1
|
Cheng Y, Chen S, Zhang Y, Guo Y, Wu K, Huang Y, Aerqin Q, Kuo K, Li H, Chen S, Liu W, Dong Q, Yu J. Novel diagnostic and prognostic approach for rapidly progressive dementias: Indicators based on amyloid/tau/neurodegeneration (ATN) framework. CNS Neurosci Ther 2024; 30:e14857. [PMID: 39014454 PMCID: PMC11251870 DOI: 10.1111/cns.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
AIMS Apply established cerebrospinal fluid (CSF) and serum biomarkers and novel combined indicators based on the amyloid/tau/neurodegeneration (ATN) framework to improve diagnostic and prognostic power in patients with rapidly progressive dementias (RPDs). METHODS CSF and serum biomarkers of Alzheimer's disease (AD) common neuropathology including Aβ42, Aβ40, p-Tau, and t-Tau were measured in cognitively normal (CN) controls (n = 33) and three RPD groups with rapidly progressive AD (rpAD, n = 23), autoimmune encephalitis (AE, n = 25), and Creutzfeldt-Jakob disease (CJD, n = 28). Logistic regression and multiple linear regression were used for producing combined indicators and prognostic assessment, respectively, including A&T, A&N, T&N, A&T&N, etc. RESULTS: Combined diagnostic indicator with A&T&N had the potential for differentiating AE from other types of RPDs, identifying 62.51% and 75% of AE subjects based on CSF and serum samples, respectively, compared to 39.13% and 37.5% when using autoantibodies. CSF t-Tau was associated with survival in the CJD group (adjusted R-Square = 0.16, p = 0.02), and its prognosis value improved when using combined predictors based on the ATN framework (adjusted R-Square = 0.273, p = 0.014). CONCLUSION Combined indicators based on the ATN framework provide a novel perspective for establishing biomarkers for early recognition of RPDs due to treatment-responsive causes.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Shu‐Fen Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Ya‐Ru Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Yu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Kai‐Min Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Yu‐Yuan Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Qiaolifan Aerqin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Kevin Kuo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Hong‐Qi Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Shi‐Dong Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Wei‐Shi Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| | - Jin‐Tai Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
| |
Collapse
|
2
|
Papaliagkas V, Kalinderi K, Vareltzis P, Moraitou D, Papamitsou T, Chatzidimitriou M. CSF Biomarkers in the Early Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108976. [PMID: 37240322 DOI: 10.3390/ijms24108976] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing disease that affects millions of people worldwide, therefore there is an urgent need for its early diagnosis and treatment. A huge amount of research studies are performed on possible accurate and reliable diagnostic biomarkers of AD. Due to its direct contact with extracellular space of the brain, cerebrospinal fluid (CSF) is the most useful biological fluid reflecting molecular events in the brain. Proteins and molecules that reflect the pathogenesis of the disease, e.g., neurodegeneration, accumulation of Abeta, hyperphosphorylation of tau protein and apoptosis may be used as biomarkers. The aim of the current manuscript is to present the most commonly used CSF biomarkers for AD as well as novel biomarkers. Three CSF biomarkers, namely total tau, phospho-tau and Abeta42, are believed to have the highest diagnostic accuracy for early AD diagnosis and the ability to predict AD development in mild cognitive impairment (MCI) patients. Moreover, other biomarkers such as soluble amyloid precursor protein (APP), apoptotic proteins, secretases and inflammatory and oxidation markers are believed to have increased future prospects.
Collapse
Affiliation(s)
- Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patroklos Vareltzis
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Alexandrion University Campus, 57400 Sindos, Greece
| |
Collapse
|
3
|
Durmuş H, Çakar A, Demirci H, Alaylioglu M, Gezen‐Ak D, Dursun E, Gülşen Parman Y. An Exploratory Study of Cognitive Involvement in Hereditary Transthyretin Amyloidosis. Acta Neurol Scand 2021; 144:640-646. [PMID: 34322872 DOI: 10.1111/ane.13507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Hereditary amyloidogenic transthyretin (ATTRv) amyloidosis is an autosomal dominant disorder caused by mutations of the transthyretin (TTR) gene. The mutant ATTRv protein causes a systemic accumulation of amyloid fibrils in various organs. TTR is an important protein in the central nervous system physiology for the maintenance of normal cognitive process during aging, amidated neuropeptide processing, and nerve regeneration. The neuroprotective effect of transthyretin has been widely documented in animal models. Cognitive consequences of the mutant TTR in hereditary ATTRv amyloidosis patients remain still to be elucidated. We designed this study to investigate the cognitive involvement in ATTRv amyloidosis. METHODS Detailed neuropsychological tests and cranial MRIs were performed. Biomarkers including amyloid beta 1-42, total tau, and phosphorylated tau were investigated in the cerebrospinal fluid samples. RESULTS Median age of the cohort was 52 years (ranges 34-72). Neuropsychological assessment results were compatible with impaired executive functions (in all patients except one with only bilateral carpal tunnel syndrome, long-term visual and long-term verbal memory (severe in four patients and moderate in one). Visuospatial judgment and perception were impaired in six. Mean cerebrospinal fluid Aβ1-42 (pg/ml) was 878.0 ± 249.5 in patients with cortical atrophyin MRI whereas 1210.0 ± 45.9 in patients without any cortical atrophy. Cranial MRI showed cortical atrophy in six patients (6/10). CONCLUSION Our data showed the significance of the TTR protein in cognitive functions and highlighted the importance of the close follow-up of cognitive functions in ATTRv amyloidosis patients.
Collapse
Affiliation(s)
- Hacer Durmuş
- Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Arman Çakar
- Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Hasan Demirci
- Department of Psychology University of Health Sciences Istanbul Turkey
| | - Merve Alaylioglu
- Brain and Neurodegenerative Disorders Research Laboratories Department of Medical Biology Cerrahpasa Faculty of Medicine Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Duygu Gezen‐Ak
- Brain and Neurodegenerative Disorders Research Laboratories Department of Medical Biology Cerrahpasa Faculty of Medicine Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Erdinc Dursun
- Brain and Neurodegenerative Disorders Research Laboratories Department of Medical Biology Cerrahpasa Faculty of Medicine Istanbul University‐Cerrahpasa Istanbul Turkey
- Department of Neuroscience Institute of Neurological Sciences Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Yeşim Gülşen Parman
- Department of Neurology Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| |
Collapse
|
4
|
Kokkinou M, Beishon LC, Smailagic N, Noel-Storr AH, Hyde C, Ukoumunne O, Worrall RE, Hayen A, Desai M, Ashok AH, Paul EJ, Georgopoulou A, Casoli T, Quinn TJ, Ritchie CW. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database Syst Rev 2021; 2:CD010945. [PMID: 33566374 PMCID: PMC8078224 DOI: 10.1002/14651858.cd010945.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dementia is a syndrome that comprises many differing pathologies, including Alzheimer's disease dementia (ADD), vascular dementia (VaD) and frontotemporal dementia (FTD). People may benefit from knowing the type of dementia they live with, as this could inform prognosis and may allow for tailored treatment. Beta-amyloid (1-42) (ABeta42) is a protein which decreases in both the plasma and cerebrospinal fluid (CSF) of people living with ADD, when compared to people with no dementia. However, it is not clear if changes in ABeta42 are specific to ADD or if they are also seen in other types of dementia. It is possible that ABeta42 could help differentiate ADD from other dementia subtypes. OBJECTIVES To determine the accuracy of plasma and CSF ABeta42 for distinguishing ADD from other dementia subtypes in people who meet the criteria for a dementia syndrome. SEARCH METHODS We searched MEDLINE, and nine other databases up to 18 February 2020. We checked reference lists of any relevant systematic reviews to identify additional studies. SELECTION CRITERIA We considered cross-sectional studies that differentiated people with ADD from other dementia subtypes. Eligible studies required measurement of participant plasma or CSF ABeta42 levels and clinical assessment for dementia subtype. DATA COLLECTION AND ANALYSIS Seven review authors working independently screened the titles and abstracts generated by the searches. We collected data on study characteristics and test accuracy. We used the second version of the 'Quality Assessment of Diagnostic Accuracy Studies' (QUADAS-2) tool to assess internal and external validity of results. We extracted data into 2 x 2 tables, cross-tabulating index test results (ABeta42) with the reference standard (diagnostic criteria for each dementia subtype). We performed meta-analyses using bivariate, random-effects models. We calculated pooled estimates of sensitivity, specificity, positive predictive values, positive and negative likelihood ratios, and corresponding 95% confidence intervals (CIs). In the primary analysis, we assessed accuracy of plasma or CSF ABeta42 for distinguishing ADD from other mixed dementia types (non-ADD). We then assessed accuracy of ABeta42 for differentiating ADD from specific dementia types: VaD, FTD, dementia with Lewy bodies (DLB), alcohol-related cognitive disorder (ARCD), Creutzfeldt-Jakob disease (CJD) and normal pressure hydrocephalus (NPH). To determine test-positive cases, we used the ABeta42 thresholds employed in the respective primary studies. We then performed sensitivity analyses restricted to those studies that used common thresholds for ABeta42. MAIN RESULTS We identified 39 studies (5000 participants) that used CSF ABeta42 levels to differentiate ADD from other subtypes of dementia. No studies of plasma ABeta42 met the inclusion criteria. No studies were rated as low risk of bias across all QUADAS-2 domains. High risk of bias was found predominantly in the domains of patient selection (28 studies) and index test (25 studies). The pooled estimates for differentiating ADD from other dementia subtypes were as follows: ADD from non-ADD: sensitivity 79% (95% CI 0.73 to 0.85), specificity 60% (95% CI 0.52 to 0.67), 13 studies, 1704 participants, 880 participants with ADD; ADD from VaD: sensitivity 79% (95% CI 0.75 to 0.83), specificity 69% (95% CI 0.55 to 0.81), 11 studies, 1151 participants, 941 participants with ADD; ADD from FTD: sensitivity 85% (95% CI 0.79 to 0.89), specificity 72% (95% CI 0.55 to 0.84), 17 studies, 1948 participants, 1371 participants with ADD; ADD from DLB: sensitivity 76% (95% CI 0.69 to 0.82), specificity 67% (95% CI 0.52 to 0.79), nine studies, 1929 participants, 1521 participants with ADD. Across all dementia subtypes, sensitivity was greater than specificity, and the balance of sensitivity and specificity was dependent on the threshold used to define test positivity. AUTHORS' CONCLUSIONS Our review indicates that measuring ABeta42 levels in CSF may help differentiate ADD from other dementia subtypes, but the test is imperfect and tends to misdiagnose those with non-ADD as having ADD. We would caution against the use of CSF ABeta42 alone for dementia classification. However, ABeta42 may have value as an adjunct to a full clinical assessment, to aid dementia diagnosis.
Collapse
Affiliation(s)
- Michelle Kokkinou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Nadja Smailagic
- Institute of Public Health, University of Cambridge , Cambridge, UK
| | | | - Chris Hyde
- Exeter Test Group, College of Medicine and Health, University of Exeter Medical School, University of Exeter, Exeter , UK
| | - Obioha Ukoumunne
- NIHR CLAHRC South West Peninsula (PenCLAHRC), University of Exeter Medical School, Exeter, UK
| | | | - Anja Hayen
- Department of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Meera Desai
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Abhishekh Hulegar Ashok
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College , London, UK
| | - Eleanor J Paul
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Craig W Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Grant MKO, Handoko M, Rozga M, Brinkmalm G, Portelius E, Blennow K, Ashe KH, Zahs KR, Liu P. Human cerebrospinal fluid 6E10-immunoreactive protein species contain amyloid precursor protein fragments. PLoS One 2019; 14:e0212815. [PMID: 30817799 PMCID: PMC6394962 DOI: 10.1371/journal.pone.0212815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we reported that levels of two types of protein species-a type of ~55-kDa species and a type of ~15-kDa species-are elevated in the lumbar cerebrospinal fluid (CSF) of cognitively intact elderly individuals who are at risk for Alzheimer's disease (AD). These species are immunoreactive to the monoclonal antibody 6E10, which is directed against amino acids 6-10 of amyloid-β (Aβ), and their levels correlate with levels of total tau and tau phosphorylated at Thr181. In this study, we investigated the molecular composition of these AD-related proteins using immunoprecipitation (IP)/Western blotting coupled with IP/mass spectrometry. We show that canonical Aβ1-40/42 peptides, together with amyloid-β precursor protein (APP) fragments located N-terminally of Aβ, are present in the ~55-kDa, 6E10-immunoreactive species. We demonstrate that APP fragments located N-terminally of Aβ, plus the N-terminal region of Aβ, are present in the ~15-kDa, 6E10-immunoreactive species. These findings add to the catalog of AD-related Aβ/APP species found in CSF and should motivate further study to determine whether these species may serve as biomarkers of disease progression.
Collapse
Affiliation(s)
- Marianne K. O. Grant
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Maureen Handoko
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Malgorzata Rozga
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Karen H. Ashe
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
| | - Kathleen R. Zahs
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KRZ); (PL)
| | - Peng Liu
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States of America
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (KRZ); (PL)
| |
Collapse
|
6
|
Bouter C, Vogelgsang J, Wiltfang J. Comparison between amyloid-PET and CSF amyloid-β biomarkers in a clinical cohort with memory deficits. Clin Chim Acta 2019; 492:62-68. [PMID: 30735665 DOI: 10.1016/j.cca.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/25/2022]
Abstract
With increasing prevalence of Alzheimer's disease (AD) and advances in research of therapeutic approaches, an early and accurate in-vivo diagnosis is crucial. Different biomarkers that are able to identify AD are currently in focus. However, whether and to which extend results of cerebrospinal fluid (CSF) and imaging biomarkers are comparable, is unclear. This study aims to correlate CSF and amyloid imaging biomarkers comparing them to cognitive measurements in order to determine whether these methods provide identical or complementary information. The study comprises 33 consecutive patients with suspected cognitive decline that underwent lumbar puncture for CSF biomarker analysis and Amyloid-PET/CT within the diagnostic evaluation of memory impairment. Amyloid PET/CTs were evaluated visually and quantitatively. CSF and imaging data were retrospectively evaluated and results were compared to cognition tests, age, gender, and ApoE status. Global cortex SUVr levels correlated highly with CSF Aβ42/40 and moderately with Aβ42 but not with Aβ40. Global cortex SUVr and Aβ42/40 correlated with mini mental status examination. This study indicates that Amyloid-PET and CSF biomarkers might not reflect identical clinical information and a combination of both seems to be the most accurate way to characterize clinically unclear cognitive decline.
Collapse
Affiliation(s)
- Caroline Bouter
- University Medical Center Goettingen (UMG), Georg-August-University, Dept. of Nuclear Medicine, Robert-Koch-Str. 40, D-37075 Goettingen, Germany.
| | - Jonathan Vogelgsang
- University Medical Center Goettingen (UMG), Georg-August-University, Dept. of Psychiatry and Psychotherapy, Von-Siebold-Str. 5, D-37075 Goettingen, Germany
| | - Jens Wiltfang
- University Medical Center Goettingen (UMG), Georg-August-University, Dept. of Psychiatry and Psychotherapy, Von-Siebold-Str. 5, D-37075 Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075 Goettingen, Germany; iBiMED, Medical Science Department, University of Aveiro, Portugal
| |
Collapse
|
7
|
Baiardi S, Abu-Rumeileh S, Rossi M, Zenesini C, Bartoletti-Stella A, Polischi B, Capellari S, Parchi P. Antemortem CSF A β42/A β40 ratio predicts Alzheimer's disease pathology better than A β42 in rapidly progressive dementias. Ann Clin Transl Neurol 2018; 6:263-273. [PMID: 30847359 PMCID: PMC6389744 DOI: 10.1002/acn3.697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF Aβ42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF Aβ42/Aβ40 ratio. We compared CSF Aβ42 and Aβ42/Aβ40 ratio as biomarkers predicting AD neuropathological changes in patients with a short interval between lumbar puncture and death. Methods We measured CSF Aβ40 and Aβ42 and assessed AD pathology in 211 subjects with rapidly progressive dementia (RPD) and a definite postmortem diagnosis of Creutzfeldt-Jakob disease (n = 159), AD (n = 12), dementia with Lewy bodies (DLB, n = 4), AD/DLB mixed pathologies (n = 5), and various other pathologies (n = 31). Results The score reflecting the severity of Aβ pathology showed a better correlation with ln(Aβ42/Aβ40) (R 2 = 0.506, β = -0.713, P < 0.001) than with ln(Aβ42) (R 2 = 0.206, β = -0.458, P < 0.001), which was confirmed after adjusting for covariates. Aβ42/Aβ40 ratio showed significantly higher accuracy than Aβ42 in the distinction between cases with or without AD pathology (AUC 0.818 ± 0.028 vs. 0.643 ± 0.039), especially in patients with Aβ42 levels ≤495 pg/mL (AUC 0.888 ± 0.032 vs. 0.518 ± 0.064). Using a cut-off value of 0.810, the analysis of Aβ42/Aβ40 ratio yielded 87.0% sensitivity, 88.2% specificity in the distinction between cases with an intermediate-high level of AD pathology and those with low level or no AD pathology. Interpretation The present data support the use of CSF Aβ42/Aβ40 ratio as a biomarker of AD pathophysiology and noninvasive screener for Aβ pathology burden, and its introduction in the research diagnostic criteria for AD.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy
| | - Samir Abu-Rumeileh
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy
| | - Marcello Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | | | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna Bologna 40138 Italy
| |
Collapse
|
8
|
Paolini Paoletti F, Di Gregorio M, Calabresi P, Parnetti L. Drug-induced Creutzfeldt-Jakob disease-like syndrome: early CSF analysis as useful tool for differential diagnosis. BMJ Case Rep 2018; 11:11/1/e224314. [PMID: 30567187 DOI: 10.1136/bcr-2018-224314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We report the case of a 78-year-old man who showed a subacute onset of severe cognitive impairment, ataxia, tremor, stimulus sensitive myoclonus and hypophonia. Since a few weeks, he received a treatment with a combination of tricyclic antidepressants for mood disorder. The clinical picture mimicked Creutzfeldt-Jakob disease (CJD), but we could rule out this diagnosis by means of cerebrospinal fluid (CSF) analysis, which showed normal level of tau protein and Aβ1-42, being also negative for CSF 14-3-3 protein. A complete clinical recovery was observed after the discontinuation of antidepressants. So far, some cases of drug-induced CJD-like syndrome have been described. In our experience, early CSF analysis shows high diagnostic usefulness in order to exclude CJD.
Collapse
Affiliation(s)
| | - Maria Di Gregorio
- Section of Neurology, Department of Medicine, Universita degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Department of Medicine, Universita degli Studi di Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology - Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Perugia, Italy
| |
Collapse
|
9
|
Abu Rumeileh S, Lattanzio F, Stanzani Maserati M, Rizzi R, Capellari S, Parchi P. Diagnostic Accuracy of a Combined Analysis of Cerebrospinal Fluid t-PrP, t-tau, p-tau, and Aβ42 in the Differential Diagnosis of Creutzfeldt-Jakob Disease from Alzheimer's Disease with Emphasis on Atypical Disease Variants. J Alzheimers Dis 2018; 55:1471-1480. [PMID: 27886009 PMCID: PMC5181677 DOI: 10.3233/jad-160740] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to recent studies, the determination of cerebrospinal fluid (CSF) total tau (t-tau)/phosphorylated tau (p-tau) ratio and total prion protein (t-PrP) levels significantly improves the accuracy of the diagnosis of Alzheimer’s disease (AD) in atypical cases with clinical or laboratory features mimicking Creutzfeldt-Jakob disease (CJD). However, this has neither been validated nor tested in series including atypical CJD variants. Furthermore, the added diagnostic value of amyloid-β (Aβ)42 remains unclear. To address these issues, we measured t-PrP, 14-3-3, t-tau, p-tau, and Aβ42 CSF levels in 45 typical and 44 atypical/rapidly progressive AD patients, 54 typical and 54 atypical CJD patients, and 33 controls. CJD patients showed significantly lower CSF t-PrP levels than controls and AD patients. Furthermore, atypical CJD was associated with lower t-PrP levels in comparison to typical CJD. T-tau, 14-3-3, or t-PrP alone yielded, respectively, 80.6, 63.0, and 73.0% sensitivity and 75.3, 92.1, and 75% specificity in distinguishing AD from CJD. On receiver operating characteristic (ROC) curve analyses of biomarker combinations, the (t-tau×Aβ42)/(p-tau×t-PrP) ratio achieved the best accuracy, with 98.1% sensitivity and 97.7% specificity overall, and 96.2% sensitivity and 95.5% specificity for the “atypical” disease groups. Our results show that the combined analysis of CSF t-PrP, t-tau, p-tau, and Aβ42 is clinically useful in the differential diagnosis between CJD and AD. Furthermore, the finding of reduced CSF t-PrP levels in CJD patients suggest that, likewise Aβ42 in AD, CSF t-PrP levels reflect the extent of PrPc conversion into abnormal PrP (PrPSc) and the burden of PrPSc deposition in CJD.
Collapse
Affiliation(s)
- Samir Abu Rumeileh
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Lattanzio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Romana Rizzi
- Department of Neurology, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
10
|
Schuster J, Funke SA. Methods for the Specific Detection and Quantitation of Amyloid-β Oligomers in Cerebrospinal Fluid. J Alzheimers Dis 2018; 53:53-67. [PMID: 27163804 DOI: 10.3233/jad-151029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein misfolding and aggregation are fundamental features of the majority of neurodegenerative diseases, like Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia, and prion diseases. Proteinaceous deposits in the brain of the patient, e.g., amyloid plaques consisting of the amyloid-β (Aβ) peptide and tangles composed of tau protein, are the hallmarks of AD. Soluble oligomers of Aβ and tau play a fundamental role in disease progression, and specific detection and quantification of the respective oligomeric proteins in cerebrospinal fluid may provide presymptomatically detectable biomarkers, paving the way for early diagnosis or even prognosis. Several studies on the development of techniques for the specific detection of Aβ oligomers were published, but some of the existing tools do not yet seem to be satisfactory, and the study results are contradicting. The detection of oligomers is challenging due to their polymorphous and unstable nature, their low concentration, and the presence of competing proteins and Aβ monomers in body fluids. Here, we present an overview of the current state of the development of methods for Aβ oligomer specific detection and quantitation. The methods are divided in the three subgroups: (i) enzyme linked immunosorbent assays (ELISA), (ii) methods for single oligomer detection, and (iii) others, which are mainly biosensor based methods.
Collapse
|
11
|
Fessel J. Amyloid is essential but insufficient for Alzheimer causation: addition of subcellular cofactors is required for dementia. Int J Geriatr Psychiatry 2018; 33:e14-e21. [PMID: 28509380 DOI: 10.1002/gps.4730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/03/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study is to examine the hypotheses stating the importance of amyloid or of its oligomers in the pathogenesis of Alzheimer's disease (AD). METHODS Published studies were examined. RESULTS The importance of amyloid in the pathogenesis of AD is well established, yet accepting it as the main cause for AD is problematic, because amyloid-centric treatments have provided no clinical benefit and about one-third of cognitively normal, older persons have cerebral amyloid plaques. Also problematic is the alternative hypothesis that, instead of amyloid plaques, it is oligomers of amyloid precursor protein that cause AD.Evidence is presented suggesting amyloid/oligomers as necessary but insufficient causes of the dementia and that, for dementia to develop, requires the addition of cofactors known to be associated with AD. Those cofactors include several subcellular processes: mitochondrial impairments; the Wnt signaling system; the unfolded protein response; the ubiquitin proteasome system; the Notch signaling system; and tau, calcium, and oxidative damage. CONCLUSIONS A modified amyloid/oligomer hypothesis for the pathogenesis of AD is that activation of one or more of the aforementioned cofactors creates a burden of functional impairments that, in conjunction with amyloid/oligomers, now crosses a threshold of dysfunction that results in clinical dementia. Of considerable importance, several treatments that might reverse the activation of some of the subcellular processes are available, for example, lithium, pioglitazone, erythropoietin, and prazosin; they should be given in combination in a clinical trial to test their safety and efficacy. © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Trials Unit, Kaiser Permanente, San Francisco, CA, USA
| |
Collapse
|
12
|
Zerr I, Zafar S, Schmitz M, Llorens F. Cerebrospinal fluid in Creutzfeldt–Jakob disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:115-124. [DOI: 10.1016/b978-0-12-804279-3.00008-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Copani A. The underexplored question of β-amyloid monomers. Eur J Pharmacol 2017; 817:71-75. [PMID: 28577967 DOI: 10.1016/j.ejphar.2017.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
Abstract
Conceived more than 25 years ago, the amyloid cascade hypothesis of Alzheimer's disease has evolved to accommodate new findings, namely different forms of β-amyloid aggregates and downstream dysfunctions. Yet, the cascade does not mention its very beginning, the β-amyloid monomer. Here, I will discuss the monomer from a functional evolutionary perspective, highlighting the potential advantages of a native unfolded state that, however, involves an amyloidogenic risk. Finally, I will make a summary of what is known about its functional role in the brain and discuss the implications of its conceivable shortage in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Agata Copani
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
14
|
Cohn‐Hokke PE, Holstege H, Weiss MM, van der Flier WM, Barkhof F, Sistermans EA, Pijnenburg YAL, van Swieten JC, Meijers‐Heijboer H, Scheltens P. A novel CCM2 variant in a family with non-progressive cognitive complaints and cerebral microbleeds. Am J Med Genet B Neuropsychiatr Genet 2017; 174:220-226. [PMID: 27277535 PMCID: PMC5363380 DOI: 10.1002/ajmg.b.32468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023]
Abstract
Lobar cerebral microbleeds are most often sporadic and associated with Alzheimer's disease. The aim of our study was to identify the underlying genetic defect in a family with cognitive complaints and multiple lobar microbleeds and a positive family history for early onset Alzheimer's disease. We performed exome sequencing followed by Sanger sequencing for validation purposes on genomic DNA of three siblings with cognitive complaints, reduced amyloid-beta-42 in CSF and multiple cerebral lobar microbleeds. We checked for the occurrence of the variant in a cohort of 363 patients with early onset dementia and/or microbleeds. A novel frameshift variant (c.236_237delAC) generating a premature stop codon in the CCM2 gene shared by all three siblings was identified. Pathogenicity of the variant was supported by the presence of cerebral cavernous malformations in two of the siblings and by the absence of the variant exome variant databases. Two siblings were homozygous for APOE-ϵ4; one heterozygous. The cognitive complaints, reduced amyloid-beta-42 in CSF and microbleeds suggest preclinical Alzheimer's disease, but the stability of the cognitive complaints does not. We hypothesize that the phenotype in this family may be due to a combination of the CCM2 variant and the APOE status. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petra E. Cohn‐Hokke
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Henne Holstege
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands,Alzheimer Center, Department of Neurology, VU University Medical CenterNeuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Marjan M. Weiss
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center, Department of Neurology, VU University Medical CenterNeuroscience Campus AmsterdamAmsterdamThe Netherlands,Department of Epidemiology and BiostatisticsVU University Medical CenterAmsterdamThe Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, VU University Medical CenterNeuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - Erik A. Sistermans
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center, Department of Neurology, VU University Medical CenterNeuroscience Campus AmsterdamAmsterdamThe Netherlands
| | - John C. van Swieten
- Department of Clinical GeneticsVU University Medical CenterAmsterdamThe Netherlands,Alzheimer Center, Department of Neurology, VU University Medical CenterNeuroscience Campus AmsterdamAmsterdamThe Netherlands,Department of NeurologyErasmus Medical CenterRotterdamThe Netherlands
| | | | - Philip Scheltens
- Alzheimer Center, Department of Neurology, VU University Medical CenterNeuroscience Campus AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 2017; 133:559-578. [PMID: 28205010 PMCID: PMC5348556 DOI: 10.1007/s00401-017-1683-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 01/28/2023]
Abstract
The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82–96%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-β (Aβ) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median Aβ42 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of Aβ brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and Aβ42 as markers of brain tauopathy and β-amyloidosis.
Collapse
|
16
|
Johar I, Mollenhauer B, Aarsland D. Cerebrospinal Fluid Biomarkers of Cognitive Decline in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:275-294. [PMID: 28554411 DOI: 10.1016/bs.irn.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Among the nonmotor symptoms in Parkinson's disease (PD), cognitive impairment is one of the most common and devastating. Over recent years, mild cognitive impairment (MCI) has become a recognized feature of PD (PD-MCI). The underlying mechanisms which influence onset, rate of decline, and conversion to dementia (PDD) are largely unknown. Adding to this uncertainty is the heterogeneity of cognitive domains affected. Currently there are no disease-modifying treatments that can slow or reverse this process. Identification of biomarkers that can predict rate and risk of cognitive decline is therefore an unmet need. Cerebrospinal fluid (CSF) is an ideal biomarker candidate as its constituents reflect the metabolic processes underlying the functioning of brain parenchyma. The pathological hallmark of PD is the presence of aggregated α-synuclein (α-Syn) in intracellular Lewy inclusions. In addition, there is concomitant Alzheimer's disease (AD) pathology. In AD, decreased CSF β-amyloid 1-42 (Aβ42) and increased CSF tau levels are predictive of future cognitive decline, setting a precedent for such studies to be carried out in PD. CSF studies in PD have focused on the classical AD biomarkers and α-Syn. Longitudinal studies indicate that low levels of CSF Aβ42 are predictive of cognitive decline; however, results for tau and α-Syn were not consistent. This chapter summarizes recent findings of CSF biomarker studies and cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Iskandar Johar
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center, Göttingen, Germany
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
17
|
Bousiges O, Cretin B, Lavaux T, Philippi N, Jung B, Hezard S, Heitz C, Demuynck C, Gabel A, Martin-Hunyadi C, Blanc F. Diagnostic Value of Cerebrospinal Fluid Biomarkers (Phospho-Tau181, total-Tau, Aβ42, and Aβ40) in Prodromal Stage of Alzheimer's Disease and Dementia with Lewy Bodies. J Alzheimers Dis 2016; 51:1069-83. [PMID: 26923009 DOI: 10.3233/jad-150731] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) symptoms are close to those of Alzheimer's disease (AD), and the differential diagnosis is difficult especially early in the disease. Unfortunately, AD biomarkers in cerebrospinal fluid (CSF), and more particularly Aβ1 - 42, appear to be altered in dementia with Lewy bodies (DLB). However, the level of these biomarkers has never been studied in the prodromal stage of the disease. OBJECTIVE To compare these biomarkers between DLB and AD, with a particular focus on the prodromal stage. METHODS A total of 166 CSF samples were collected at the memory clinic of Strasbourg. They were obtained from prodromal DLB (pro-DLB), DLB dementia, prodromal AD (pro-AD), and AD dementia patients, and elderly controls. Phospho-Tau181, total-Tau, Aβ42, and Aβ40 were measured in the CSF. RESULTS At the prodromal stage, contrary to AD patients, DLB patients' biomarker levels in the CSF were not altered. At the demented stage of DLB, Aβ42 levels were reduced as well as Aβ40 levels. Thus, the Aβ42/Aβ40 ratio remained unchanged between the prodromal and demented stages, contrary to what was observed in AD. Tau and Phospho-Tau181 levels were unaltered in DLB patients. CONCLUSIONS We have shown that at the prodromal stage the DLB patients had no pathological profile. Consequently, CSF AD biomarkers are extremely useful for differentiating AD from DLB patients particularly at this stage when the clinical diagnosis is difficult. Thus, these results open up new perspectives on the interpretation of AD biomarkers in DLB.
Collapse
Affiliation(s)
- Olivier Bousiges
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France.,University of Strasbourg and CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Strasbourg, France
| | - Benjamin Cretin
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Thomas Lavaux
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Nathalie Philippi
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Barbara Jung
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Sylvie Hezard
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Camille Heitz
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Catherine Demuynck
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Aurelia Gabel
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Catherine Martin-Hunyadi
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Frédéric Blanc
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| |
Collapse
|
18
|
Cerebrospinal Fluid Biomarkers in the Diagnosis of Creutzfeldt-Jakob Disease in Slovak Patients: over 10-Year Period Review. Mol Neurobiol 2016; 54:5919-5927. [PMID: 27665282 DOI: 10.1007/s12035-016-0128-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Creutzfeldt-Jakob disease is a rare, but rapidly progressive, up to now untreatable and fatal neurodegenerative disorder. Clinical diagnosis of Creutzfeldt-Jakob disease (CJD) is difficult; however, it can be facilitated by suitable biomarkers. Aim of the present study is to compare levels of cerebrospinal fluid biomarkers (total tau protein, phosphorylated-tau protein, protein 14-3-3 and amyloid beta) in Slovak population of CJD suspect cases, retrospectively in over a 10-year period. One thousand three hundred sixty-four CSF samples from patients with suspect CJD, forming a homogenous group in terms of geographical as well as of equal transport conditions, storage and laboratory processing, were analysed. Definite diagnosis of Creutzfeldt-Jakob disease was confirmed in 101 patients with genetic form, and 60 patients with its sporadic form of the disease. Specificity of protein 14-3-3 and total tau in both forms CJD was similar (87 % for P14-3-3/85 % for total tau), sensitivity to P 14-3-3 and total tau was higher in sporadic Creutzfeldt-Jakob disease (sCJD) (90/95 %) than in genetic Creutzfeldt-Jakob disease (gCJD) (89/74 %). As expected, the total tau levels were significantly higher in CJD patients than in controls, but there was also significant difference between gCJD and sCJD (levels in gCJD were lower; p = 0.003). There was no significant difference in p-tau and Aβ 1-42 levels neither between both CJD forms nor between CJD patients and control group.
Collapse
|
19
|
Leuzy A, Chiotis K, Hasselbalch SG, Rinne JO, de Mendonça A, Otto M, Lleó A, Castelo-Branco M, Santana I, Johansson J, Anderl-Straub S, von Arnim CAF, Beer A, Blesa R, Fortea J, Herukka SK, Portelius E, Pannee J, Zetterberg H, Blennow K, Nordberg A. Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study. Brain 2016; 139:2540-53. [PMID: 27401520 PMCID: PMC4995359 DOI: 10.1093/brain/aww160] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to assess the agreement between data on cerebral amyloidosis, derived using Pittsburgh compound B positron emission tomography and (i) multi-laboratory INNOTEST enzyme linked immunosorbent assay derived cerebrospinal fluid concentrations of amyloid-β42; (ii) centrally measured cerebrospinal fluid amyloid-β42 using a Meso Scale Discovery enzyme linked immunosorbent assay; and (iii) cerebrospinal fluid amyloid-β42 centrally measured using an antibody-independent mass spectrometry-based reference method. Moreover, we examined the hypothesis that discordance between amyloid biomarker measurements may be due to interindividual differences in total amyloid-β production, by using the ratio of amyloid-β42 to amyloid-β40 Our study population consisted of 243 subjects from seven centres belonging to the Biomarkers for Alzheimer's and Parkinson's Disease Initiative, and included subjects with normal cognition and patients with mild cognitive impairment, Alzheimer's disease dementia, frontotemporal dementia, and vascular dementia. All had Pittsburgh compound B positron emission tomography data, cerebrospinal fluid INNOTEST amyloid-β42 values, and cerebrospinal fluid samples available for reanalysis. Cerebrospinal fluid samples were reanalysed (amyloid-β42 and amyloid-β40) using Meso Scale Discovery electrochemiluminescence enzyme linked immunosorbent assay technology, and a novel, antibody-independent, mass spectrometry reference method. Pittsburgh compound B standardized uptake value ratio results were scaled using the Centiloid method. Concordance between Meso Scale Discovery/mass spectrometry reference measurement procedure findings and Pittsburgh compound B was high in subjects with mild cognitive impairment and Alzheimer's disease, while more variable results were observed for cognitively normal and non-Alzheimer's disease groups. Agreement between Pittsburgh compound B classification and Meso Scale Discovery/mass spectrometry reference measurement procedure findings was further improved when using amyloid-β42/40 Agreement between Pittsburgh compound B visual ratings and Centiloids was near complete. Despite improved agreement between Pittsburgh compound B and centrally analysed cerebrospinal fluid, a minority of subjects showed discordant findings. While future studies are needed, our results suggest that amyloid biomarker results may not be interchangeable in some individuals.
Collapse
Affiliation(s)
- Antoine Leuzy
- 1 Department of Neurobiology, Care Science, and Society, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- 1 Department of Neurobiology, Care Science, and Society, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Steen G Hasselbalch
- 2 Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Juha O Rinne
- 3 Division of Clinical Neurosciences, Turku University Hospital, University of Turku, Turku, Finland 4 Turku PET Centre, University of Turku, Turku, Finland
| | - Alexandre de Mendonça
- 5 Department of Neurology and Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Markus Otto
- 6 Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Alberto Lleó
- 7 Department of Neurology, Institut d'Investigacions Biomèdiques, Hospital de Sant Pau, Barcelona, Spain 8 Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Miguel Castelo-Branco
- 9 Institute for Nuclear Sciences Applied to Health (ICNAS), Brain Imaging Network of Portugal, Coimbra, Portugal 10 Institute for Biomedical Imaging and Life Sciences (IBILI) and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- 11 Department of Neurology, Coimbra University Hospital, Coimbra, Portugal 12 Centre for Neuroscience and Cell Biology (CNC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | - Ambros Beer
- 13 Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Rafael Blesa
- 7 Department of Neurology, Institut d'Investigacions Biomèdiques, Hospital de Sant Pau, Barcelona, Spain 8 Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Juan Fortea
- 7 Department of Neurology, Institut d'Investigacions Biomèdiques, Hospital de Sant Pau, Barcelona, Spain 8 Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Sanna-Kaisa Herukka
- 14 Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Erik Portelius
- 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Josef Pannee
- 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden 16 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Agneta Nordberg
- 1 Department of Neurobiology, Care Science, and Society, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden 17 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
20
|
Lista S, O'Bryant SE, Blennow K, Dubois B, Hugon J, Zetterberg H, Hampel H. Biomarkers in Sporadic and Familial Alzheimer's Disease. J Alzheimers Dis 2016; 47:291-317. [PMID: 26401553 DOI: 10.3233/jad-143006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most forms of Alzheimer's disease (AD) are sporadic (sAD) or inherited in a non-Mendelian fashion, and less than 1% of cases are autosomal-dominant. Forms of sAD do not exhibit familial aggregation and are characterized by complex genetic and environmental interactions. Recently, the expansion of genomic methodologies, in association with substantially larger combined cohorts, has resulted in various genome-wide association studies that have identified several novel genetic associations of AD. Currently, the most effective methods for establishing the diagnosis of AD are defined by multi-modal pathways, starting with clinical and neuropsychological assessment, cerebrospinal fluid (CSF) analysis, and brain-imaging procedures, all of which have significant cost- and access-to-care barriers. Consequently, research efforts have focused on the development and validation of non-invasive and generalizable blood-based biomarkers. Among the modalities conceptualized by the systems biology paradigm and utilized in the "exploratory biomarker discovery arena", proteome analysis has received the most attention. However, metabolomics, lipidomics, transcriptomics, and epigenomics have recently become key modalities in the search for AD biomarkers. Interestingly, biomarker changes for familial AD (fAD), in many but not all cases, seem similar to those for sAD. The integration of neurogenetics with systems biology/physiology-based strategies and high-throughput technologies for molecular profiling is expected to help identify the causes, mechanisms, and biomarkers associated with the various forms of AD. Moreover, in order to hypothesize the dynamic trajectories of biomarkers through disease stages and elucidate the mechanisms of biomarker alterations, updated and more sophisticated theoretical models have been proposed for both sAD and fAD.
Collapse
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Sid E O'Bryant
- Institute for Aging and Alzheimer's Disease Research & Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Jacques Hugon
- Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile-de-France, Groupe Hospitalier Saint Louis Lariboisière - Fernand Widal, Université Paris Diderot, Paris 07, Paris, France.,Institut du Fer à Moulin (IFM), Inserm UMR_S 839, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,University College London Institute of Neurology, Queen Square, London, UK
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| |
Collapse
|
21
|
Khan TK, Alkon DL. Alzheimer's Disease Cerebrospinal Fluid and Neuroimaging Biomarkers: Diagnostic Accuracy and Relationship to Drug Efficacy. J Alzheimers Dis 2016; 46:817-36. [PMID: 26402622 DOI: 10.3233/jad-150238] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Widely researched Alzheimer's disease (AD) biomarkers include in vivo brain imaging with PET and MRI, imaging of amyloid plaques, and biochemical assays of Aβ 1 - 42, total tau, and phosphorylated tau (p-tau-181) in cerebrospinal fluid (CSF). In this review, we critically evaluate these biomarkers and discuss their clinical utility for the differential diagnosis of AD. Current AD biomarker tests are either highly invasive (requiring CSF collection) or expensive and labor-intensive (neuroimaging), making them unsuitable for use in the primary care, clinical office-based setting, or to assess drug efficacy in clinical trials. In addition, CSF and neuroimaging biomarkers continue to face challenges in achieving required sensitivity and specificity and minimizing center-to-center variability (for CSF-Aβ 1 - 42 biomarkers CV = 26.5% ; http://www.alzforum.org/news/conference-coverage/paris-standardization-hurdle-spinal-fluid-imaging-markers). Although potentially useful for selecting patient populations for inclusion in AD clinical trials, the utility of CSF biomarkers and neuroimaging techniques as surrogate endpoints of drug efficacy needs to be validated. Recent trials of β- and γ-secretase inhibitors and Aβ immunization-based therapies in AD showed no significant cognitive improvements, despite changes in CSF and neuroimaging biomarkers. As we learn more about the dysfunctional cellular and molecular signaling processes that occur in AD, and how these processes are manifested in tissues outside of the brain, new peripheral biomarkers may also be validated as non-invasive tests to diagnose preclinical and clinical AD.
Collapse
|
22
|
Cohen OS, Chapman J, Korczyn AD, Warman-Alaluf N, Nitsan Z, Appel S, Kahana E, Rosenmann H. CSF tau correlates with CJD disease severity and cognitive decline. Acta Neurol Scand 2016; 133:119-123. [PMID: 26014384 DOI: 10.1111/ane.12441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Creutzfeldt-Jakob disease (CJD) is the most common prion disease in humans. The clinical diagnosis of CJD is supported by a combination of electroencephalogram, MRI, and the presence in the CSF of biomarkers. CSF tau is a marker for neuronal damage and tangle pathology, and is correlated with cognitive status in Alzheimer's disease (AD). OBJECTIVES The aim of this study was to test whether tau levels in the CSF also correlate with the degree of the neurological deficit and cognitive decline in patients with CJD as reflected by various clinical scales that assess disease severity and cognitive performance. METHODS Consecutive patients with familial CJD (fCJD) were examined by a neurologist who performed several tests including minimental status examination (MMSE), frontal assessment battery (FAB), NIH stroke scale (NIHSS), CJD neurological scale (CJD-NS), and the expanded disability status scale (EDSS). CSF tau was tested as part of the workout, and the correlation was tested using Pearson correlation. RESULTS Fifty-two patients with fCJD were recruited to the study (35 males, mean age 59.4 ± 5.7, range 48-75 years). A significant negative correlation was found between CSF tau levels and the cognitive performance of the patients as reflected by their MMSE and FAB scores. In addition, a significant positive correlation was found between tau levels and the clinical disease severity scales of CJD-NS, NIHSS, and EDSS. CONCLUSION The correlation between tau levels and the disease severity and degree of cognitive decline in patients with fCJD suggests that tau can be a biomarker reflecting the extent of neuronal damage.
Collapse
Affiliation(s)
- O. S. Cohen
- Department of Neurology; The Sagol Neuroscience Center; Chaim Sheba Medical Center; Tel-Hashomer Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - J. Chapman
- Department of Neurology; The Sagol Neuroscience Center; Chaim Sheba Medical Center; Tel-Hashomer Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - A. D. Korczyn
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - N. Warman-Alaluf
- Department of Neurology; The Sagol Neuroscience Center; Chaim Sheba Medical Center; Tel-Hashomer Israel
| | - Z. Nitsan
- Barzilai Medical Center; Ashkelon Israel
| | - S. Appel
- Barzilai Medical Center; Ashkelon Israel
| | - E. Kahana
- Barzilai Medical Center; Ashkelon Israel
| | | |
Collapse
|
23
|
Babić M, Svob Štrac D, Mück-Šeler D, Pivac N, Stanić G, Hof PR, Simić G. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croat Med J 2015; 55:347-65. [PMID: 25165049 PMCID: PMC4157375 DOI: 10.3325/cmj.2014.55.347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Goran Simić
- Goran Šimić, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia,
| |
Collapse
|
24
|
Llorens F, Zafar S, Ansoleaga B, Shafiq M, Blanco R, Carmona M, Grau-Rivera O, Nos C, Gelpí E, Del Río JA, Zerr I, Ferrer I. Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 2015; 41:631-45. [PMID: 25134744 DOI: 10.1111/nan.12175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
AIMS Creutzfeldt-Jakob disease (CJD) is a rapid progressive neurological disease leading to dementia and death. Prion biomarkers are altered in the cerebrospinal fluid (CSF) of CJD patients, but the pathogenic mechanisms underlying these alterations are still unknown. The present study examined prion biomarker levels in the brain and CSF of sporadic CJD (sCJD) cases and their correlation with neuropathological lesion profiles. METHODS The expression levels of 14-3-3, Tau, phospho-Tau and α-synuclein were measured in the CSF and brain of sCJD cases in a subtype- and region-specific manner. In addition, the activity of prion biomarker kinases, the expression levels of CJD hallmarks and the most frequent neuropathological sCJD findings were analysed. RESULTS Prion biomarkers levels were increased in the CSF of sCJD patients; however, correlations between mRNA, total protein and their phosphorylated forms in brain were different. The observed downregulation of the main Tau kinase, GSK3, in sCJD brain samples may help to explain the differential phospho-Tau/Tau ratios between sCJD and other dementias in the CSF. Importantly, CSF biomarkers levels do not necessarily correlate with sCJD neuropathological findings. INTERPRETATION Present findings indicate that prion biomarkers levels in sCJD tissues and their release into the CSF are differentially regulated following specific modulated responses, and suggest a functional role for these proteins in sCJD pathogenesis.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Rosi Blanco
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Marga Carmona
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| | - Oriol Grau-Rivera
- CJD-Unit and Alzheimer disease and other cognitive disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain
| | - Ellen Gelpí
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Antonio Del Río
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain.,Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Barcelona, Spain
| |
Collapse
|
25
|
Blennow K, Mattsson N, Schöll M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer's disease. Trends Pharmacol Sci 2015; 36:297-309. [PMID: 25840462 DOI: 10.1016/j.tips.2015.03.002] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 02/06/2023]
Abstract
Aggregation of amyloid-β (Aβ) into oligomers, fibrils, and plaques is central in the molecular pathogenesis of Alzheimer's disease (AD), and is the main focus of AD drug development. Biomarkers to monitor Aβ metabolism and aggregation directly in patients are important for further detailed study of the involvement of Aβ in disease pathogenesis and to monitor the biochemical effect of drugs targeting Aβ in clinical trials. Furthermore, if anti-Aβ disease-modifying drugs prove to be effective clinically, amyloid biomarkers will be of special value in the clinic to identify patients with brain amyloid deposition at risk for progression to AD dementia, to enable initiation of treatment before neurodegeneration is too severe, and to monitor drug effects on Aβ metabolism or pathology to guide dosage. Two types of amyloid biomarker have been developed: Aβ-binding ligands for use in positron emission tomography (PET) and assays to measure Aβ42 in cerebrospinal fluid (CSF). In this review, we present the rationales behind these biomarkers and compare their ability to measure Aβ plaque load in the brain. We also review possible shortcomings and the need of standardization of both biomarkers, as well as their implementation in the clinic.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; The Torsten Söderberg Professorship at the Royal Swedish Academy of Sciences.
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Michael Schöll
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Clinical Neuroscience and Rehabilitation, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Lund University, Lund, Sweden; Clinical Memory Research unit, Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
26
|
Haris M, Yadav SK, Rizwan A, Singh A, Cai K, Kaura D, Wang E, Davatzikos C, Trojanowski JQ, Melhem ER, Marincola FM, Borthakur A. T1rho MRI and CSF biomarkers in diagnosis of Alzheimer's disease. NEUROIMAGE-CLINICAL 2015; 7:598-604. [PMID: 25844314 PMCID: PMC4375645 DOI: 10.1016/j.nicl.2015.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/14/2023]
Abstract
In the current study, we have evaluated the performance of magnetic resonance (MR) T1rho (T1ρ) imaging and CSF biomarkers (T-tau, P-tau and Aβ-42) in characterization of Alzheimer's disease (AD) patients from mild cognitive impairment (MCI) and control subjects. With informed consent, AD (n = 27), MCI (n = 17) and control (n = 17) subjects underwent a standardized clinical assessment and brain MRI on a 1.5-T clinical-scanner. T1ρ images were obtained at four different spin-lock pulse duration (10, 20, 30 and 40 ms). T1ρ maps were generated by pixel-wise fitting of signal intensity as a function of the spin-lock pulse duration. T1ρ values from gray matter (GM) and white matter (WM) of medial temporal lobe were calculated. The binary logistic regression using T1ρ and CSF biomarkers as variables was performed to classify each group. T1ρ was able to predict 77.3% controls and 40.0% MCI while CSF biomarkers predicted 81.8% controls and 46.7% MCI. T1ρ and CSF biomarkers in combination predicted 86.4% controls and 66.7% MCI. When comparing controls with AD, T1ρ predicted 68.2% controls and 73.9% AD, while CSF biomarkers predicted 77.3% controls and 78.3% for AD. Combination of T1ρ and CSF biomarkers improved the prediction rate to 81.8% for controls and 82.6% for AD. Similarly, on comparing MCI with AD, T1ρ predicted 35.3% MCI and 81.9% AD, whereas CSF biomarkers predicted 53.3% MCI and 83.0% AD. Collectively CSF biomarkers and T1ρ were able to predict 59.3% MCI and 84.6% AD. On receiver operating characteristic analysis T1ρ showed higher sensitivity while CSF biomarkers showed greater specificity in delineating MCI and AD from controls. No significant correlation between T1ρ and CSF biomarkers, between T1ρ and age, and between CSF biomarkers and age was observed. The combined use of T1ρ and CSF biomarkers have promise to improve the early and specific diagnosis of AD. Furthermore, disease progression form MCI to AD might be easily tracked using these two parameters in combination. Increased T1rho was observed in MCI and AD compared to controls. Increased T-tau and P-tau and decreased Aβ1-42 were observed in MCI and AD. Combined biomarkers have promise to improve early and specific diagnosis of AD. MCI to AD progression might be tracked using these two biomarkers in combination.
Collapse
Key Words
- AD, Alzheimer's disease
- Alzheimer's disease
- Aβ1-42, amyloid beta 42
- CSF biomarkers
- CSF, cerebrospinal fluid
- FOV, field of view
- GM, gray matter
- MCI, mild cognitive impairment
- MMSE, Mini-Mental State Examination
- MPRAGE, magnetization prepared rapid acquisition gradient-echo
- MRI, magnetic resonance imaging
- MTL, medial temporal lobe
- Medial temporal lobe
- Mild cognitive impairment
- PET, positron emission tomography
- ROC, receiver operating characteristic.
- T-tau, total tau
- T1rho
- T1ρ, T1rho
- TE, echo time
- TI, inversion time
- TR, repetition time
- TSL, total spin lock
- WM, white matter
Collapse
Affiliation(s)
- Mohammad Haris
- Research Branch, Sidra Medical and Research Center, Doha, Qatar ; Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Santosh K Yadav
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Arshi Rizwan
- All India Institute of Medical Science, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Anup Singh
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA ; Center for Biomedical Engineering, Indian institute of Technology, New Delhi, India
| | - Kejia Cai
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA ; Center for Magnetic Resonance Research, Radiology Department, University of Illinois at Chicago, IL, USA
| | - Deepak Kaura
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Ena Wang
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology & Lab Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arijitt Borthakur
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Lee J, Hyeon JW, Kim SY, Hwang KJ, Ju YR, Ryou C. Review: Laboratory diagnosis and surveillance of Creutzfeldt-Jakob disease. J Med Virol 2014; 87:175-86. [PMID: 24978677 DOI: 10.1002/jmv.24004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a representative human transmissible spongiform encephalopathy associated with central nervous system degeneration. Prions, the causative agents of CJD, are composed of misfolded prion proteins and are able to self-replicate. While CJD is a rare disease affecting only 1-1.5 people per million worldwide annually, it has attracted both scientific and public attention as a threatening disease since an epidemic of variant CJD (vCJD) cases appeared in the mid-1990s. Due to its unconventional transmission and invariable fatality, CJD poses a serious risk to public health. The hundreds of sporadic, genetic, and iatrogenic CJD cases as well as potential zoonotic transmission suggest that CJD is an ongoing concern for the field of medicine. Nevertheless, treatment aimed at clinical prevention and treatment that reverses the course of disease does not exist currently. Active surveillance and effective laboratory diagnosis of CJD are, therefore, critical. In this report, the surveillance systems and laboratory tests used currently to diagnose CJD in different countries are reviewed. The current efforts to improve surveillance and diagnosis for CJD using molecular and biochemical findings are also described.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Zoonoses, Center for Immunology & Pathology, National Institute of Health, Korea Centers for Diseases Control & Prevention, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Fu Y, Zhao D, Yang L. Protein-Based Biomarkers in Cerebrospinal Fluid and Blood for Alzheimer’s Disease. J Mol Neurosci 2014; 54:739-47. [DOI: 10.1007/s12031-014-0356-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022]
|
29
|
Kokkinou M, Smailagic N, Noel-Storr AH, Hyde C, Ukoumunne O, Worrall RE, Hayen A, Desai M, Ritchie C. Plasma and Cerebrospinal fluid (CSF) Abeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [DOI: 10.1002/14651858.cd010945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Nadja Smailagic
- University of Cambridge; Institute of Public Health; Forvie Site Robinson Way Cambridge UK CB2 0SR
| | - Anna H Noel-Storr
- University of Oxford; Radcliffe Department of Medicine; Room 4401c (4th Floor) John Radcliffe Hospital, Headington Oxford UK OX3 9DU
| | - Chris Hyde
- University of Exeter Medical School, University of Exeter; Peninsula Technology Assessment Group (PenTAG); Veysey Building Salmon Pool Lane Exeter UK EX2 4SG
| | - Obioha Ukoumunne
- University of Exeter Medical School, University of Exeter; Peninsula CLAHRC; Veysey Building Salmon Pool Lane Exeter Devon UK EX2 4SG
| | - Rosie E Worrall
- Oxford University Medical School; Keble College, Parks Road Oxford UK OX13PG
| | - Anja Hayen
- University of Oxford, John Radcliffe Hospital; Nuffield Department of Clinical Neurosciences; Headley Way Oxford UK OX3 9DU
| | - Meera Desai
- University of Oxford; Department of Experimental Psychology; South Parks Road Oxford Oxfordshire UK OX1 3UD
| | | |
Collapse
|
30
|
Unusual features of Creutzfeldt–Jakob disease followed-up in a memory clinic. J Neurol 2014; 261:696-701. [DOI: 10.1007/s00415-014-7246-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
31
|
Qualtieri A, Urso E, Pera ML, Sprovieri T, Bossio S, Gambardella A, Quattrone A. Proteomic profiling of cerebrospinal fluid in Creutzfeldt–Jakob disease. Expert Rev Proteomics 2014; 7:907-17. [DOI: 10.1586/epr.10.80] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
33
|
Abstract
Knowledge of aging and dementia is rapidly evolving with the aim of identifying individuals in the earliest stages of disease processes. Biomarkers allow clinicians to show the presence of a pathologic process and resultant synapse dysfunction and neurodegeneration, even in the earliest stages. This article focuses on biomarkers for mild cognitive impairment caused by Alzheimer disease, structural magnetic resonance imaging, fluorodeoxyglucose positron emission tomography (PET) or single-photon emission computed tomography, and PET with dopamine ligands. Although these biomarkers are useful, several limitations exist. Several new biomarkers are emerging and a more biological characterization of underlying pathophysiologic spectra may become possible.
Collapse
Affiliation(s)
- Meredith Wicklund
- Fellow, Division of Behavioral Neurology, Department of Neurology, Mayo Clinic, Rochester, MN
| | - Ronald C. Petersen
- Cora Kanow Professor of Alzheimer's Disease Research, Director, Mayo Alzheimer's Disease Research Center, Division of Behavioral Neurology, Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
34
|
Maarouf CL, Beach TG, Adler CH, Malek-Ahmadi M, Kokjohn TA, Dugger BN, Walker DG, Shill HA, Jacobson SA, Sabbagh MN, Roher AE. Quantitative appraisal of ventricular cerebrospinal fluid biomarkers in neuropathologically diagnosed Parkinson's disease cases lacking Alzheimer's disease pathology. Biomark Insights 2013; 8:19-28. [PMID: 23533154 PMCID: PMC3603385 DOI: 10.4137/bmi.s11422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Identifying biomarkers that distinguish Parkinson’s disease (PD) from normal control (NC) individuals has the potential to increase diagnostic sensitivity for the detection of early-stage PD. A previous proteomic study identified potential biomarkers in postmortem ventricular cerebrospinal fluid (V-CSF) from neuropathologically diagnosed PD subjects lacking Alzheimer’s disease (AD) neuropathology. In the present study, we assessed these biomarkers as well as p-tau181, Aβ42, and S100B by ELISA in PD (n = 43) and NC (n = 49) cases. The p-tau181/Aβ42 ratio and ApoA-1 showed statistically significant differences between groups. Multiple regression analysis demonstrated that p-tau181/Aβ42 had a significant odds ratio: OR = 1.42 (95% confidence interval [CI], 1.12–1.84), P = 0.006. Among the molecules investigated, intriguing correlations were observed that require further investigation. Our results suggest coexistent AD CSF biomarkers within the PD group notwithstanding that it was selected to minimize AD neuropathological lesions.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu F, Xue ZQ, Deng SH, Kun X, Luo XG, Patrylo PR, Rose GM, Cai H, Struble RG, Cai Y, Yan XX. γ-secretase binding sites in aged and Alzheimer's disease human cerebrum: the choroid plexus as a putative origin of CSF Aβ. Eur J Neurosci 2013; 37:1714-25. [PMID: 23432732 DOI: 10.1111/ejn.12159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/15/2012] [Accepted: 01/17/2013] [Indexed: 01/05/2023]
Abstract
Deposition of β -amyloid (Aβ) peptides, cleavage products of β-amyloid precursor protein (APP) by β-secretase-1 (BACE1) and γ-secretase, is a neuropathological hallmark of Alzheimer's disease (AD). γ-Secretase inhibition is a therapeutical anti-Aβ approach, although changes in the enzyme's activity in AD brain are unclear. Cerebrospinal fluid (CSF) Aβ peptides are thought to derive from brain parenchyma and thus may serve as biomarkers for assessing cerebral amyloidosis and anti-Aβ efficacy. The present study compared active γ-secretase binding sites with Aβ deposition in aged and AD human cerebrum, and explored the possibility of Aβ production and secretion by the choroid plexus (CP). The specific binding density of [(3) H]-L-685,458, a radiolabeled high-affinity γ-secretase inhibitor, in the temporal neocortex and hippocampal formation was similar for AD and control cases with similar ages and post-mortem delays. The CP in post-mortem samples exhibited exceptionally high [(3) H]-L-685,458 binding density, with the estimated maximal binding sites (Bmax) reduced in the AD relative to control groups. Surgically resected human CP exhibited APP, BACE1 and presenilin-1 immunoreactivity, and β-site APP cleavage enzymatic activity. In primary culture, human CP cells also expressed these amyloidogenic proteins and released Aβ40 and Aβ42 into the medium. Overall, our results suggest that γ-secretase activity appears unaltered in the cerebrum in AD and is not correlated with regional amyloid plaque pathology. The CP appears to be a previously unrecognised non-neuronal contributor to CSF Aβ, probably at reduced levels in AD.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hampel H, Blennow K. CSF tau and β-amyloid as biomarkers for mild cognitive impairment. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034251 PMCID: PMC3181816 DOI: 10.31887/dcns.2004.6.4/hhampel] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early diagnosis of Alzheimer s disease (AD) is relevant in order to initiate symptomatic treatment with antidementia drugs. This will be of greater significance if the drugs aimed at slowing down the degenerative process (secondary prevention) prove to affect AD pathology and are clinically effective, such as γ-secretase inhibitors. However, there is currently no clinical assessment to differentiate the patients with mild cognitive impairment (MCI) who will progress to AD from those with a benign form of memory impairment that is part of the normal aging process. Thus, there is great clinical need for diagnostic and predictive biomarkers, as well as biomarkers for classification purposes, to identify incipient AD in MCI subjects. The most promising cerebrospinal fluid (CSF) biomarker candidates are total tau protein (T-tau), phosphorylated tau protein (P-tau), and the 42-andno acid form offi-amyloid (Aβ42), which may, if used in the right clinical context, prove to have sufficient diagnostic accuracy and predictive power to resolve this diagnostic challenge.
Collapse
Affiliation(s)
- Harald Hampel
- Alzheimer Memorial Center and Geriatric Psychiatry Branch, Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany (Harald Hampel); Department of Clinical Neuroscience, Section of Experimental Neuroscience, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden (Kaj Blennow)
| | | |
Collapse
|
37
|
Abstract
Glycemic control is an important aspect of patient care in the surgical Infections of the nervous system are among the most difficult infections in terms of the morbidity and mortality posed to patients, and thereby require urgent and accurate diagnosis. Although viral meningitides are more common, it is the bacterial meningitides that have the potential to cause a rapidly deteriorating condition that the physician should be familiar with. Viral encephalitis frequently accompanies viral meningitis, and can produce focal neurologic findings and cognitive difficulties that can mimic other neurologic disorders. Brain abscesses also have the potential to mimic and present like other neurologic disorders, and cause more focal deficits. Finally, other infectious diseases of the central nervous system, such as prion disease and cavernous sinus thrombosis, are explored in this review.
Collapse
Affiliation(s)
- Vevek Parikh
- University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
38
|
Zetterberg H, Lunn MP, Herukka SK. Clinical use of cerebrospinal fluid biomarkers in Alzheimer’s disease. Biomark Med 2012; 6:371-6. [DOI: 10.2217/bmm.12.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebrospinal fluid is a valuable diagnostic fluid that is underutilized. A number of classical neurochemical tests and newer biomarkers of neuropathology may be performed on the cerebrospinal fluid from patients with clinical signs of progressive neurological disease to assist and complement diagnosis. Here, we discuss how they may be employed in the clinical evaluation of patients with memory problems. We argue for their proper application and use, and caution against common misinterpretations.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Michael P Lunn
- Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology, National Hospital for Neurology & Neurosurgery, London, UK
| | - Sanna-Kaisa Herukka
- Department of Neurology, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, PO Box 1777, 70211 Kuopio, Finland
| |
Collapse
|
39
|
Agarwal R, Chhillar N, Mishra VN, Tripathi CB. CSF tau and amyloid β<sub>42</sub> levels in Alzheimer’s disease—A meta-analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aad.2012.13005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Humpel C, Hochstrasser T. Cerebrospinal fluid and blood biomarkers in Alzheimer’s disease. World J Psychiatry 2011; 1:8-18. [PMID: 24175162 PMCID: PMC3782169 DOI: 10.5498/wjp.v1.i1.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/14/2011] [Accepted: 12/26/2011] [Indexed: 02/05/2023] Open
Abstract
Due to an ever aging society and growing prevalence of Alzheimer’s disease (AD), the challenge to meet social and health care system needs will become increasingly difficult. Unfortunately, a definite ante mortem diagnosis is not possible. Thus, an early diagnosis and identification of AD patients is critical for promising, early pharmacological interventions as well as addressing health care needs. The most advanced and most reliable markers are β-amyloid, total tau and phosphorylated tau in cerebrospinal fluid (CSF). In blood, no single biomarker has been identified despite an intense search over the last decade. The most promising approaches consist of a combination of several blood-based markers increasing the reliability, sensitivity and specificity of the AD diagnosis. However, contradictory data make standardized testing methods in longitudinal and multi-center studies extremely difficult. In this review, we summarize a range of the most promising CSF and blood biomarkers for diagnosing AD.
Collapse
Affiliation(s)
- Christian Humpel
- Christian Humpel, Tanja Hochstrasser, Laboratory for Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | |
Collapse
|
41
|
Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma SI, Kamiie J, Hashimoto T, Hosoya KI, Iwatsubo T, Terasaki T. Amyloid-β peptide(1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 2011; 118:407-15. [PMID: 21585370 DOI: 10.1111/j.1471-4159.2011.07311.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Amyloid-β peptide (Aβ) concentration in CSF is potentially a diagnostic and therapeutic target for Alzheimer's disease (AD). The purpose of this study was to clarify the elimination mechanism of human Aβ(1-40) [hAβ (1-40)] from CSF. After intracerebroventricular (ICV) administration, [(125) I]hAβ(1-40) was eliminated from the rat CSF with a half-life of 17.3 min. The elimination of [(125) I]hAβ(1-40) was significantly inhibited by human receptor-associated protein (RAP) and the elimination was attenuated in either anti-low-density lipoprotein receptor-related protein (LRP)1 antibody-treated or RAP-deficient mice, suggesting that a member(s) of the low-density lipoprotein receptor gene family is involved in the elimination of hAβ(1-40) from CSF. The amounts of LRP1 and LRP2 proteins were determined by means of liquid chromatography-tandem mass spectrometry, and the LRP1 content in rat choroid plexus was determined to be 3.7 fmol/μg protein, whereas the LRP2 content was below the detection limit (<0.2 fmol/μg protein). Conditionally, immortalized rat choroid plexus epithelial cells exhibited predominant apical-to-basal and apical-to-cell transport of [(125) I]hAβ(1-40). These results indicated that hAβ(1-40) is actively eliminated from CSF and this process is at least partly mediated by LRP1 expressed at choroid plexus epithelial cells, which therefore play a role in determining CSF concentrations of hAβ(1-40).
Collapse
Affiliation(s)
- Masachika Fujiyoshi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, Rodriguez-Oroz MC, Tröster AI, Weintraub D. MDS Task Force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI. Mov Disord 2011; 26:1814-24. [PMID: 21661055 DOI: 10.1002/mds.23823] [Citation(s) in RCA: 559] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 12/17/2022] Open
Abstract
There is controversy regarding the definition and characteristics of mild cognitive impairment in Parkinson's disease. The Movement Disorder Society commissioned a Task Force to critically evaluate the literature and determine the frequency and characteristics of Parkinson's disease-mild cognitive impairment and its association with dementia. A comprehensive PubMed literature review was conducted using systematic inclusion and exclusion criteria. A mean of 26.7% (range, 18.9%-38.2%) of nondemented patients with Parkinson's disease have mild cognitive impairment. The frequency of Parkinson's disease-mild cognitive impairment increases with age, disease duration, and disease severity. Impairments occur in a range of cognitive domains, but single domain impairment is more common than multiple domain impairment, and within single domain impairment, nonamnestic is more common than amnestic impairment. A high proportion of patients with Parkinson's disease-mild cognitive impairment progress to dementia in a relatively short period of time. The primary conclusions of the Task Force are that: (1) Parkinson's disease-mild cognitive impairment is common, (2) there is significant heterogeneity within Parkinson's disease-mild cognitive impairment in the number and types of cognitive domain impairments, (3) Parkinson's disease-mild cognitive impairment appears to place patients at risk of progressing to dementia, and (4) formal diagnostic criteria for Parkinson's disease-mild cognitive impairment are needed.
Collapse
Affiliation(s)
- Irene Litvan
- Division of Movement Disorders, Department of Neurology, University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Serot JM, Peltier J, Fichten A, Ledeme N, Bourgeois AM, Jouanny P, Toussaint P, Legars D, Godefroy O, Mazière JC. Reduced CSF turnover and decreased ventricular Aβ42 levels are related. BMC Neurosci 2011; 12:42. [PMID: 21569454 PMCID: PMC3117747 DOI: 10.1186/1471-2202-12-42] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/13/2011] [Indexed: 11/29/2022] Open
Abstract
Background The appearance of Aβ42 peptide deposits is admitted to be a key event in the pathogenesis of Alzheimer's disease, although amyloid deposits also occur in aged non-demented subjects. Aβ42 is a degradation product of the amyloid protein precursor (APP). It can be catabolized by several enzymes, reabsorbed by capillaries or cleared into cerebrospinal fluid (CSF). The possible involvement of a decrease in CSF turnover in A4β2 deposit formation is up to now poorly known. We therefore investigated a possible relationship between a reduced CSF turnover and the CSF levels of the A4β2 peptide. To this aim, CSF of 31 patients with decreased CSF turnover were studied. These patients presented chronic hydrocephalus communicating or obstructive, which required surgery (ventriculostomy or ventriculo-peritoneal shunt). Nine subjects had idiopathic normal pressure hydrocephalus (iNPH), and the other 22 chronic hydrocephalus from other origins (oCH). The Aβ42 peptide concentration was measured by an ELISA test in 31 ventricular CSF samples and in 5 lumbar CSF samples from patients with communicating hydrocephalus. Results The 5 patients with lumbar CSF analysis had similar levels of lumbar and ventricular Aβ42. A significant reduction in Aβ42 ventricular levels was observed in 24 / 31 patients with hydrocephalus. The values were lower than 300 pg/ml in 5 out of 9 subjects with iNPH, and in 15 out of 22 subjects with oCH. Conclusion The decrease of CSF Aβ42 seems to occur independently of the surgical hydrocephalus aetiology. This suggests that a CSF reduced turnover may play an important role in the decrease of CSF Aβ42 concentration.
Collapse
|
44
|
Koric L, Felician O, Ceccaldi M. [Use of CSF biomarkers in the diagnosis of Alzheimer's disease in clinical practice]. Rev Neurol (Paris) 2011; 167:474-84. [PMID: 21420704 DOI: 10.1016/j.neurol.2010.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/20/2010] [Accepted: 10/26/2010] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The diagnosis of Alzheimer's disease (AD) currently relies on clinical criteria that are primarily based on the presence of an amnestic syndrome of the mesial temporal lobe type. In recent years, new diagnostic tools have been developed, such as the possibility of measuring a set of proteins directly involved in the pathophysiological process of AD. A profile suggestive of AD has been defined, characterized by decreased beta-amyloid peptide, combined with increased Tau protein and phopho-Tau. STATE OF KNOWLEDGE According to current data available in the medical literature, the potential usefulness of CSF biomarkers in the common forms of AD fulfilling usual clinical criteria remains modest. In contrast however, they could be of significant help in the diagnosis of early-onset AD, in particular in atypical forms with prominent non-memory impairment (involving vision, language or behavior). In addition, due to their close relationship with the pathological process, they bring useful prognosis information upon the aggressiveness of the disease. CONCLUSION AND PERSPECTIVE Taken together, in the current state of knowledge, use of CSF biomarkers in clinical practice should first be recommended for the assessment of early-onset cognitive disturbances, in particular when initial symptoms are of a non-memory type. Their development, however, offers new avenues in the fields of clinical and pharmacological research.
Collapse
Affiliation(s)
- L Koric
- Service de Neurologie et Neuropsychologie, AP-HM, Hôpital de la Timone, 264 rue Saint-Pierre, 13385 Marseille cedex 5, France.
| | | | | |
Collapse
|
45
|
Prvulovic D, Hampel H. Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer's disease. Clin Chem Lab Med 2011; 49:367-74. [PMID: 21342022 DOI: 10.1515/cclm.2011.087] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A growing body of evidence suggests that Alzheimer's disease (AD) is a multifactorial disease resulting in the well-known, common neuropathological pathway characterized by extracellular fibrillar β amyloid (Aβ) deposits in the brain, intracellular neurofibrillary tangles (NFT) and neuronal as well as axonal degeneration. While fairly accurate, the clinical diagnosis of probable AD based on standard diagnostic criteria does not take into account the long preclinical and prodromal course of AD. AD-related pathophysiological changes can occur many years and even decades before the appearance of clinical dementia syndrome. Biomarkers that are related to the pathophysiology of AD may thus help detect the preclinical stages of disease, and improve early and differential diagnosis. Here, we provide an overview of current literature on the core AD biomarkers, Aβ and phosphor-tau (p-tau), on different methods and modalities of assessing them [e.g., cerebrospinal fluid (CSF) analysis and PET imaging], and on their diagnostic and predictive value in preclinical and clinical stages of AD.
Collapse
Affiliation(s)
- David Prvulovic
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
46
|
Mollenhauer B, Esselmann H, Roeber S, Schulz-Schaeffer WJ, Trenkwalder C, Bibl M, Steinacker P, Kretzschmar HA, Wiltfang J, Otto M. Different CSF β-amyloid processing in Alzheimer's and Creutzfeldt-Jakob disease. J Neural Transm (Vienna) 2011; 118:691-7. [PMID: 21210287 DOI: 10.1007/s00702-010-0543-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
Decreased levels of β-amyloid (Aβ) 1-42 in cerebrospinal fluid (CSF) are characteristic for Alzheimer's disease (AD) and are also evident in Creutzfeldt-Jakob disease (CJD). Aβ plaques are thought to be responsible for this decrease in AD patients, whereas such Aβ plaques are rarely seen in CJD. To investigate the Aβ pattern in brain and CSF of neuropathologically confirmed CJD and AD patients we used an electrophoretic method to investigate Aβ peptide fractions which are not accessible to ELISA and immunohistochemistry. We analyzed Aβ peptides in the CSF of autopsy-confirmed CJD and AD patients and the corresponding brain homogenates using a quantitative urea-based Aβ electrophoresis immunoblot (Aβ-SDS-PAGE/immunoblot).The CSF Aβ1-42 decrease correlated with the brain Aβ load in AD, but not in CJD. There was no difference in the soluble fractions of brain homogenate in AD and CJD. We therefore conclude that different mechanisms in AD and CJD are responsible for the Aβ1-42 decrease in the CSF.
Collapse
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena Klinik, Kassel and Georg-August University, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Specific and Surrogate Cerebrospinal Fluid Markers in Creutzfeldt–Jakob Disease. GENOMICS, PROTEOMICS, AND THE NERVOUS SYSTEM 2011. [DOI: 10.1007/978-1-4419-7197-5_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
|
49
|
Schipper HM. Biological markers and Alzheimer disease: a canadian perspective. Int J Alzheimers Dis 2010; 2010. [PMID: 20811568 PMCID: PMC2929634 DOI: 10.4061/2010/978182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/11/2010] [Indexed: 01/14/2023] Open
Abstract
Decreased β-amyloid1-42 and increased phospho-tau protein levels in the cerebrospinal fluid (CSF) are currently the most accurate chemical neurodiagnostics of sporadic Alzheimer disease (AD). A report (2007) of the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (2006) recommended that biological markers should not be currently requisitioned by primary care physicians in the routine investigation of subjects with memory complaints. Consideration for such testing should prompt patient referral to a specialist engaged in dementia evaluations or a Memory Clinic. The specialist should consider having CSF biomarkers (β-amyloid1-42 and phospho-tau) measured at a reputable facility in restricted cases presenting with atypical features and diagnostic confusion, but not as a routine procedure in all individuals with typical sporadic AD phenotypes. We submit that developments in the field of AD biomarker discovery since publication of the 3rd CCCDTD consensus data do not warrant revision of the 2007 recommendations.
Collapse
Affiliation(s)
- Hyman M Schipper
- Department of Neurology and Neurosurgery, Centre for Neurotranslational Research, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote St. Catherine Rd. Montreal, QC, Canada H3T 1E2
| |
Collapse
|
50
|
Giuffrida ML, Caraci F, De Bona P, Pappalardo G, Nicoletti F, Rizzarelli E, Copani A. The monomer state of beta-amyloid: where the Alzheimer's disease protein meets physiology. Rev Neurosci 2010; 21:83-93. [PMID: 20614800 DOI: 10.1515/revneuro.2010.21.2.83] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One hundred years of study have identified beta-Amyloid (A beta) as the most interesting feature of Alzheimer's disease (AD). Since the discovery of A beta as the principal component of amyloid plaques, the central challenge in AD research has been the understanding of A beta involvement in the neurodegenerative process of the disease. The ability of A beta to undergo conformational changes and subsequent aggregation has always been a limiting factor in finding out the activities of the peptide. Extensive research has been carried out to study the molecular mechanisms of amyloid self-assembly. The finding that soluble Abeta concentrations in the brain are correlated with the severity of AD, whereas fibrillar density is not /40,42/, has pointed attention toward the oligomeric forms of Abeta, which are generally considered the most toxic and, therefore, the most important species to be addressed. Despite great efforts in basic AD research, none of the currently available treatments is able to treat the devastating effects of the disease, leading to the consideration that there is more to reason than just A beta production and aggregation. Here we summarize the emerging evidence for the physiological functions of A beta, including our recent demonstration that A beta monomers are endowed with neuroprotective activity, and propose that A beta aggregation might contribute to AD pathology through a "loss-of-function" process. Finally, we discuss the current therapeutics targeting the cerebral load of A beta and possible new ones aimed at preserving the biological functions of A beta.
Collapse
Affiliation(s)
- M L Giuffrida
- Department of Pharmaceutical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | | | | | | | | | | | | |
Collapse
|