in 2022-2023. The results of 46 patients who were not able to communicate verbally due to severe brain injury were analyzed in this study. The state of consciousness of patients was assessed using the Minimally Conscious State Detection test (MCSD), installed on an eye tracker and compared to CRS-R. The examinations consisted of performing the MCSD test on patients five times (T1-T5) within 14 days. Collected data were processed based on the FDA and GCP's regulatory requirements. Depending on the nature of the data, the mean and standard deviation, median and lower and upper quartiles, and maximum and minimum values were calculated. Passing-Bablok regression analysis was used to assess the measurement equiva-lence of the methods used. Results: There was no difference between the MCSD and CRS-R in the raw change between T5 and T1 time points, as well as in the total % of points from all time points. The MCSD results from each time point show that at least the first two measurements serve to famil-iarize and adapt the patient to the measurement process, and the third and next measurement should be considered reliable. Conclusions: The results indicated a significant relationship be-tween the scores obtained with MCSD and CRS-R. The results suggest that it seems reasonable to introduce an assessment of the patient's state of consciousness based on eye-tracking technology. The use of modern technology to assess a patient's state of consciousness opens up the opportunity for greater objectivity, as well as a reduction in the workload of qualified personnel.
Collapse
Affiliation(s)
- Grzegorz Zurek
- Department of Biostructure, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
| | - Marek Binder
- Institute of Psychology, Jagiellonian University, 30-060 Krakow, Poland;
| | - Bartosz Kunka
- Research & Development Department, AssisTech, 80-180 Gdansk, Poland; (B.K.); (R.K.)
| | - Robert Kosikowski
- Research & Development Department, AssisTech, 80-180 Gdansk, Poland; (B.K.); (R.K.)
| | - Małgorzata Rodzeń
- Polskie Centrum Rehabilitacji Funkcjonalnej VOTUM, 30-723 Krakow, Poland; (M.R.); (D.K.)
| | - Danuta Karaś
- Polskie Centrum Rehabilitacji Funkcjonalnej VOTUM, 30-723 Krakow, Poland; (M.R.); (D.K.)
| | - Gabriela Mucha
- Polskie Centrum Rehabilitacji Funkcjonalnej VOTUM, 30-723 Krakow, Poland; (M.R.); (D.K.)
| | - Roman Olejniczak
- Neurorehabilitation Clinic, 54-530 Wroclaw, Poland; (R.O.); (A.G.); (K.K.); (A.S.)
| | - Agata Gorączko
- Neurorehabilitation Clinic, 54-530 Wroclaw, Poland; (R.O.); (A.G.); (K.K.); (A.S.)
| | - Katarzyna Kujawa
- Neurorehabilitation Clinic, 54-530 Wroclaw, Poland; (R.O.); (A.G.); (K.K.); (A.S.)
| | - Anna Stachowicz
- Neurorehabilitation Clinic, 54-530 Wroclaw, Poland; (R.O.); (A.G.); (K.K.); (A.S.)
| | | | - Joanna Dryjska
- Centrum Opieki i Rehabilitacji, 42-200 Czestochowa, Poland; (K.K.-N.); (J.D.); (M.D.)
| | - Marcin Dryjski
- Centrum Opieki i Rehabilitacji, 42-200 Czestochowa, Poland; (K.K.-N.); (J.D.); (M.D.)
| | | |
Collapse
|
2
|
Zhao S, Cao Y, Yang W, Yu J, Xu C, Dai W, Li S, Pan G, Luo B. DOCTer: a novel EEG-based diagnosis framework for disorders of consciousness. J Neural Eng 2024; 21:056021. [PMID: 39255823 DOI: 10.1088/1741-2552/ad7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Objective. Accurately diagnosing patients with disorders of consciousness (DOC) is challenging and prone to errors. Recent studies have demonstrated that EEG (electroencephalography), a non-invasive technique of recording the spontaneous electrical activity of brains, offers valuable insights for DOC diagnosis. However, some challenges remain: (1) the EEG signals have not been fully used; and (2) the data scale in most existing studies is limited. In this study, our goal is to differentiate between minimally conscious state (MCS) and unresponsive wakefulness syndrome (UWS) using resting-state EEG signals, by proposing a new deep learning framework.Approach. We propose DOCTer, an end-to-end framework for DOC diagnosis based on EEG. It extracts multiple pertinent features from the raw EEG signals, including time-frequency features and microstates. Meanwhile, it takes clinical characteristics of patients into account, and then combines all the features together for the diagnosis. To evaluate its effectiveness, we collect a large-scale dataset containing 409 resting-state EEG recordings from 128 UWS and 187 MCS cases.Main results. Evaluated on our dataset, DOCTer achieves the state-of-the-art performance, compared to other methods. The temporal/spectral features contributes the most to the diagnosis task. The cerebral integrity is important for detecting the consciousness level. Meanwhile, we investigate the influence of different EEG collection duration and number of channels, in order to help make the appropriate choices for clinics.Significance. The DOCTer framework significantly improves the accuracy of DOC diagnosis, helpful for developing appropriate treatment programs. Findings derived from the large-scale dataset provide valuable insights for clinics.
Collapse
Affiliation(s)
- Sha Zhao
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yue Cao
- School of Software Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Yang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jie Yu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Chuan Xu
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Dai
- Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, United States of America
| | - Shijian Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, People's Republic of China
| | - Benyan Luo
- The State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Edlow BL, Menon DK. Covert Consciousness in the ICU. Crit Care Med 2024; 52:1414-1426. [PMID: 39145701 DOI: 10.1097/ccm.0000000000006372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVES For critically ill patients with acute severe brain injuries, consciousness may reemerge before behavioral responsiveness. The phenomenon of covert consciousness (i.e., cognitive motor dissociation) may be detected by advanced neurotechnologies such as task-based functional MRI (fMRI) and electroencephalography (EEG) in patients who appear unresponsive on the bedside behavioral examination. In this narrative review, we summarize the state-of-the-science in ICU detection of covert consciousness. Further, we consider the prognostic and therapeutic implications of diagnosing covert consciousness in the ICU, as well as its potential to inform discussions about continuation of life-sustaining therapy for patients with severe brain injuries. DATA SOURCES We reviewed salient medical literature regarding covert consciousness. STUDY SELECTION We included clinical studies investigating the diagnostic performance characteristics and prognostic utility of advanced neurotechnologies such as task-based fMRI and EEG. We focus on clinical guidelines, professional society scientific statements, and neuroethical analyses pertaining to the implementation of advanced neurotechnologies in the ICU to detect covert consciousness. DATA EXTRACTION AND DATA SYNTHESIS We extracted study results, guideline recommendations, and society scientific statement recommendations regarding the diagnostic, prognostic, and therapeutic relevance of covert consciousness to the clinical care of ICU patients with severe brain injuries. CONCLUSIONS Emerging evidence indicates that covert consciousness is present in approximately 15-20% of ICU patients who appear unresponsive on behavioral examination. Covert consciousness may be detected in patients with traumatic and nontraumatic brain injuries, including patients whose behavioral examination suggests a comatose state. The presence of covert consciousness in the ICU may predict the pace and extent of long-term functional recovery. Professional society guidelines now recommend assessment of covert consciousness using task-based fMRI and EEG. However, the clinical criteria for patient selection for such investigations are uncertain and global access to advanced neurotechnologies is limited.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Abstract
Covert consciousness is a state of residual awareness following severe brain injury or neurological disorder that evades routine bedside behavioral detection. Patients with covert consciousness have preserved awareness but are incapable of self-expression through ordinary means of behavior or communication. Growing recognition of the limitations of bedside neurobehavioral examination in reliably detecting consciousness, along with advances in neurotechnologies capable of detecting brain states or subtle signs indicative of consciousness not discernible by routine examination, carry promise to transform approaches to classifying, diagnosing, prognosticating and treating disorders of consciousness. Here we describe and critically evaluate the evolving clinical category of covert consciousness, including approaches to its diagnosis through neuroimaging, electrophysiology, and novel behavioral tools, its prognostic relevance, and open questions pertaining to optimal clinical management of patients with covert consciousness recovering from severe brain injury.
Collapse
Affiliation(s)
- Michael J. Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Boerwinkle VL, Gillette K, Rubinos CA, Broman-Fulks J, Aseem F, DeHoff GK, Arhin M, Cediel E, Strohm T. Functional MRI for Acute Covert Consciousness: Emerging Data and Implementation Case Series. Semin Neurol 2023; 43:712-734. [PMID: 37788679 DOI: 10.1055/s-0043-1775845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Although research studies have begun to demonstrate relationships between disorders of consciousness and brain network biomarkers, there are limited data on the practical aspects of obtaining such network biomarkers to potentially guide care. As the state of knowledge continues to evolve, guidelines from professional societies such as the American and European Academies of Neurology and many experts have advocated that the risk-benefit ratio for the assessment of network biomarkers has begun to favor their application toward potentially detecting covert consciousness. Given the lack of detailed operationalization guidance and the context of the ethical implications, herein we offer a roadmap based on local institutional experience with the implementation of functional MRI in the neonatal, pediatric, and adult intensive care units of our local government-supported health system. We provide a case-based demonstrative approach intended to review the current literature and to assist with the initiation of such services at other facilities.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kirsten Gillette
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Clio A Rubinos
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jordan Broman-Fulks
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fazila Aseem
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace K DeHoff
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Martin Arhin
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Emilio Cediel
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tamara Strohm
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Rosenfelder MJ, Spiliopoulou M, Hoppenstedt B, Pryss R, Fissler P, della Piedra Walter M, Kolassa IT, Bender A. Stability of mental motor-imagery classification in EEG depends on the choice of classifier model and experiment design, but not on signal preprocessing. Front Comput Neurosci 2023; 17:1142948. [PMID: 37180880 PMCID: PMC10169631 DOI: 10.3389/fncom.2023.1142948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Modern consciousness research has developed diagnostic tests to improve the diagnostic accuracy of different states of consciousness via electroencephalography (EEG)-based mental motor imagery (MI), which is still challenging and lacks a consensus on how to best analyse MI EEG-data. An optimally designed and analyzed paradigm must detect command-following in all healthy individuals, before it can be applied in patients, e.g., for the diagnosis of disorders of consciousness (DOC). Methods We investigated the effects of two important steps in the raw signal preprocessing on predicting participant performance (F1) and machine-learning classifier performance (area-under-curve, AUC) in eight healthy individuals, that are based solely on MI using high-density EEG (HD-EEG): artifact correction (manual correction with vs. without Independent Component Analysis [ICA]), region of interest (ROI; motor area vs. whole brain), and machine-learning algorithm (support-vector machine [SVM] vs. k-nearest neighbor [KNN]). Results Results revealed no significant effects of artifact correction and ROI on predicting participant performance (F1) and classifier performance (AUC) scores (all ps > 0.05) in the SVM classification model. In the KNN model, ROI had a significant influence on the classifier performance [F(1,8.939) = 7.585, p = 0.023]. There was no evidence for artifact correction and ROI selection changing the prediction of participants performance and classifier performance in EEG-based mental MI if using SVM-based classification (71-100% correct classifications across different signal preprocessing methods). The variance in the prediction of participant performance was significantly higher when the experiment started with a resting-state compared to a mental MI task block [X2(1) = 5.849, p = 0.016]. Discussion Overall, we could show that classification is stable across different modes of EEG signal preprocessing when using SVM models. Exploratory analysis gave a hint toward potential effects of the sequence of task execution on the prediction of participant performance, which should be taken into account in future studies.
Collapse
Affiliation(s)
- Martin Justinus Rosenfelder
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Ulm, Germany
- Therapiezentrum Burgau, Burgau, Germany
| | - Myra Spiliopoulou
- Knowledge Management and Discovery Lab, Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Rüdiger Pryss
- Institute of Databases and Information Systems, Ulm University, Ulm, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Patrick Fissler
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Ulm, Germany
- Psychiatric Services Thurgau, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University, Salzburg, Austria
| | - Mario della Piedra Walter
- Therapiezentrum Burgau, Burgau, Germany
- Faculty 2: Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Iris-Tatjana Kolassa
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Ulm, Germany
| | - Andreas Bender
- Therapiezentrum Burgau, Burgau, Germany
- Department of Neurology, University of Munich, Munich, Germany
| |
Collapse
|
7
|
Naci L, Owen AM. Uncovering consciousness and revealing the preservation of mental life in unresponsive brain-injured patients. Semin Neurol 2022; 42:299-308. [PMID: 35790202 DOI: 10.1055/a-1892-1715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
8
|
Young M, Peterson AH. Neuroethics across the Disorders of Consciousness Care Continuum. Semin Neurol 2022; 42:375-392. [PMID: 35738293 DOI: 10.1055/a-1883-0701] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Papadimitriou C, Weaver JA, Guernon A, Walsh E, Mallinson T, Pape TLB. "Fluctuation is the norm": Rehabilitation practitioner perspectives on ambiguity and uncertainty in their work with persons in disordered states of consciousness after traumatic brain injury. PLoS One 2022; 17:e0267194. [PMID: 35446897 PMCID: PMC9022828 DOI: 10.1371/journal.pone.0267194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to describe the clinical lifeworld of rehabilitation practitioners who work with patients in disordered states of consciousness (DoC) after severe traumatic brain injury (TBI). We interviewed 21 practitioners using narrative interviewing methods from two specialty health systems that admit patients in DoC to inpatient rehabilitation. The overarching theme arising from the interview data is "Experiencing ambiguity and uncertainty in clinical reasoning about consciousness" when treating persons in DoC. We describe practitioners' practices of looking for consistency, making sense of ambiguous and hard to explain patient responses, and using trial and error or "tinkering" to care for patients. Due to scientific uncertainty about diagnosis and prognosis in DoC and ambiguity about interpretation of patient responses, working in the field of DoC disrupts the canonical meaning-making processes that practitioners have been trained in. Studying the lifeworld of rehabilitation practitioners through their story-making and story-telling uncovers taken-for-granted assumptions and normative structures that may exist in rehabilitation medical and scientific culture, including practitioner training. We are interested in understanding these canonical breaches in order to make visible how practitioners make meaning while treating patients.
Collapse
Affiliation(s)
- Christina Papadimitriou
- Departments of Interdisciplinary Health Sciences, and Sociology, Oakland University, Rochester, MI, United States of America
| | - Jennifer A. Weaver
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, United States of America
| | - Ann Guernon
- Speech-Language Pathology Department, Lewis University, Romeoville, IL, United States of America
| | - Elyse Walsh
- Research Service and Center for Innovation in Complex Chronic Healthcare, Edward Hines Jr. VA, Hines, IL, United States of America
| | - Trudy Mallinson
- Department of Clinical Research & Leadership, George Washington University, Washington, DC, United States of America
| | - Theresa L. Bender Pape
- Research Service and Center for Innovation in Complex Chronic Healthcare, Edward Hines Jr. VA, Hines, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
10
|
Quiñones-Ossa GA, Durango-Espinosa YA, Janjua T, Moscote-Salazar LR, Agrawal A. Persistent vegetative state: an overview. EGYPTIAN JOURNAL OF NEUROSURGERY 2021. [DOI: 10.1186/s41984-021-00111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Disorder of consciousness diagnosis, especially when is classified as persistent vegetative state (without misestimating the other diagnosis classifications), in the intensive care is an important diagnosis to evaluate and treat. Persistent vegetative state diagnosis is a challenge in the daily clinical practice because the diagnosis is made mainly based upon the clinical history and the patient behavior observation. There are some specific criteria for this diagnosis, and this could be very tricky when the physician is not well trained.
Main body
We made a literature review regarding the persistent vegetative state diagnosis, clinical features, management, prognosis, and daily medical practice challenges while considering the bioethical issues and the family perspective about the patient status. The objective of this overview is to provide updated information regarding this clinical state’s features while considering the current medical literature available.
Conclusions
Regardless of the currently available guidelines and literature, there is still a lot of what we do not know about the persistent vegetative state. There is a lack of evidence regarding the optimal diagnosis and even more, about how to expect a natural history of this disorder of consciousness. It is important to recall that the patients (despite of their altered mental state diagnosis) should always be treated to avoid some of the intensive care unit long-stance complications.
Collapse
|
11
|
Pain Perception in Disorder of Consciousness: A Scoping Review on Current Knowledge, Clinical Applications, and Future Perspective. Brain Sci 2021; 11:brainsci11050665. [PMID: 34065349 PMCID: PMC8161058 DOI: 10.3390/brainsci11050665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pain perception in individuals with prolonged disorders of consciousness (PDOC) is still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally conscious state (MCS). Therefore, pain perception has to be considered even in individuals with UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG) and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in PDOC, pointing out how pain perception assessment in these individuals might help in reducing the misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe functional connectivity breakdown among the pain-related brain areas compared to individuals in MCS, pointing out that pain perception increases with the level of consciousness. However, there are noteworthy exceptions, because some UWS patients show pain-related cortical activations that partially overlap those observed in MCS individuals. This suggests that some patients with UWS may have residual brain functional connectivity supporting the somatosensory, affective, and cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and despite some methodological caveats (including intensity of stimulation, multimodal paradigms, and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical and neurophysiological assessment should always be performed for a better understanding of pain perception neurophysiological underpinnings, a more precise differential diagnosis at the level of individual cases as well as group comparisons, and patient-tailored management.
Collapse
|
12
|
Peterson A, Aas S, Wasserman D. What Justifies the Allocation of Health Care Resources to Patients with Disorders of Consciousness? AJOB Neurosci 2021; 12:127-139. [PMID: 33787458 DOI: 10.1080/21507740.2021.1896594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper critically engages ethical issues in the allocation of novel, and potentially costly, health care resources to patients with disorders of consciousness. First, we review potential benefits of novel health care resources for patients and their families and outline preliminary considerations to address concerns about cost. We then address two problems regarding the allocation of health care resources to patients with disorders of consciousness: (1) the problem of uncertain moral status; and (2) the problem of accurately measuring the welfare burdens these resources would relieve. We conclude by suggesting that opportunity-based frameworks might complement standard approaches for justifying resources allocation to patients with disorders of consciousness.
Collapse
Affiliation(s)
- Andrew Peterson
- Institute for Philosophy and Public Policy, George Mason University
| | - Sean Aas
- Kennedy Institute of Ethics, Georgetown University
| | | |
Collapse
|
13
|
Covert Cognition in Disorders of Consciousness: A Meta-Analysis. Brain Sci 2020; 10:brainsci10120930. [PMID: 33276451 PMCID: PMC7759773 DOI: 10.3390/brainsci10120930] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Covert cognition in patients with disorders of consciousness represents a real diagnostic conundrum for clinicians. In this meta-analysis, our main objective was to identify clinical and demographic variables that are more likely to be associated with responding to an active paradigm. Among 2018 citations found on PubMed, 60 observational studies were found relevant. Based on the QUADAS-2, 49 studies were considered. Data from 25 publications were extracted and included in the meta-analysis. Most of these studies used electrophysiology as well as counting tasks or mental imagery. According to our statistical analysis, patients clinically diagnosed as being in a vegetative state and in a minimally conscious state minus (MCS-) show similar likelihood in responding to active paradigm and responders are most likely suffering from a traumatic brain injury. In the future, multi-centric studies should be performed in order to increase sample size, with similar methodologies and include structural and functional neuroimaging in order to identify cerebral markers related to such a challenging diagnosis.
Collapse
|
14
|
Annen J, Mertel I, Xu R, Chatelle C, Lesenfants D, Ortner R, Bonin EA, Guger C, Laureys S, Müller F. Auditory and Somatosensory P3 Are Complementary for the Assessment of Patients with Disorders of Consciousness. Brain Sci 2020; 10:E748. [PMID: 33080842 PMCID: PMC7602953 DOI: 10.3390/brainsci10100748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
The evaluation of the level of consciousness in patients with disorders of consciousness (DOC) is primarily based on behavioural assessments. Patients with unresponsive wakefulness syndrome (UWS) do not show any sign of awareness of their environment, while minimally conscious state (MCS) patients show reproducible but fluctuating signs of awareness. Some patients, although with remaining cognitive abilities, are not able to exhibit overt voluntary responses at the bedside and may be misdiagnosed as UWS. Several studies investigated functional neuroimaging and neurophysiology as an additional tool to evaluate the level of consciousness and to detect covert command following in DOC. Most of these studies are based on auditory stimulation, neglecting patients suffering from decreased or absent hearing abilities. In the present study, we aim to assess the response to a P3-based paradigm in 40 patients with DOC and 12 healthy participants using auditory (AEP) and vibrotactile (VTP) stimulation. To this end, an EEG-based brain-computer interface was used at DOC patient's bedside. We compared the significance of the P3 performance (i.e., the interpretation of significance of the evoked P3 response) as obtained by 'direct processing' (i.e., theoretical-based significance threshold) and 'offline processing' (i.e., permutation-based single subject level threshold). We evaluated whether the P3 performances were dependent on clinical variables such as diagnosis (UWS and MCS), aetiology and time since injury. Last we tested the dependency of AEP and VTP performances at the single subject level. Direct processing tends to overestimate P3 performance. We did not find any difference in the presence of a P3 performance according to the level of consciousness (UWS vs. MCS) or the aetiology (traumatic vs. non-traumatic brain injury). The performance achieved at the AEP paradigm was independent from what was achieved at the VTP paradigm, indicating that some patients performed better on the AEP task while others performed better on the VTP task. Our results support the importance of using multimodal approaches in the assessment of DOC patients in order to optimise the evaluation of patient's abilities.
Collapse
Affiliation(s)
- Jitka Annen
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
| | - Isabella Mertel
- Schoen Klinik Bad Aibling, 83043 Bad Aibling, Germany; (I.M.); (F.M.)
- Department of Clinical Psychology, University of Tuebingen-, 72074 Tuebingen, Germany
| | - Ren Xu
- Guger Technologies OG, 8020 Graz, Austria; (R.X.); (C.G.)
| | - Camille Chatelle
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
- Laboratory for NeuroImaging of Coma and Consciousness—Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114 MA, USA
| | - Damien Lesenfants
- Experimental Oto-rino-laryngology, Department of Neuroscience, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | | | - Estelle A.C. Bonin
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
- Experimental Oto-rino-laryngology, Department of Neuroscience, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | - Christoph Guger
- Guger Technologies OG, 8020 Graz, Austria; (R.X.); (C.G.)
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria
| | - Steven Laureys
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
| | - Friedemann Müller
- Schoen Klinik Bad Aibling, 83043 Bad Aibling, Germany; (I.M.); (F.M.)
| |
Collapse
|
15
|
Chatelle C, Rosenthal ES, Bodien YG, Spencer-Salmon CA, Giacino JT, Edlow BL. EEG Correlates of Language Function in Traumatic Disorders of Consciousness. Neurocrit Care 2020; 33:449-457. [PMID: 31900883 PMCID: PMC7373666 DOI: 10.1007/s12028-019-00904-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND/OBJECTIVE Behavioral examinations may fail to detect language function in patients with severe traumatic brain injury (TBI) due to confounds such as having an endotracheal tube. We investigated whether resting and stimulus-evoked electroencephalography (EEG) methods detect the presence of language function in patients with severe TBI. METHODS Four EEG measures were assessed: (1) resting background (applying Forgacs' criteria), (2) reactivity to speech, (3) background and reactivity (applying Synek's criteria); and (4) an automated support vector machine (classifier for speech versus rest). Cohen's kappa measured agreement between the four EEG measures and evidence of language function on a behavioral coma recovery scale-revised (CRS-R) and composite (CRS-R or functional MRI) reference standard. Sensitivity and specificity of each EEG measure were calculated against the reference standards. RESULTS We enrolled 17 adult patients with severe TBI (mean ± SD age 27.0 ± 7.0 years; median [range] 11.5 [2-1173] days post-injury) and 16 healthy subjects (age 28.5 ± 7.8 years). The classifier, followed by Forgacs' criteria for resting background, demonstrated the highest agreement with the behavioral reference standard. Only Synek's criteria for background and reactivity showed significant agreement with the composite reference standard. The classifier and resting background showed balanced sensitivity and specificity for behavioral (sensitivity = 84.6% and 80.8%; specificity = 57.1% for both) and composite reference standards (sensitivity = 79.3% and 75.9%, specificity = 50% for both). CONCLUSIONS Methods applying an automated classifier, resting background, or resting background with reactivity may identify severe TBI patients with preserved language function. Automated classifier methods may enable unbiased and efficient assessment of larger populations or serial timepoints, while qualitative visual methods may be practical in community settings.
Collapse
Affiliation(s)
- Camille Chatelle
- GIGA Consciousness, Coma Science Group, University of Liège, Avenue de l'Hôpital, 11, 4000, Liège, Belgium.
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Data Animation Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Jain R, Ramakrishnan AG. Electrophysiological and Neuroimaging Studies - During Resting State and Sensory Stimulation in Disorders of Consciousness: A Review. Front Neurosci 2020; 14:555093. [PMID: 33041757 PMCID: PMC7522478 DOI: 10.3389/fnins.2020.555093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
A severe brain injury may lead to a disorder of consciousness (DOC) such as coma, vegetative state (VS), minimally conscious state (MCS) or locked-in syndrome (LIS). Till date, the diagnosis of DOC relies only on clinical evaluation or subjective scoring systems such as Glasgow coma scale, which fails to detect subtle changes and thereby results in diagnostic errors. The high rate of misdiagnosis and inability to predict the recovery of consciousness for DOC patients have created a huge research interest in the assessment of consciousness. Researchers have explored the use of various stimulation and neuroimaging techniques to improve the diagnosis. In this article, we present the important findings of resting-state as well as sensory stimulation methods and highlight the stimuli proven to be successful in the assessment of consciousness. Primarily, we review the literature based on (a) application/non-use of stimuli (i.e., sensory stimulation/resting state-based), (b) type of stimulation used (i.e., auditory, visual, tactile, olfactory, or mental-imagery), (c) electrophysiological signal used (EEG/ERP, fMRI, PET, EMG, SCL, or ECG). Among the sensory stimulation methods, auditory stimulation has been extensively used, since it is easier to conduct for these patients. Olfactory and tactile stimulation have been less explored and need further research. Emotionally charged stimuli such as subject’s own name or narratives in a familiar voice or subject’s own face/family pictures or music result in stronger responses than neutral stimuli. Studies based on resting state analysis have employed measures like complexity, power spectral features, entropy and functional connectivity patterns to distinguish between the VS and MCS patients. Resting-state EEG and fMRI are the state-of-the-art techniques and have a huge potential in predicting the recovery of coma patients. Further, EMG and mental-imagery based studies attempt to obtain volitional responses from the VS patients and thus could detect their command-following capability. This may provide an effective means to communicate with these patients. Recent studies have employed fMRI and PET to understand the brain-activation patterns corresponding to the mental imagery. This review promotes our knowledge about the techniques used for the diagnosis of patients with DOC and attempts to provide ideas for future research.
Collapse
Affiliation(s)
- Ritika Jain
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| | - Angarai Ganesan Ramakrishnan
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
17
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
18
|
Maggio MG, Naro A, La Rosa G, Cambria A, Lauria P, Billeri L, Latella D, Manuli A, Calabrò RS. Virtual Reality Based Cognitive Rehabilitation in Minimally Conscious State: A Case Report with EEG Findings and Systematic Literature Review. Brain Sci 2020; 10:E414. [PMID: 32630179 PMCID: PMC7407378 DOI: 10.3390/brainsci10070414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic disorders of consciousness cause a total or partial and fluctuating unawareness of the surrounding environment. Virtual reality (VR) can be useful as a diagnostic and/or a neurorehabilitation tool, and its effects can be monitored by means of both clinical and electroencephalography (EEG) data recording of brain activity. We reported on the case of a 17-year-old patient with a disorder of consciousness (DoC) who was provided with VR training to improve her cognitive-behavioral outcomes, which were assessed using clinical scales (the Coma Recovery Scale-Revised, the Disability Rating Scale, and the Rancho Los Amigos Levels of Cognitive Functioning), as well as EEG recording, during VR training sessions. At the end of the training, significant improvements in both clinical and neurophysiological outcomes were achieved. Then, we carried out a systematic review of the literature to investigate the role of EEG and VR in the management of patients with DoC. A search on PubMed, Web of Science, Scopus, and Google Scholar databases was performed, using the keywords: "disorders of consciousness" and "virtual reality", or "EEG". The results of the literature review suggest that neurophysiological data in combination with VR could be useful in evaluating the reactions induced by different paradigms in DoC patients, helping in the differential diagnosis. In conclusion, the EEG plus VR approach used with our patient could be promising to define the most appropriate stimulation protocol, so as to promote a better personalization of the rehabilitation program. However, further clinical trials, as well as meta-analysis of the literature, are needed to be affirmative on the role of VR in patients with DoC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rocco Salvatore Calabrò
- Rocco Salvatore Calabrò, IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS 113, Ctr. Casazza, 98124 Messina, Italy; (M.G.M.); (A.N.); (G.L.R.); (A.C.); (P.L.); (L.B.); (D.L.); (A.M.)
| |
Collapse
|
19
|
Minnis H, Posserud MB, Thompson L, Gillberg C. Hypothesis: The highly folded brain surface might be structured and located so as to facilitate inter-brain synchronization. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e48887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We integrate recent findings from neuro-anatomy, electroencephalography, quantum biology and social/neurodevelopment to propose that the brain surface might be specialised for communication with other brains.
Ground breaking, but still small-scale, research has demonstrated that human brains can act in synchrony and detect the brain activity of other human brains. Group aggregation, in all species, maximises community support and safety but does not depend on verbal or visual interaction. The morphology of the brain’s outermost layers, across a wide range of species, exhibits a highly folded fractal structure that is likely to maximise exchange at the surface: in humans, a reduced brain surface area is associated with disorders of social communication. The brain sits in a vulnerable exposed location where it is prone to damage, rather than being housed in a central location such as within the ribcage.
These observations have led us to the hypothesis that the brain surface might be specialised for interacting with other brains at its surface, allowing synchronous non-verbal interaction. To our knowledge, this has not previously been proposed or investigated.
Collapse
|
20
|
Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, Laureys S, Naccache L, Ozturk S, Rohaut B, Sitt JD, Stender J, Tiainen M, Rossetti AO, Gosseries O, Chatelle C. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol 2020; 27:741-756. [PMID: 32090418 DOI: 10.1111/ene.14151] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Patients with acquired brain injury and acute or prolonged disorders of consciousness (DoC) are challenging. Evidence to support diagnostic decisions on coma and other DoC is limited but accumulating. This guideline provides the state-of-the-art evidence regarding the diagnosis of DoC, summarizing data from bedside examination techniques, functional neuroimaging and electroencephalography (EEG). METHODS Sixteen members of the European Academy of Neurology (EAN) Scientific Panel on Coma and Chronic Disorders of Consciousness, representing 10 European countries, reviewed the scientific evidence for the evaluation of coma and other DoC using standard bibliographic measures. Recommendations followed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The guideline was endorsed by the EAN. RESULTS Besides a comprehensive neurological examination, the following suggestions are made: probe for voluntary eye movements using a mirror; repeat clinical assessments in the subacute and chronic setting, using the Coma Recovery Scale - Revised; use the Full Outline of Unresponsiveness score instead of the Glasgow Coma Scale in the acute setting; obtain clinical standard EEG; search for sleep patterns on EEG, particularly rapid eye movement sleep and slow-wave sleep; and, whenever feasible, consider positron emission tomography, resting state functional magnetic resonance imaging (fMRI), active fMRI or EEG paradigms and quantitative analysis of high-density EEG to complement behavioral assessment in patients without command following at the bedside. CONCLUSIONS Standardized clinical evaluation, EEG-based techniques and functional neuroimaging should be integrated for multimodal evaluation of patients with DoC. The state of consciousness should be classified according to the highest level revealed by any of these three approaches.
Collapse
Affiliation(s)
- D Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Bender
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,Therapiezentrum Burgau, Burgau, Germany
| | - K Diserens
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - W van Erp
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.,Department of Primary Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Estraneo
- Neurology Unit, Santa Maria della Pietà General Hospital, Nola, Italy.,IRCCS Fondazione don Carlo Gnocchi ONLUS, Florence, Italy
| | - R Formisano
- Post-Coma Unit, Neurorehabilitation Hospital and Research Institution, Santa Lucia Foundation, Rome, Italy
| | - S Laureys
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - L Naccache
- Department of Neurology, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - S Ozturk
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - B Rohaut
- Department of Neurology, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France.,Neuro-ICU, Department of Neurology, Columbia University, New York, NY, USA
| | - J D Sitt
- Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - J Stender
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Tiainen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - A O Rossetti
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - O Gosseries
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - C Chatelle
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.,Laboratory for NeuroImaging of Coma and Consciousness - Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
21
|
Annen J, Laureys S, Gosseries O. Brain-computer interfaces for consciousness assessment and communication in severely brain-injured patients. BRAIN-COMPUTER INTERFACES 2020; 168:137-152. [DOI: 10.1016/b978-0-444-63934-9.00011-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Edlow BL, Fins JJ. Assessment of Covert Consciousness in the Intensive Care Unit: Clinical and Ethical Considerations. J Head Trauma Rehabil 2019; 33:424-434. [PMID: 30395042 PMCID: PMC6317885 DOI: 10.1097/htr.0000000000000448] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To propose a practical ethical framework for how task-based functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) may be used in the intensive care unit (ICU) to identify covert consciousness in patients with acute severe traumatic brain injury (TBI). METHODS We present 2 clinical scenarios in which investigational task-based fMRI and EEG were performed in critically ill patients with acute severe TBI who appeared unconscious on the bedside behavioral assessment. From these cases, we consider the clinical and ethical challenges that emerge and suggest how to reconcile them. We also provide recommendations regarding communication with families about ICU patients with covert consciousness. RESULTS Covert consciousness was detected acutely in a patient who died in the ICU due to withdrawal of life-sustaining therapy, whereas covert consciousness was not detected in a patient who subsequently recovered consciousness, communication, and functional independence. These cases raise ethical challenges about how assessment of covert consciousness in the ICU might inform treatment decisions, prognostication, and perceptions about the benefits and burdens of ongoing care. CONCLUSIONS Given that covert consciousness can be detected acutely in the ICU, we recommend that clinicians reconsider evaluative norms for ICU patients. As our clinical appreciation of covert consciousness evolves and its ethical import unfolds, we urge prognostic humility and transparency when clinicians communicate with families in the ICU about goals of care.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown (Dr Edlow); and Division of Medical Ethics and Consortium for the Advanced Study of Brain Injury, Weill Cornell Medical College, New York, and The Rockefeller University, New York, and the Solomon Center for Health Law and Policy, Yale Law School, New Haven, Connecticut (Dr Fins)
| | | |
Collapse
|
23
|
Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Demaree HA, Friedman BH, Gooding AEK, Gosseries O, Jovanovic T, Kirby LA, Kozlowska K, Laureys S, Lowe L, Magee K, Marin MF, Merner AR, Robinson JL, Smith RC, Spangler DP, Van Overveld M, VanElzakker MB. Physiological feelings. Neurosci Biobehav Rev 2019; 103:267-304. [DOI: 10.1016/j.neubiorev.2019.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
24
|
Management of Severely Brain-Injured Patients Recovering from Coma in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, Okonkwo JU, King JR, Park S, Agarwal S, Roh D, Megjhani M, Eliseyev A, Connolly ES, Rohaut B. Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury. N Engl J Med 2019; 380:2497-2505. [PMID: 31242361 DOI: 10.1056/nejmoa1812757] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Brain activation in response to spoken motor commands can be detected by electroencephalography (EEG) in clinically unresponsive patients. The prevalence and prognostic importance of a dissociation between commanded motor behavior and brain activation in the first few days after brain injury are not well understood. METHODS We studied a prospective, consecutive series of patients in a single intensive care unit who had acute brain injury from a variety of causes and who were unresponsive to spoken commands, including some patients with the ability to localize painful stimuli or to fixate on or track visual stimuli. Machine learning was applied to EEG recordings to detect brain activation in response to commands that patients move their hands. The functional outcome at 12 months was determined with the Glasgow Outcome Scale-Extended (GOS-E; levels range from 1 to 8, with higher levels indicating better outcomes). RESULTS A total of 16 of 104 unresponsive patients (15%) had brain activation detected by EEG at a median of 4 days after injury. The condition in 8 of these 16 patients (50%) and in 23 of 88 patients (26%) without brain activation improved such that they were able to follow commands before discharge. At 12 months, 7 of 16 patients (44%) with brain activation and 12 of 84 patients (14%) without brain activation had a GOS-E level of 4 or higher, denoting the ability to function independently for 8 hours (odds ratio, 4.6; 95% confidence interval, 1.2 to 17.1). CONCLUSIONS A dissociation between the absence of behavioral responses to motor commands and the evidence of brain activation in response to these commands in EEG recordings was found in 15% of patients in a consecutive series of patients with acute brain injury. (Supported by the Dana Foundation and the James S. McDonnell Foundation.).
Collapse
Affiliation(s)
- Jan Claassen
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Kevin Doyle
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Adu Matory
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Caroline Couch
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Kelly M Burger
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Angela Velazquez
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Joshua U Okonkwo
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Jean-Rémi King
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Soojin Park
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Sachin Agarwal
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - David Roh
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Murad Megjhani
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Andrey Eliseyev
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - E Sander Connolly
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| | - Benjamin Rohaut
- From the Departments of Neurology (J.C., K.D., A.M., C.C., K.M.B., A.V., J.U.O., S.P., S.A., D.R., M.M., A.E., B.R.) and Neurosurgery (E.S.C.), Columbia University, and the Department of Psychology, New York University (J.-R.K.) - both in New York
| |
Collapse
|
26
|
Rohaut B, Eliseyev A, Claassen J. Uncovering Consciousness in Unresponsive ICU Patients: Technical, Medical and Ethical Considerations. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:78. [PMID: 30850022 PMCID: PMC6408788 DOI: 10.1186/s13054-019-2370-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Benjamin Rohaut
- Neurocritical Care, Department of Neurology, Columbia University, New York, NY, USA
| | - Andrey Eliseyev
- Neurocritical Care, Department of Neurology, Columbia University, New York, NY, USA
| | - Jan Claassen
- Neurocritical Care, Department of Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
O'Donnell JC, Browne KD, Kilbaugh TJ, Chen HI, Whyte J, Cullen DK. Challenges and demand for modeling disorders of consciousness following traumatic brain injury. Neurosci Biobehav Rev 2019; 98:336-346. [PMID: 30550859 PMCID: PMC7847278 DOI: 10.1016/j.neubiorev.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
Following severe traumatic brain injury (TBI), many patients experience coma - an unresponsive state lacking wakefulness or awareness. Coma rarely lasts more than two weeks, and emergence involves passing through a state of wakefulness without awareness of self or environment. Patients that linger in these Disorders of Consciousness (DoC) undergo clinical assessments of awareness for diagnosis into Unresponsive Wakefulness Syndrome (no awareness, also called vegetative state) or Minimally Conscious State (periodic increases in awareness). These diagnoses are notoriously inaccurate, offering little prognostic value. Recovery of awareness is unpredictable, returning within weeks, years, or never. This leaves patients' families with difficult decisions and little information on which to base them. Clinical studies have made significant advancements, but remain encumbered by high variability, limited data output, and a lack of necessary controls. Herein we discuss the clear and present need to establish a preclinical model of TBI-induced DoC, the significant challenges involved, and how such a model can be applied to support DoC research.
Collapse
Affiliation(s)
- John C O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Todd J Kilbaugh
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John Whyte
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Guger C, Spataro R, Pellas F, Allison BZ, Heilinger A, Ortner R, Cho W, Xu R, La Bella V, Edlinger G, Annen J, Mandalá G, Chatelle C, Laureys S. Assessing Command-Following and Communication With Vibro-Tactile P300 Brain-Computer Interface Tools in Patients With Unresponsive Wakefulness Syndrome. Front Neurosci 2018; 12:423. [PMID: 30008659 PMCID: PMC6034093 DOI: 10.3389/fnins.2018.00423] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 12/01/2022] Open
Abstract
Persons diagnosed with disorders of consciousness (DOC) typically suffer from motor disablities, and thus assessing their spared cognitive abilities can be difficult. Recent research from several groups has shown that non-invasive brain-computer interface (BCI) technology can provide assessments of these patients' cognitive function that can supplement information provided through conventional behavioral assessment methods. In rare cases, BCIs may provide a binary communication mechanism. Here, we present results from a vibrotactile BCI assessment aiming at detecting command-following and communication in 12 unresponsive wakefulness syndrome (UWS) patients. Two different paradigms were administered at least once for every patient: (i) VT2 with two vibro-tactile stimulators fixed on the patient's left and right wrists and (ii) VT3 with three vibro-tactile stimulators fixed on both wrists and on the back. The patients were instructed to mentally count either the stimuli on the left or right wrist, which may elicit a robust P300 for the target wrist only. The EEG data from −100 to +600 ms around each stimulus were extracted and sub-divided into 8 data segments. This data was classified with linear discriminant analysis (using a 10 × 10 cross validation) and used to calibrate a BCI to assess command following and YES/NO communication abilities. The grand average VT2 accuracy across all patients was 38.3%, and the VT3 accuracy was 26.3%. Two patients achieved VT3 accuracy ≥80% and went through communication testing. One of these patients answered 4 out of 5 questions correctly in session 1, whereas the other patient answered 6/10 and 7/10 questions correctly in sessions 2 and 4. In 6 other patients, the VT2 or VT3 accuracy was above the significance threshold of 23% for at least one run, while in 4 patients, the accuracy was always below this threshold. The study highlights the importance of repeating EEG assessments to increase the chance of detecting command-following in patients with severe brain injury. Furthermore, the study shows that BCI technology can test command following in chronic UWS patients and can allow some of these patients to answer YES/NO questions.
Collapse
Affiliation(s)
- Christoph Guger
- Guger Technologies OG, Graz, Austria.,g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Rossella Spataro
- IRCCS Centro Neurolesi Bonino Pulejo, Palermo, Italy.,ALS Clinical Research Center, BioNeC, University of Palermo, Palermo, Italy
| | - Frederic Pellas
- Post-ICU Neurorehabilitation Unit, University Hospital of Nîmes, Nîmes, France
| | - Brendan Z Allison
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, United States
| | | | - Rupert Ortner
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Woosang Cho
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Ren Xu
- Guger Technologies OG, Graz, Austria
| | - Vincenzo La Bella
- ALS Clinical Research Center, BioNeC, University of Palermo, Palermo, Italy
| | - Günter Edlinger
- Guger Technologies OG, Graz, Austria.,g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Giorgio Mandalá
- Rehabilitation Unit, Buccheri La Ferla Hospital, Palermo, Italy
| | - Camille Chatelle
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| |
Collapse
|
29
|
Annen J, Blandiaux S, Lejeune N, Bahri MA, Thibaut A, Cho W, Guger C, Chatelle C, Laureys S. BCI Performance and Brain Metabolism Profile in Severely Brain-Injured Patients Without Response to Command at Bedside. Front Neurosci 2018; 12:370. [PMID: 29910708 PMCID: PMC5992287 DOI: 10.3389/fnins.2018.00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Detection and interpretation of signs of “covert command following” in patients with disorders of consciousness (DOC) remains a challenge for clinicians. In this study, we used a tactile P3-based BCI in 12 patients without behavioral command following, attempting to establish “covert command following.” These results were then confronted to cerebral metabolism preservation as measured with glucose PET (FDG-PET). One patient showed “covert command following” (i.e., above-threshold BCI performance) during the active tactile paradigm. This patient also showed a higher cerebral glucose metabolism within the language network (presumably required for command following) when compared with the other patients without “covert command-following” but having a cerebral glucose metabolism indicative of minimally conscious state. Our results suggest that the P3-based BCI might probe “covert command following” in patients without behavioral response to command and therefore could be a valuable addition in the clinical assessment of patients with DOC.
Collapse
Affiliation(s)
- Jitka Annen
- GIGA Consciousness, Coma Science Group, University and University Hospital of Liège, Liège, Belgium
| | - Séverine Blandiaux
- GIGA Consciousness, Coma Science Group, University and University Hospital of Liège, Liège, Belgium
| | - Nicolas Lejeune
- GIGA Consciousness, Coma Science Group, University and University Hospital of Liège, Liège, Belgium.,Disorders of Consciousness Care Unit, Centre Hospitalier Neurologique William Lennox, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Mohamed A Bahri
- GIGA-Cyclotron Research Centre in vivo Imaging, University of Liège, Liège, Belgium
| | - Aurore Thibaut
- GIGA Consciousness, Coma Science Group, University and University Hospital of Liège, Liège, Belgium
| | - Woosang Cho
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Camille Chatelle
- GIGA Consciousness, Coma Science Group, University and University Hospital of Liège, Liège, Belgium.,Laboratory for NeuroImaging of Coma and Consciousness, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven Laureys
- GIGA Consciousness, Coma Science Group, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
30
|
Feasibility of an EEG-based brain-computer interface in the intensive care unit. Clin Neurophysiol 2018; 129:1519-1525. [PMID: 29804044 DOI: 10.1016/j.clinph.2018.04.747] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We tested the feasibility of deploying a commercially available EEG-based brain-computer interface (BCI) in the intensive care unit (ICU) to detect consciousness in patients with acute disorders of consciousness (DoC) or locked-in syndrome (LIS). METHODS Ten patients (9 DoC, 1 LIS) and 10 healthy subjects (HS) were enrolled. The BCI utilized oddball auditory evoked potentials, vibrotactile evoked potentials (VTP) and motor imagery (MoI) to assess consciousness. We recorded the assessment completion rate and the time required for assessment, and we calculated the sensitivity and specificity of each paradigm for detecting behavioral signs of consciousness. RESULTS All 10 patients completed the assessment, 9 of whom required less than 1 h. The LIS patient reported fatigue before the end of the session. The HS and LIS patient showed more consistent BCI responses than DoC patients, but overall there was no association between BCI responses and behavioral signs of consciousness. CONCLUSIONS The system is feasible to deploy in the ICU and may confirm consciousness in acute LIS, but it was unreliable in acute DoC. SIGNIFICANCE The accuracy of the paradigms for detecting consciousness must be improved and the duration of the protocol should be shortened before this commercially available BCI is ready for clinical implementation in the ICU in patients with acute DoC.
Collapse
|
31
|
Kempny AM, James L, Yelden K, Duport S, Farmer SF, Diane Playford E, Leff AP. Patients with a severe prolonged Disorder of Consciousness can show classical EEG responses to their own name compared with others' names. Neuroimage Clin 2018; 19:311-319. [PMID: 30013914 PMCID: PMC6044184 DOI: 10.1016/j.nicl.2018.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 04/05/2018] [Accepted: 04/22/2018] [Indexed: 01/26/2023]
Abstract
Patients in Vegetative State (VS), also known as Unresponsive Wakefulness State (UWS) are deemed to be unaware of themselves or their environment. This is different from patients diagnosed with Minimally Conscious state (MCS), who can have intermittent awareness. In both states, there is a severe impairment of consciousness; these disorders are referred to as disorders of consciousness (DOC) and if the state is prolonged, pDOC. There is growing evidence that some patients who are behaviourally in VS/UWS can show neural activation to environmental stimuli and that this response can be detected using functional brain imaging (fMRI/PET) and electroencephalography (EEG). Recently, it has also been suggested that a more reliable detection of brain responsiveness and hence a more reliable differentiation between VS/UWS and MCS requires person-centred and person-specific stimuli, such as the subject's own name stimulus. In this study we obtained event related potential data (ERP) from 12 healthy subjects and 16 patients in pDOC, five of whom were in the VS/UWS and 11 in the Minimally Conscious State (MCS). We used as the ERP stimuli the subjects' own name, others' names and reversed other names. We performed a sensor level analysis using Statistical Parametric Mapping (SPM) software. Using this paradigm in 4 DOC patients (3 in MCS, and 1 in VS/UWS) we detected a statistically significant difference in EEG response to their own name versus other peoples' names with ERP latencies (~300 ms and ~700 ms post stimuli). Some of these differences were similar to those found in a control group of healthy subjects. This study shows the feasibility of using self-relevant stimuli such as a subject's own name for assessment of brain function in pDOC patients. This neurophysiological test is suitable for bed-side/hospital based assessment of pDOC patients. As it does not require sophisticated scanning equipment it can feasibly be used within a hospital or care setting to help professionals tailor medical and psycho-social management for patients.
Collapse
Affiliation(s)
- Agnieszka M Kempny
- The Institute of Neuro-palliative Rehabilitation, Royal Hospital for Neuro-disability, London SW15 3SW, UK; Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Leon James
- The Institute of Neuro-palliative Rehabilitation, Royal Hospital for Neuro-disability, London SW15 3SW, UK
| | - Kudret Yelden
- The Institute of Neuro-palliative Rehabilitation, Royal Hospital for Neuro-disability, London SW15 3SW, UK; Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sophie Duport
- The Institute of Neuro-palliative Rehabilitation, Royal Hospital for Neuro-disability, London SW15 3SW, UK
| | - Simon F Farmer
- The National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - E Diane Playford
- The Institute of Neuro-palliative Rehabilitation, Royal Hospital for Neuro-disability, London SW15 3SW, UK; Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Alexander P Leff
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Institute of Cognitive Neuroscience, University College London, Queen Square, WC1N 3AR London, UK
| |
Collapse
|
32
|
Hauger SL, Schanke AK, Andersson S, Chatelle C, Schnakers C, Løvstad M. The Clinical Diagnostic Utility of Electrophysiological Techniques in Assessment of Patients With Disorders of Consciousness Following Acquired Brain Injury: A Systematic Review. J Head Trauma Rehabil 2018; 32:185-196. [PMID: 27831962 DOI: 10.1097/htr.0000000000000267] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the diagnostic utility of electrophysiological recordings during active cognitive tasks in detecting residual cognitive capacities in patients with disorders of consciousness (DoC) after severe acquired brain injury. DESIGN Systematic review of empirical research in MEDLINE, Embase, PsycINFO, and Cochrane from January 2002 to March 2016. MAIN MEASURES Data extracted included sample size, type of electrophysiological technique and task design, rate of cognitive responders, false negatives and positives, and excluded subjects from the study analysis. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used for quality appraisal of the retrieved literature. RESULTS Twenty-four studies examining electrophysiological signs of command-following in patients with DoC were identified. Sensitivity rates in healthy controls demonstrated variable accuracy across the studies, ranging from 71% to 100%. In patients with DoC, specificity and sensitivity rates varied in the included studies, ranging from 0% to 100%. Pronounced heterogeneity was found between studies regarding methodological approaches, task design, and procedures of analysis, rendering comparison between studies challenging. CONCLUSION We are still far from establishing precise recommendations for standardized electrophysiological diagnostic procedures in DoC, but electrophysiological methods may add supplemental diagnostic information of covert cognition in some patients with DoC.
Collapse
Affiliation(s)
- S L Hauger
- Department of Research, Sunnaas Rehabilitation Hospital, Norway (Mrs Hauger and Drs Løvstad and Schanke); Department of Psychology, University of Oslo, Oslo, Norway (Drs Andersson, Løvstad, and Schanke); Laboratory for NeuroImaging of Coma and Consciousness, Massachusetts General Hospital, Boston, and Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, University Hospital of Lausanne, Switzerland (Dr Chatelle); and Department of Neurosurgery, University of California, Los Angeles (Dr Schnakers)
| | | | | | | | | | | |
Collapse
|
33
|
Gobert F, Dailler F, Fischer C, André-Obadia N, Luauté J. Proving cortical death after vascular coma: Evoked potentials, EEG and neuroimaging. Clin Neurophysiol 2018; 129:1105-1116. [PMID: 29621638 DOI: 10.1016/j.clinph.2018.02.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Several studies have shown that bilateral abolition of somatosensory evoked potentials after a nontraumatic coma has 100% specificity for nonawakening with ethical consequences for active care withdrawal. We propose to evaluate the prognostic value of bilateral abolished cortical components of SEPs in severe vascular coma. METHODS A total of 144 comatose patients after subarachnoid haemorrhage were evaluated by multimodal evoked potentials (EPs); 7 patients presented a bilateral abolition of somatosensory and auditory EPs. Their prognosis value was interpreted with respect to brainstem auditory EPs, EEG, and structural imaging. RESULTS One patient emerged from vegetative state during follow-up; 6 patients did not return to consciousness. The main neurophysiological difference was a cortical reactivity to pain preserved in the patient who returned to consciousness. This patient had focal sub-cortical lesions, which could explain the abolition of primary cortical components by a bilateral deafferentation of somatosensory and auditory pathways. CONCLUSIONS This is the first report of a favourable outcome after a multimodal abolition of primary cortex EPs in vascular coma. For the 3 cases of vascular coma with preserved brainstem function, EEG reactivity and cortical EPs were abolished by a diffuse ischaemia close to cerebral anoxia. SIGNIFICANCE The complementarity of EPs, EEG, and imaging must be emphasised if therapeutic limitations are considered to avoid over-interpretation of the prognosis value of EPs.
Collapse
Affiliation(s)
- Florent Gobert
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Lyon, France; University Lyon I, Villeurbanne, France.
| | - Frederic Dailler
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Lyon, France
| | - Catherine Fischer
- University Lyon I, Villeurbanne, France; Department of Clinical Neurophysiology, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Lyon, France
| | - Nathalie André-Obadia
- University Lyon I, Villeurbanne, France; Department of Clinical Neurophysiology, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Lyon, France
| | - Jacques Luauté
- University Lyon I, Villeurbanne, France; Neuro-Rehabilitation Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Lyon, France
| |
Collapse
|
34
|
|
35
|
Bodien YG, Giacino JT, Edlow BL. Functional MRI Motor Imagery Tasks to Detect Command Following in Traumatic Disorders of Consciousness. Front Neurol 2017; 8:688. [PMID: 29326648 PMCID: PMC5741595 DOI: 10.3389/fneur.2017.00688] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Abstract
Severe traumatic brain injury impairs arousal and awareness, the two components of consciousness. Accurate diagnosis of a patient’s level of consciousness is critical for determining treatment goals, access to rehabilitative services, and prognosis. The bedside behavioral examination, the current clinical standard for diagnosis of disorders of consciousness, is prone to misdiagnosis, a finding that has led to the development of advanced neuroimaging techniques aimed at detection of conscious awareness. Although a variety of paradigms have been used in functional magnetic resonance imaging (fMRI) to reveal covert consciousness, the relative accuracy of these paradigms in the patient population is unknown. Here, we compare the rate of covert consciousness detection by hand squeezing and tennis playing motor imagery paradigms in 10 patients with traumatic disorders of consciousness [six male, six acute, mean ± SD age = 27.9 ± 9.1 years, one coma, four unresponsive wakefulness syndrome, two minimally conscious without language function, and three minimally conscious with language function, per bedside examination with the Coma Recovery Scale-Revised (CRS-R)]. We also tested the same paradigms in 10 healthy subjects (nine male, mean ± SD age = 28.5 ± 9.4 years). In healthy subjects, the hand squeezing paradigm detected covert command following in 7/10 and the tennis playing paradigm in 9/10 subjects. In patients who followed commands on the CRS-R, the hand squeezing paradigm detected covert command following in 2/3 and the tennis playing paradigm in 0/3 subjects. In patients who did not follow commands on the CRS-R, the hand squeezing paradigm detected command following in 1/7 and the tennis playing paradigm in 2/7 subjects. The sensitivity, specificity, and accuracy (ACC) of detecting covert command following in patients who demonstrated this behavior on the CRS-R was 66.7, 85.7, and 80% for the hand squeezing paradigm and 0, 71.4, and 50% for the tennis playing paradigm, respectively. Overall, the tennis paradigm performed better than the hand squeezing paradigm in healthy subjects, but in patients, the hand squeezing paradigm detected command following with greater ACC. These findings indicate that current fMRI motor imagery paradigms frequently fail to detect command following and highlight the need for paradigm optimization to improve the accuracy of covert consciousness detection.
Collapse
Affiliation(s)
- Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, and Laboratory for NeuroImaging of Coma and Consciousness, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, and Laboratory for NeuroImaging of Coma and Consciousness, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
36
|
Bernat JL. Nosologic considerations in disorders of consciousness. Ann Neurol 2017; 82:863-865. [PMID: 29092102 DOI: 10.1002/ana.25089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- James L Bernat
- Departments of Neurology and Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
37
|
Edlow BL, Chatelle C, Spencer CA, Chu CJ, Bodien YG, O'Connor KL, Hirschberg RE, Hochberg LR, Giacino JT, Rosenthal ES, Wu O. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain 2017; 140:2399-2414. [PMID: 29050383 DOI: 10.1093/brain/awx176] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 01/03/2023] Open
Abstract
See Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence of language function, responses to language and music were more frequently observed than responses to motor imagery (62.5-80% versus 33.3-42.9%). Similarly, in 16 matched healthy subjects, responses to language and music were more frequently observed than responses to motor imagery (87.5-100% versus 68.8-75.0%). Except for one patient who died in the intensive care unit, all patients with cognitive motor dissociation and higher-order cortex motor dissociation recovered beyond a confusional state by 6 months. However, 6-month outcomes were not associated with early functional magnetic resonance imaging and electroencephalography responses for the entire cohort. These observations suggest that functional magnetic resonance imaging and electroencephalography can detect command-following and higher-order cortical function in patients with acute severe traumatic brain injury. Early detection of covert consciousness and cortical responses in the intensive care unit could alter time-sensitive decisions about withholding life-sustaining therapies.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Camille Chatelle
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA.,Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - Camille A Spencer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 First Avenue, Charlestown, MA, 02129, USA
| | - Kathryn L O'Connor
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA
| | - Ronald E Hirschberg
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 First Avenue, Charlestown, MA, 02129, USA.,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA, 02114, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA.,Department of Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, 300 First Avenue, Charlestown, MA, 02129, USA.,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Boston, MA, 02114, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
38
|
Henriques J, Gabriel D, Grigoryeva L, Haffen E, Moulin T, Aubry R, Pazart L, Ortega JP. Protocol Design Challenges in the Detection of Awareness in Aware Subjects Using EEG Signals. Clin EEG Neurosci 2016; 47:266-275. [PMID: 25488924 DOI: 10.1177/1550059414560397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/27/2014] [Indexed: 11/15/2022]
Abstract
Recent studies have evidenced serious difficulties in detecting covert awareness with electroencephalography-based techniques both in unresponsive patients and in healthy control subjects. This work reproduces the protocol design in two recent mental imagery studies with a larger group comprising 20 healthy volunteers. The main goal is assessing if modifications in the signal extraction techniques, training-testing/cross-validation routines, and hypotheses evoked in the statistical analysis, can provide solutions to the serious difficulties documented in the literature. The lack of robustness in the results advises for further search of alternative protocols more suitable for machine learning classification and of better performing signal treatment techniques. Specific recommendations are made using the findings in this work.
Collapse
Affiliation(s)
- J Henriques
- Laboratoire de Mathématiques de Besançon, Besançon, France.,Cegos Deployment, Besançon, France
| | - D Gabriel
- INSERM CIC 1431, Centre d'Investigation Clinique, CHU de Besançon, France.,EA 481 Laboratoire de Neurosciences de Besançon, Besançon, France
| | - L Grigoryeva
- Laboratoire de Mathématiques de Besançon, Besançon, France
| | - E Haffen
- INSERM CIC 1431, Centre d'Investigation Clinique, CHU de Besançon, France.,EA 481 Laboratoire de Neurosciences de Besançon, Besançon, France.,Service de Psychiatrie de l'adulte, CHU de Besançon, France.,Fondation FondaMental, Créteil, France
| | - T Moulin
- INSERM CIC 1431, Centre d'Investigation Clinique, CHU de Besançon, France.,EA 481 Laboratoire de Neurosciences de Besançon, Besançon, France.,Département de Recherche en imagerie fonctionnelle, CHU de Besançon, France.,Service de neurologie, CHU de Besançon, France
| | - R Aubry
- INSERM CIC 1431, Centre d'Investigation Clinique, CHU de Besançon, France.,Espace Ethique Bourgogne/Franche-Comté, CHU de Besançon/Dijon, France.,Département douleur soins palliatifs, CHU de Besançon, France
| | - L Pazart
- INSERM CIC 1431, Centre d'Investigation Clinique, CHU de Besançon, France
| | - J-P Ortega
- Laboratoire de Mathématiques de Besançon, Besançon, France .,Centre National de la Recherche Scientifique (CNRS), Besançon, France
| |
Collapse
|
39
|
Kondziella D, Friberg CK, Frokjaer VG, Fabricius M, Møller K. Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016; 87:485-92. [PMID: 26139551 DOI: 10.1136/jnnp-2015-310958] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 11/04/2022]
Abstract
Active, passive and resting state paradigms using functional MRI (fMRI) or EEG may reveal consciousness in the vegetative (VS) and the minimal conscious state (MCS). A meta-analysis was performed to assess the prevalence of preserved consciousness in VS and MCS as revealed by fMRI and EEG, including command following (active paradigms), cortical functional connectivity elicited by external stimuli (passive paradigms) and default mode networks (resting state). Studies were selected from multiple indexing databases until February 2015 and evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2. 37 studies were identified, including 1041 patients (mean age 43 years, range 16-89; male/female 2.1:1; 39.5% traumatic brain injuries). MCS patients were more likely than VS patients to follow commands during active paradigms (32% vs 14%; OR 2.85 (95% CI 1.90 to 4.27; p<0.0001)) and to show preserved functional cortical connectivity during passive paradigms (55% vs 26%; OR 3.53 (95% CI 2.49 to 4.99; p<0.0001)). Passive paradigms suggested preserved consciousness more often than active paradigms (38% vs 24%; OR 1.98 (95% CI 1.54 to 2.54; p<0.0001)). Data on resting state paradigms were insufficient for statistical evaluation. In conclusion, active paradigms may underestimate the degree of consciousness as compared to passive paradigms. While MCS patients show signs of preserved consciousness more frequently in both paradigms, roughly 15% of patients with a clinical diagnosis of VS are able to follow commands by modifying their brain activity. However, there remain important limitations at the single-subject level; for example, patients from both categories may show command following despite negative passive paradigms.
Collapse
Affiliation(s)
- Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark Institute of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian K Friberg
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
40
|
Estraneo A, Loreto V, Guarino I, Boemia V, Paone G, Moretta P, Trojano L. Standard EEG in diagnostic process of prolonged disorders of consciousness. Clin Neurophysiol 2016; 127:2379-85. [PMID: 27178856 DOI: 10.1016/j.clinph.2016.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This cross-sectional study assessed the ability of standard EEG in distinguishing vegetative state (VS) from minimally conscious state plus (MCS+) or MCS minus (MCS-), and to correlate EEG features with aetiology and level of responsiveness assessed by Coma Recovery Scale-Revised (CRS-R). METHODS We analyzed background EEG activity and EEG reactivity to eye opening and closing and to tactile, acoustic, nociceptive stimuli and Intermittent Photic Stimulation (IPS) in 73 inpatients (VS=37, MCS-=11, MCS+=25), with traumatic (n=21), vascular (n=25) or anoxic (n=27) aetiology. RESULTS All patients, but one, showed abnormal background activity. EEG abnormalities were more severe in VS than in MCS+ or MCS-, and in anoxic than other aetiologies. MCS+ patients with normal or Mildly Abnormal background activity showed higher scores on CRS-R than patients with moderate to severe EEG abnormalities. Reactivity to IPS, and acoustic stimuli was significantly more frequent in MCS+ and MCS- than in VS patients. CONCLUSIONS EEG features differ between VS and MCS- or MCS+ patients and can provide evidence of relative sparing of thalamocortical connections in MCS+ patients. In anoxic patients EEG organization is more severely impaired and provides less discriminative diagnostic information. SIGNIFICANCE Conventional EEG can help clinicians to disentangle VS from MCS patients.
Collapse
Affiliation(s)
- Anna Estraneo
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Via Bagni Vecchi 1, 82037 Telese Terme (BN), Italy.
| | - Vincenzo Loreto
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Via Bagni Vecchi 1, 82037 Telese Terme (BN), Italy
| | - Ivan Guarino
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Via Bagni Vecchi 1, 82037 Telese Terme (BN), Italy
| | - Virginia Boemia
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Via Bagni Vecchi 1, 82037 Telese Terme (BN), Italy
| | - Giuseppe Paone
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Via Bagni Vecchi 1, 82037 Telese Terme (BN), Italy
| | - Pasquale Moretta
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Via Bagni Vecchi 1, 82037 Telese Terme (BN), Italy
| | - Luigi Trojano
- Neuropsychology Lab., Dept. of Psychology, Second University of Naples, Viale Ellittico 31, 81100 Caserta, Italy
| |
Collapse
|
41
|
Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: A marker of covert cognition? Clin Neurophysiol 2016; 127:1845-54. [PMID: 26754875 DOI: 10.1016/j.clinph.2015.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 11/20/2022]
|
42
|
Mäki-Marttunen V, Castro M, Olmos L, Leiguarda R, Villarreal M. Modulation of the default-mode network and the attentional network by self-referential processes in patients with disorder of consciousness. Neuropsychologia 2016; 82:149-160. [PMID: 26796715 DOI: 10.1016/j.neuropsychologia.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/17/2015] [Accepted: 01/17/2016] [Indexed: 01/23/2023]
Abstract
Disorders of consciousness (DOC) are related to an altered capacity of the brain to successfully integrate and segregate information. Alterations in brain functional networks structure have been found in fMRI studies, which could account for the incapability of the brain to efficiently manage internally and externally generated information. Here we assess the modulation of neural activity in areas of the networks related to active introspective or extrospective processing in 9 patients with DOC and 17 controls using fMRI. In addition, we assess the functional connectivity between those areas in resting state. Patients were experimentally studied in an early phase after the event of brain injury (3±1 months after the event) and subsequently in a second session 4±1 months after the first session. The results showed that the concerted modulation of the default mode network (DMN) and attentional network (AN) in response to the active involvement in the task improved with the level of consciousness, reflecting an integral recovery of the brain in its ability to be engaged in cognitive processes. In addition, functional connectivity decreased between the DMN and AN with recovery. Our results help to further understand the neural underpins of the disorders of consciousness.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | - Mariana Castro
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lisandro Olmos
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina
| | - Ramón Leiguarda
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mirta Villarreal
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
43
|
Noirhomme Q, Brecheisen R, Lesenfants D, Antonopoulos G, Laureys S. "Look at my classifier's result": Disentangling unresponsive from (minimally) conscious patients. Neuroimage 2015; 145:288-303. [PMID: 26690804 DOI: 10.1016/j.neuroimage.2015.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/12/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022] Open
Abstract
Given the fact that clinical bedside examinations can have a high rate of misdiagnosis, machine learning techniques based on neuroimaging and electrophysiological measurements are increasingly being considered for comatose patients and patients with unresponsive wakefulness syndrome, a minimally conscious state or locked-in syndrome. Machine learning techniques have the potential to move from group-level statistical results to personalized predictions in a clinical setting. They have been applied for the purpose of (1) detecting changes in brain activation during functional tasks, equivalent to a behavioral command-following test and (2) estimating signs of consciousness by analyzing measurement data obtained from multiple subjects in resting state. In this review, we provide a comprehensive overview of the literature on both approaches and discuss the translation of present findings to clinical practice. We found that most studies struggle with the difficulty of establishing a reliable behavioral assessment and fluctuations in the patient's levels of arousal. Both these factors affect the training and validation of machine learning methods to a considerable degree. In studies involving more than 50 patients, small to moderate evidence was found for the presence of signs of consciousness or good outcome, where one study even showed strong evidence for good outcome.
Collapse
Affiliation(s)
- Quentin Noirhomme
- Brain Innovation BV, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Cyclotron Research Centre, University of Liege, Liege, Belgium.
| | - Ralph Brecheisen
- Brain Innovation BV, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Damien Lesenfants
- School of Engineering and Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | | | - Steven Laureys
- Coma Science Group, University Hospital of Liege, Liege, Belgium
| |
Collapse
|
44
|
Neurophysiological Indicators of Residual Cognitive Capacity in the Minimally Conscious State. Behav Neurol 2015; 2015:145913. [PMID: 26504351 PMCID: PMC4609423 DOI: 10.1155/2015/145913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background. The diagnostic usefulness of electrophysiological methods in assessing disorders of consciousness (DoC) remains to be established on an individual patient level, and there is need to determine what constitutes robust experimental paradigm to elicit electrophysiological indices of covert cognitive capacity. Objectives. Two tasks encompassing active and passive conditions were explored in an event-related potentials (ERP) study. The task robustness was studied in healthy controls, and their utility to detect covert signs of command-following on an individual patient level was investigated in patients in a minimally conscious state (MCS). Methods. Twenty healthy controls and 20 MCS patients participated. The active tasks included (1) listening for a change of pitch in the subject's own name (SON) and (2) counting SON, both contrasted to passive conditions. Midline ERPs are reported. Results. A larger P3 response was detected in the counting task compared to active listening to pitch change in the healthy controls. On an individual level, the counting task revealed a higher rate of responders among both healthy subjects and MCS patients. Conclusion. ERP paradigms involving actively counting SON represent a robust paradigm in probing for volitional cognition in minimally conscious patients and add important diagnostic information in some patients.
Collapse
|
45
|
Osborne NR, Owen AM, Fernández-Espejo D. The dissociation between command following and communication in disorders of consciousness: an fMRI study in healthy subjects. Front Hum Neurosci 2015; 9:493. [PMID: 26441593 PMCID: PMC4569885 DOI: 10.3389/fnhum.2015.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have identified a subgroup of patients with a Disorder of Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless able to follow commands by modulating their brain activity in motor imagery (MI) tasks. These techniques have even allowed for binary communication in a small number of DOC patients. However, the majority of patients who can follow commands are unable to use their responses to communicate. A similar dissociation between present command following (CF) and absent communication abilities has been reported in overt behavioral assessments. However, the neural correlates of this dissociation in both overt and covert modalities are unknown. Here, we used functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying CF and selection of responses for binary communication using either executed or imagined movements. Fifteen healthy participants executed or imagined two different types of arm movements that were either pre-determined by the experimenters (CF) or decided by them (action selection, AS). Action selection involved greater activity in high-level associative areas in frontal and parietal regions than CF. Additionally, motor execution (ME), as compared to MI, activated contralateral motor cortex, while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex and the left inferior frontal gyrus. Importantly, there was no interaction between the task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes involved in following a motor command or selecting between two motor actions are not dependent on how the response is expressed (via ME/MI). They also suggest a potential neural basis for the distinction in cognitive abilities seen in DOC patients.
Collapse
Affiliation(s)
- Natalie R Osborne
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Davinia Fernández-Espejo
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| |
Collapse
|
46
|
Cerebral response to subject's own name showed high prognostic value in traumatic vegetative state. BMC Med 2015; 13:83. [PMID: 25880206 PMCID: PMC4406334 DOI: 10.1186/s12916-015-0330-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Previous studies have shown the prognostic value of stimulation elicited blood-oxygen-level-dependent (BOLD) signal in traumatic patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS). However, to the best of our knowledge, no studies have focused on the relevance of etiology and level of consciousness in patients with disorders of consciousness (DOC) when explaining the relationship between BOLD signal and both outcome and signal variability. We herein propose a study in a large sample of traumatic and non-traumatic DOC patients in order to ascertain the relevance of etiology and level of consciousness in the variability and prognostic value of a stimulation-elicited BOLD signal. METHODS 66 patients were included, and the response of each subject to his/her own name said by a familiar voice (SON-FV) was recorded using fMRI; 13 patients were scanned twice in the same day, respecting the exact same conditions in both cases. A behavioral follow-up program was carried out at 3, 6, and 12 months after scanning. RESULTS Of the 39 VS/UWS patients, 12 (75%) out of 16 patients with higher level activation patterns recovered to minimally conscious state (MCS) or emergence from MCS (EMCS) and 17 (74%) out of 23 patients with lower level activation patterns or no activation had a negative outcome. Taking etiology into account for VS/UWS patients, a higher positive predictive value was assigned to traumatic patients, i.e., up to 92% (12/13) patients with higher level activation pattern achieved good recovery whereas 11 out of 13 (85%) non-traumatic patients with lower level activation or without activation had a negative clinical outcome. The reported data from visual analysis of fMRI activation patterns were corroborated using ROC curve analysis, which supported the correlation between auditory cortex activation volume and VS/UWS patients' recovery. The average brain activity overlap in primary and secondary auditory cortices in patients scanned twice was 52%. CONCLUSIONS The activation type and volume in auditory cortex elicited by SON-FV significantly correlated with VS/UWS patients' prognosis, particularly in patients with traumatic etiology, however, this could not be established in MCS patients. Repeated use of this simple fMRI task might help obtain more reliable prognostic information.
Collapse
|
47
|
Gabriel D, Henriques J, Comte A, Grigoryeva L, Ortega JP, Cretin E, Brunotte G, Haffen E, Moulin T, Aubry R, Pazart L. Substitute or complement? Defining the relative place of EEG and fMRI in the detection of voluntary brain reactions. Neuroscience 2015; 290:435-44. [DOI: 10.1016/j.neuroscience.2015.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/17/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
48
|
Abstract
Acute loss of consciousness poses a fascinating scenario for theoretical and clinical research. This chapter introduces a simple yet powerful framework to investigate altered states of consciousness. We then explore the different disorders of consciousness that result from acute brain injury, and techniques used in the acute phase to predict clinical outcome in different patient populations in light of models of acute loss of consciousness. We further delve into post-traumatic amnesia as a model for predicting cognitive sequels following acute loss of consciousness. We approach the study of acute loss of consciousness from a theoretical and clinical perspective to conclude that clinicians in acute care centers must incorporate new measurements and techniques besides the classic coma scales in order to assess their patients with loss of consciousness.
Collapse
|
49
|
Peterson A, Cruse D, Naci L, Weijer C, Owen AM. Risk, diagnostic error, and the clinical science of consciousness. Neuroimage Clin 2015; 7:588-97. [PMID: 25844313 PMCID: PMC4375779 DOI: 10.1016/j.nicl.2015.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 11/27/2022]
Abstract
In recent years, a number of new neuroimaging techniques have detected covert awareness in some patients previously thought to be in a vegetative state/unresponsive wakefulness syndrome. This raises worries for patients, families, and physicians, as it indicates that the existing diagnostic error rate in this patient group is higher than assumed. Recent research on a subset of these techniques, called active paradigms, suggests that false positive and false negative findings may result from applying different statistical methods to patient data. Due to the nature of this research, these errors may be unavoidable, and may draw into question the use of active paradigms in the clinical setting. We argue that false positive and false negative findings carry particular moral risks, which may bear on investigators' decisions to use certain methods when independent means for estimating their clinical utility are absent. We review and critically analyze this methodological problem as it relates to both fMRI and EEG active paradigms. We conclude by drawing attention to three common clinical scenarios where the risk of diagnostic error may be most pronounced in this patient group.
Collapse
Affiliation(s)
- Andrew Peterson
- Brain and Mind Institute, Western University, Natural Sciences Centre, London, Ontario N6A 5B7, Canada ; Rotman Institute of Philosophy, Western University, Stevenson Hall, London, Ontario N6A 5B7, Canada
| | - Damian Cruse
- Brain and Mind Institute, Western University, Natural Sciences Centre, London, Ontario N6A 5B7, Canada
| | - Lorina Naci
- Brain and Mind Institute, Western University, Natural Sciences Centre, London, Ontario N6A 5B7, Canada
| | - Charles Weijer
- Brain and Mind Institute, Western University, Natural Sciences Centre, London, Ontario N6A 5B7, Canada ; Rotman Institute of Philosophy, Western University, Stevenson Hall, London, Ontario N6A 5B7, Canada ; Department of Epidemiology and Biostatistics, Western University, Kresge Building, London, Ontario N6A 5B7, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, Natural Sciences Centre, London, Ontario N6A 5B7, Canada ; Rotman Institute of Philosophy, Western University, Stevenson Hall, London, Ontario N6A 5B7, Canada
| |
Collapse
|
50
|
Castro M, Tillmann B, Luauté J, Corneyllie A, Dailler F, André-Obadia N, Perrin F. Boosting Cognition With Music in Patients With Disorders of Consciousness. Neurorehabil Neural Repair 2015; 29:734-42. [DOI: 10.1177/1545968314565464] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Music listening conveys beneficial effects on cognitive processes in both normal and pathologic cerebral functioning. Surprisingly, no quantitative study has evaluated the potential effects of music on cognition and consciousness in patients with disorders of consciousness. Objective. The aim of the present study was to evaluate the effect of music on cerebral processing in patients with disorders of consciousness. Methods. Using bedside electroencephalographic recording, we acquired in 13 patients with disorders of consciousness event-related potentials to the patient’s first name after either an excerpt of the patient’s preferred music (music condition) or a continuous sound (control condition). Results. The cerebral response to the patient’s first name was more often observed in the music condition, than in the control condition. Furthermore, the presence or absence of a discriminative response in the music condition seemed to be associated with a favorable or unfavorable outcome, respectively. Conclusions. These findings demonstrate for the first time that music has a beneficial effect on cognitive processes of patients with disorders of consciousness. The autobiographical characteristics of music, that is, its emotional and personal relevance, probably increase arousal and/or awareness.
Collapse
Affiliation(s)
- Maïté Castro
- Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| | - Barbara Tillmann
- Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| | - Jacques Luauté
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
- Department of Physical Medicine and Rehabilitation, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Corneyllie
- Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| | - Frédéric Dailler
- Department of Intensive Care, Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| | - Nathalie André-Obadia
- Clinical Neurophysiology Unit, Neurological Hospital, Hospices Civils de Lyon, Lyon, France
- Central Integration of Pain in Humans, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| | - Fabien Perrin
- Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| |
Collapse
|