1
|
Vanninen A, Erkkilä L, Kokkola T, Selander T, Koivisto AM, Kokki M, Musialowicz T, Lipponen A, Hiltunen M, Hakumäki J, Herukka SK, Rauramaa T, Leinonen V. Effect of ventricular volume on cerebrospinal fluid Alzheimer's disease biomarkers in patients with idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2025:13872877251329081. [PMID: 40151911 DOI: 10.1177/13872877251329081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundIdiopathic normal pressure hydrocephalus (iNPH) is a common disorder in aging populations. Alzheimer's disease (AD) is a significant comorbidity in iNPH patients, and the presence of AD pathology is associated with worse shunting outcomes. Cerebrospinal fluid (CSF) concentrations of AD-associated biomarkers in iNPH patients are universally reduced and the exact mechanism related to this is unknown.ObjectiveOur aim was to study the effects of ventricular volume on CSF AD-associated biomarker levels in iNPH patients, to determine whether a dilution effect occurs and to assess if brain AD pathology contributes to this effect.MethodsA total of 153 iNPH patients had lumbar CSF samples available for analysis, along with brain MRIs of sufficient quality. Automated image analysis software was used to determine the volume of different brain segments. Volumes normalized for age, sex and head size were used for analysis. Brain biopsy data on AD pathology was also available.ResultsNone of the intracerebral ventricular volumes correlated with CSF levels of AD-associated biomarkers, indicating no dilution effect was present in this context. However, in iNPH patients positive for amyloid-β pathology in the biopsy, the volume of the fourth ventricle correlated inversely with all investigated biomarkers.ConclusionsIntracerebral ventricular volumes do not correlate with AD biomarker levels in CSF, arguing against a dilution effect. However, in patients with AD pathology, the volume of the fourth ventricle is inversely correlated with CSF T-Tau and P-Tau181 levels, suggesting a complex relationship between brain AD pathology, CSF flow and CSF volume in iNPH patients.
Collapse
Affiliation(s)
- Aleksi Vanninen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lauri Erkkilä
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Tarja Kokkola
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Selander
- Science Service Center, Kuopio University Hospital (KUH) and School of Medicine, University of Eastern Finland (UEF), Kuopio, Finland
| | - Anne M Koivisto
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Department of Neurosciences, University of Helsinki, Helsinki, Finland
- Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
| | - Merja Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Anaesthesia and Intensive Care Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Tadeusz Musialowicz
- Department of Anaesthesia and Intensive Care Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anssi Lipponen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Juhana Hakumäki
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
- Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Luikku AJ, Nerg O, Koivisto AM, Hänninen T, Junkkari A, Kemppainen S, Juopperi SP, Sinisalo R, Pesola A, Soininen H, Hiltunen M, Leinonen V, Rauramaa T, Martiskainen H. Deep learning assisted quantitative analysis of Aβ and microglia in patients with idiopathic normal pressure hydrocephalus in relation to cognitive outcome. J Neuropathol Exp Neurol 2024; 83:967-978. [PMID: 39101555 PMCID: PMC11487103 DOI: 10.1093/jnen/nlae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Neuropathologic changes of Alzheimer disease (AD) including Aβ accumulation and neuroinflammation are frequently observed in the cerebral cortex of patients with idiopathic normal pressure hydrocephalus (iNPH). We created an automated analysis platform to quantify Aβ load and reactive microglia in the vicinity of Aβ plaques and to evaluate their association with cognitive outcome in cortical biopsies of patients with iNPH obtained at the time of shunting. Aiforia Create deep learning software was used on whole slide images of Iba1/4G8 double immunostained frontal cortical biopsies of 120 shunted iNPH patients to identify Iba1-positive microglia somas and Aβ areas, respectively. Dementia, AD clinical syndrome (ACS), and Clinical Dementia Rating Global score (CDR-GS) were evaluated retrospectively after a median follow-up of 4.4 years. Deep learning artificial intelligence yielded excellent (>95%) precision for tissue, Aβ, and microglia somas. Using an age-adjusted model, higher Aβ coverage predicted the development of dementia, the diagnosis of ACS, and more severe memory impairment by CDR-GS whereas measured microglial densities and Aβ-related microglia did not correlate with cognitive outcome in these patients. Therefore, cognitive outcome seems to be hampered by higher Aβ coverage in cortical biopsies in shunted iNPH patients but is not correlated with densities of surrounding microglia.
Collapse
Affiliation(s)
- Antti J Luikku
- Institute of Clinical Medicine—Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Ossi Nerg
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne M Koivisto
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurosciences, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Geriatrics/Rehabilitation and Internal Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Hänninen
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
| | - Antti Junkkari
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Rosa Sinisalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alli Pesola
- Institute of Clinical Medicine—Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine—Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Pathology, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Kemiläinen B, Kaarniranta K, Leinonen V. Ventriculoperitoneal shunt patients and glaucoma: a cohort analysis of the NPH registry. Fluids Barriers CNS 2024; 21:54. [PMID: 38982476 PMCID: PMC11232130 DOI: 10.1186/s12987-024-00558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Idiopathic Normal Pressure Hydrocephalus (iNPH) is a chronic condition affecting the elderly. It is characterized by a triad of symptoms and radiological findings. Glaucoma is the leading cause of irreversible blindness worldwide. Earlier studies have proposed that the rate of glaucoma is higher in iNPH patients, and of a possible link between ventriculoperitoneal shunt (VP) treatment and the development of glaucoma. OBJECTIVES This study aimed to determine the prevalence of glaucoma among iNPH patients and assess the impact of VPs on glaucoma prevalence. METHODS A cohort study was conducted at Kuopio University Hospital (KUH), including 262 patients with a ventriculoperitoneal shunt. Clinical data were obtained from the Kuopio NPH Registry and medical records. Patients were grouped by iNPH status: iNPH (+) - probable/possible iNPH (n = 192), and iNPH (-) - other causes of hydrocephalus (congenital, secondary, obstructive) (n = 70). We conducted statistical analysis using the Independent Samples T-test, Fisher's exact test, and Pearson Chi-Square. We compared demographics, glaucoma prevalence, brain biopsies positive for Amyloid-β (Aβ) and hyperphosphorylated tau (HPτ) as well as comorbidities for hypertension and diabetes medication. Age stratification assessed glaucoma prevalence in the full cohort. RESULTS Both iNPH (+) and iNPH (-) groups had comparable demographic and comorbidity profiles. The prevalence of glaucoma in the iNPH (+) group was 11.5% (n = 22) and 11.4% (n = 8) in the iNPH (-) group without a statistically significant difference (p = 1.000). Brain biopsies positive for Amyloid-β (Aβ) and hyperphosphorylated tau (HPτ) were similar. CONCLUSIONS Neither shunted iNPH patients nor those with a comorbid condition other than iNPH showed a markedly higher prevalence of glaucoma. Instead, both groups exhibited age-related increases in glaucoma prevalence, similar to the trends observed in population-based studies. Our data does not suggest a correlation between VP shunts and an elevated rate of glaucoma.
Collapse
Affiliation(s)
- Benjam Kemiläinen
- Neurosurgery of NeuroCenter, Unit of Neurosurgery, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Unit of Neurosurgery, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Colvee-Martin H, Parra JR, Gonzalez GA, Barker W, Duara R. Neuropathology, Neuroimaging, and Fluid Biomarkers in Alzheimer's Disease. Diagnostics (Basel) 2024; 14:704. [PMID: 38611617 PMCID: PMC11012058 DOI: 10.3390/diagnostics14070704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 04/14/2024] Open
Abstract
An improved understanding of the pathobiology of Alzheimer's disease (AD) should lead ultimately to an earlier and more accurate diagnosis of AD, providing the opportunity to intervene earlier in the disease process and to improve outcomes. The known hallmarks of Alzheimer's disease include amyloid-β plaques and neurofibrillary tau tangles. It is now clear that an imbalance between production and clearance of the amyloid beta protein and related Aβ peptides, especially Aβ42, is a very early, initiating factor in Alzheimer's disease (AD) pathogenesis, leading to aggregates of hyperphosphorylation and misfolded tau protein, inflammation, and neurodegeneration. In this article, we review how the AD diagnostic process has been transformed in recent decades by our ability to measure these various elements of the pathological cascade through the use of imaging and fluid biomarkers. The more recently developed plasma biomarkers, especially phosphorylated-tau217 (p-tau217), have utility for screening and diagnosis of the earliest stages of AD. These biomarkers can also be used to measure target engagement by disease-modifying therapies and the response to treatment.
Collapse
Affiliation(s)
- Helena Colvee-Martin
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| | - Juan Rayo Parra
- Human & Molecular Genetics, Florida International University, Miami, FL 33199, USA; (J.R.P.); (G.A.G.)
| | - Gabriel Antonio Gonzalez
- Human & Molecular Genetics, Florida International University, Miami, FL 33199, USA; (J.R.P.); (G.A.G.)
| | - Warren Barker
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (H.C.-M.); (W.B.)
| |
Collapse
|
5
|
Kemiläinen B, Tiainen S, Rauramaa T, Luikku AJ, Herukka SK, Koivisto A, Hiltunen M, Verdooner S, Johnson K, Chambers M, Kaarniranta K, Leinonen V. Exploring the Association Between Visual Field Testing and CERAD Neuropsychological Battery in Idiopathic Normal Pressure Hydrocephalus Patients. J Alzheimers Dis 2024; 100:247-260. [PMID: 38848179 DOI: 10.3233/jad-231414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Association between visual field test indices and The Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery (CERAD-NB) is unknown. Idiopathic normal pressure hydrocephalus (iNPH) patients provide a unique set of patient data for analysis. Objective To assess the reliability of visual field testing using the CERAD-NB in patients with iNPH and to investigate the association between visual field test results and cognitive function. Methods 62 probable iNPH patients were subjected to comprehensive ophthalmological examination, ophthalmological optical coherence tomography imaging studies, visual field testing, and CERAD-NB. Based on visual field indices, the patients were divided into two groups: unreliable (n = 19) and reliable (n = 43). Independent T-test analysis was performed to examine the relationship between visual field test results and cognitive function. Pearson Chi-square test was used for non-continuous variables. Results The unreliable group performed worse in CERAD-NB subtests compared to the reliable group. Statistically significant differences were observed in nine out of ten subtests, with only Clock Drawing showing no statistical significance. Pairwise comparison of the groups showed no statistical significance between amyloid-β (Aβ) biopsy, hyperphosphorylated tau biopsy, apolipoprotein E allele or the ophthalmological status of the patient. But there was a statistically significant difference in cerebrospinal fluid Aβ42 and age between the groups. Conclusions Patients with unreliable visual field tests performed worse on CERAD-NB subtests. CERAD-NB subtests do not provide a specific cut-off value to refrain patients from visual field testing. Should patients with unreliable visual field tests be screened for cognitive impairment?
Collapse
Affiliation(s)
- Benjam Kemiläinen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sonja Tiainen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Antti J Luikku
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Anne Koivisto
- Unit of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Geriatrics/Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Ken Johnson
- NeuroVision Imaging Inc., Sacramento, CA, USA
| | | | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Lepinay E, Cicchetti F. Tau: a biomarker of Huntington's disease. Mol Psychiatry 2023; 28:4070-4083. [PMID: 37749233 DOI: 10.1038/s41380-023-02230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023]
Abstract
Developing effective treatments for patients with Huntington's disease (HD)-a neurodegenerative disorder characterized by severe cognitive, motor and psychiatric impairments-is proving extremely challenging. While the monogenic nature of this condition enables to identify individuals at risk, robust biomarkers would still be extremely valuable to help diagnose disease onset and progression, and especially to confirm treatment efficacy. If measurements of cerebrospinal fluid neurofilament levels, for example, have demonstrated use in recent clinical trials, other proteins may prove equal, if not greater, relevance as biomarkers. In fact, proteins such as tau could specifically be used to detect/predict cognitive affectations. We have herein reviewed the literature pertaining to the association between tau levels and cognitive states, zooming in on Alzheimer's disease, Parkinson's disease and traumatic brain injury in which imaging, cerebrospinal fluid, and blood samples have been interrogated or used to unveil a strong association between tau and cognition. Collectively, these areas of research have accrued compelling evidence to suggest tau-related measurements as both diagnostic and prognostic tools for clinical practice. The abundance of information retrieved in this niche of study has laid the groundwork for further understanding whether tau-related biomarkers may be applied to HD and guide future investigations to better understand and treat this disease.
Collapse
Affiliation(s)
- Eva Lepinay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
7
|
Gazestani V, Kamath T, Nadaf NM, Dougalis A, Burris SJ, Rooney B, Junkkari A, Vanderburg C, Pelkonen A, Gomez-Budia M, Välimäki NN, Rauramaa T, Therrien M, Koivisto AM, Tegtmeyer M, Herukka SK, Abdulraouf A, Marsh SE, Hiltunen M, Nehme R, Malm T, Stevens B, Leinonen V, Macosko EZ. Early Alzheimer's disease pathology in human cortex involves transient cell states. Cell 2023; 186:4438-4453.e23. [PMID: 37774681 PMCID: PMC11107481 DOI: 10.1016/j.cell.2023.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 10/01/2023]
Abstract
Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with β-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.
Collapse
Affiliation(s)
- Vahid Gazestani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tushar Kamath
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139, USA
| | - Naeem M Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Antonios Dougalis
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S J Burris
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brendan Rooney
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Antti Junkkari
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | | | - Anssi Pelkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gomez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | - Anne M Koivisto
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland; Department of Neurosciences, University of Helsinki, Helsinki, Finland; Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
| | | | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ralda Nehme
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute (HHMI), Boston, MA 02115, USA
| | - Ville Leinonen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Evan Z Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Massachusetts General Hospital, Department of Psychiatry, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Vanninen A, Lukkarinen H, Kokkola T, Koivisto AM, Kokki M, Musialowicz T, Hiltunen M, Zetterberg H, Leinonen V, Herukka SK, Rauramaa T. Cerebrospinal Fluid Diagnostics of Alzheimer's Disease in Patients with Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2023:JAD230144. [PMID: 37334597 PMCID: PMC10357203 DOI: 10.3233/jad-230144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia worldwide and a frequent comorbidity in idiopathic normal pressure hydrocephalus (iNPH). The presence of AD pathology is associated with worse outcomes after a shunt procedure in iNPH. Preoperative diagnosis of AD is challenging in patients with iNPH, which involves reduced concentrations of the cerebrospinal fluid (CSF) AD biomarkers. OBJECTIVE Our aim was to estimate the effect size of iNPH as a factor in CSF levels of AD biomarkers and to test if correction could be used to improve diagnostic value. METHODS Our cohort included 222 iNPH patients with data in the Kuopio NPH registry and brain biopsy and CSF samples available. We divided the patients into groups according to AD pathology per brain biopsy. For control cohorts, we had CSF samples from cognitively healthy individuals (n = 33) and patients with diagnosed AD and no iNPH (n = 39).*-31ptResults:Levels of all investigated biomarkers differed significantly between groups, with the exception of t-Tau levels between healthy individuals and iNPH patients with AD pathology. Applying a correction factor for each biomarker (0.842*Aβ 1 - 42, 0.779*t-Tau, and 0.610*P-Tau181) for the effect of iNPH yielded a sensitivity of 2.4% and specificity of 100%. The ratio of P-Tau181 to Aβ 1 - 42 was moderately effective in aiding recognition of AD pathology in iNPH patients (sensitivity 0.79, specificity 0.76, area under the curve 0.824). CONCLUSION Correcting for iNPH as a factor failed to improve diagnostic effectiveness, but the P-Tau181/Aβ 1 - 42 ratio showed some utility in the diagnosis of AD in iNPH patients.
Collapse
Affiliation(s)
- Aleksi Vanninen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heikki Lukkarinen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tarja Kokkola
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Koivisto
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Neurosciences, University of Helsinki, Helsinki, Finland
- Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
| | - Merja Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Anaesthesia and Intensive Care Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Tadeusz Musialowicz
- Department of Anaesthesia and Intensive Care Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
- Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Gazestani V, Kamath T, Nadaf NM, Burris SJ, Rooney B, Junkkari A, Vanderburg C, Rauramaa T, Therrien M, Tegtmeyer M, Herukka SK, Abdulraouf A, Marsh S, Malm T, Hiltunen M, Nehme R, Stevens B, Leinonen V, Macosko EZ. Early Alzheimer's disease pathology in human cortex is associated with a transient phase of distinct cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543569. [PMID: 37333365 PMCID: PMC10274680 DOI: 10.1101/2023.06.03.543569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cellular perturbations underlying Alzheimer's disease are primarily studied in human postmortem samples and model organisms. Here we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of Alzheimer's disease pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the Early Cortical Amyloid Response-were prominent in neurons, wherein we identified a transient state of hyperactivity preceding loss of excitatory neurons, which correlated with the selective loss of layer 1 inhibitory neurons. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathological burden increased. Lastly, both oligodendrocytes and pyramidal neurons upregulated genes associated with amyloid beta production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.
Collapse
Affiliation(s)
| | - Tushar Kamath
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Harvard Graduate Program in Biophysics and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139 USA
| | - Naeem M. Nadaf
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - SJ Burris
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Brendan Rooney
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115 USA
| | - Antti Junkkari
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | | | - Tuomas Rauramaa
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | - Samuel Marsh
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ralda Nehme
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115 USA
- Howard Hughes Medical Institute (HHMI), Boston, MA 02115 USA
| | - Ville Leinonen
- Institute of Clinical Medicine, Unit of Pathology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Evan Z. Macosko
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA 02114 USA
| |
Collapse
|
11
|
Weiner S, Junkkari A, Sauer M, Luikku A, Rauramaa T, Kokkola T, Herukka SK, Blennow K, Zetterberg H, Leinonen V, Gobom J. Novel cerebrospinal fluid biomarkers correlating with shunt responsiveness in patients with idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2023; 20:40. [PMID: 37277809 PMCID: PMC10243080 DOI: 10.1186/s12987-023-00440-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Idiopathic Normal pressure hydrocephalus (iNPH) is a form of adult hydrocephalus that is clinically characterized by progressive gait impairment, cognitive dysfunction, and urinary incontinence. The current standard method of treatment involves surgical installation of a CSF diversion shunt. However, only a fraction of patients shows an alleviation of symptoms from shunt surgery. Thus, the purpose of this prospective explorative proteomic study was to identify prognostic CSF biomarkers to predict shunt responsiveness in iNPH patients. Further, we evaluated the ability of the core Alzheimer's disease (AD) CSF biomarkers phosphorylated (p)-tau, total (t)-tau, and amyloid-β 1-42 (Aβ1-42) to serve as predictors of shunt response. METHODS We conducted a tandem mass tag (TMT) proteomic analysis of lumbar CSF from 68 iNPH patients, sampled pre-shunt surgery. Tryptic digests of CSF samples were labelled with TMTpro reagents. The TMT multiplex samples were fractionated in 24 concatenated fractions by reversed-phase chromatography at basic pH and analysed by liquid chromatography coupled to mass spectrometry (LC-MS) on an Orbitrap Lumos mass spectrometer. The relative abundances of the identified proteins were correlated with (i) iNPH grading scale (iNPHGS) and (ii) gait speed change 1 year after surgery from baseline to identify predictors of shunt responsiveness. RESULTS We identified four CSF biomarker candidates which correlated most strongly with clinical improvement on the iNPHGS and were significantly changed in shunt-responsive compared to shunt-unresponsive iNPH patients 1 year post-surgery: FABP3 (R = - 0.46, log2(fold change (FC)) = - 0.25, p < 0.001), ANXA4 (R = 0.46, log2(FC) = 0.32, p < 0.001), MIF (R = -0.49, log2(FC) = - 0.20, p < 0.001) and B3GAT2 (R = 0.54, log2(FC) = 0.20, p < 0.001). In addition, five biomarker candidates were selected based on their strong correlation with gait speed change 1 year after shunt installation: ITGB1 (R = - 0.48, p < 0.001), YWHAG (R = - 0.41, p < 0.01), OLFM2 (R = 0.39, p < 0.01), TGFBI (R = - 0.38, p < 0.01), and DSG2 (R = 0.37, p < 0.01). Concentrations of the CSF AD core biomarkers did not differ significantly with shunt responsiveness. CONCLUSION FABP3, MIF, ANXA4, B3GAT2, ITGB1, YWHAG, OLFM2, TGFBI and DSG2 in CSF are promising prognostic biomarker candidates to predict shunt responsiveness in iNPH patients.
Collapse
Affiliation(s)
- Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Antti Junkkari
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mathias Sauer
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Antti Luikku
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Tarja Kokkola
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ville Leinonen
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
12
|
Yang F, Yang L, Fang X, Deng Y, Mao R, Yan A, Wei W. Increased Cerebrospinal Fluid Levels of Soluble Triggering Receptor Expressed on Myeloid Cells 2 and Chitinase-3-Like Protein 1 in Idiopathic Normal-Pressure Hydrocephalus. J Alzheimers Dis 2023:JAD221180. [PMID: 37182875 DOI: 10.3233/jad-221180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Neurodegenerative disease pathology is associated with neuroinflammation, but evidence on idiopathic normal pressure hydrocephalus (iNPH) remains limited and cerebrospinal fluid (CSF) biomarker profiles need to be elucidated. OBJECTIVE To investigate whether iNPH pathological mechanisms are associated with greater CSF markers of core Alzheimer's disease pathology (amyloid-β42 (Aβ 42), phosphorylated tau (P-tau)), neurodegeneration (total tau (T-tau)), and neuroinflammation (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40)). METHODS The study analyzed lumbar CSF samples from 63 patients with iNPH and 20 age-matched orthopedic surgery patients who had no preoperative gait or cognitive impairment (control group). Aβ 42, T-tau, P-tau, sTREM2, and YKL-40 in different subgroups were investigated. RESULTS CSF sTREM2 levels were significantly higher in the iNPH group than in the control group, but no significant between-group difference was noted in YKL-40. Moreover, YKL-40 levels were significantly higher in the tap test non-responders than in the tap test responders (p = 0.021). At the 1-year follow-up after shunt surgery, the CSF P-tau levels were significantly lower (p = 0.020) in those with gait improvement and the CSF sTREM2 levels were significantly lower (p = 0.041) in those with cognitive improvement. In subgroup analysis, CSF sTREM2 levels were strongly correlated with CSF YKL-40 in the iNPH group (r = 0.443, p < 0.001), especially in the tap test non-responders (r = 0.653, p = 0.002). CONCLUSION YKL-40 and sTREM2 are disease-specific markers of neuroinflammation, showing higher CSF levels in iNPH. In addition, sTREM2 is positively associated with YKL-40, indicating that interactions of glial cells play an important role in iNPH pathogenesis.
Collapse
Affiliation(s)
- Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lu Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wittrahm R, Takalo M, Kuulasmaa T, Mäkinen PM, Mäkinen P, Končarević S, Fartzdinov V, Selzer S, Kokkola T, Antikainen L, Martiskainen H, Kemppainen S, Marttinen M, Jeskanen H, Rostalski H, Rahunen E, Kivipelto M, Ngandu T, Natunen T, Lambert JC, Tanzi RE, Kim DY, Rauramaa T, Herukka SK, Soininen H, Laakso M, Pike I, Leinonen V, Haapasalo A, Hiltunen M. Protective Alzheimer's disease-associated APP A673T variant predominantly decreases sAPPβ levels in cerebrospinal fluid and 2D/3D cell culture models. Neurobiol Dis 2023; 182:106140. [PMID: 37120095 DOI: 10.1016/j.nbd.2023.106140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aβ) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPβ (sAPPβ) and Aβ42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aβ, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPβ levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFβ and Aβ42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.
Collapse
Affiliation(s)
- Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Petra M Mäkinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, 70211 Kuopio, Finland.
| | | | | | - Stefan Selzer
- Proteome Sciences GmbH & Co. KG, 60438 Frankfurt, Germany.
| | - Tarja Kokkola
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Leila Antikainen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Mikael Marttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Heli Jeskanen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences, 70211 Kuopio, Finland.
| | - Eija Rahunen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Miia Kivipelto
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom; Theme Aging, Karolinska University Hospital, Stockholm, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Tiia Ngandu
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Jean-Charles Lambert
- U1167, University of Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, 70211 Kuopio, Finland; Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Sanna-Kaisa Herukka
- Department of Neurology, University of Eastern Finland, 70210 Kuopio, Finland; NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Medicine, Kuopio University Hospital, 70210 Kuopio, Finland.
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, London, WC1H 9BB, UK.
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland.
| | | | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland.
| |
Collapse
|
14
|
Zabala-Findlay A, Penny LK, Lofthouse RA, Porter AJ, Palliyil S, Harrington CR, Wischik CM, Arastoo M. Utility of Blood-Based Tau Biomarkers for Mild Cognitive Impairment and Alzheimer's Disease: Systematic Review and Meta-Analysis. Cells 2023; 12:cells12081184. [PMID: 37190093 DOI: 10.3390/cells12081184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVES With the development of new technologies capable of detecting low concentrations of Alzheimer's disease (AD) relevant biomarkers, the idea of a blood-based diagnosis of AD is nearing reality. This study aims to consider the evidence of total and phosphorylated tau as blood-based biomarkers for mild cognitive impairment (MCI) and AD when compared to healthy controls. METHODS Studies published between 1 January 2012 and 1 May 2021 (Embase and MEDLINE databases) measuring plasma/serum levels of tau in AD, MCI, and control cohorts were screened for eligibility, including quality and bias assessment via a modified QUADAS. The meta-analyses comprised 48 studies assessing total tau (t-tau), tau phosphorylated at threonine 181 (p-tau181), and tau phosphorylated at threonine 217 (p-tau217), comparing the ratio of biomarker concentrations in MCI, AD, and cognitively unimpaired (CU) controls. RESULTS Plasma/serum p-tau181 (mean effect size, 95% CI, 2.02 (1.76-2.27)) and t-tau (mean effect size, 95% CI, 1.77 (1.49-2.04)) were elevated in AD study participants compared to controls. Plasma/serum p-tau181 (mean effect size, 95% CI, 1.34 (1.20-1.49)) and t-tau (mean effect size, 95% CI, 1.47 (1.26-1.67)) were also elevated with moderate effect size in MCI study participants compared to controls. p-tau217 was also assessed, albeit in a small number of eligible studies, for AD vs. CU (mean effect size, 95% CI, 1.89 (1.86-1.92)) and for MCI vs. CU groups (mean effect size, 95% CI, 4.16 (3.61-4.71)). CONCLUSIONS This paper highlights the growing evidence that blood-based tau biomarkers have early diagnostic utility for Alzheimer's disease. REGISTRATION PROSPERO No. CRD42020209482.
Collapse
Affiliation(s)
- Alex Zabala-Findlay
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Lewis K Penny
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Richard A Lofthouse
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Andrew J Porter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Soumya Palliyil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- GT Diagnostics, Aberdeen AB24 5RP, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- GT Diagnostics, Aberdeen AB24 5RP, UK
- TauRx Therapeutics Ltd., Aberdeen AB24 5RP, UK
| | - Mohammad Arastoo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Scottish Biologics Facility, University of Aberdeen, Aberdeen AB25 2ZP, UK
| |
Collapse
|
15
|
Riba M, del Valle J, Romera C, Alsina R, Molina-Porcel L, Pelegrí C, Vilaplana J. Uncovering tau in wasteosomes (corpora amylacea) of Alzheimer’s disease patients. Front Aging Neurosci 2023; 15:1110425. [PMID: 37065464 PMCID: PMC10101234 DOI: 10.3389/fnagi.2023.1110425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Brain corpora amylacea, recently renamed as wasteosomes, are polyglucosan bodies that appear during aging and some neurodegenerative conditions. They collect waste substances and are part of a brain cleaning mechanism. For decades, studies on their composition have produced inconsistent results and the presence of tau protein in them has been controversial. In this work, we reanalyzed the presence of this protein in wasteosomes and we pointed out a methodological problem when immunolabeling. It is well known that to detect tau it is necessary to perform an antigen retrieval. However, in the case of wasteosomes, an excessive antigen retrieval with boiling dissolves their polyglucosan structure, releases the entrapped proteins and, thus, prevents their detection. After performing an adequate pre-treatment, with an intermediate time of boiling, we observed that some brain wasteosomes from patients with Alzheimer’s disease (AD) contained tau, while we did not detect tau protein in those from non-AD patients. These observations pointed the different composition of wasteosomes depending on the neuropathological condition and reinforce the role of wasteosomes as waste containers.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaume del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Clara Romera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Raquel Alsina
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- *Correspondence: Carme Pelegrí,
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Jordi Vilaplana,
| |
Collapse
|
16
|
Assessment of Plasma and Cerebrospinal Fluid Biomarkers in Different Stages of Alzheimer's Disease and Frontotemporal Dementia. Int J Mol Sci 2023; 24:ijms24021226. [PMID: 36674742 PMCID: PMC9864037 DOI: 10.3390/ijms24021226] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is the primary type of dementia, followed by frontotemporal lobar degeneration (FTLD). They share some clinical characteristics, mainly at the early stages. So, the identification of early, specific, and minimally invasive biomarkers is required. In this study, some plasma biomarkers (Amyloid β42, p-Tau181, t-Tau, neurofilament light (NfL), TAR DNA-binding protein 43 (TDP-43)) were determined by single molecule array technology (SIMOA®) in control subjects (n = 22), mild cognitive impairment due to AD (MCI-AD, n = 33), mild dementia due to AD (n = 12), and FTLD (n = 11) patients. The correlations between plasma and cerebrospinal fluid (CSF) levels and the accuracy of plasma biomarkers for AD early diagnosis and discriminating from FTLD were analyzed. As result, plasma p-Tau181 and NfL levels correlated with the corresponding CSF levels. Additionally, plasma p-Tau181 showed good accuracy for distinguishing between the controls and AD, as well as discriminating between AD and FTLD. Moreover, plasma NfL could discriminate dementia-AD vs. controls, FTLD vs. controls, and MCI-AD vs. dementia-AD. Therefore, the determination of these biomarkers in plasma is potentially helpful in AD spectrum diagnosis, but also discriminating from FTLD. In addition, the accessibility of these potential early and specific biomarkers may be useful for AD screening protocols in the future.
Collapse
|
17
|
Sangalli L, Boggero IA. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: A systematic review. Sleep Med 2023; 101:322-349. [PMID: 36481512 DOI: 10.1016/j.sleep.2022.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The glymphatic system is thought to be responsible for waste clearance in the brain. As it is primarily active during sleep, different components of sleep, subjective sleep quality, and sleep patterns may contribute to glymphatic functioning. This systematic review aimed at exploring the effect of sleep components, sleep quality, and sleep patterns on outcomes associated with the glymphatic system in healthy adults. METHODS PubMed®, Scopus, and Web of Science were searched for studies published in English until December 2021. Articles subjectively or objectively investigating sleep components (total sleep time, time in bed, sleep efficiency, sleep onset latency, wake-up after sleep onset, sleep stage, awakenings), sleep quality, or sleep pattern in healthy individuals, on outcomes associated with glymphatic system (levels of amyloid-β, tau, α-synuclein; cerebrospinal fluid, perivascular spaces; apolipoprotein E) were selected. RESULTS Out of 8359 records screened, 51 studies were included. Overall, contradictory findings were observed according to different sleep assessment method. The most frequently assessed sleep parameters were total sleep time, sleep quality, and sleep efficiency. No association was found between sleep efficiency and amyloid-β, and between slow-wave activity and tau. Most of the studies did not find any correlation between total sleep time and amyloid-β nor tau level. Opposing results correlated sleep quality with amyloid-β and tau. CONCLUSIONS This review highlighted inconsistent results across the studies; as such, the specific association between the glymphatic system and sleep parameters in healthy adults remains poorly understood. Due to the heterogeneity of sleep assessment methods and the self-reported data representing the majority of the observations, future studies with universal study design and sleep methodology in healthy individuals are advocated.
Collapse
Affiliation(s)
- L Sangalli
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; College of Dental Medicine - Illinois, Downers Grove, Illinois, USA.
| | - I A Boggero
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Abstract
Alzheimer's disease (AD) characterization has progressed from being indexed using clinical symptomatology followed by neuropathological examination at autopsy to in vivo signatures using cerebrospinal fluid (CSF) biomarkers and positron emission tomography. The core AD biomarkers reflect amyloid-β plaques (A), tau pathology (T) and neurodegeneration (N), following the ATN schedule, and are now being introduced into clinical routine practice. This is an important development, as disease-modifying treatments are now emerging. Further, there are now reproducible data on CSF biomarkers which reflect synaptic pathology, neuroinflammation and common co-pathologies. In addition, the development of ultrasensitive techniques has enabled the core CSF biomarkers of AD pathophysiology to be translated to blood (e.g., phosphorylated tau, amyloid-β and neurofilament light). In this chapter, we review where we stand with both core and novel CSF biomarkers, as well as the explosion of data on blood biomarkers. Also, we discuss potential applications in research aiming to better understand the disease, as well as possible use in routine clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anders Elmgren
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
19
|
Qiang Q, Skudder-Hill L, Toyota T, Wei W, Adachi H. CSF GAP-43 as a biomarker of synaptic dysfunction is associated with tau pathology in Alzheimer's disease. Sci Rep 2022; 12:17392. [PMID: 36253408 PMCID: PMC9576773 DOI: 10.1038/s41598-022-20324-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023] Open
Abstract
To test whether cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) concentration is elevated in Alzheimer's disease (AD) dementia and its associations with other hallmarks of AD, we examined the CSF GAP-43 measurements of 787 participants (245 cognitively normal (CN), 415 individuals with mild cognitive impairment (MCI) and 127 individuals with AD dementia) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Associations were investigated between CSF GAP-43 and clinical diagnosis, Aβ/tau/neurodegeneration (AT(N)) status, CSF and blood biomarkers of AD, cognitive measurements and brain neuroimaging findings. CSF GAP-43 levels were increased in patients with AD dementia (mean, 6331.05 pg/ml) compared with the CN (mean, 5001.05 pg/ml) and MCI (mean, 5118.8 pg/ml) (P < 0.001) groups. CSF GAP-43 correlated with CSF phosphorylated tau 181(p-tau) (r = 0.768, P < 0.001), and had high diagnostic accuracy in differentiating tau positive status vs. tau negative status (area under the receiver operating characteristic curve, 0.8606). CSF GAP-43 was particularly elevated among individuals with tau positive status. High CSF GAP-43 was associated with longitudinal deterioration of cognitive scores and brain neuroimaging findings. CSF GAP-43 was associated with a clinical diagnosis of AD dementia and with an individual's tau status, cognitive measurements and findings from neuroimaging. This study implies that CSF GAP-43 as a biomarker of synaptic dysfunction could predict the disease progression of AD patients.
Collapse
Affiliation(s)
- Qiang Qiang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China ,grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Loren Skudder-Hill
- grid.12527.330000 0001 0662 3178Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China
| | - Tomoko Toyota
- grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Wenshi Wei
- grid.8547.e0000 0001 0125 2443Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Hiroaki Adachi
- grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
20
|
Zakharova NV, Bugrova AE, Indeykina MI, Fedorova YB, Kolykhalov IV, Gavrilova SI, Nikolaev EN, Kononikhin AS. Proteomic Markers and Early Prediction of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:762-776. [PMID: 36171657 DOI: 10.1134/s0006297922080089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maria I Indeykina
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | | | | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | |
Collapse
|
21
|
Zhong S, Zhao B, Ma YH, Sun Y, Zhao YL, Liu WH, Ou YN, Dong Q, Tan L, Yu JT. Associations of Physical Activity with Alzheimer’s Disease Pathologies and Cognition: The CABLE Study. J Alzheimers Dis 2022; 89:483-492. [PMID: 35871345 DOI: 10.3233/jad-220389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The associations of physical activity with Alzheimer’s disease (AD) pathologies remain controversial. Objective: To quantitatively assess the association between the frequency of physical activity with cerebrospinal fluid (CSF) biomarkers in AD and further explore the mechanism by which AD pathologies regulate the correlation between physical activity and cognition. Methods: A total of 918 participants without dementia from Chinese Alzheimer’s Biomarker and Lifestyle (CABLE) were examined in this population-based cross-sectional study. Multiple linear models were used to evaluate the associations of physical activity with CSF biomarkers and cognition. Moreover, mediation analyses were conducted to investigate the potential relationships between physical activity, AD pathologies, and cognitive function. Results: Regular physical activity was positively associated with CSF Aβ 42 (p < 0.001) and Aβ 42/40 (p < 0.001), while it was negatively associated with p-tau/Aβ 42 (p < 0.001) and t-tau/Aβ 42 (p < 0.001). Of all participants, regular physical activity was associated with increased cognitive function (p < 0.001). The interaction effect indicated that age moderated the association between physical activity frequency and CSF Aβ 42 (p = 0.014) and p-tau/Aβ 42 (p = 0.041). The impact of physical activity on cognition was mediated in part by amyloid pathologies, accounting for 4.87% to 21.56% of the total effect (p < 0.05). Conclusion: This study showed the beneficial impact of physical activity on AD pathologies and cognition in participants without dementia.
Collapse
Affiliation(s)
- Shuang Zhong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yong-Li Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wen-Hui Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Ma Y, Brettschneider J, Collingwood JF. A Systematic Review and Meta-Analysis of Cerebrospinal Fluid Amyloid and Tau Levels Identifies Mild Cognitive Impairment Patients Progressing to Alzheimer's Disease. Biomedicines 2022; 10:1713. [PMID: 35885018 PMCID: PMC9313367 DOI: 10.3390/biomedicines10071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Reported levels of amyloid-beta and tau in human cerebrospinal fluid (CSF) were evaluated to discover if these biochemical markers can predict the transition from Mild Cognitive Impairment (MCI) to Alzheimer’s disease (AD). A systematic review of the literature in PubMed and Web of Science (April 2021) was performed by a single researcher to identify studies reporting immunologically-based (xMAP or ELISA) measures of CSF analytes Aβ(1-42) and/or P-tau and/or T-tau in clinical studies with at least two timepoints and a statement of diagnostic criteria. Of 1137 screened publications, 22 met the inclusion criteria for CSF Aβ(1-42) measures, 20 studies included T-tau, and 17 included P-tau. Six meta-analyses were conducted to compare the analytes for healthy controls (HC) versus progressive MCI (MCI_AD) and for non-progressive MCI (Stable_MCI) versus MCI_AD; effect sizes were determined using random effects models. The heterogeneity of effect sizes across studies was confirmed with very high significance (p < 0.0001) for all meta-analyses except HC versus MCI_AD T-tau (p < 0.05) and P-tau (non-significant). Standard mean difference (SMD) was highly significant (p < 0.0001) for all comparisons (Stable_MCI versus MCI_AD: SMD [95%-CI] Aβ(1-42) = 1.19 [0.96,1.42]; T-tau = −1.03 [−1.24,−0.82]; P-tau = −1.03 [−1.47,−0.59]; HC versus MCI_AD: SMD Aβ(1-42) = 1.73 [1.39,2.07]; T-tau = −1.13 [−1.33,−0.93]; P-tau = −1.10 [−1.23,−0.96]). The follow-up interval in longitudinal evaluations was a critical factor in clinical study design, and the Aβ(1−42)/P-tau ratio most robustly differentiated progressive from non-progressive MCI. The value of amyloid-beta and tau as markers of patient outcome are supported by these findings.
Collapse
Affiliation(s)
- Yunxing Ma
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| | | | | |
Collapse
|
23
|
Djukic M, Lange P, Erbguth F, Nau R. Spatial and temporal variation of routine parameters: pitfalls in the cerebrospinal fluid analysis in central nervous system infections. J Neuroinflammation 2022; 19:174. [PMID: 35794632 PMCID: PMC9258096 DOI: 10.1186/s12974-022-02538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The cerebrospinal fluid (CSF) space is convoluted. CSF flow oscillates with a net flow from the ventricles towards the cerebral and spinal subarachnoid space. This flow is influenced by heartbeats, breath, head or body movements as well as the activity of the ciliated epithelium of the plexus and ventricular ependyma. The shape of the CSF space and the CSF flow preclude rapid equilibration of cells, proteins and smaller compounds between the different parts of the compartment. In this review including reinterpretation of previously published data we illustrate, how anatomical and (patho)physiological conditions can influence routine CSF analysis. Equilibration of the components of the CSF depends on the size of the molecule or particle, e.g., lactate is distributed in the CSF more homogeneously than proteins or cells. The concentrations of blood-derived compounds usually increase from the ventricles to the lumbar CSF space, whereas the concentrations of brain-derived compounds usually decrease. Under special conditions, in particular when distribution is impaired, the rostro-caudal gradient of blood-derived compounds can be reversed. In the last century, several researchers attempted to define typical CSF findings for the diagnosis of several inflammatory diseases based on routine parameters. Because of the high spatial and temporal variations, findings considered typical of certain CNS diseases often are absent in parts of or even in the entire CSF compartment. In CNS infections, identification of the pathogen by culture, antigen detection or molecular methods is essential for diagnosis.
Collapse
|
24
|
Tau as a Biomarker of Neurodegeneration. Int J Mol Sci 2022; 23:ijms23137307. [PMID: 35806324 PMCID: PMC9266883 DOI: 10.3390/ijms23137307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Less than 50 years since tau was first isolated from a porcine brain, its detection in femtolitre concentrations in biological fluids is revolutionizing the diagnosis of neurodegenerative diseases. This review highlights the molecular and technological advances that have catapulted tau from obscurity to the forefront of biomarker diagnostics. Comprehensive updates are provided describing the burgeoning clinical applications of tau as a biomarker of neurodegeneration. For the clinician, tau not only enhances diagnostic accuracy, but holds promise as a predictor of clinical progression, phenotype, and response to drug therapy. For patients living with neurodegenerative disorders, characterization of tau dysregulation could provide much-needed clarity to a notoriously murky diagnostic landscape.
Collapse
|
25
|
Hannonen S, Andberg S, Kärkkäinen V, Rusanen M, Lehtola JM, Saari T, Korhonen V, Hokkanen L, Hallikainen M, Hänninen T, Leinonen V, Kaarniranta K, Bednarik R, Koivisto AM. Shortening of Saccades as a Possible Easy-to-Use Biomarker to Detect Risk of Alzheimer's Disease. J Alzheimers Dis 2022; 88:609-618. [PMID: 35662117 PMCID: PMC9398059 DOI: 10.3233/jad-215551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Wide-ranging functional defects in eye movements have been reported in Alzheimer’s disease (AD) dementia. The detection of abnormal eye movements and reading problems may identify persons at risk of AD when clear clinical symptoms are lacking. Objective: To examine whether computer-based eye-tracking (ET) analysis of King-Devick (KD) test results differentiates cognitively healthy persons from persons with minor problems in cognitive testing or diagnosed mild AD. Methods: We recruited 78 participants (57 non-demented, 21 with mild AD) who underwent neurological examination, the Consortium to Establish a Registry for Alzheimer’s Disease neuropsychological test battery (CERAD-NB), and a Clinical Dementia Rating (CDR) interview. The non-demented participants were further divided into control (normal CERAD subtests, mean MMSE = 28) and objective mild cognitive impairment (MCI; decline in at least one CERAD memory score, mean MMSE = 27) groups. The KD reading test was performed using computer-based ET. The total time used for the reading test, errors made, fixation and saccade durations, and saccade amplitudes were analyzed. Results: We found significant differences between the control, objective MCI, and AD groups in regard to the mean saccade amplitude (3.58, 3.33, and 3.21 ms, respectively, p < 0.03) and duration (27.1, 25.3, and 24.8 ms, respectively, p < 0.05). The KD error scores in the AD group differed significantly (p < 0.01) from the other groups. Conclusion: Computed ET analysis of the KD test may help detect persons with objective MCI early when clear clinical symptoms are lacking. The portable device for ET is easy to use in primary health care memory clinics.
Collapse
Affiliation(s)
- Sanna Hannonen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sami Andberg
- School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Virve Kärkkäinen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Minna Rusanen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha-Matti Lehtola
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Toni Saari
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,School of Educational Sciences and Psychology, University of Eastern Finland, Joensuu, Finland
| | - Ville Korhonen
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Merja Hallikainen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Hänninen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Leinonen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Roman Bednarik
- School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Anne M Koivisto
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Departments of Geriatrics and Neurology, Helsinki University Hospital and Department of Neurosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Said HM, Kaya D, Yavuz I, Dost FS, Altun ZS, Isik AT. A Comparison of Cerebrospinal Fluid Beta-Amyloid and Tau in Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Dementias. Clin Interv Aging 2022; 17:467-477. [PMID: 35431542 PMCID: PMC9012339 DOI: 10.2147/cia.s360736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/02/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Idiopathic normal pressure hydrocephalus (iNPH) is the leading reversible cause of cognitive impairment and gait disturbance that has similar clinical manifestations and accompanies to major neurodegenerative disorders in older adults. We aimed to investigate whether cerebrospinal fluid (CSF) biomarker for Alzheimer's disease (AD) may be useful in the differential diagnosis of iNPH. PATIENTS AND METHODS Amyloid-beta (Aß) 42 and 40, total tau (t-tau), phosphorylated tau (p-tau) were measured via ELISA in 192 consecutive CSF samples of patients with iNPH (n=80), AD (n=48), frontotemporal dementia (FTD) (n=34), Lewy body diseases (LBDs) (n=30) consisting of Parkinson's disease dementia and dementia with Lewy bodies. RESULTS The mean age of the study population was 75.6±7.7 years, and 54.2% were female. CSF Aβ42 levels were significantly higher, and p-tau and t-tau levels were lower in iNPH patients than in those with AD and LBDs patients. Additionally, iNPH patients had significantly higher levels of t-tau than those with FTD. Age and sex-adjusted multi-nominal regression analysis revealed that the odds of having AD relative to iNPH decreased by 37% when the Aβ42 level increased by one standard deviation (SD), and the odds of having LBDs relative to iNPH decreased by 47%. The odds of having LBDs relative to iNPH increased 76% when the p-tau level increased 1SD. It is 2.5 times more likely for a patient to have LBD relative to NPH and 2.1 times more likely to have AD relative to iNPH when the t-tau value increased 1SD. CONCLUSION Our results suggest that levels of CSF Aβ42, p-tau, and t-tau, in particularly decreased t-tau, are of potential value in differentiating iNPH from LBDs and also confirm previous studies reporting t-tau level is lower and Aβ42 level is higher in iNPH than in AD.
Collapse
Affiliation(s)
- Harun Muayad Said
- Department of Molecular Medicine, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Derya Kaya
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Idil Yavuz
- Department of Statistics, Dokuz Eylul University, Faculty of Science, Izmir, Turkey
| | - Fatma Sena Dost
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
| | - Zekiye Sultan Altun
- Department of Basic Oncology, Oncology Institute, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ahmet Turan Isik
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Geriatric Science Association, Izmir, Turkey
| |
Collapse
|
27
|
Mahaman YAR, Embaye KS, Huang F, Li L, Zhu F, Wang JZ, Liu R, Feng J, Wang X. Biomarkers used in Alzheimer's disease diagnosis, treatment, and prevention. Ageing Res Rev 2022; 74:101544. [PMID: 34933129 DOI: 10.1016/j.arr.2021.101544] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), being the number one in terms of dementia burden, is an insidious age-related neurodegenerative disease and is presently considered a global public health threat. Its main histological hallmarks are the Aβ senile plaques and the P-tau neurofibrillary tangles, while clinically it is marked by a progressive cognitive decline that reflects the underlying synaptic loss and neurodegeneration. Many of the drug therapies targeting the two pathological hallmarks namely Aβ and P-tau have been proven futile. This is probably attributed to the initiation of therapy at a stage where cognitive alterations are already obvious. In other words, the underlying neuropathological changes are at a stage where these drugs lack any therapeutic value in reversing the damage. Therefore, there is an urgent need to start treatment in the very early stage where these changes can be reversed, and hence, early diagnosis is of primordial importance. To this aim, the use of robust and informative biomarkers that could provide accurate diagnosis preferably at an earlier phase of the disease is of the essence. To date, several biomarkers have been established that, to a different extent, allow researchers and clinicians to evaluate, diagnose, and more specially exclude other related pathologies. In this study, we extensively reviewed data on the currently explored biomarkers in terms of AD pathology-specific and non-specific biomarkers and highlighted the recent developments in the diagnostic and theragnostic domains. In the end, we have presented a separate elaboration on aspects of future perspectives and concluding remarks.
Collapse
|
28
|
Leuzy A, Mattsson‐Carlgren N, Palmqvist S, Janelidze S, Dage JL, Hansson O. Blood-based biomarkers for Alzheimer's disease. EMBO Mol Med 2022; 14:e14408. [PMID: 34859598 PMCID: PMC8749476 DOI: 10.15252/emmm.202114408] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) represent a mounting public health challenge. As these diseases are difficult to diagnose clinically, biomarkers of underlying pathophysiology are playing an ever-increasing role in research, clinical trials, and in the clinical work-up of patients. Though cerebrospinal fluid (CSF) and positron emission tomography (PET)-based measures are available, their use is not widespread due to limitations, including high costs and perceived invasiveness. As a result of rapid advances in the development of ultra-sensitive assays, the levels of pathological brain- and AD-related proteins can now be measured in blood, with recent work showing promising results. Plasma P-tau appears to be the best candidate marker during symptomatic AD (i.e., prodromal AD and AD dementia) and preclinical AD when combined with Aβ42/Aβ40. Though not AD-specific, blood NfL appears promising for the detection of neurodegeneration and could potentially be used to detect the effects of disease-modifying therapies. This review provides an overview of the progress achieved thus far using AD blood-based biomarkers, highlighting key areas of application and unmet challenges.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Centre for Molecular MedicineLund UniversityLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Shorena Janelidze
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | - Jeffrey L Dage
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisINUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalLundSweden
| |
Collapse
|
29
|
Sacchi L, Carandini T, Fumagalli GG, Pietroboni AM, Contarino VE, Siggillino S, Arcaro M, Fenoglio C, Zito F, Marotta G, Castellani M, Triulzi F, Galimberti D, Scarpini E, Arighi A. Unravelling the Association Between Amyloid-PET and Cerebrospinal Fluid Biomarkers in the Alzheimer's Disease Spectrum: Who Really Deserves an A+? J Alzheimers Dis 2021; 85:1009-1020. [PMID: 34897084 DOI: 10.3233/jad-210593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Association between cerebrospinal fluid (CSF)-amyloid-β (Aβ)42 and amyloid-PET measures is inconstant across the Alzheimer's disease (AD) spectrum. However, they are considered interchangeable, along with Aβ 42/40 ratio, for defining 'Alzheimer's Disease pathologic change' (A+). OBJECTIVE Herein, we further characterized the association between amyloid-PET and CSF biomarkers and tested their agreement in a cohort of AD spectrum patients. METHODS We include ed 23 patients who underwent amyloid-PET, MRI, and CSF analysis showing reduced levels of Aβ 42 within a 365-days interval. Thresholds used for dichotomization were: Aβ 42 < 640 pg/mL (Aβ 42+); pTau > 61 pg/mL (pTau+); and Aβ 42/40 < 0.069 (ADratio+). Amyloid-PET scans were visually assessed and processed by four pipelines (SPMCL, SPMAAL, FSGM, FSWC). RESULTS Different pipelines gave highly inter-correlated standardized uptake value ratios (SUVRs) (rho = 0.93-0.99). The most significant findings were: pTau positive correlation with SPMCL SUVR (rho = 0.56, p = 0.0063) and Aβ 42/40 negative correlation with SPMCL and SPMAAL SUVRs (rho = -0.56, p = 0.0058; rho = -0.52, p = 0.0117 respectively). No correlations between CSF-Aβ 42 and global SUVRs were observed. In subregion analysis, both pTau and Aβ 42/40 values significantly correlated with cingulate SUVRs from any pipeline (R2 = 0.55-0.59, p < 0.0083), with the strongest associations observed for the posterior/isthmus cingulate areas. However, only associations observed for Aβ 42/40 ratio were still significant in linear regression models. Moreover, combining pTau with Aβ 42 or using Aβ 42/40, instead of Aβ 42 alone, increased concordance with amyloid-PET status from 74% to 91% based on visual reads and from 78% to 96% based on Centiloids. CONCLUSION We confirmed that, in the AD spectrum, amyloid-PET measures show a stronger association and a better agreement with CSF-Aβ 42/40 and secondarily pTau rather than Aβ 42 levels.
Collapse
Affiliation(s)
- Luca Sacchi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Anna Margherita Pietroboni
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Silvia Siggillino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felicia Zito
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
30
|
Lloret A, Esteve D, Lloret MA, Cervera-Ferri A, Lopez B, Nepomuceno M, Monllor P. When Does Alzheimer's Disease Really Start? The Role of Biomarkers. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2021; 19:355-364. [PMID: 34690605 DOI: 10.1176/appi.focus.19305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(Appeared originally in Int J Mol Sci 2019, 20 5536).
Collapse
Affiliation(s)
- Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Maria-Angeles Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Ana Cervera-Ferri
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Begoña Lopez
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Mariana Nepomuceno
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| | - Paloma Monllor
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Avda. Blasco Ibanez, 17, 46010 Valencia, Spain; Department of Clinic Neurophysiology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain; Department of Human Anatomy and Embriology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; Department of Neurology. University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain
| |
Collapse
|
31
|
Park S, Kim Y. Bias-generating factors in biofluid amyloid-β measurements for Alzheimer's disease diagnosis. Biomed Eng Lett 2021; 11:287-295. [PMID: 34616582 DOI: 10.1007/s13534-021-00201-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide, yet the dearth of readily accessible diagnostic biomarkers is a substantial hindrance towards progressing to effective preventive and therapeutic approaches. Due to a long delay between cerebral amyloid-β (Aβ) accumulation and the onset of cognitive impairments, biomarkers that reflect Aβ pathology and enable routine screening for disease progression are of urgent need for application in the clinical diagnosis of AD. According to accumulating evidences, cerebrospinal fluid (CSF) and plasma offer windows to the brain as they allow monitoring of biochemical changes in the brain. Considering the high availability and accuracy in depicting Aβ deposition in the brain, Aβ levels in CSF and plasma are regarded as promising fluid biomarkers for the diagnosis of AD patients at an early stage. However, clinical data with intra- and interindividual variations in the concentrations of CSF and plasma Aβ implicate the need to reevaluate current Aβ detection methods and establish a standardized operating procedure. Therefore, this review introduces three bias-generating factors in biofluid Aβ measurement that may hamper the accurate Aβ quantification and how such complications can be overcome for the widespread implementation of fluid Aβ detection in clinical practice.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| |
Collapse
|
32
|
Sirkka J, Parviainen M, Jyrkkänen HK, Koivisto AM, Säisänen L, Rauramaa T, Leinonen V, Danner N. Upper limb dysfunction and activities in daily living in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2021; 163:2675-2683. [PMID: 34235588 PMCID: PMC8437908 DOI: 10.1007/s00701-021-04909-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/10/2021] [Indexed: 12/05/2022]
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease with a characteristic symptom triad of gait disturbance, cognitive decline, and incontinence. Recently, also dysfunctions in upper limbs have been described in iNPH and reported to improve after shunt surgery. We aim to describe the role of upper limb motor function in the clinical assessment of iNPH patients and its influence on activities of daily living (ADL). Methods Seventy-five consecutive patients with probable iNPH were studied pre-operatively and at 3 and 12 months after shunt surgery. The pre-operative evaluation included lumbar drainage of cerebrospinal fluid (tap test). Motor functions were assessed in upper and lower limbs with Grooved Pegboard Test (GPT), Box & Block Test (BBT), Total Score of Gait (TSG), and balance test. ADL was assessed with Barthel’s index and cognition in accordance with the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Results Patients showed improvement in all motor tests and ADL at 3 months after shunt surgery. The improvement remained stable during the 12-month post-operative follow-up. The motor function tests correlated with each other and with ADL. Conclusions A 3-month follow-up period after shunt surgery is adequate to show improvement in motor tasks, and a positive outcome will last for at least 12 months. A shunt-responsive dysfunction of upper limb motor performance plays a major role in ADL of iNPH patients. Therefore, we suggest an evaluation of upper limb motor performance to be included in routine evaluation of iNPH patients.
Collapse
Affiliation(s)
- Jani Sirkka
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, P.O. Box 100, 70029 KYS, Kuopio, Finland.
| | - Marita Parviainen
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Center, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Geriatrics/ Internal Medicine and Rehabilitation, Helsinki University Hospital and Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Säisänen
- Clinical Neurophysiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital and Institute of Clinical Medicine - Pathology, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Nils Danner
- Department of Neurosurgery, Kuopio University Hospital and Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, P.O. Box 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
33
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
34
|
Lagarde J, Olivieri P, Bottlaender M, Sarazin M. Diagnosi clinicolaboratoristica della malattia di Alzheimer. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Mao C, Sha L, Liu C, Chu S, Li J, Huang X, Lei D, Wang J, Dong L, Xu Q, Peng B, Cui LY, Gao J. Cerebrospinal Fluid Alzheimer's Biomarkers and Neurofilament Light Profile of Idiopathic Normal Pressure Hydrocephalus in China: A PUMCH Cohort Study. NEURODEGENER DIS 2021; 20:165-172. [PMID: 34077945 DOI: 10.1159/000514052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Idiopathic normal pressure hydrocephalus (iNPH) is one of the potentially reversible dementias. Early and accurate diagnosis is important for patients' prognosis. Emerging evidence shows fluid biomarkers are useful in diagnosis and pathophysiological research of iNPH. METHODS Probable iNPH and Alzheimer's disease (AD) patients were recruited. Clinical diagnosis was performed according to international guidelines. CSF collection complied with a standard protocol. Commercial accessible ELISA kits were introduced for measurement of CSF t-tau, p-tau181, Aβ42, and NfL. RESULTS Twenty-seven iNPH, 27 AD, and 18 controls were included. The profiles of CSF t-tau, p-tau181, and t-tau/Aβ42 in the iNPH and AD were significantly different (p < 0.0001). The profiles of CSF t-tau, p-tau181, and t-tau/Aβ42 in the iNPH and control were not different (p > 0.05). Level of CSF Aβ42 in iNPH was significantly lower than control (p < 0.0001) and also significantly higher than AD (p < 0.05). NfL level in iNPH and AD was increased, but its level in iNPH was significantly lower than that in AD (p = 0.005). NfL and t-tau level in the iNPH group was significantly correlated (coefficient = 0.649, p = 0.005), but not in AD (coefficient = 0.298, p = 0.157). CONCLUSION Alzheimer's CSF biomarker profile of iNPH subjects showed moderately decreased Aβ42 and normal t-tau, p-tau181, and t-tau/Aβ42, which was distinguishable from AD. The different profiles and correlation of t-tau and NfL suggested different pathophysiology of AD and iNPH. t-tau was relatively an AD-specific neurodegenerative biomarker compared to NfL.
Collapse
Affiliation(s)
- Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Longze Sha
- Institute of Basic Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Caiyan Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Shanshan Chu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Jie Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Xinying Huang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Dan Lei
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Liling Dong
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Qi Xu
- Institute of Basic Medicine, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Nerg O, Junkkari A, Hallikainen I, Rauramaa T, Luikku A, Hiltunen M, Jääskeläinen JE, Leinonen V, Hänninen T, Koivisto A. The CERAD Neuropsychological Battery in Patients with Idiopathic Normal Pressure Hydrocephalus Compared with Normal Population and Patients with Mild Alzheimer's Disease. J Alzheimers Dis 2021; 81:1117-1130. [PMID: 33896842 DOI: 10.3233/jad-201363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The usefulness of CERAD Neuropsychological Battery for describing the cognitive impairment in idiopathic normal pressure hydrocephalus (iNPH) is unknown. OBJECTIVE To compare the cognitive profile of patients with iNPH to patients with mild Alzheimer's disease (AD) and age-matched cognitively healthy individuals by using the CERAD-NB. METHODS We studied CERAD-NB subtest results, including the Mini-Mental State Examination (MMSE), between 199 patients with probable iNPH, 236 patients with mild AD, and 309 people with normal cognition, using age, education, and gender adjusted multivariate linear regression model. In addition, the effects of AD-related brain pathology detected in frontal cortical brain biopsies in iNPH patients' cognitive profiles were examined. RESULTS The iNPH patients performed worse than cognitively healthy people in all CERAD-NB subtests. Despite similar performances in the MMSE, AD patients outperformed iNPH patients in Verbal Fluency (p = 0.016) and Clock Drawing (p < 0.001) tests. However, iNPH patients outperformed AD patients in the Boston Naming Test and Word List Recall and Recognition (p < 0.001). AD-related pathology in brain biopsies did not correlate with the CERAD-NB results. CONCLUSION At the time of the iNPH diagnosis, cognitive performances differed from cognitively healthy people in all CERAD-NB subtests. When the iNPH and AD patients' results were compared, the iNPH patients performed worse in Verbal Fluency and Clock Drawing tests while the AD group had more pronounced episodic memory dysfunctions. This study demonstrates significant differences in the CERAD-NB subtests between cognitive profiles of iNPH and AD patients. These differences are not captured by the MMSE alone.
Collapse
Affiliation(s)
- Ossi Nerg
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Antti Junkkari
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ilona Hallikainen
- Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Antti Luikku
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Juha E Jääskeläinen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and Unit of Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Hänninen
- Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anne Koivisto
- Unit of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Unit of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Geriatrics / Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
37
|
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers 2021; 7:33. [PMID: 33986301 PMCID: PMC8574196 DOI: 10.1038/s41572-021-00269-y] [Citation(s) in RCA: 1161] [Impact Index Per Article: 290.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is biologically defined by the presence of β-amyloid-containing plaques and tau-containing neurofibrillary tangles. AD is a genetic and sporadic neurodegenerative disease that causes an amnestic cognitive impairment in its prototypical presentation and non-amnestic cognitive impairment in its less common variants. AD is a common cause of cognitive impairment acquired in midlife and late-life but its clinical impact is modified by other neurodegenerative and cerebrovascular conditions. This Primer conceives of AD biology as the brain disorder that results from a complex interplay of loss of synaptic homeostasis and dysfunction in the highly interrelated endosomal/lysosomal clearance pathways in which the precursors, aggregated species and post-translationally modified products of Aβ and tau play important roles. Therapeutic endeavours are still struggling to find targets within this framework that substantially change the clinical course in persons with AD.
Collapse
Affiliation(s)
| | - Helene Amieva
- Inserm U1219 Bordeaux Population Health Center, University of Bordeaux, Bordeaux, France
| | | | - Gäel Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph A Nixon
- Departments of Psychiatry and Cell Biology, New York University Langone Medical Center, New York University, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York University, New York, NY, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050740. [PMID: 34067119 PMCID: PMC8151638 DOI: 10.3390/antiox10050740] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Collapse
|
39
|
Clark AL, Weigand AJ, Thomas KR, Solders SK, Delano-Wood L, Bondi MW, Bernier RA, Sundermann EE, Banks SJ, Bangen KJ. Elevated Inflammatory Markers and Arterial Stiffening Exacerbate Tau but Not Amyloid Pathology in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis 2021; 80:1451-1463. [PMID: 33682714 DOI: 10.3233/jad-201382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Age-related cerebrovascular and neuroinflammatory processes have been independently identified as key mechanisms of Alzheimer's disease (AD), although their interactive effects have yet to be fully examined. OBJECTIVE The current study examined 1) the influence of pulse pressure (PP) and inflammatory markers on AD protein levels and 2) links between protein biomarkers and cognitive function in older adults with and without mild cognitive impairment (MCI). METHODS This study included 218 ADNI (81 cognitively normal [CN], 137 MCI) participants who underwent lumbar punctures, apolipoprotein E (APOE) genotyping, and cognitive testing. Cerebrospinal (CSF) levels of eight pro-inflammatory markers were used to create an inflammation composite, and amyloid-beta 1-42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau) were quantified. RESULTS Multiple regression analyses controlling for age, education, and APOE ɛ4 genotype revealed significant PP x inflammation interactions for t-tau (B = 0.88, p = 0.01) and p-tau (B = 0.84, p = 0.02); higher inflammation was associated with higher levels of tau within the MCI group. However, within the CN group, analyses revealed a significant PP x inflammation interaction for Aβ42 (B = -1.01, p = 0.02); greater inflammation was associated with higher levels of Aβ42 (indicative of lower cerebral amyloid burden) in those with lower PP. Finally, higher levels of tau were associated with poorer memory performance within the MCI group only (p s < 0.05). CONCLUSION PP and inflammation exert differential effects on AD CSF proteins and provide evidence that vascular risk is associated with greater AD pathology across our sample of CN and MCI older adults.
Collapse
Affiliation(s)
- Alexandra L Clark
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Alexandra J Weigand
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,San Diego State University/University of California, San Diego (SDSU/UCSD), La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Seraphina K Solders
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Lisa Delano-Wood
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Mark W Bondi
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Rachel A Bernier
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Erin E Sundermann
- University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | - Sarah J Banks
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J Bangen
- Research Services, VA San Diego Healthcare System, San Diego, CA, USA.,University of California San Diego, School of Medicine, Department of Psychiatry, La Jolla, CA, USA
| | | |
Collapse
|
40
|
Use of Alzheimer's Disease Cerebrospinal Fluid Biomarkers in A Tertiary Care Memory Clinic. Can J Neurol Sci 2021; 49:203-209. [PMID: 33845924 DOI: 10.1017/cjn.2021.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers are promising tools to help identify the underlying pathology of neurocognitive disorders. In this manuscript, we report our experience with AD CSF biomarkers in 262 consecutive patients in a tertiary care memory clinic. METHODS We retrospectively reviewed 262 consecutive patients who underwent lumbar puncture (LP) and CSF measurement of AD biomarkers (Aβ1-42, total tau or t-tau, and p-tau181). We studied the safety of the procedure and its impact on patient's diagnosis and management. RESULTS The LP allowed to identify underlying AD pathology in 72 of the 121 patients (59%) with early onset amnestic mild cognitive impairment (aMCI) with a high probability of progression to AD; to distinguish the behavioral/dysexecutive variant of AD from the behavioral variant of frontotemporal dementia (bvFTD) in 25 of the 45 patients (55%) with an atypical neurobehavioral profile; to identify AD as the underlying pathology in 15 of the 27 patients (55%) with atypical or unclassifiable primary progressive aphasia (PPA); and to distinguish AD from other disorders in 9 of the 29 patients (31%) with psychiatric differential diagnoses and 19 of the 40 patients (47%) with lesional differential diagnoses (normal pressure hydrocephalus, encephalitis, prion disease, etc.). No major complications occurred following the LP. INTERPRETATION Our results suggest that CSF analysis is a safe and effective diagnostic tool in select patients with neurocognitive disorders. We advocate for a wider use of this biomarker in tertiary care memory clinics in Canada.
Collapse
|
41
|
Leuzy A, Cullen NC, Mattsson-Carlgren N, Hansson O. Current advances in plasma and cerebrospinal fluid biomarkers in Alzheimer's disease. Curr Opin Neurol 2021; 34:266-274. [PMID: 33470669 DOI: 10.1097/wco.0000000000000904] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of recent advances in cerebrospinal fluid (CSF) and blood-based biomarkers of Alzheimer's disease lesions. RECENT FINDINGS Important recent advances for CSF Alzheimer's disease biomarkers include the introduction of fully automated assays, the development and implementation of certified reference materials for CSF Aβ42 and a unified protocol for handling of samples, which all support reliability and availability of CSF Alzheimer's disease biomarkers. Aβ deposition can be detected using Aβ42/Aβ40 ratio in both CSF and plasma, though a much more modest change is seen in plasma. Tau aggregation can be detected using phosphorylated tau (P-tau) at threonine 181 and 217 in CSF, with similar accuracy in plasma. Neurofilament light (NfL) be measured in CSF and shows similar diagnostic accuracy in plasma. Though total tau (T-tau) can also be measured in plasma, this measure is of limited clinical relevance for Alzheimer's disease in its current immunoassay format. SUMMARY Alzheimer's disease biomarkers, including Aβ, P-tau and NfL can now be reliably measured in both CSF and blood. Plasma-based measures of P-tau show particular promise, with potential applications in both clinical practice and in clinical trials.
Collapse
Affiliation(s)
- Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
| | - Nicholas C Cullen
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
- Department of Neurology, Skåne University Hospital
- Wallenberg Centre for Molecular Medicine, Lund University
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
42
|
Hansson O, Batrla R, Brix B, Carrillo MC, Corradini V, Edelmayer RM, Esquivel RN, Hall C, Lawson J, Bastard NL, Molinuevo JL, Nisenbaum LK, Rutz S, Salamone SJ, Teunissen CE, Traynham C, Umek RM, Vanderstichele H, Vandijck M, Wahl S, Weber CJ, Zetterberg H, Blennow K. The Alzheimer's Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid β and tau. Alzheimers Dement 2021; 17:1575-1582. [PMID: 33788410 DOI: 10.1002/alz.12316] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
The core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers amyloid beta (Aβ42 and Aβ40), total tau, and phosphorylated tau, have been extensively clinically validated, with very high diagnostic performance for AD, including the early phases of the disease. However, between-center differences in pre-analytical procedures may contribute to variability in measurements across laboratories. To resolve this issue, a workgroup was led by the Alzheimer's Association with experts from both academia and industry. The aim of the group was to develop a simplified and standardized pre-analytical protocol for CSF collection and handling before analysis for routine clinical use, and ultimately to ensure high diagnostic performance and minimize patient misclassification rates. Widespread application of the protocol would help minimize variability in measurements, which would facilitate the implementation of unified cut-off levels across laboratories, and foster the use of CSF biomarkers in AD diagnostics for the benefit of the patients.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | - John Lawson
- Fujirebio Diagnostics Inc, Malvern, Pennsylvania, USA
| | | | - José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation Barcelona, Barcelona, Spain.,AD and Other Cognitive Disorders Unit Hospital Clinic, Barcelona, Spain
| | | | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | - Simone Wahl
- Saladax Biomedical, Inc. Bethlehem, Bethlehem, Pennsylvania, USA
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
43
|
Elevated CSF LRG and Decreased Alzheimer's Disease Biomarkers in Idiopathic Normal Pressure Hydrocephalus. J Clin Med 2021; 10:jcm10051105. [PMID: 33800840 PMCID: PMC7961420 DOI: 10.3390/jcm10051105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 01/25/2023] Open
Abstract
Leucine-rich-alpha-2-glykoprotein (LRG) is suggested as a potential biomarker for idiopathic normal pressure hydrocephalus (iNPH). Our goal was to compare the cerebrospinal fluid (CSF) LRG levels between 119 iNPH patients and 33 age-matched controls and with the shunt responses and the brain biopsy Alzheimer’s disease (AD) pathology among the iNPH patients. CSF LRG, Aβ1-42, P-tau181, and T-tau were measured by using commercial ELISAs. The LRG levels in the CSF were significantly increased in the iNPH patients (p < 0.001) as compared to the controls, regardless of the AD pathology. However, CSF LRG did not correlate with the shunt response in contrast to the previous findings. The CSF AD biomarkers, i.e., Aβ1-42, T-tau, and P-tau correlated with the brain biopsy AD pathology as expected but were systematically lower in the iNPH patients when compared to the controls (<0.001). Our findings support that the LRG levels in the CSF are potentially useful for the diagnostics of iNPH, independent of the brain AD pathology, but contrary to previous findings, not for predicting the shunt response. Our findings also suggest a need for specific reference values of the CSF AD biomarkers for the diagnostics of comorbid AD pathology in the iNPH patients.
Collapse
|
44
|
Junkkari A, Sintonen H, Danner N, Jyrkkänen HK, Rauramaa T, Luikku AJ, Koivisto AM, Roine RP, Viinamäki H, Soininen H, Jääskeläinen JE, Leinonen V. 5-Year health-related quality of life outcome in patients with idiopathic normal pressure hydrocephalus. J Neurol 2021; 268:3283-3293. [PMID: 33651154 PMCID: PMC8357651 DOI: 10.1007/s00415-021-10477-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Health-related quality of life (HRQoL) is severely impaired in persons with idiopathic normal pressure hydrocephalus (iNPH). The HRQoL improves in a number of patients after the placement of a cerebrospinal fluid (CSF) shunt, but long-term follow-up of HRQoL is rare. METHODS Extended follow-up (60 months) of a prospective cohort study involving 189 patients with iNPH who underwent shunt surgery. Preoperative variables were used to predict favorable HRQoL outcome (improvement or non-deterioration) measured by the 15D instrument 5 years after shunting. RESULTS Out of the 189 initially enrolled study participants, 88 had completed 5-year HRQoL follow-up (46%), 64 had died (34%), and 37 (20%) failed to complete the HRQoL follow-up but were alive at the end of the study. After initial post-operative HRQoL improvement, HRQoL deteriorated so that 37/88 participants (42%) had a favorable HRQoL outcome 5 years after shunting. Multivariate binary logistic regression analysis indicated that younger age (adjusted OR 0.86, 95% CI 0.77-0.95; p < 0.005), lower body mass index (adjusted OR 0.87, 95% CI 0.77-0.98; p < 0.05) and better Mini-Mental State Examination performance (adjusted OR 1.16, 95% CI 1.01-1.32; p < 0.05) before surgery predicted favorable 5-year outcome. CONCLUSIONS This extended follow-up showed that the self-evaluated HRQoL outcome is associated with iNPH patients' pre-operative cognitive status, overweight and age. The post-operative deterioration may reflect the natural progression of iNPH, but also derive from aging and comorbidities. It indicates a need for long-term follow-up.
Collapse
Affiliation(s)
- A Junkkari
- Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, 70029 KYS, POB 100, Kuopio, Finland.
| | - H Sintonen
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - N Danner
- Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, 70029 KYS, POB 100, Kuopio, Finland
| | - H K Jyrkkänen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, 70029 KYS, POB 100, Kuopio, Finland
| | - T Rauramaa
- Department of Pathology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - A J Luikku
- Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, 70029 KYS, POB 100, Kuopio, Finland.,Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - A M Koivisto
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Department Neurology, University of Helsinki, Helsinki, Finland.,Department Neurology, Helsinki University Hospital, Helsinki, Finland
| | - R P Roine
- Department of Health and Social Management, University of Eastern Finland, Kuopio, Finland
| | - H Viinamäki
- Department of Psychiatry, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - H Soininen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - J E Jääskeläinen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, 70029 KYS, POB 100, Kuopio, Finland
| | - V Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, 70029 KYS, POB 100, Kuopio, Finland
| |
Collapse
|
45
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
46
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|
47
|
Luikku AJ, Hall A, Nerg O, Koivisto AM, Hiltunen M, Helisalmi S, Herukka SK, Junkkari A, Sutela A, Kojoukhova M, Korhonen V, Mattila J, Lötjönen J, Rummukainen J, Alafuzoff I, Jääskeläinen JE, Remes AM, Solomon A, Kivipelto M, Soininen H, Rauramaa T, Leinonen V. Predicting Development of Alzheimer's Disease in Patients with Shunted Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2020; 71:1233-1243. [PMID: 31498122 DOI: 10.3233/jad-190334] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) patients often develop Alzheimer's disease (AD) related brain pathology. Disease State Index (DSI) is a method to combine data from various sources for differential diagnosis and progression of neurodegenerative disorders. OBJECTIVE To apply DSI to predict clinical AD in shunted iNPH-patients in a defined population. METHODS 335 shunted iNPH-patients (median 74 years) were followed until death (n = 185) or 6/2015 (n = 150). DSI model (including symptom profile, onset age of NPH symptoms, atrophy of medial temporal lobe in CT/MRI, cortical brain biopsy finding, and APOE genotype) was applied. Performance of DSI model was evaluated with receiver operating characteristic (ROC) curve analysis. RESULTS A total of 70 (21%) patients developed clinical AD during median follow-up of 5.3 years. DSI-model predicted clinical AD with moderate effectiveness (AUC = 0.75). Significant factors were cortical biopsy (0.69), clinical symptoms (0.66), and medial temporal lobe atrophy (0.66). CONCLUSION We found increased occurrence of clinical AD in previously shunted iNPH patients as compared with general population. DSI supported the prediction of AD. Cortical biopsy during shunt insertion seems indicated for earlier diagnosis of comorbid AD.
Collapse
Affiliation(s)
- Antti J Luikku
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anette Hall
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Ossi Nerg
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Antti Junkkari
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anna Sutela
- Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Maria Kojoukhova
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Department of Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Korhonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Jaana Rummukainen
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University and Departmentof Pathology and Cytology, Uppsala University Hospital, Uppsala, Sweden
| | - Juha E Jääskeläinen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Alina Solomon
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurology of NeuroCenter Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland, Kuopio, Finland.,Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurosurgery, University of Oulu, Oulu, Finland
| |
Collapse
|
48
|
Nakajima M, Rauramaa T, Mäkinen PM, Hiltunen M, Herukka SK, Kokki M, Musialowicz T, Jyrkkänen HK, Danner N, Junkkari A, Koivisto AM, Jääskeläinen JE, Miyajima M, Ogino I, Furuta A, Akiba C, Kawamura K, Kamohara C, Sugano H, Tange Y, Karagiozov K, Leinonen V, Arai H. Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus. Eur J Neurol 2020; 28:389-400. [PMID: 33035386 PMCID: PMC7821334 DOI: 10.1111/ene.14575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Protein tyrosine phosphatase receptor type Q (PTPRQ) was extracted from the cerebrospinal fluid (CSF) of patients with probable idiopathic normal-pressure hydrocephalus (iNPH) by proteome analysis. We aimed to assess the feasibility of using CSF PTPRQ concentrations for the additional diagnostic criterion of iNPH in Japanese and Finnish populations. METHODS We compared PTPRQ concentrations among patients with probable iNPH and neurologically healthy individuals (normal control [NC] group), patients with normal-pressure hydrocephalus (NPH) of acquired and congenital/developmental aetiologies, patients with Alzheimer's disease and patients with Parkinson's disease in a Japanese analysis cohort. A corresponding iNPH group and NC group in a Finnish cohort was used for validation. Patients in the Finnish cohort who underwent biopsy were classified into two groups based on amyloid and/or tau deposition. We measured PTPRQ expression levels in autopsied brain specimens of iNPH patients and the NC group. RESULTS Cerebrospinal fluid PTPRQ concentrations in the patients with NPH of idiopathic, acquired and congenital/developmental aetiologies were significantly higher than those in the NC group and those with Parkinson's disease, but iNPH showed no significant differences when compared with those in the Alzheimer's disease group. For the patients with iNPH, the area under the receiver-operating characteristic curve was 0.860 in the Japanese iNPH and 0.849 in the Finnish iNPH cohorts. Immunostaining and in situ hybridization revealed PTPRQ expression in the ependymal cells and choroid plexus. It is highly possible that the elevated PTPRQ levels in the CSF are related to ependymal dysfunction from ventricular expansion. CONCLUSIONS Cerebrospinal fluid PTPRQ levels indicated the validity of this assay for auxiliary diagnosis of adult chronic hydrocephalus.
Collapse
Affiliation(s)
- M Nakajima
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - T Rauramaa
- Institute of Clinical Medicine-Pathology, University of Eastern, Finland.,Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - P M Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - M Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - S-K Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocentre, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - M Kokki
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| | - T Musialowicz
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| | - H-K Jyrkkänen
- Institute of Clinical Medicine-Neurosurgery, University of Eastern, Finland.,Neurocentre, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - N Danner
- Institute of Clinical Medicine-Neurosurgery, University of Eastern, Finland.,Neurocentre, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - A Junkkari
- Institute of Clinical Medicine-Neurosurgery, University of Eastern, Finland.,Neurocentre, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - A M Koivisto
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocentre, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - J E Jääskeläinen
- Institute of Clinical Medicine-Neurosurgery, University of Eastern, Finland.,Neurocentre, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - M Miyajima
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - I Ogino
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - A Furuta
- Department of Psychiatry and Behavioural Science, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - C Akiba
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - K Kawamura
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - C Kamohara
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - H Sugano
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Y Tange
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - K Karagiozov
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - V Leinonen
- Institute of Clinical Medicine-Neurosurgery, University of Eastern, Finland.,Neurocentre, Neurosurgery, Kuopio University Hospital, Kuopio, Finland.,Unit of Clinical Neuroscience, Neurosurgery, University of Oulu and Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - H Arai
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Lowe AJ, Sjödin S, Rodrigues FB, Byrne LM, Blennow K, Tortelli R, Zetterberg H, Wild EJ. Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease. PLoS One 2020; 15:e0233820. [PMID: 32804976 PMCID: PMC7430717 DOI: 10.1371/journal.pone.0233820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 01/13/2023] Open
Abstract
Molecular markers derived from cerebrospinal fluid (CSF) represent an accessible means of exploring the pathobiology of Huntington's disease (HD) in vivo. The endo-lysosomal/autophagy system is dysfunctional in HD, potentially contributing to disease pathogenesis and representing a potential target for therapeutic intervention. Several endo-lysosomal proteins have shown promise as biomarkers in other neurodegenerative diseases; however, they have yet to be fully explored in HD. We performed parallel reaction monitoring mass spectrometry analysis (PRM-MS) of multiple endo-lysosomal proteins in the CSF of 60 HD mutation carriers and 20 healthy controls. Using generalised linear models controlling for age and CAG, none of the 18 proteins measured displayed significant differences in concentration between HD patients and controls. This was affirmed by principal component analysis, in which no significant difference across disease stage was found in any of the three components representing lysosomal hydrolases, binding/transfer proteins and innate immune system/peripheral proteins. However, several proteins were associated with measures of disease severity and cognition: most notably amyloid precursor protein, which displayed strong correlations with composite Unified Huntington's Disease Rating Scale, UHDRS Total Functional Capacity, UHDRS Total Motor Score, Symbol Digit Modalities Test and Stroop Word Reading. We conclude that although endo-lysosomal proteins are unlikely to have value as disease state CSF biomarkers for Huntington's disease, several proteins demonstrate associations with clinical severity, thus warranting further, targeted exploration and validation in larger, longitudinal samples.
Collapse
Affiliation(s)
- Alexander J. Lowe
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simon Sjödin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Filipe B. Rodrigues
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lauren M. Byrne
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rosanna Tortelli
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Edward J. Wild
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
50
|
Jang JW, Kim Y, Kim S, Park SW, Kwon SO, Park YH, Lim JS, Youn YC, Hun Kim S, Kim S. Dynamic association between AT(N) profile and cognition mediated by cortical thickness in Alzheimer's continuum. Neuroimage Clin 2020; 27:102282. [PMID: 32590333 PMCID: PMC7322096 DOI: 10.1016/j.nicl.2020.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND The recently-proposed National Institute on Aging and Alzheimer's Association research framework organizes Alzheimer's disease (AD) biomarkers based on amyloid/tau/neurodegeneration (AT(N)). This study investigated the mediating effect of structural change in brain MRI on changes in cognitive function according to initial AT(N) profiles. METHODS We included 576 subjects (cognitively unimpaired (N = 136), mild cognitive impairment (N = 294), dementia (N = 146)) from the Alzheimer's disease Neuroimaging Initiative study. The parallel-process latent growth curve model was applied to test the mediational effect of cortical thickness growth trajectory between the initial AT(N) profiles and cognitive growth trajectory. RESULTS In Alzheimer's continuum, only the A + T + (N)+ profile showed a mediational effect of the cortical thickness growth trajectory. A + T - (N)- was not sufficient to induce direct or indirect effects on cognitive dysfunction, and A + T + (N)- showed a significant direct path from an altered cortical thickness to cognitive decline. CONCLUSION The sequential effect between changes in brain MRI and cognition varied by baseline AT(N) profile, suggesting the dynamic changes in the relationships among biomarkers in the current cascade model.
Collapse
Affiliation(s)
- Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea; Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
| | - Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea; Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
| | - Seongheon Kim
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea; Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
| | - Sang Won Park
- Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
| | - Sung Ok Kwon
- Biomedical Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea.
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea.
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| | - Sung Hun Kim
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea; Kangwon National University School of Medicine, Chuncheon, Republic of Korea.
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|